

FREQUENT SUBGRAPH MINING OVER
DYNAMIC GRAPHS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Nourhan N. I. ABUZAYED

July 2022
 İZMİR

ACKNOWLEDGMENTS

I would like to thank my thesis supervisor, Assoc. Prof. Dr. Belgin ERGENÇ

BOSTANOĞLU, for her supervision, and for giving me the opportunity to work with

her. I appreciate her sincerity, patience. Her endless support and confidence were the

motivation for my courage and enthusiasm. I have learned many things from her.

My gratitude and appreciation to the members of my thesis committee

Assoc. Prof. Mustafa ÖZUYSAL and Assist. Prof. Dr. Mutlu BEYAZIT for their

constructive feedback, time and effort spent on my thesis.

I am also grateful to IYTE staff, especially Assist. Prof. Dr. Serap ŞAHIN,

for her support during my master and PhD study.

I especially thank my lovely husband Dr. Mazen ABUZAYED, for his love,

wise, patience, encouragement, and support. Completing this thesis would be very

difficult without him.

I would also like to thank my close friend Dr. Arzum KARATAŞ, for her

kindness and encouragement to complete this thesis. I am very lucky to have a friend

like her.

I would also like to thank my friends Leyla TEKIN and Dr. Rowanda

AHMED for their kindness, encouragement and being good friends during my study.

Finally, I would also like to thank the Islamic Development Bank (IDB) for

supporting me by Doctoral Scholarship.

 iii

ABSTRACT

FREQUENT SUBGRAPH MINING OVER DYNAMIC GRAPHS

Frequent subgraph mining (FSM) is an essential and challenging graph mining

task used in several applications. Modern applications employ evolving graphs, so FSM

is more challenging with evolving graphs due to the streaming nature of the input, and

the exponential time complexity of the algorithms. Sampling schemes are used if

approximate results serve the purpose. This thesis introduces three approximate frequent

subgraph mining algorithms in evolving graphs. those algorithms use novel controlled

reservoir sampling. A sample reservoir of the evolving graph and an auxiliary heap

reservoir data structure are kept together in a fixed sized reservoir. When the whole

reservoir is full, and space has required the edges of lower degree or higher nodes are

deleted. This selection is done by utilizing the heap data structure as a heap reservoir,

which keeps the node degrees. By keeping the edges of higher degree nodes in the sample

reservoir, accuracy is maximized without sacrificing time and space, in contrast, keeping

the edges of lower degree nodes in the sample reservoir, accuracy is minimized with

higher time and space. The first algorithm is Controlled Reservoir Sampling with

Unlimited heap size (UCRS), where the used heap reservoir size is unlimited. The second

algorithm is Controlled Reservoir Sampling with Limited heap size (LCRS). It is a

modified version of UCRS, but the heap reservoir size is limited, as a result; sample

reservoir size in the whole reservoir increases since the total number of nodes dedicated

for the whole reservoir includes the nodes of the heap reservoir also. The third algorithm

is Maximum Controlled Reservoir Sampling (MCRS). It is a modified version of UCRS,

but the candidate edge for deletion is an edge with maximum node degrees. Experimental

evaluations to measure scalability and recall performances of the three algorithms in

comparison to state of art algorithms are performed on dense and sparse evolving graphs.

Findings show that UCRS and LCRS algorithms are scalable and achieve better recall

than edge based reservoir algorithms. LCRS achieves the best recall in comparison to

edge or subgraph based reservoir algorithms. MCRS has the worst speed-up and recall

among the other proposed and competitor algorithms.

iv

ÖZET

DEĞİŞKEN VERİ ÜZERİNDE SIK ALT ÇİZGE MADENCİLİĞİ

Sık alt çizgeler madenciliği bir çok veri madenciliği uygulaması için temel ve

zorlu bir iştir. Modern uygulamalar devingen çizgelerle çalışmakta olup, girdilerindeki

veri akışı, sık alt çizge madenciliği algoritmalarının karmaşıklığını arttırmaktadır.

Yaklaşık sonuçların yeterli olduğu durumlarda örneklemeye dayalı yaklaşımlar

kullanılmaktadır. Bu tez kapsamında üç adet yaklaşık sık alt çizge madenciliği

algoritması önerilmektedir. Önerilen algoritmalarda yenilikçi olarak, kontrollü depolama

ile örneklem oluşturma yaklaşımı kullanılmıştır. Devingen çizgeye ilişkin örneklem sabit

boyutlu depoda tutulmakta ve yardımcı bir yığın veri yapısı kullanılmaktadır. Bu yığın

veri yapısında depodaki çizge düğümlerinin bağlantı dereceleri tutulmaktadır. Sabit

boyutlu depo dolduğunda ve yeni alan gereksinimi ortaya çıktığında bu depodan çizgenin

en düşük dereceli düğümleri çıkarılmaktadır. Devingen çizge örneklemini tutan sabit

depoda yüksek dereceli düğümlerin kalması sağlanarak sonuçlardaki doğruluk, yer ve

zaman maliyetini artırmadan yükseltebilmektedir. İlk olarak limitsiz boyutlu kontrollü

depo örneklemesine dayalı “Controlled Reservoir Sampling with Unlimited heap size

(UCRS)” algoritması önerilmiştir; adından da anlaşılacağı üzere kullanılan yardımcı

yığının boyutu kısıtlanmamıştır. İkinci algoritma “Controlled Reservoir Sampling with

Limited heap size (LCRS)” da büyüyen depo ile büyüyen yığının boyutuna sınır

getirilmektedir. Üçüncü algoritma “Maximum Controlled Reservoir Sampling (MCRS)”

ilk algoritmaya benzemektedir; yığın boyutu sınırlandırılmamıştır ancak depodan düğüm

silmek gerektiğinde en düşük dereceli düğüm yerine en yüksek dereceli düğüm .

çıkarılmaktadır. Her üç algoritmanın başarım değerlendirmeleri zaman, ölçeklenebilirlik

ve doğruluk ölçütleri ile yapılmıştır. Başarım değerlendirmelerinde önerilen algoritmalar

iki güncel rakip algoritma ile yoğun ve seyrek veri setleri üzerinde karşılaştırılmıştır.

Bulgular UCRS ve LCRS algorithmalarının ölçeklenebilir olduğunu, rakip kenar tabanlı

algoritmadan daha doğru sonuçlar verdiğini göstermiştir. LCRS tüm rakip

algoritmalardan daha iyi başarım elde etmiştir. MCRS algoritmasının sonuçları tüm

algoritmalar arasında en kötüdür.

v

To my father and the soul of my mother

To my beloved husband

To my sweet children Ali, Mayar, Mohammed, and Mustafa

To the soul of the martyr journalist Sherine Abu Aqleh

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... xi

LIST OF TERMS AND ABBREVIATIONS ... xii

CHAPTER 1. INTRODUCTION ... 1

 1.1 Contributions of the Thesis .. 2

 1.2. Organization of the Thesis ... 4

CHAPTER 2. BACKGROUND AND PROBLEM FORMULATION 5

 2.1. Graph Basics .. 6

 2.2. Frequent Subgraph Mining .. 10

 2.3. Graph Sampling ... 11

 2.4. Problem Definition ... 18

CHAPTER 3. RELATED WORK .. 19

 3.1. Graph Mining Algorithms for Static Environment 20

 3.1.1. Exact Algorithms ... 23

 3.1.2. Approximate Algorithms ... 26

 3.2. Frequent Subgraph Mining Algorithms for Dynamic Environment 30

 3.2.1. Exact Algorithms ... 34

 3.2.2. Approximate Algorithms ... 37

CHAPTER 4. CONTROLLED RESERVOIR SAMPLING .. 41

vii

 4.1. Controlled Reservoir Sampling Algorithm with Unlimited Heap Size

(UCRS) ... 42

 4.2. Controlled Reservoir Sampling Algorithm with Limited Heap Size

(LCRS) ... 48

 4.3. Maximum Controlled Reservoir Sampling (MCRS) Algorithm 52

 4.4. Deleting an Edge in UCRS, LCRS, MCRS and Random algorithms .. 57

CHAPTER 5. PERFORMANCE EVALUATION ... 60

 5.1. Scalability ... 61

 5.2. Recall ... 72

 5.3. Heap size .. 78

 5.4. Discussion on Experiments .. 82

CHAPTER 6. CONCLUSION ... 87

REFERENCES ... 90

viii

LIST OF FIGURES

Figure Page

Figure 2.1. Example of Graph G ... 6

Figure 2.2. Subgraphs of the Graph G .. 6

Figure 2.3. Dynamic graph G at different points of time ... 7

Figure 2.4. Example of (graph inputs as a series of small graphs) Transformation of a

time series ... 8

Figure 2.5. (a) Dynamic graph G at different points of time (b) Subgraph g1 (c)

Subgraph g2 ... 9

Figure 2.6. Finding Frequent Subgraphs (Input and Output) .. 10

Figure 2.7. Graph sampling .. 11

Figure 2.8. Random node sampling from a graph .. 13

Figure 2.9. Random edge sampling from a graph ... 14

Figure 2.10. Random walk sampling from a graph .. 16

Figure 2.11. Breadth-first sampling of a large graph .. 17

Figure 3.1. Frequent Subgraph Mining Algorithms ... 19

Figure 3.2. Block diagram of proposed solution of Approximate GRAMI 27

Figure 3.3. The pseudo code of the first sampling technique ... 28

Figure 3.4. The pseudo code of the second sampling technique 28

Figure 3.5. The pseudo code of the third sampling technique .. 29

Figure 3.6. Example of Triest algorithm after adding a new coming edge (FG), when

the sample reservoir is full ... 39

Figure 3.7. Example of SR or OSR algorithm after adding a new coming edge (FG),

when the sample reservoir is full ... 40

Figure 4.1. Pseudo code of the UCRS algorithm .. 43

Figure 4.2. Deleting edge by random edge deletion and minimum controlled edge

deletion ... 45

Figure 4.3. Example of the UCRS algorithm when whole reservoir (sample and heap

reservoirs) is not full ... 46

Figure 4.4. Example of UCRS after adding a new coming edge (FG), while the whole

reservoir (sample and heap reservoirs) is full ... 47

Figure 4.5. Pseudo code of the LCRS algorithms ... 49

ix

Figure Page

Figure 4.6. Example of the LCRS algorithm when whole reservoir (sample and

heap reservoirs) is not full .. 51

Figure 4.7. Example of the LCRS algorithms, adding a coming node (FG) while the

whole reservoir (sample reservoir and heap reservoir) is full 52

Figure 4.8. Pseudo code of the MCRS algorithm ... 54

Figure 4.9. Example of MCRS after adding a new coming edge (XE), while the

whole reservoir (sample and heap reservoirs) is not full 55

Figure 4.10. Example of MCRS after adding a new coming edge (FG), while the

whole reservoir is full .. 56

Figure 4.11. Deleting edge with minimum node degrees, maximum node degrees

and random edge .. 58

Figure 5.1.A. Scalability performance of the algorithms while changing the dataset

size on Datasets D1 for M= 600 ... 62

Figure 5.1.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D1 for M= 600 ... 63

Figure 5.2.A. Scalability performance of the algorithms while changing the dataset

size on Datasets D1 for M= 1200 ... 64

Figure 5.2.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D1 for M= 1200 ... 64

Figure 5.3.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D1 for M= 1800 ... 66

Figure 5.4.A. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 600 ... 67

Figure 5.4.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 600 ... 68

Figure 5.5.A. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 1200 ... 69

Figure 5.5.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 1200 ... 69

Figure 5.6.A. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 1800 ... 70

Figure 5.6.B. Scalability performance of the algorithms while changing the dataset

size on Datasets D2 for M= 1800 ... 71

x

Figure Page

Figure 5.7. Recall of the algorithms while changing the dataset size on Dataset D1

(M=600 nodes) ... 73

Figure 5.8. Recall of the algorithms while changing the dataset size on Dataset D1

(M=1200 nodes) ... 74

Figure 5.9. Recall of the algorithms while changing the dataset size on Dataset D1

(M=1800 nodes) ... 74

Figure 5.10. Recall of the algorithms while changing the dataset size on Dataset D2

(M=600 nodes) ... 75

Figure 5.11. Recall of the algorithms while changing the dataset size on Dataset D2

(M=1200 nodes) ... 76

Figure 5.12. Recall of the algorithms while changing the dataset size on Dataset D2

(M=1800 nodes) ... 76

Figure 5.13. Number of nodes in heap while changing the dataset size on Dataset D1

(M = 600 nodes) ... 78

Figure 5.14. Number of nodes in heap while changing the dataset size on Dataset D1

(M = 1200 nodes) ... 79

Figure 5.15. Number of nodes in heap while changing the dataset size on Dataset D1

(M = 1800 nodes) ... 79

Figure 5.16. Number of nodes in heap while changing the dataset size on Dataset D2

(M = 600 nodes) ... 80

Figure 5.17. Number of nodes in heap while changing the dataset size on Dataset D2

(M = 1200 nodes) ... 80

Figure 5.18. Number of nodes in heap while changing the dataset size on Dataset D2

(M = 1800 nodes) ... 81

Figure 5.19. Summary of Recall and Speed-up on Datasets D1 and D2 86

xi

LIST OF TABLES

Table Page

Table 3.1. Algorithms for static frequent subgraph mining .. 21

Table 3.2. Algorithms for dynamic frequent subgraph mining 32

Table 5.1. Properties of the datasets .. 61

Table 5.2. Scalability speed-up of the algorithms while varying the dataset size 72

Table 5.3. Recall of the algorithms while changing the datasets sizes 77

Table 5.4. Correlation between heap size and reservoir sizes for UCRS, LCRS and

MCRS .. 82

Table 5.5. Summary of Execution Time Speed-ups and Recall Results 84

xii

LIST OF TERMS AND ABBREVIATIONS

AGM ………………………………….……………Apriori Graph Based Mining

BFS…………………………….…………….…………… Breadth First Strategy

CAM ………...…………….………….....…………Canonical Adjacency Matrix

DFS………………………....……..…………………………Depth First Strategy

FFSM algorithm ………………..………………Fast Frequent Subgraph Mining

FRISS…………..….…Frequent Relevant, and Induced Subgraph Subsequences

FS………………….………………………………………………First Sampling

FSM…………….…..…………....……………...……Frequent Subgraph Mining

GERM……………….………….………….………Graph Evolution Rule Miner

LCRS………...…...….…Controlled Reservoir Sampling with Limited Heap Size

MCRS.……………………….… ……Maximum Controlled Reservoir Sampling

OSR…………………...........……………………Optimized Subgraph Reservoir

RE…………………..……………………………………Random Edge sampling

RN………………………………………………………Random Node sampling

RS………………...………….………………………………Reservoir Sampling

SR……………………………………………………………Subgraph Reservoir

SRS...……………………….…………………………Simple Random Sampling

SSIGRAM ……………………………………Spark based Single Graph Mining

UCRS……………………...……….……… Sampling with Unlimited Heap Size

1

CHAPTER 1

INTRODUCTION

Graphs represent the complex and arbitrary relations among attributes of real-world

data, such as users (nodes) and the relationships between them (edges) in social networks,

atoms (nodes) and bonds (edges) in chemical structures, proteins (nodes) and protein

interactions (edges) in biological networks, computers (nodes) and links between them

(edges) in computer networks (Chakrabarti and Faloutsos, 2006) (Fournier-Viger et al.,

2020). Due to the increase in structured and semi-structured data represented in graphs,

there has been rising interest in the mining graph data. Graph mining has several sub-

categories such as graph classification, graph clustering and frequent subgraph mining,

etc. (Jiang, Coenen and Zito, 2004) (Jiang, Coenen and Zito, 2013).

Frequent subgraph mining is defined as finding all the subgraphs in a given graph that

appear more than a given support threshold. It is a widely studied problem as it results in

the discovery of recurrent structures, themes or ideas in the given graph database which

can be used further for performing other graph mining applications such as graph

classification, graph partitioning, graph clustering, graph correlations etc. (Cuzzocrea et

al., 2015). Nowadays dynamic graph-based applications which deal with the dynamic

data emerged i.e., social networks where friendships (i.e., edges of graph) are linked and

dissolved over time, protein-to-protein interaction networks where knowledge is

frequently updated. Because of these applications, the need for incremental frequent

subgraph mining approaches has become essential. The increments can be represented in

two different ways in a graph: (a) by a series of small graphs, and (b) as a stream of node

and edge updates to the graph (Ray, Holder and Choudhury, 2014). These increments can

be done in three different ways; first edges or/and nodes are being added to the network

over time. Second, attributes of existing edges or/and nodes are modified over time. Third,

edges or/and nodes previously present are being removed from the network.

Although frequent subgraph mining has been widely studied (Yan and Jiawei, 2002)

(Huan, Wang and Prins, 2003) (Inokuchi, Washio and Motoda, 2000) (Ranu and Singh,

2009) (Fournier-Viger et al., 2019), few works exist for dynamic frequent subgraph

2

mining (Kuramochi and Karypis, 2004) (Abdelhamid et al., 2017). Static algorithms

assume that graphs do not change over time and try to find all frequent subgraphs in the

data. On the other hand, dynamic frequent subgraph mining algorithms deal with change

in the data, however most of them concentrate on exact output similar to static algorithms.

Exact algorithms search for all the frequent patterns; this requires high execution time

and memory consumption. Therefore, for faster results users are willing to trade-off

accuracy in cases where approximate results can serve the purpose. There are two recent

works that are designed for approximate outputs (frequent subgraphs); Triest (De Stefani

et al., 2016), SR and OSR (Aslay et al., 2018). They provide simple approximate

approaches with trade-off between time and accuracy. Both solutions in (De Stefani et al.,

2016) and (Aslay et al., 2018) use sampling technique based on the method which is

proposed in (Vitter, 1985) where a randomized sampling schema that uses fixed sized

reservoir is presented. The algorithm in (De Stefani et al., 2016) relies on sampling edges,

while the algorithms in (Aslay et al., 2018) do sampling subgraphs to gain more accuracy.

However, Triest (De Stefani et al., 2016), SR and OSR (Aslay et al., 2018) algorithms

have some limitations; these limitations are trade-off between time and accuracy. SR and

OSR are more accurate than Triest, while the recent one is faster than SR and OSR as

appear in empirical results in (Aslay et al., 2018). The main purpose of approximation is

having high number of retrieved patterns (high recall) with a minimized execution time,

so faster solutions with higher recall are still needed.

1.1. Contributions of the Thesis

 The main contribution of this thesis is to introduce frequent subgraph mining

algorithms in dynamic environment. We propose three approximate frequent subgraph

mining algorithms that work on evolving graph data. Sampling is done by selecting a

representative subset of the original graph by facilitating fixed size reservoir similar to

recent competitors (De Stefani et al., 2016) (Aslay et al., 2018) . The difference is in the

management of the sample reservoir in the whole reservoir. Competitors use randomized

sampling where the degrees of the nodes are not considered. When the reservoir is full

any node even with highest degree can be deleted. This results in low recall.

3

The main contributions of this thesis are as follows.

 Controlled Reservoir Sampling Algorithm with Unlimited heap size

(UCRS): this proposed algorithm use novel controlled edge-based sampling

strategy with again fixed sized reservoir. Reservoir keeps the edges of the sample

reservoir together with the nodes of the heap reservoir; the heap reservoir is a heap

data structure keeps the degrees of the nodes in the sample. Management of the

sample in the reservoir is done with the help of a heap data structure. Whenever

an edge deletion is required, nodes of the edges that have lowest degree are

chosen. In other words, in reservoir management, instead of random edge

deletion, the edges that have nodes with low connectivity are potential targets to

be removed from the sample reservoir, and if the node degrees are 1, they should

be removed from heap reservoir. By this way, accuracy is maximized.

 Controlled Reservoir Sampling Algorithm with Limited heap size (LCRS),

this algorithm is a modified version of UCRS. In LCRS, the heap reservoir size is

minimized, as a result; sample reservoir size increases since the total number of

nodes dedicated for the reservoir includes the nodes of the heap reservoir together

with the nodes of the edges of the sample reservoir.

 Maximum Controlled Reservoir Sampling (MCRS): in this proposed

algorithm, when the whole reservoir is full, an edge should be deleted from the

sample reservoir to be replaced by a new edge, this candidate edge is an edge with

maximum node degrees of its source and destination, while in UCRS the

candidate edge for deletion is an edge with minimum node degrees of its source

and destination. It is very similar to UCRS, but instead of deleting edges with

minimum node degrees, it deletes edges with maximum node degrees. This

algorithm is proposed as a heuristic and to check the validity of UCRS and LCRS.

The performance of UCRS, LCRS and MCRS algorithms are evaluated

together with comparison to Triest (De Stefani et al., 2016) and SR, OSR (Aslay

et al., 2018) using sparse and dense datasets. In the experiments the scalability,

recall and heap size are measured. The findings are as follows; LCRS and UCRS

have noticeable speed-up over (SR and OSR). UCRS and LCRS achieve high

scalability, they can be as good as the fastest competitor algorithm. For the recall

measurements, both LCRS and UCRS algorithms are better than Triest. LCRS

achieves the highest recall on sparse datasets, while on dense dataset; LCRS can

4

achieve the highest recalls with large sizes of whole reservoir. MCRS has the

worst speed-up and recall among the other proposed and competitor algorithms.

1.2. Organization of the Thesis

This thesis is organized as follows.

 In Chapter 2 the fundamentals of graph terminology, frequent subgraph mining in

dynamic and static graphs are given. then some graph sampling methods and techniques

are explained. in addition, the problem and problem formulation are given.

In Chapter 3 a detailed discussion the state of art in frequent subgraph mining

algorithms is reviewed. The main methodologies of existing frequent subgraph mining

algorithms for static and dynamic environments are discussed. In both environments,

some exact and approximate algorithms are explained and discussed.

In Chapter 4 three approximate frequent subgraph mining algorithms are

introduced. They are designed to work in dynamic environment. Proposed algorithms use

controlled reservoir sampling. Two of the methods namely UCRS and LCRS are designed

for deleting edges with minimum node degrees when whole reservoir is full, while one is

namely MCRS is designed for deleting edges with maximum node degrees when whole

reservoir is full. each algorithm is explained with a motivating example.

In Chapter 5 the proposed algorithms are evaluated by using a set of experiments.

These experiments are for measuring the scalability, the recall, and the heap size, the

experiments are done in comparison to recent competitors, and then the experiments are

discussed.

In Chapter 6 conclusion of this thesis is given with a summary, and possible future

research directions are pointed out.

5

CHAPTER 2

BACKGROUND AND PROBLEM FORMULATION

Graphs represent the complex and arbitrary relations among attributes of real-

world data, such as users (nodes) and the relationships between them (edges) in social

networks. There has been rising interest in the mining graph data.

Frequent subgraph mining is defined as finding all the subgraphs in a graph that

appear more than a given support threshold. It is a widely studied problem as it results in

the discovery of recurrent structures. Frequent subgraph mining process consists of two

phases, i.e., candidate generation and support computation (Dhiman and Jain, 2016).

Recently, dynamic graph-based applications which deal with the dynamic data

emerged i.e., social networks where friendships (i.e., edges of graph) are linked and

dissolved over time, etc. So, the need for incremental frequent subgraph mining

approaches has become essential. The increments can be represented in two different

ways in a graph: (a) by a series of small graphs, and (b) as a stream of node and edge

updates to the graph (Ray, Holder and Choudhury, 2014). Some works exist for dynamic

frequent subgraph mining (Kuramochi and Karypis, 2004), (Abdelhamid et al., 2017).

Static algorithms assume that graphs do not change over time, those static algorithms try

to find frequent subgraphs in the data. While dynamic frequent subgraph mining

algorithms deal with change in the data, however most of them concentrate on exact

output similar to static algorithms. Exact algorithms search for all the frequent patterns,

which requires high execution time and memory consumption. Therefore, for faster

results with lower accuracy in some cases; approximate results can serve the purpose. But

to do approximation, sampling of the input data is needed, there are several sampling

techniques are explained in this chapter.

In this chapter, basic terminology graph basics, frequent subgraph mining, graph

sampling, and problem formulation are presented.

6

2.1. Graph Basics

A graph is defined as a set of vertexes (nodes) that are interconnected by a set of

edges. An example of a graph is shown in Figure 2.1. A graph G is an ordered pair (V,

E) consisting of a set of vertices V= {v1, v2, v3, v4, v5} and V is connected to each other

by and a set of edges E= {e1, e2, e3, e4}. A label function, , maps a vertex or an edge

to a label.

Figure 2.1. Example of Graph G

Assume subgraph G '(V', E') is a subgraph of the graph G (V, E), where edges and vertices

are subsets of E and V respectively:

 V’ V

Figure 2.2. shows examples of subgraphs such that S1, S2, and S3 are subgraphs of G in

Figure 2.1.

Figure 2.2. Subgraphs of the Graph G

7

Static graph: A graph G = (V, E) consists of a set of nodes V, and a set of edges E V×V,

where V and E do not change over time.

Dynamic graph (evolving graph): An evolving graph GD = (VD, ED) consists of a set of

nodes VD, and a set of edges ED VD × VD. GD is changed by node and edge additions

or deletions over time. Figure 2.3 shows an example of a dynamic graph at three points

of time (t1, t2 and t3). At time t2, there is a deletion of the edge u7- u8. At time t3, edge u7-

u8 and edge u3-u10 are added.

Figure 2.3. Dynamic graph G at different points of time

In incremental frequent subgraph mining approaches, the increments can be represented

in two different ways in a graph: (a) by a series of small graphs, and (b) as a stream of

node and edge updates to the graph. The following is explanation of the two kinds of

increments (Ray, Holder and Choudhury, 2014).

A. Increments as a series of small graphs
In this kind of dynamic graphs, the increments are done by using a series of graph objects,

i.e. each object in the stream is considered as a (static) graph snapshot.

Definition: (Series of Graphs) Given a sequence Gts of n graphs {G1, . . . , Gn}

with Gi = (Vi, Ei) for 1 ≤ i ≤ n. We define Gts to be a time series of graphs if V1 = Vi for

all 1 ≤ i ≤ n. Gi is the i-th state of Gts (Borgwardt, Kriegel and Wackersreuther, 2006).

Figure 2.4 shows an example of a dynamic graph when the input is a series of

small graphs, it shows a graph input, where each incoming object is an entire graph.

8

Transaction ID Graph

1

2

3

4

5

6

Figure 2.4. Example of (graph inputs as a series of small graphs) Transformation of a
time series

B. Increments as a stream of nodes and edges
In this kind of dynamic graphs, the increments consist of nodes and edges that change

over time, and it can be addition or deletion.

u3 u5

u2 u4

u3 u5 u9

u1 u2 u4

u3 u5

u1 u2 u4

u3
u5

u2 u4

u9

u9

u3
u5

u1 u2 u4

u3

u5 u9

u1 u2 u4

9

Definition: Dynamic graph (evolving graph): An evolving graph GD = (VD, ED) consists

of a set of nodes VD, and a set of edges ED VD × VD. GD is changed by node additions

or deletions, edge additions or deletions over time. Figure 2.5(a) shows an example of a

dynamic graph at three points of time (t1, t2 and t3). At time t2, there is a deletion of the

edge u7- u8. At time t3, edge u7-u8 and edge u3-u10 are added.

Figures 2.5 shows an example of an edge updates, it shows the dynamic graph at

different time points t1, t2 and t3 when edges are coming as updates.

Figure 2.5. (a) Dynamic graph G at different points of time (b) Subgraph g1 (c) Subgraph

g2

Subgraph isomorphism: Given two undirected graphs G and H. There is an isomorphism

between G and H, if there is a bijection f between their vertices (f: V(G)→V(H)), Hence,

two vertices u, v are adjacent to each other in G if and only if f(u), f(v) are adjacent in H.

These two graphs are topologically identical in topology.

10

2.2. Frequent Subgraph Mining

The main task of frequent subgraph mining (FSM) is to find all frequent subgraphs

in a given graph or a set of graphs for a given user-defined threshold (Aggarwal and

Wang, 2010). The support of a subgraph (g) is defined the number of occurrences of this

graph in a graph dataset.

Given a graph G = (Vg, Eg), a graph F = (Vf, Ef) will be a subgraph of G if and

only if the vertices and edges of graph H are a subset of the vertices (Vf Vg) and edges

(Ef Eg) of graph G. If the support of subgraph is equal or greater than the user-defined

minimum support threshold, then this subgraph is considered as a frequent subgraph. If a

graph is frequent, all its subsets must be frequent (downward closure property) (Dinari

and Naderi, 2014).

Figure 2.6 illustrates an example of finding frequent subgraphs. Input is a database

of graph transactions, undirected simple graph (no loops, no multiples edges), each graph

transaction has labels associated with its edges and vertices, transactions might not be

connected and a minimum support threshold σ; example (60%). The Output is frequent

subgraphs that satisfy the minimum support threshold, and each frequent subgraph is

connected.

Figure 2.6. Finding Frequent Subgraphs (Input and Output)

11

Frequent subgraph mining process consists of two phases, i.e., candidate generation and

support computation (Dhiman and Jain, 2016).

Frequent subgraph: Subgraph g to be frequent in an input graph G, if it has support

larger than or equal to a user-defined threshold.

Frequent Subgraph Mining: It is the process of finding all frequent subgraphs in a given

graph G. Finding isomorphic subgraphs is one the challenges of this process.

Dynamic Subgraph Mining: It is the process of finding all frequent subgraphs on

evolving graph. In the example presented in Figure 2.5 given an input dynamic graph G

and support threshold 2, let us see the status of subgraphs g1 and g2. Addition of an edge

to input graph increases the support of one or more subgraphs, removal of an edge of the

input graph decreases the support of one or more subgraphs (Abdelhamid et al., 2017).

At time t1, the subgraph g1 has 2 matches in G, however the subgraph g2 has only one

match. As a result, g1 is frequent subgraph and g2 is not frequent subgraph. At time t2,

there is a deletion of the edge u7- u8, so the number of embeddings of g1 decreases to one,

however the number of embedding of g2 does not change. Therefore, both subgraphs g1

and g2 are not frequent. At time t3, there is an addition of edge u3-u10, this addition

increases the number of matches of g2 to two; so, g2 becomes frequent.

2.3. Graph Sampling

Graph sampling is done by selecting a representative subset of the original graph

as shown in Figure 2.7, so the graph sampling can make the graph size smaller while

keeping the characteristics of the original graph (Sahu et al., 2021) (Wang et al., 2011).

Figure 2.7. Graph sampling

Single graph

Graph Sampling

Small Representative Graph

12

Graph sampling: Graph sample of Graph G= (V, E) is defined as Gs= (Vs, Es) where Vs

 V, Es E and Es {(u, v) |u Vs, and v Vs}.

Approximate Frequent Subgraph Mining: If the frequent subgraph mining algorithm is

applied on a sample graph of the original graph, the results is approximate.

To do approximation, sampling is needed, in the following, we will talk about graph

sampling in context, need for Sampling, notations and definition, and finally graph

sampling methods with examples.

Graph sampling is needed Social network analysis, to keep the graph scale small

while capturing the properties of the original social graph, graph sampling provides an

efficient, yet inexpensive solution for social network analysis (Wang et al., 2011).

Sampling can be used in graph analysis in applications such as security, high performance

computing, etc (Zhang et al., 2017). Also, survey hidden population in sociology, scale

down Internet AS graph, graph sparsification, etc. (Stutzbach et al., 2006). Sampling

provides an abstract version of the original graph. Thus, visualizing sampling results is

easier than visualizing the original. Secondly, the analysis of a large graph is costly. The

third reason is incomplete graph data. In some cases, obtaining all data for a graph is not

permitted or is very time-consuming. Thus, we must obtain the properties of the graph by

sampling.

For the above reasons, sampling algorithms aims to reduce the complexity of

graph drawing while preserving properties of the original graph, allowing analysis of the

small sample to yield the characteristics similar to those of the original graph (Zhang et

al., 2017).

Graph Sampling Methods

There are four sampling methods, which are Node Sampling, Edge Sampling, Traversal-

based sampling (Zhang et al., 2017) and Sampling with Neighbourhood (VSN) (Hu and

Lau, 2013). In the following we will explain each one with algorithmic example.

 Node Sampling

In node sampling, vertices are sampled. A subgraph is created from sampled nodes and

existing edges of original graph. For example, Random Node (RN) sampling.

Example:

Random Node (RN) sampling (Leskovec and Faloutsos, 2006): it is the most common

method; it selects a set of nodes uniformly at random from the graph. Using this set, an

13

induced subgraph can be created by including every edge that connects a pair of nodes in

the set. RN is simple and efficient (Wu et al., 2017), Figure 2.8 shows random node

sampling from a graph.

(a) Original graph

(a) Random Node

Figure 2.8. Random node sampling from a graph

 Edge Sampling

 In edge sampling, edges are sampled, and then a subgraph is created from those

edges. Induced edge sampling includes totally induced edge sampling and partially

induced edge sampling. For example, Random Edge (RE) sampling, First (FS)

sampling and Traversal-based sampling.

14

 Example 1: Random Edge (RE) sampling

It generates an induced subgraph by selecting edges uniformly at random. The random

edge deletion from graph is shown in Figure 2.9.

(a) Original graph

(b) Random Edge

Figure 2.9. Random edge sampling from a graph

15

Example 2: FS

- FS firstly randomly chooses a set of nodes, S, as seeds.

- Then FS will select a seed v from the set of seeds with the probability defined as

follows:

An edge (v, w) is selected uniformly from node v’s outgoing edges, and v will be

replaced with w in the set of seeds and edge (v, w) will be added to the sequence of

sampled edges.

- FS repeats these steps until the budget is reached.

 FS requires that at least one of the in degree and out degree of the nodes is not 0.

 Otherwise, the node has neither incoming nor outgoing edges, which means, this

node is isolated. In real OSNs the number of isolated nodes is small and in most researches

isolated nodes are not considered (Wang et al., 2011).

 Traversal-based sampling

Traversal-based sampling uses topology information to sample a subgraph. For

example, Random walk sampling and Breadth-first sampling.

Example 1. Random walk sampling (Stutzbach et al., 2006) starts at a seed vertex, and

then chooses a vertex uniformly at random from the neighbours of the current vertex. A

subgraph is created from the walking paths. Figure 2.10 shows random walk sampling.

16

(a) Original graph

(b) Random Walk

Figure 2.10. Random walk sampling from a graph

Example 2. Breadth-first sampling (Hu and Lau, 2013) (Zhang et al., 2017) is induced

from the graph traversal algorithm breadth-first search. It begins with a random vertex

and visits its neighbours iteratively. An example of BFS is shown in Figure 2.11.

17

d b a c f e I h g k j
Sampling budget

Figure 2.11. Breadth-first sampling of a large graph

Sampling algorithms in data streams

1. Simple random sampling (srs) (Yates et. al, 2002)

In srs, a sample is chosen by picking each item in the data stream with an equal probability

of being selected. The inclusion probability is provided as an input parameter to the

sampling algorithm. Consider a p = 0.5, then each item in the data stream has half the

chance to be included in the sample. srs is extremely simple, however one downside of

srs is that the size of the sample grows along with size of the data stream (Anis and Nasir,

2018).

2. Reservoir sampling (rs) (Vitter, 1985)

It is a fixed-size randomized sampling scheme, which maintains a fixed-size uniform

sample of the data stream. The size of the sample is provided as the input parameter. The

algorithm initializes with a fixed-size input array, which initially gets filled by the items

in the data stream. Once the array is filled, each i-th item is added to the sample with

probability 1/i by replacing it with a randomly selected item from the sample. Random

pairing (Gemulla et al., 2006) is a fully dynamic algorithm for reservoir sampling, that

compensate for item deletions using the future addition (Anis and Nasir, 2018).

18

2.4. Problem Definition

We consider the problem of finding approximate frequent subgraphs on a dynamic

undirected graph where changes are additions of edges occurring over time. In other

words, we observe a sample graph that changes over time t and its size does not exceed

pre-defined threshold (maximum whole reservoir size). Assume the sample graph Gt =

(Vt, Et), for any time t ≥ 0, where Vt represents the vertices and Et represents the edges.

For any time instant t ≥ 0, we receive an edge element et+1 which consists of a pair of

vertices (u, v). The sample graph Gt+1 = (Vt+1, Et+1) is obtained by adding a new edge to

the existing sample graph as follow: E(t+1) = E(t) (u, v). If u or v are not in V(t); they

will be added to V(t+1).

The details of the management of fixed size reservoir reserved for the sample

reservoir and heap reservoir are explained in the next chapter.

19

CHAPTER 3

RELATED WORK

 In this chapter, a literature review on existing frequent subgraph mining approaches

are presented. These algorithms are classified into two categories according to their

environment: static and dynamic as in Figure 3.1.

 In dynamic environment the graph datasets are evolving over time, while in static

environment the state of the graphs doesn’t change. In the literature many approaches are

proposed to work in static environment. The Figure 3.1. shows that the frequent subgraph

mining for dynamic data can be classified into two categories: exact and approximate.

Most algorithms in dynamic environment concentrate on exact algorithms, where the

exact approaches search for all the frequent patterns. However, for faster results users are

willing to trade-off accuracy, whenever approximate results can serve the purpose. Those

approximate algorithms use different sampling approaches. The basic idea in

approximation is to execute the exact algorithm on a small portion of the data (sample)

(Iyer, A. Liu, Z. Jin, X. Venkataraman, S. Braverman, V. Stoica, 2018). Sampling is done

by selecting a representative subset of the original graph where the purpose is to reduce

graph size while preserving the characteristics of the original graph (Wang et al., 2011).

Frequent subgraph mining process consists of two phases, i.e., candidate

generation and support computation (Dhiman and Jain, 2016). Several algorithms are

proposed to solve this problem. In the following two sections, some graph mining

algorithms for static and dynamic environment are presented.

Figure 3.1. Frequent Subgraph Mining Algorithms

20

 3.1. Graph Mining Algorithms for Static Environment

In static graph mining literature, several algorithms are proposed using different

approaches with different attributes such as input and output type, graph type, graph

representation, algorithmic approach, programming approach. Let us explain different

comparison attributes.

The input type can be different from an algorithm to another. It can be a set of graphs that

consist of a group of small graphs as chemical molecules. It is also possible to be a one

single graph that is generated from associations of many small subgraphs as social

networks. In frequent subgraph mining algorithms, the main difference between the two

types is in frequency calculation.

The graph type of the input graphs can have one of the following possible types:

undirected labelled graphs, undirected graphs, directed graphs, connected graphs,

connected undirected graphs, or labeled graph.

The graph representation is considered as one of the most effective attributes on the

consumption of runtime and memory. In general, the graphs can be represented by the

adjacency matrix, adjacency list and canonical labelling.

Algorithmic approach shows pattern finding approach of the base algorithm

where the possible values can be Apriori or Pattern growth. The Apriori based algorithms

(Inokuchi, Washio and Motoda, 2000) generate candidates using breadth first strategy

(BFS) and apply subgraph isomorphism testing to calculate frequencies of candidates.

Pattern growth-based algorithms (Yan and Han, 2003) generate candidates based on depth

first strategy (DFS). The pattern growth approach avoids the cost of generating candidates

and subgraph isomorphism testing. The candidates are generated by extending frequent

subgraphs starting from minimal frequent subgraphs by adding one edge at every step

until they are still frequent.

Programming approach: some algorithms utilizes parallel programming, in order

to take advantage of the existing multicore processor technology, or distributed, and as a

result the time complexity is reduced. While other uses serial programming approach.

Type of output, the essential purpose of each algorithm is extracting a reduced set

of frequent subgraphs. So, the nature of each output could be different from one algorithm

to another, the retrieved output could be all, approximate, or closed frequent subgraphs.

21

Due to the existence of several static subgraph mining approaches. Table 3.1

summarizes a literature about some algorithms in static subgraph mining.

Table 3.1. Algorithms for static frequent subgraph mining

Algorithm

In
pu

t t
yp

e

G
ra

ph
 ty

pe

*
G

ra
ph

re

pr
es

en
ta

ti
on

A
lg

or
ith

m
ic

ap

pr
oa

ch

Pr
og

ra
m

m
i

ng
 a

pp
ro

ac
h

O
ut

pu
t t

yp
e

Limitations

gSpan (Yan and Han,
2002)

set of
graphs

U Canonical
label(min
DFS)

Pattern growth Serial All frequent
subgraphs

It is unable to process large datasets

FFSM (Huan, Wang
and Prins, 2003)

set of
graphs

U Canonical
label(CAM
)

Apriori based
&
pattern growth

Serial All frequent
subgraphs

NP-complete problem

CloseGraph (Yan and
Han, 2003)

set of
graphs

U /
D

Canonical
label(min
DFS)

Pattern growth Serial Closed
frequent
subgraphs

Failure detection takes lot of time overhead

AGM (Inokuchi,
Washio and Motoda,
2000)

set of
graphs

U /
D

adjacency
matrix

Apriori based Serial All Frequent
subgraphs

High complexity due to multiple candidate
generation

FSG (Kuramochi and
Karypis, 2001)

set of
graphs

U adjacency
list
CAM

Apriori based Serial All frequent
subgraphs

High complexity due to multiple candidate
generation

FSM-H (Bhuiyan and
Al Hasan, 2015)

set of
graphs

U adjacency
list

Apriori based Parallel All Frequent
subgraphs

High complexity due to multiple candidate
generation

gSpan-H algorithm
(Sangle and Bhavsar,
2016)

set of
graphs

D Canonical
label(min
DFS)

Apriori based Parallel All Frequent
subgraphs

Multiple candidate generation

HSIGRAM
(Kuramochi and
Karypis, 2005)

single large
graph
undirected

U Canonical
label(CAM
)

Apriori based Serial Approximate
frequent
subgraphs

Multiple candidate generation

VSIGRAM
(Kuramochi and
Karypis, 2005)

single large
graph

U Canonical
label(CAM
)

Pattern growth Serial Approximate
frequent
subgraphs

Some interesting patterns can be lost

SPIN (Huan et al.,
2004)

Set of
graphs

U Adjacency
matrix

Pattern growth Serial Maximal
frequent
subgraphs

Interesting patterns may be lost

Ap-FSM (Bhatia and
Rani, 2018)

single large
graph

L Canonical
label(CAM
)

Pattern growth Parallel Approximate
frequent
subgraphs

It handles only distributed systems

MaNIACS (Preti, De
Francisci Morales and
Riondato, 2021)

single large
graph

L Canonical
label

Apriori based Serial Approximate
frequent
subgraphs

It is compared with the exact algorithm; it
is preferred to be compared with recent
approximate algorithms.
Not scalable for small graphs, it uses
random sampling for approximation,
interesting patterns might be lost

Approximate GraMi
(Sahu et al., 2021)

single large
graph

 adjacency
matrix

Apriori based Serial Approximate
frequent
subgraphs

Works only with static graphs

Graph type*:
U: Undirected graphs
D: Directed graphs
C: Connected graphs
L: Labeled graph

Frequent subgraph mining algorithms can be categorized into two main approaches

according to their base algorithm, the two categories are Apriori based approach or

pattern-growth based approach.

22

Algorithms based on Apriori: The Apriori based algorithms consist of two main steps:

the first step is generating candidates using breadth first strategy (BFS), the second step

is applying subgraph isomorphism testing to calculate frequencies of candidates. Apriori

based algorithms are extended from Apriori algorithm (Inokuchi, Washio and Motoda,

2000). In the first step, the level-wise strategy for candidate generation is used. Apriori

based approaches has a drawback because of the large number of candidates that are

generated on large datasets. As a result, downward closure property is employed to

minimize the search space, this property states that, if a subgraph is not frequent, its

superset (set containing it) is considered not frequent. In the next step, there is no need to

check whether any candidate graph containing this subgraph is frequent or not. In Apriori

based algorithms the number of candidates is reduced, but on large datasets and minimum

support threshold, these algorithms do not work well. This is due to the large number of

generated candidates, also this process requires multiple scans for the database. Apriori

based algorithms have challenges regard to subgraph isomorphism testing.

 Algorithms based on FP-Growth: the main purpose of FP-Growth based

algorithms (Han, Pei and Yin, 2000) is to discover frequent subgraphs without candidate

generation and subgraph isomorphism testing. FP-Growth approach based on divide and

conquer method. In this approach a frequent sub graph is extended by adding an extra

edge in every possible position, this process continues until no more frequent subgraphs

remains. This is instead of candidate generation. The mentioned extension of edges is

done instead of candidate generation, but the drawback here is while adding an extra edge

in every possible position, there is a probability that the same sub graph can be discovered

several times, this results in duplication in candidate generation. There are works done to

eliminate the duplication by using rightmost extension technique such as gSpan algorithm

(Huan, Wang and Prins, 2003). Pattern growth-based FSM algorithms usually use the

rightmost extension technique in the candidate generation process, and to avoid subgraph

isomorphism testing in calculating the frequencies of subgraphs; the minimum DFS code

is used.

 One of the drawbacks of Apriori based algorithms is multiple scans for the

database. To overcome this problem, pattern-growth based algorithms was developed, it

handles a more compact and smaller data structure instead of working on the whole the

database. In this approach, the number of generated candidates are reduced, also the

subgraph isomorphism test is better than the Apriori based approaches. Pattern- Growth

23

approach algorithm include SPIN (Huan et al., 2004), gSpan (Yan and Jiawei, 2002) and

FFSM (Huan, Wang and Prins, 2003).

Type of output, the essential purpose of each algorithm is extracting a reduced set

of frequent subgraphs. So, the nature of each output could be different from one algorithm

to another, Some FSM algorithms retrieve all the frequent subgraphs, the output is called

exact. while some algorithms retrieve part of the frequent patterns, in this case the

algorithms are approximate. The exact and approximate types are presented in the

following two subsections.

3.1.1. Exact Algorithms

Exact algorithms search for all the frequent patterns; this requires high execution time

and memory consumption. Exact algorithms can be in dynamic or static environments.

Several algorithms were proposed to serve this purpose e.g. (Huan, Wang and Prins,

2003), (Huan, Wang and Prins, 2003), (Elseidy, Abdelhamid and Skiadopoulos, 2014) and

(Abdelhamid et al., 2017). The following is an algorithm example the has an exact output.

The SSIGRAM (Spark based Single Graph Mining) algorithm in Qiao et al., 2018;

where Spark is an in-memory MapReduce-like general-purpose distributed computation

platform which provides a high-level interface for users to build applications. Unlike

(Zaharia et al., 2010). The proposed method is based on parallel frequent subgraph mining

algorithm in a single large graph. It approaches the two computational challenges of

frequent subgraph mining, it conducts the subgraph extension and support evaluation

parallel across all the distributed cluster worker nodes. Also, it utilizes a heuristic search

strategy and three novel optimizations: load balancing, pre-search pruning and top-down

pruning in the support evaluation process that significantly improve the performance.

experiments using four different real-world datasets demonstrate that the proposed

algorithm outperforms the existing GRAMI (Elseidy, Abdelhamid and Skiadopoulos,

2014) Graph Mining algorithm by an order of magnitude for all datasets and can work

with a lower support threshold (Qiao et al., 2018).

The AGM (Apriori graph based mining) (Inokuchi, Washio and Motoda, 2000) is

employed to discover frequent subgraphs. Adjacency matrix is used to represent graph.

A level wise search is used to discover the frequent subgraphs. It assumes that graph

24

contains only distinct vertexes. However, overall analysis showed that the time

complexity of directed graphs is less than that of undirected graphs, this is since the

possible edge directions in directed graphs results in more subgraph patterns, and their

frequency will be less. In addition, the complexity of small graphs is less than larger

graphs. In the experimentation of AGM on chemical carcinogenesis data; the output of

AGM was subgraphs that are connected and subgraphs that are not connected with several

isolated graph. It efficiently mined frequent subgraph, but complexity was high due to

multiple candidate generation. Experiments reported in (Huan, Wang and Prins, 2003)

showed that AGM performs good in dense synthetic graph datasets, and takes 40 minutes

to 8 days (approx.) to tabulate all frequent sub graphs in a dataset containing 300 chemical

compounds, when the minimum support threshold varies between 20% to 10%.

The FSG algorithm (Kuramochi and Karypis, 2001) finds all frequent connected

subgraphs. It generates candidate subgraphs based on edges i.e., Candidate subgraphs are

generated by adding edge to the previous subgraph. For frequency counting, it uses

transaction identifiers list for frequent subgraphs, and it uses adjacency list for graph

representation. Canonical labels (A canonical code is a unique code of a given graph and

it is always be the same no matter how the graphs are represented, as long as those graphs

have the same topological structure and the same labelling of edges and vertices) are

used to check isomorphic graphs. It is very costly because it uses isomorphism testing,

and it also generates a huge set of candidates. It requires multiple scans of database. It is

inefficient for mining large sized subgraph patterns. It needs efficient finding of

isomorphic graphs to count support. The advantages of FSG are that it can prune

candidates without subgraph isomorphism. For large datasets, it checks only those graphs

which may potentially contain the candidate.

The gSpan algorithm (Yan and Han, 2002) is a Graph-Based Substructure Pattern

Mining, it discovers frequent substructure without candidate generation, it uses a

canonical representation for graphs, which called “DFS-Code”. gSpan maps subgraphs to

a unique minimum depth-first search (DFS) code and uses a lexicographic order on these

codes to order subgraphs. Based on this order, a DFS strategy is used to mine frequent

subgraphs efficiently in gSpan. Such that, gSpan traverses the DFS Code Tree, where the

code of a node corresponds to the parent’s code is extended by one edge and the siblings

are ordered according to the lexicographic order. Using this approach, the traversal starts

from the smallest subgraphs and it backtracks if the corresponding subgraph is not

frequent (Yan and Han, 2002). In gSpan; refinement generation is done in two ways: 1)

25

fragments can only be extended at nodes which lie on the rightmost path of the DFS tree.

2) Fragment generation is guided by occurrence in the appearance lists. Because these

two pruning techniques cannot fully prevent isomorphism, gSpan calculates the canonical

DFS code (lexicographically smallest) for each refinement by means of a permutation’s

series. Refinements with non-minimal DFS-code can be pruned. Since instead of

embeddings, gSpan only stores appearance lists for each fragment, explicit subgraph

isomorphism testing must be done on all graphs in these appearance lists. NP-

completeness of the subgraph isomorphism leads to an exponential run time.

Luckily, graphs with diverse labels can decrease the runtime substantially when

experiments are applied. Another problem of gSpan, and frequent subgraph mining

algorithms in general, is that for large or dense graphs, the number of frequent subgraphs

is very large, and as a result, it is not practical to mine all of them (Cook and Holder,

2007).

The FFSM algorithm (Fast Frequent Subgraph Mining) (Huan, Wang and Prins,

2003) considers large dense graphs with less labels. It represents graphs as triangle

matrices (node labels on the diagonal, edge labels elsewhere). In this algorithm, vertical

level search strategy is used to reduce the number of candidate generation. The main

features of the proposed method are: First; a novel graph canonical form and two efficient

candidate proposing operations are employed which are: FFSM-Join and FFSM-

Extension, Second; suboptimal CAM (Canonical Adjacency Matrix) tree which is an

algebraic graphical framework in order to ensure that all detected frequent subgraphs are

enumerated unambiguously, and finally, avoiding subgraph isomorphism testing which

is time consuming, this done by maintaining an embedding set for each frequent

subgraph. However, FFSM only stores the matching nodes, while edges are ignored. As

a result, this helps speeding up the join and extension operations, because the embedding

lists of new fragments can be calculated by set operations on the nodes. Adjacency matrix

is employed for graph representation. Limitation of FFSM algorithm is that it is NP-

complete problem. Experimentation showed that FFSM outperformed gSpan.

26

3.1.2. Approximate Algorithms

There are two main drawbacks of exact algorithms, the first one is the requirement

of high execution time, while the second one is the need for high memory consumption

that required to search for all frequent patterns. Therefore, for faster results and lower

memory consumption, approximate algorithms can serve the purpose, with

approximation the user trade-off accuracy for much faster results. The main idea of

approximate algorithms is executing the exact algorithm on a small subset of the data set,

which is called samples, there are different approximate algorithms are proposed recently

like (Iyer, A. Liu, Z. Jin, X. Venkataraman, S. Braverman, V. Stoica, 2018), (Bhatia and

Rani, 2018), (Aslay et al., 2018), (Preti, De Francisci Morales and Riondato, 2021) and

(Sahu et al., 2021). Explanation about an approximate algorithm is presented next.

The CloseGraph algorithm in (Yan and Han, 2003) is founded on gSpan. It uses

an equivalent occurrence-based early termination in order to prune the search space.

CloseGraph uses DFS strategy, lexicographic order, minimum DFS code and rightmost

extension for finding closed frequent subgraphs. The concept of closed subgraph mining

is not only reducing unnecessary subgraphs to be produced, but also substantially

increasing the efficiency of mining, especially in the large graphs’ patterns are presented.

Experimental results demonstrated that CloseGraph performed better than gSpan and

FSG (Yan and Han, 2003). Performance study shows that, CloseGraph not only reduces

unnecessary subgraphs to be generated, but also increases the efficiency of mining,

particularly in the presence of large graph patterns (Muttipati, 2015).

 MaNIACS (Preti, De Francisci Morales and Riondato, 2021) is a sampling-based

randomized algorithm for computing high quality approximations of the subgraph

patterns, it works on a single, large, vertex labelled graph. It prunes the pattern search

space, and thus to reduce the time spent in exploring subspaces containing no frequent

patterns. It relies on uniform random sampling of vertices and on computing the patterns

to which these vertices belong. It prunes parts of the search space that provably do not

contain any frequent pattern, and to focus the exploration only on the “promising”

subspaces, therefore avoiding expensive computations. Pruning leads to better bounds to

the maximum frequency estimation error, which enables additional pruning. It is the first

to use concepts from statistical learning theory for FPSM. In experimental evaluation, it

is compared with exact algorithm, it shows that it returns high-quality collections of

27

frequent patterns in large graphs up to two orders of magnitude faster than the exact

algorithm, it is scalable w.r.t. the size of the graph, Scalable for large graphs and no gain

with small graphs.

 Approximate GraMi (Sahu et al., 2021) is an approximate algorithm, it works on

static graphs. In this work they proposed three sampling techniques, these techniques are

applied on a single large graph, the results are a sampled graph, which is used as an input

to an existing static exact algorithm (GRAMI), the results are approximate subgraphs.

Block diagram of the phase of approximate GraMi solution is shown in Figure 3.2.

Figure 3.2. Block diagram of proposed solution of Approximate GRAMI (Sahu et al.,

2021)

The explanation of the three sampling techniques is follows:

The first sampling technique:

This technique samples the graph by picking up the vertices based on sampling

rate. This is done according to the following three steps: First a list of vertices that have

the same degree is created; this list is sorted in increasing order according to the degrees

of the vertices. Second, the vertices that have the same degree are put into a single list,

finally, the vertices are selected according to user defined sampling rate and then they are

merged into a single list. The pseudo code of this sampling technique is as shown in

Figure 3.3.

28

Figure 3.3. The pseudo code of the first sampling technique (Sahu et al., 2021)

The second sampling technique:

In this technique randomness is employed to create sample from the original

graph. Sampling is done by selecting an edge randomly and added if it is not already

existed in the list. The steps of this technique are as follows:

First, from the edges in the list, an edge is selected randomly. Edge selection is done up

to a user defined sampling rate. The selected edge is added if it is not already in the list.

The pseudo code of the second sampling technique is as shown in Figure 3.4.

Figure 3.4. The pseudo code of the second sampling technique (Sahu et al., 2021)

29

The third sampling technique:

This sampling technique selects certain number of top vertices from the sorted list

of the vertices. This process starts by sorting the vertex list on increasing order according

to the degrees of vertices. Then topmost vertices are selected according to the sampling

rate, then they are merged into a single list. The pseudo code of the third sampling

technique is as shown in Figure 3.5.

Figure 3.5. The pseudo code of the third sampling technique (Sahu et al., 2021)

In this work, experimental results are done on one dataset (Mico), in the experiments;

three sampling techniques compared with the exact static algorithm (GRAMI), But

Approximate GraMi algorithms have disadvantages; they work only on static graph

environment, and there is no limit for the memory size.

 All mentioned algorithms in the previous sections assume that graphs are not

changed over time, however; nowadays the emerging graph-based applications have the

dynamicity nature. Examples include social networks, where friendships are formed and

removed over time; protein-to-protein interaction networks, where information in

biomedical databases is updated frequently. The following section presents the frequent

subgraph mining in dynamic graphs.

30

3.2. Frequent Subgraph Mining Algorithms for Dynamic
Environment

In dynamic graph mining literature, various algorithms have been proposed using

different approaches in different fields such as input and output type, increments type,

graph type, graph representation, data structure, algorithmic approach, programming

approach, and Base algorithm. In this section, a classification among some algorithms is

held according to the following attributes, let s explain each of them:

The Increments type; as the listed algorithms are incremental algorithms, the increments

can be a series of small graphs or a stream of nodes and edges.

The graph type of the input graphs can have one of the following possible types:

Undirected labelled graphs, undirected graphs, directed graphs, various kinds of graph

data, connected graphs, connected undirected graphs, or labelled graph.

The graph representation is considered as one of the most effective attributes on the

consumption of runtime and memory. In general, the graphs can be represented by the

adjacency matrix, adjacency list and canonical labelling.

The increments can have nodes/edges where each column can have, A: Addition and D:

Deletion.

The data structure represents data structure that used in the application of the mentioned

algorithm. It can be DFS tree, Suffix trees, dictionary data structure, DS-Tree, DS-Table,

DS-Matrix or, Array with hashed based index.

The algorithmic approach shows pattern finding approach of the base algorithm where

the possible values can be Apriori or Pattern growth. The Apriori based algorithms

(Inokuchi, Washio and Motoda, 2000) generate candidates using breadth first strategy

(BFS) and apply subgraph isomorphism testing to calculate frequencies of candidates.

Pattern growth-based algorithms (Yan and Han, 2003) generate candidates based on depth

first strategy (DFS). The pattern growth approach avoids the cost of generating candidates

and subgraph isomorphism testing. The candidates are generated by extending frequent

subgraphs starting from minimal frequent subgraphs by adding one edge at every step

until they are still frequent.

31

In programming approach some algorithms utilize parallel programming, to take

advantage of the existing multicore processor technology, or distributed, and as a result

the time complexity is reduced. While other uses serial programming approach.

Base algorithm, some incremental algorithms are developed based on static ones, the base

algorithms represent static algorithm with which the dynamic algorithm is extended.

Output type, the essential purpose of each algorithm is extracting a reduced set of frequent

subgraphs. So, the nature of each output could be different from one algorithm to another.

It can be all, approximate or closed frequent subgraphs.

As there are currently many dynamic subgraph mining approaches. Table 3.2

summarizes a literature about some recent algorithms in dynamic subgraph mining, this

summary is done to facilitate visualizing the main properties of each algorithm.

32

Table 3.2. Algorithms for dynamic frequent subgraph mining

Algorithm

In
cr

em
en

ts

ty
pe

G
ra

ph
 ty

pe
 *

G
ra

ph

re
pr

es
en

ta
tio

n Increments

D
at

a
st

ru
ct

ur
e

A
lg

or
ith

m
ic

ap

pr
oa

ch

Pr
og

ra
m

m
in

g
ap

pr
oa

ch

B
as

e
al

go
rit

hm

O
ut

pu
t t

yp
e

Limitations

A D

Ed
ge

N
od

e

Ed
ge

N
od

e

span
(Lakshmi
and
Meyyappan,
2013)

Small
graphs

U
L

Adjace
ncy list

 DFS
tree

Pattern
growth

Parallel Gspan All frequent
subgraphs

Not general for all classes, it
focuses on a special class of
undirected labelled simple
graphs, graphs with unique no
labels.

Germ
(Berlingerio
and Bonchi,
2009)

Stream
of
nodes
and
edges

U Canoni
cal
label

 DFS
tree

Pattern
growth

Serial Gspan All frequent
subgraphs

It is assumed that node and
edge labels do not change over
time.

Dynamic
GREW
(Borgwardt,
Kriegel and
Wackersreut
her, 2006)

Small
graphs

L adjace
ncy
matrix

 Suffix
trees

Apriori Serial Grew

All frequent
subgraphs

Extra overhead to identify
dynamic patterns. Misses some
interesting patterns.

Time-
evolving
Graph
(Miyoshi,
Ozaki and
Ohkawa,
2011)

Stream
of
nodes
and
edges

U Canoni
cal
label

 Direct
ed
Acycli
c
Graph

Pattern
growth

Serial Germ All frequent
subgraphs

Increments done by addition of
nodes and edges only.

StreamFSM
(Ray, Holder
and
Choudhury,
2014)

Stream
of
nodes
and
edges

V Canoni
cal
label

 diction
ary
data
structu
re

Pattern
growth

Serial Gspan Approximat
e frequent
subgraphs

Simple heuristic and
applicable only to incremental
streams and without provable
guarantees.

Triest
(Stefani et
al., 2016)

Stream
of
edges

C
U

canoni
cal
label

 Array
with
hash
map

Apriori Serial Approximat
e frequent
subgraphs

It counts only 3-node
subgraphs

IncGM+
(Abdelhamid
et al., 2017)

Stream
of
edges

D Canoni
cal
label

 index
structu
re

Pattern
growth

Serial StreamFs
m,
moment

All frequent
subgraphs

Still needs to enumerate and
track an exponential number of
candidate subgraphs.

FSM in an
evolving
graph (Aslay
et al., 2018)

Stream
of
edges

C
U

canoni
cal
label

 Array
with
hashed
based
index

Apriori Serial StreamFS
M

Approximat
e frequent
subgraphs

Consider only edges, it uses
BFS to explore the graphs and
may multiple candidate
generation is done. Some
interesting patterns can be lost.

FP from
dense graph
streams
(Braun et al.,
2014)

Small
graphs

U canoni
cal
label

 DS-
Tree,
DSTab
le,
DSMat
rix

Pattern
Growth

Serial FP-
Growth

All frequent
pattern

Handle edges addition and
deletion only

edge-based
FSM from
graph
streams
(Cuzzocrea
et al., 2015)

Small
graphs

U canoni
cal
label

 DS-
Tree,
DSTab
le,
DSMat
rix

Pattern
Growth

Serial FP from
dense
graph
streams
(Braun et
al., 2014)

All frequent
subgraphs

Only handle edges addition
and deletion without update or
new node increments.

IncGraphMi
ner (Bifet
and Gavaldà,
2011)

Small
graphs

V canoni
cal
label

 DFS
tree

Pattern
Growth

Serial CloseGra
ph(

Closed
subgraphs

It takes overhead time to
summarize the pattern

WinGraphM
iner (Bifet
and Gavaldà,
2011)

Stream
of
nodes
and
edges

V canoni
cal
label

 DFS
tree

Pattern
Growth

Serial CloseGra
ph

Closed
subgraphs

It is not able to adapt to
changes on the stream since the
right size of the sliding
window should be known in
advance. Time overhead to
produce patterns.

AdaGraphM
iner (Bifet
and Gavaldà,
2011)

Stream
of
nodes
and
edges

V canoni
cal
label

 DFS
tree

Pattern
Growth

Serial CloseGra
ph

Closed
subgraphs

It takes overhead time to
summarize the pattern

Graph type*:
UL: Undirected labelled graphs U: Undirected graphs
D: Directed graphs V: Various kinds of graph data
C: Connected graphs CU: Connected undirected graphs
L: Labeled graph

33

Most algorithms are programmed in serial approach while very few are developed in

parallel manner like span (Lakshmi and Meyyappan, 2013). Some algorithms are exact

like IncGM+ (Abdelhamid et al., 2017) and moment (Chi et al., 2004), but keeping track

of all the possible changes in the graph is subject to combinatorial explosion, thus, is

highly challenging (Aslay et al., 2018). To overcome this challenge; some algorithms are

proposed for the approximate purpose e.g. (Aslay et al., 2018). Enumerate and extract the

emerged subgraphs is a drawback of some existing algorithms. In the approximate

algorithms there is a trade-off between time and accuracy.

Exact algorithms that focus on finding all subgraphs in the data require high

execution times and high memory consumption. Therefore, for faster results users are

willing to trade-off accuracy whenever approximate results can serve the purpose. Those

approximate algorithms use different sampling approaches. The basic idea in

approximation is to execute the exact algorithm on a small portion of the data (samples)

(Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir

Braverman, Ion Stoica, 2018). Sampling is done by selecting a representative subset of

the original graph where the idea is to reduce graph size while keeping the characteristics

of the original graph (Wang et al., 2011). Graph sampling provides an efficient, yet

inexpensive solution for social network analysis where the graph size is huge (Wang et

al., 2011). Sampling can be used in graph analysis in applications such as security, high

performance computing, etc (Zhang et al., 2017). Also, survey hidden population in

sociology; scale down Internet AS graph, graph sparsification, etc. (Stutzbach et al.,

2006).

There are two types of sampling algorithms in data streams; simple random

sampling (SRS) (Yates, Moore and Starnes, 2002) and reservoir sampling (RS) (Vitter,

1985). In SRS, a sample is chosen by picking each item in the data stream with an equal

probability of being selected. The inclusion probability is provided as an input parameter

to the sampling algorithm. Consider a p = 0.5, then each item in the data stream has half

the chance to be included in or excluded from the sample. SRS is extremely simple,

however one downside of SRS is that the size of the sample grows along with size of the

data stream (Anis and Nasir, 2018). On the other hand RS (Vitter, 1985) is a fixed-size

randomized sampling scheme, which maintains a fixed-size uniform sample of the data

stream. The size of the sample is provided as the input parameter. Random pairing

(Gemulla, Lehner and Haas, 2006) is a fully dynamic algorithm as an example for

34

reservoir sampling, that compensate for item deletions using the future addition (Anis and

Nasir, 2018).

When the literature of dynamic subgraph mining is analysed, it is observed that

most of the algorithms are devised to produce exact output like span (Lakshmi and

Meyyappan, 2013), Germ (Berlingerio and Bonchi, 2009), Dynamic GREW (Borgwardt,

Kriegel and Wackersreuther, 2006), Time-evolving Graph (Miyoshi, Ozaki and Ohkawa,

2011), IncGM+ (Abdelhamid et al., 2017), FP from dense graph streams (Braun et al.,

2014) and edge-based FSM from graph streams (Cuzzocrea et al., 2015). However,

keeping track of all the possible changes in the graph is subject to combinatorial

explosion. On the other hand, there is a few work for approximate solutions like (Ray,

Holder and Choudhury, 2014) (De Stefani et al., 2016) (Aslay et al., 2018). These

approaches use simple heuristics and do not provide any correctness guarantee. Both

solutions in (De Stefani et al., 2016) and (Aslay et al., 2018) use sampling technique

based on the method which is proposed in (Vitter, 1985), this method is a randomized

sampling schema. The algorithm in (De Stefani et al., 2016) relies on sampling edges,

while the algorithms in (Aslay et al., 2018) are based on sampling subgraphs in order to

gain more accuracy. These algorithms have limitations; the limitations are trade-off

between time and accuracy. SR and OSR (Aslay et al., 2018) are more accurate than

Triest (De Stefani et al., 2016) sacrificing time and space efficiency, while Triest (De

Stefani et al., 2016) is faster with the cost of low accuracy. Solutions that minimize time

and space consumption while maximizing the accuracy at the same time are still needed.

In the following two subsections, exact and approximate approaches are introduced and

discussed.

3.2.1. Exact Algorithms

The Span (Lakshmi and Meyyappan, 2013) is based on gSpan. It focuses on a special

class of undirected labelled simple graphs, graphs with unique no labels. Aims reduce the

time complexity, using parallel programming. If graph dataset can fit in main memory,

the proposed method can be applied directly; the two techniques, DFS lexicographic order

and minimum DFS code, introduced in gSpan are the best, which form, a novel canonical

labeling system, to support DFS search. But still the problem of finding minimum DFS

35

code used in gSpan is also NP- complete. The proposed algorithm addresses this issue by

using a modified DFS representation. It retains all the advantages of gSpan, while taking

advantage of the multi core processing technology by using the concept of parallel

programming to improve the performance of the algorithm. The number of duplicate

graphs generated may be comparatively little more than gSpan algorithm, as mining of

sub graphs from frequent single edge graphs are done in parallel. Span is quadratic but

not general for all classes.

The GERM (Berlingerio and Bonchi, 2009) introduced Graph Evolution Rule

Miner (GERM), a novel type of frequency based pattern that describe the evolution of

large networks over time, at a local level. The input for this approach is a sequence of

snapshots of an evolving graph, the main purpose is to mine the rules that describe the

local changes in it. This approach uses the support based on minimum image to extract

patterns which frequency is greater than a minimum support threshold. After that, graph-

evolution rules are extracted from frequent patterns that satisfy a given minimum

confidence constraint, the rules extraction framework is similar to it in classical rule

mining. Experiments are done on four large real-world networks (two social networks,

and two co-authorship networks), using different time granularities. Experiments approve

feasibility and the utility of a framework. The limitations of GERM: it is designed for

undirected graphs, nodes and edges are only added and never deleted. It assumed that

node and edge labels do not change over time.

The Dynamic GREW (Borgwardt, Kriegel and Wackersreuther, 2006)

investigates how pattern mining on static graphs can be extended to time series of graphs.

Specifically, it handles dynamic graphs with edge insertions and edge deletions over time.

They define a frequency and provide algorithmic solutions for finding frequent dynamic

subgraph patterns. Existing subgraph mining algorithms can be easily integrated into this

framework to make them handle dynamic graphs. Experimental results in the paperon

real-world data confirm the practical feasibility of proposed approach, the limitations of

Dynamic GREW are; it assumes that the input dynamic graph has a fixed set of nodes,

and edges are inserted and deleted over time. Also, there is an extra overhead to identify

dynamic patterns. It misses some interesting patterns.

 In (Bifet and Gavaldà, 2011), the first work on close stream while only two

frequent close graph algorithms on static graphs are introduced. Bifet et al. proposed new

method for mining frequent closed subgraphs. The method is IncGraphMiner, it works

on frequent weighted closed graph mining. this method works on coresets of closed

36

subgraphs, compressed representations of graph sets, and maintain these sets in a batch-

incremental manner, it handles the potential concept drift. The proposed algorithm is

based on close graph which takes time overhead to summarize the patterns.

The IncGM+ (Abdelhamid et al., 2017) is a fast incremental approach for

continuous frequent subgraph mining on a single large evolving graph. It adapts the

notion of “fringe” to the graph context, which is the set of subgraphs that are on the border

between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and

utilize them in the search space pruning. In order to increase the efficiency, an efficient

index structure is proposed to maintain selected embeddings, with minimal memory

overhead. These embeddings are employed to avoid subgraph isomorphism operations.

Furthermore, the proposed system supports batch updates. Experiments are done using

large real-world graphs, it verifies that IncGM+ outperforms existing algorithms by up to

three orders of magnitude, scales to much larger graphs, and consumes less memory. The

limitation of IncGM+ that it still needs to enumerate and track an exponential number of

candidate subgraphs.

The algorithm In (Miyoshi, Ozaki and Ohkawa, 2011) handles the problem of

mining frequent patterns and valid rules representing graph evolutions (structural

changes) in a graph with time information. They propose an efficient technique for

extracting representative patterns and rules, they use graph-based summarization of

discovered rules. This done by using certain measures provided by the summary, so it is

expected to find more interesting information which are difficult to be discovered by the

traditional support and confidence measures. Proposed algorithm based on gSpan and

Germ, it differs from gSpan that it handles single graph input and work on graph patterns

have time points, it differs from Germ that proposed method handle multi edges.

The FRISSMiner in (Inokuchi and Washio, 2012) defines subgraph subsequence

class called an “induced subgraph subsequence” to enable the efficient mining of a

complete set of frequent patterns from graph sequences containing large graphs and long

sequences. In addition, it proposes an efficient method for mining frequent patterns,

called “FRISSs (Frequent Relevant, and Induced Subgraph Subsequences)”, from graph

sequences. The fundamental performance of the proposed method is evaluated using

artificial datasets, and its practicality is confirmed by experiments using a real-world

dataset.

In (Bifet and Gavaldà, 2011), the first work on close stream. Bifet et al. proposed

frameworks are for studying graph pattern mining on time-varying streams. Two new

37

methods for mining frequent closed subgraphs are presented. The methods are

WinGraphMiner and AdaGraphMiner, it works on frequent weighted closed graph

mining. All methods work on coresets of closed subgraphs, compressed representations

of graph sets, and maintain these sets in a batch-incremental manner but use different

approaches to address potential concept drift. The above three algorithms are based on

close graph which takes time overhead to summarize the patterns.

3.2.2. Approximate Algorithms

The StreamFSM (Ray, Holder and Choudhury, 2014) discovers the frequent

subgraphs in a graph, represented by a stream of labeled nodes and edges. In this model,

updates to the graph arrive in the form of batches that contain new nodes and edges.

Proposed method continuously reports the frequent subgraphs that are estimated to be

found in the entire graph as each batch arrives. It is evaluated using five large dynamic

graph datasets: the Hetrec 2011 challenge data, Twitter, DBLP and two synthetic. It is

evaluated against two popular static large graph miners, i.e., SUBDUE and GERM.

Experimental results show that it can find the same frequent subgraphs as a non-

incremental approach applied to snapshot graphs, and in less time. The drawback of the

StreamFSM algorithm: In terms of several parameters that have to be tuned in order to

get the optimal performance in terms of time and accuracy/interestingness of results.

Also, it assumes that we have access to the entire graph as the graph grows. This

assumption will not work in a real world streaming scenario. (Ray, Holder and

Choudhury, 2014). Also it only handles increments with additions.
SR and OSR are two dynamic approximate algorithms (Aslay et al., 2018), Both

algorithms use reservoir sampling technique (RS) as introduced in (Vitter, 1985). RS is a

fixed size randomized sampling technique; it maintains a fixed-size uniform sample of

the data. The sample size is assigned as an input parameter. The algorithms initialize with

a fixed size input array, that initially gets filled by the items in the input data gradually.

Once the maximum sample size is reached or the reservoir is filled, each new item (i) is

added to the sample with probability 1/i by replacing it with a randomly selected item

from the sample.

38

The addition of an edge affects only the subgraphs in the local neighbourhoods up to

specified neighbourhood. A uniform sample of subgraphs is maintained by iterating

through the subgraphs in the neighbourhood of the newly inserted edge. Standard

reservoir sampling is used as follows:

 If the sample size less than fixed memory size, then the new subgraph is added to the

sample. Otherwise, if the sample size greater than fixed memory size then a subgraph is

removed randomly from the sample to insert the new one.

Triest algorithm (De Stefani et al., 2016):

 Triest counts triangles in incremental streams with fixed memory size, it uses

standard reservoir sampling (Vitter, 1985) to maintain the edge sample:

The standard reservoir sampling is used as follows:

• If the sample size less than fixed memory size, then the new edge is added to the

sample. Otherwise,

• if the sample size greater than fixed memory size then an edge is removed

randomly from the sample to insert the new one.

The drawback of this algorithm that edge deletion from reservoir is done randomly when

reservoir is full, by this random edge deletion some important pattens might be lost.

Example

Figure 3.6 illustrates an example of Triest after adding a new coming edge (FG),

while the reservoir is full. Given an input graph of coming edges Figure 3.6(a), it is

supposed that the maximum allowed size of the reservoir is assigned to a value of “6”.

When the first five coming edges (AB, CX, DE, XY, XZ, XE) are received, they are

inserted directly into the edge reservoir Figure 3.6(b), this insertion into the reservoir is

done directly since it is not full. The edges in the reservoir are presented in a hash map as

Figure 3.6(c). Now when a new edge (FG) is coming, the reservoir size is checked if it

still has an empty space, at this time; it is found that it is full, in this case one edge from

reservoir should be deleted, and replaced by the new edge (FG), the selection of a

candidate edge is done randomly, in this example; the edge (DE) is selected as a candidate

edge to be deleted from reservoir, and replaced with new edge (FG). After inserting the

new edge (FG) in the edge reservoir, the node degree list is updated by adding the nodes

39

F and G with a degree of 1, since they are newly appeared, also the hash map is updated

by adding F and G to it.

Figure 3.6. Example of Triest algorithm after adding a new coming edge (FG), when the
sample reservoir is full

Example

Figure 3.7 shows an example of SR or OSR after adding a new coming edge (FG),

while the reservoir is full. Suppose that an input graph of coming edges as given in Figure

3.7(a), let the maximum allowed size of the subgraph reservoir is assigned to a value of

“5”. When the first coming edges are received, a three nodes subgraph is formed, then it

is inserted into the subgraph reservoir Figure 3.7(b), this insertion into the reservoir is

done directly since it is not full. The nodes of the subgraph in the reservoir are presented

in a hash map as Figure 3.7(c). Now when a new edge (FG) is coming, the three nodes

subgraph (FGB) is formed, then the reservoir size is checked if it still has an empty space

or not, at this time; it is found that it is full, so one subgraph from reservoir should be

deleted, and replaced by the new subgraph (FGB), the selection of a candidate subgraph

is done randomly, in this example; the subgraph (XZE) is selected as a candidate subgraph

to be deleted from reservoir, and replaced with new subgraph (FGB). After inserting the

new subgraph (FGB) in the edge reservoir, the hash map is updated by adding F and G to

it.

40

Figure 3.7. Example of SR or OSR algorithm after adding a new coming edge (FG), when
the sample reservoir is full

Triest, SR and OSR are dynamic approximate algorithms, they use a fixed

specified memory size (reservoir sampling), to keep this size of memory; random edge

deletion from reservoir is employed when the sample reservoir is full, but this random

edge deletion has a drawback; high connectivity edges might be deleted, as a result; these

types of edge deletions can reduce recall. There are another limitation of SR and OSR

algorithms, that they keep subgraphs in the reservoir instead of edges, which can increase

the recall, but this expenses a high execution time, this time can be closed to the execution

time of the exact algorithm.

41

CHAPTER 4

CONTROLLED RESERVOIR SAMPLING

In this chapter, three novel algorithms for approximate frequent subgraph mining

on dynamic graphs are introduced. The first one is the Controlled Reservoir Sampling

Algorithm with Unlimited heap size (UCRS), the second one is the Controlled Reservoir

Sampling Algorithm with Limited heap size (LCRS), the third one is Maximum

Controlled Reservoir Sampling (MCRS). All introduced algorithms use reservoir

sampling technique (RS) as introduced in (Vitter, 1985). RS is a fixed size randomized

sampling technique; it maintains a fixed-size uniform sample of the data. The sample size

is assigned as an input parameter. The algorithms initialize with a fixed size input array,

that initially gets filled by the items in the input data gradually. Once the maximum

sample size is reached or the reservoir is filled, each new item (i) is added to the sample

with probability 1/i by replacing it with a randomly selected item from the sample

reservoir. But this random edge deletion has a drawback; high connectivity edges might

be deleted, as a result; these types of edge deletions can reduce recall. For this reason,

UCRS and LCRS are proposed in this work, both UCRS and LCRS use controlled

deletion for minimum node degree edge from sample reservoir and deleting nodes from

heap reservoir if their degrees are 1, the advantage of this controlled edge deletion is to

keep more connected edges in the sample reservoir, by doing so; recall is expected to be

increased. On the other hand, as a kind of heuristic, the third algorithm MCRS is

proposed, it works in a similar manner to UCRS and LCRS, but the main difference is in

determining the candidate edge to be deleted from sample reservoir and deleting nodes

that has degree 1 from heap reservoir, whenever the whole reservoir is full, in this

algorithm the candidate edge is the edge with maximum degree of its nodes, by this way,

the high connectivity edges are deleted from the sample reservoir, as a result, recall is

expected to be decreased. So, the results of MCRS motivate the need for the advantages

of UCRS and LCRS algorithms.

UCRS, LCRS and MCRS methods use reservoir sampling technique with a

modification. In all algorithms, random edge deletion from sample reservoir is replaced

42

by a controlled edge and node deletion from whole reservoir, in the case when the whole

reservoir is full. To achieve the controlled edge deletion from sample reservoir, an

additional minimum heap data structure is added to edge sampling schema, this heap is

called heap reservoir. The whole reservoir keeps the edges of the sample reservoir

together with the nodes of the heap reservoir. This heap reservoir contains the nodes in

ascending/descending order of their degrees; this order helps to select the edge connecting

the low/high degree nodes in deletion instead of deleting a random edge.

In the following sections first, our novel algorithm (UCRS) is introduced with

motivating examples. Second, a modified version of UCRS is introduced, which is called

(LCRS), is presented with illustrating examples. Third, MCRS algorithm is introduced

with examples. And in the last section, an example of deleting an edge in UCRS, LCRS,

MCRS and random algorithms is illustrated.

4.1. Controlled Reservoir Sampling Algorithm with Unlimited Heap
Size (UCRS)

Controlled Reservoir Sampling with Unlimited heap (UCRS) algorithm is

modified version of reservoir sampling, where an additional heap data structure is

employed to manage the node degrees, which is called heap reservoir. Degree of a node

indicates the number of connections of the node. When an edge deletion is required in

other words when the fixed size reservoir is full (whole reservoir size), edge with lowest

degree node is selected and removed from the sample reservoir, and if node degrees of

this edge is 1, they are removed from heap reservoir, otherwise their degrees are decreased

by 1. The idea is not to lose high degree nodes those of which might have more impact

on accuracy. More accuracy is expected in sampling since more connected edges (higher

degree nodes) remain in the sample reservoir and heap reservoir, while less connected

nodes are deleted.

The pseudo code of UCRS is shown in Figure 4.1. This code is designed to

manage the insertion process of new edges in controlled reservoir sampling. The input

for UCRS is an incremental graph data d in an evolving graph environment. UCRS keeps

sample reservoir S of edges and heap reservoir up to (M) from the input graph stream,

where M is a positive integer parameter, it indicates fixed memory size in terms of nodes

43

in an abstract way. This size represents the maximum whole reservoir in nodes, which is

equal to size of edges (2 nodes/edge) in the sample reservoir and the nodes that are in the

heap reservoir in total. The output of the algorithm is a sample of the incoming edges

(sample reservoir), which represents the characteristics of the whole graph. This sample

is used to search for an approximate frequent pattern instead of searching whole graph.

Controlled Reservoir Sampling UCRS

Input: incremental graph data d, integer M /* M: maximum whole reservoir size in terms of
nodes
Output: updated Sample, updated Heap

1: s , h , i 0 , /* s: sample size, h: minimum heap reservoir size,

 2: procedure addEdge((u, v))
 3: for each edge (u,v) from d do
 4: i i+1
 5: if sampleEdge(u, v) then
 6: addToSample (u, v)

 7: procedure sampleEdge (u, v)
 8: if sampleSize < M then /* whole reservoir is not full
 9: return True
10: else
11: minEdge(x,y) minEdge()
12: removeFromSample (x, y)
13: return True

14: procedure minEdge ()
15: x source node with lowest node degree
16: y destination node with lowest node degree
 among neighbours of (x)
17: return edge (x, y) /* candidate edge for deletion is chosen

18: procedure addToSample (u, v)
19: s s + {(u, v)}
20: addToHeap (u, v)

21: procedure removeFromSample (u, v)
22: s s - {(u, v)}
23: removeFromHeap (u, v)

24: procedure addToHeap (u, v)
25: h h + {(u, v)}

26: procedure removeFromHeap (u, v)
27: h h - {(u, v)}

Figure 4.1. Pseudo code of the UCRS algorithm

44

UCRS algorithm that is represented in Figure 4.1 works as follows; (Line 2-6) when

new increment d arrives; each edge (u, v) in the increment is added to the sample by

addToSample (u,v) procedure, to do this; edge sampling is applied by sampleEdge (u, v)

procedure (Line 7-13). This procedure works as follows:

• If the sample size is less than (M), then the new edge is added to the sample directly.

Otherwise,

• If the sample size is greater than or equal to (M), then an existing edge is removed

from the sample to insert the new one.

The edge that should be removed is the edge that has the minimum node degree (Line

14-17), it is determined from the min heap, which classifies the nodes according to their

node degrees. First, it detects the node with the minimum degree as the source node.

Second, from the neighbours of the selected source node; the neighbour node with the

minimum node degree is selected as the destination node. The result of the previous two

steps finds an edge connecting the minimum node degrees. This edge is the candidate

edge to be deleted from the sample reservoir, to replace it with a new incoming edge in

the sample reservoir.

The required updates are done on the sample reservoir (Line 18-23). This update can

be addition to the sample reservoir or deletion from the sample reservoir, the addition to

the sample reservoir is done through the procedure addToSample (u, v), while the edge

deletion from the sample reservoir is done using the procedure removeFromSample (u,

v).

In the same manner heap reservoir is updated either by node addition or by node

deletion (Line 24-27). In UCRS there is no limit in the size of the heap reservoir, all

incoming nodes are added to the heap reservoir if they do not exist before. Heap reservoir

contains all the nodes of the sample reservoir.

Illustrating Examples

Example 1

The example in Figure 4.2 shows the deletion process of an edge when the whole

reservoir is full as it is done by minimum controlled edge deletion in (UCRS) and random

edge deletion as in Triest (De Stefani et al., 2016), SR (Aslay et al., 2018) and OSR

45

(Aslay et al., 2018). In another words an example of edge deletion with random edge

deletion and controlled edge deletion is represented.

Suppose we have an original graph Figure 4.2(a), the left table in the figure shows

the nodes and their degrees of the original graph. By applying random edge deletion,

suppose the candidate edge is: (W, U), when it is removed; three triangle patterns of the

original graph are lost as shown in Figure 4.2(b). On the other hand, in controlled edge

deletion method that is used in UCRS and LCRS, the edge (V, Y) is a candidate to be

removed since V is the lowest degree node and Y is the lowest degree neighbour of V.

When the edge (V, Y) is removed from the original graph, only one triangle patterns of

six is lost as illustrated in Figure 4.2(c). As a result, less patterns are affected by controlled

deletion. The table below the figure shows, the number of lost triangles, the number of

remained triangles, and the percentage lost of random and minimum controlled edge

deletion processes, respectively.

Figure 4.2. Deleting edge by random edge deletion and minimum controlled edge deletion

Example 2

The example in Figure 4.3 shows the addition process of the coming edges when

the whole reservoir is not full, as it is done by UCRS algorithm. Suppose the maximum

allowed size of the whole reservoir is assigned to a value of “6”. Given an input graph of

coming edges Figure 4.3(a), when those coming edges are received, they are inserted in

46

the sample reservoir Figure 4.3(b), this insertion is done into the sample reservoir as long

as the whole reservoir is not full (it doesn’t reach the maximum allowed size), in this

example; the whole reservoir is not full, and all coming edges are inserted directly in it.

The nodes of the edges in the sample reservoir are enrolled in the node degree list (heap

reservoir) Figure 4.3(c), this list represents the nodes and their degrees, however the

degree of each node is considered as the number of connections of each node in the

reservoir, this node degrees list is presented in UCRS algorithm by the minimum heap

data structure, where the nodes are ordered according to their degrees in ascending order,

while the root node holds the node with the minimum degree among all the other nodes

in the list. The edges in the sample reservoir are presented in a hash map as Figure 4.3(d),

as seen in the hash; the nodes are on the left list and the neighbours of each node are on

the right list.

Figure 4.3. Example of the UCRS algorithm when whole reservoir (sample and heap
reservoirs) is not full

Example 3

Figure 4.4 illustrates an example of UCRS after adding a new coming edge (FG),

while the whole reservoir is full. Given an input graph of coming edges Figure 4.4(a), it

is supposed that the maximum allowed size of the whole reservoir is assigned to a value

of “6”. When the first five coming edges (AB, CX, DE, XY, XZ, XE) are received, they

are inserted directly into the sample reservoir Figure 4.4(b), this insertion into the sample

reservoir is done directly since the whole reservoir is not full. The nodes of the edges in

the sample reservoir and their degrees are listed in the node degree list (heap reservoir)

47

Figure 4.4(c), where the degree of each node represents the number of connections of

each node with other nodes in the sample reservoir, the node degree list is implemented

in UCRS algorithm by the minimum heap. The edges in the sample reservoir are presented

in a hash map as Figure 4.4(d). Now when a new edge (FG) is coming, the whole reservoir

size is checked if it still has an empty space, at this time; it is found that it is full, in this

case one edge from sample reservoir should be deleted, and replaced by the new edge

(FG), but the selection of a candidate edge couldn’t be done randomly in UCRS, the

candidate edge should be the edge with the minimum node degree of its source and

destination nodes, in this example; the node (A) is marked as a source node, since it has

the minimum node degree, then from the neighbours of node (A), the neighbour node

with the minimum node degree is selected as a destination node, since there is only one

neighbour node which is (B), so it selected as a destination node, now the edge (AB) is

formed as a candidate edge to be deleted from sample reservoir, and replaced with new

edge (FG), as a consequent steps of deleting the edge (AB), the nodes A and B are deleted

from node degree list if they have degree of 1, or their degrees are decremented by 1 if

their degrees are greater than 1. Also, the nodes are deleted from the hash map if they

don’t have connections with any other nodes of the sample reservoir. After inserting the

new edge (FG) in the sample reservoir, the node degree list is updated by adding the nodes

F and G with a degree of 1, since they are newly appeared, also the hash map is updated

by adding F and G to it.

Figure 4.4. Example of UCRS after adding a new coming edge (FG), while the whole
reservoir (sample and heap reservoirs) is full

48

4.2. Controlled Reservoir Sampling Algorithm with Limited Heap
Size (LCRS)

In UCRS algorithm heap keeps all the degrees of the nodes that are presented in

the sample. It is noticed from the empirical results of the UCRS algorithm; the heap size

becomes large especially with higher density datasets. As a result, space left for the

sample decreases. This results in lower number of retrieved patterns, so if the heap is

pruned, the efficiency of the UCRS algorithm is expected to increase in terms of number

of patterns, execution time and memory usage.

A modified version of UCRS is introduced Controlled Reservoir Sampling with

Limited heap (LCRS). As the name indicates in LCRS the heap size is minimized. If heap

size is minimized or limited, then it will be possible to store more edges in the sample.

Increased sample size leads to larger number of patterns that are retrieved, lower

execution time than UCRS due to the management of smaller heap.

 LCRS algorithm that is represented in Figure 4.5 works as follows; (Line 2-6)

when new increment d arrives; each edge (u, v) in the increment is added to the sample

by addToSample (u,v) procedure, to do this; edge sampling is applied by sampleEdge (u,

v) procedure (Line 7-13). This procedure works as follows : If the sample size is less than

(M), then the new edge is added to the sample directly. On the other hand, if the sample

size is greater than or equal to (M), then an existing edge is removed from the sample to

insert the new one.

 The edge that should be removed is the edge that has the minimum node degree

(Line 14-17), it is determined from the min heap, which classifies the nodes according to

their node degrees. First, it detects the node with the minimum degree as the source node.

Second, from the neighbours of the selected source node; the neighbour node with the

minimum node degree is selected as the destination node. The result of the previous two

steps finds an edge connecting the minimum node degrees. This edge is the candidate

edge to be deleted from the sample reservoir, to replace it with a new incoming edge in

the sample reservoir.

 The required updates are done on the sample (Line 18-23). This update can be

addition of an edge to the sample reservoir or deletion of an edge from the sample

reservoir, the addition to the sample is done through the procedure addToSample (u, v),

49

while the deletion from the sample reservoir is done using the procedure

removeFromSample (u, v).

 By the same way, heap reservoir is updated either by node addition or by node

deletion (Line 24-31). In LCRS there is a limit in the size of the heap reservoir, so the

addition of nodes to the heap reservoir is done only if its size is doesn’t exceed the

maximum allowed node capacity of the heap reservoir.

Figure 4.5. Pseudo code of the LCRS algorithms

Controlled Reservoir Sampling LCRS

Input: incremental graph data d, integer M /* M: maximum whole reservoir size in terms of
nodes
Output: updated Sample, updated Heap

1: s , h , i 0 , x , maxHeapSize /* s: sample size, h: minimum heap size, x:
maximum limited heap size,

 2: procedure addEdge((u, v))
 3: for each edge (u,v) from d do
 4: i i+1
 5: if sampleEdge(u, v) then
 6: addToSample (u, v)

 7: procedure sampleEdge (u, v)
 8: if sampleSize < M then /* whole reservoir is not full
 9: return True
10: else
11: minEdge(x,y) minEdge()
12: removeFromSample (x, y)
13: return True

14: procedure minEdge ()
15: x source node with lowest node degree
16: y destination node with lowest node degree
 among neighbours of (x)
17: return edge (x, y) /* candidate edge for deletion is chosen

18: procedure addToSample (u, v)
19: s s + {(u, v)}
20: addToHeap (u, v)

21: procedure removeFromSample (u, v)
22: s s - {(u, v)}
23: removeFromHeap (u, v)

24: procedure addToHeap (u, v)
25: if maxHeapSize < x do /* there is space in the heap
26: h h + {(u, v)}

27: procedure removeFromHeap (u, v)
28: h h - {(u, v)}

50

Illustrating Examples

Example 1

The example in Figure 4.6 illustrates an example of the LCRS algorithms. It

shows the addition process of the coming edges when the sample reservoir is not full, and

the heap reservoir is not full also. In this situation LCRS algorithm behaves in the same

manner as UCRS algorithm.

Suppose we have an input graph of coming edges Figure 4.6(a), suppose the

maximum allowed whole reservoir size is assigned to 6, and the maximum allowed node

capacity of the heap reservoir is assigned to 6. When the coming edges are received, they

are inserted in the sample reservoir Figure 4.6(b), at each time of inserting a new edge,

the size of the whole reservoir is checked, to make sure if it is still having a free space to

insert the new coming edge. In this example, the 6 coming edges (AB, BC, CX, DX, DE,

AC, DX) are inserted directly one by one into the sample reservoir, since it doesn’t exceed

the maximum allowed size (6). After inserting each edge in the sample reservoir; the two

nodes of each inserted edge are enrolled in the node degree list if they aren’t enrolled

before, if they are already exist in the degree list (heap reservoir), their degrees are

incremented by one as shown in Figure 4.6(c), this list represents the nodes and their

degrees, while the degree of each node is the number of connections of each node in the

sample reservoir, before insertion of the nodes and their degrees in node degree list is

done as long as it doesn’t exceed the maximum allowed size of the list(maximum heap

reservoir size). The edges in the sample reservoir are presented in a hash map as Figure

4.6(d).

Let’s take an example of inserting the coming edge (DX), first, the size of sample

reservoir is checked, the sample reservoir size now is equal to 5, so there is a chance to

insert DX directly into the sample reservoir Figure 4.6(a), then the size of the node degree

list is checked also, and it is found 6, so it’s size is equal to the maximum allowed size of

the heap reservoir (node degree list), however the both nodes of the edge (DX) are already

exist before in the heap reservoir, so the degrees of the nodes D and X are just needed to

be incremented by one as in Figure 4.6(b). The hash map in Figure 4.6(c) is updated, in

the map, node D is added as a neighbour of node X, and node X is added as a neighbour

of node D.

51

Figure 4.6. Example of the LCRS algorithm when whole reservoir (sample and heap
reservoirs) is not full

Example 2

Figure 4.7 illustrates an example of the LCRS algorithms. The example is shown

when the sample reservoir is full, and the heap reservoir reaches it maximum allowed

limit. The example in this figure based on the previous example of Figure 4.6. But in here

when a new edge (FG) comes. Given an evolving graph, the incoming edges are listed as

in Figure 4.7(a).

Suppose the maximum allowed size of the sample reservoir is 6 edges, and the

maximum allowed size for the heap is assigned to 6 nodes. When the coming edges are

received, they are inserted in the sample reservoir if it is not full Figure 4.7(b), their new

nodes are inserted in the node degree list if they are not in the list, otherwise their degrees

are incremented. The records of these coming nodes are updated in the hash map also. In

the example of Figure 4.7; the first six coming edges (AB, BC, CX, DX, DE, AC, DX)

are inserted directly one by one into the sample reservoir, since the sample reservoir is

not full, and the heap reservoir is not full also. On the other hand, when the edge (FG)

comes, the sample reservoir size reaches the maximum allowed size (6), so it is full, as a

result, one edge from sample reservoir should be removed, this edge is the edge with the

minimum degrees of it two nodes, so the edge AB is the candidate edge for removal, with

removing the edge AB from sample reservoir, the counts of the nodes A and B in heap

reservoir are decreased, and it is removed from the hash map of the sample graph. Now,

there is a space in the sample reservoir to insert the new edge (FG), after that, the size of

heap (node degree list) is checked, it’s size (6) so it is full, and the new nodes F and G

52

will not be added to the list Figure 4.7(c). The hash map is updated by adding F and G to

it Figure 4.7(d).

Figure 4.7. Example of the LCRS algorithms, adding a coming node (FG) while the whole
reservoir (sample reservoir and heap reservoir) is full

4.3. Maximum Controlled Reservoir Sampling (MCRS) Algorithm

A modified version of controlled reservoir sampling is introduced Maximum

Controlled Reservoir Sampling (MCRS). As the name indicates, in MCRS, when the

whole reservoir is full, an edge should be deleted to be replaced by a new edge, this

candidate edge is an edge with maximum node degrees of its source and destination, while

in UCRS the candidate edge for deletion is an edge with minimum node degrees of its

source and destination. It is very similar to UCRS, but instead of deleting edges with

minimum node degrees, it deletes edges with maximum node degrees.

The pseudo code of MCRS algorithm is represented in Figure 4.8. It works as follows;

(Line 2-6) represents the addition of an edge, such that when new increment d arrives;

each edge (u, v) in the increment is added to the sample, this addition is done by the

procedure addToSample (u,v), to do this; edge sampling is done by sampleEdge (u, v)

procedure (Line 7-13). There are two case for this procedure to work, the cases are as

follows:

• If the sample size is less than (M), then the new edge is added to directly to the sample.

Otherwise,

53

• If the sample size is greater than or equal to (M), then an existing edge is removed

from the sample to insert the new one.

 The candidate edge for removal is the edge that has the maximum node degree

(Line 14-17), this edge is detected from the heap, that keeps the nodes according to their

node degrees. This detection is done as follows: First, it determines the node with the

maximum degree as the source node. Second, from the neighbours of the determined

source node; the neighbour node with the maximum node degree is selected as the

destination node. The result of the previous two steps determines an edge connecting the

maximum node degrees. This edge is the candidate edge to be deleted from the sample

reservoir, to be replace with a new incoming edge in the sample reservoir.

There are consequent modifications required after the previous steps on the

sample (Line 18-23). This modification can be addition of an edge to the sample reservoir

or deletion of an edge from the sample reservoir, the addition to the sample is done by the

procedure addToSample (u, v), while the deletion from the sample reservoir is done

through the procedure removeFromSample (u, v).

By the same way, heap is updated either by node addition or by node deletion (Line 24-

27).

54

Maximum Controlled Reservoir Sampling (MCRS)

Input: incremental graph data d, integer M /* M: maximum whole
reservoir size in terms of nodes
Output: updated Sample, updated Heap

1: s , h , i 0 , x
/* s: sample size, h: minimum heap size

 2: procedure addEdge((u, v))
 3: for each edge (u,v) from d do
 4: i i+1
 5: if sampleEdge(u, v) then
 6: addToSample (u,v)

 7: procedure sampleEdge ((u, v))
 8: if sampleSize < M then
 9: return True
10: else
11: maxEdge(x,y) maxEdge()
12: removeFromSample (x,y)
13: return True

14: procedure maxEdge ()
15: x source node with highest node degree
16: y destination node with highest node degree
 among neighbours of (x)
17: return edge(x,y)

18: procedure addToSample (u,v)
19: s s + {(u, v)}
20: addToHeap (u,v)

21: procedure removeFromSample (u,v)
22: s s - {(u, v)}
23: removeFromHeap (u,v)

24: procedure addToHeap (u,v)
25 h h + {(u, v)}

26: procedure removeFromHeap (u,v)
27: h h - {(u, v)}

Figure 4.8. Pseudo code of the MCRS algorithm

Illustrating Examples on MCRS

Example 1

The example in Figure 4.9 shows the addition process of the coming edges when

the whole reservoir is not full, as it is done by MCRS algorithm.

55

Given an input graph of coming edges Figure 4.9(a), each coming edge is inserted

in the sample reservoir Figure 4.9(b), this insertion is done into the sample reservoir as

long as the whole reservoir is not full, in this example; the whole reservoir is not full, and

all coming edges are inserted directly into the sample reservoir. Then; the nodes of each

edge in the sample reservoir are registered in the node degree list (heap reservoir) if they

are not in the list before, otherwise the degrees are incremented as in Figure 4.9(c), this

list consists of the nodes and their degrees, however the degree of each node is considered

as the number of connections of each node in the sample reservoir, this node degrees list

(heap reservoir) is presented in MCRS algorithm by the heap data structure, where the

nodes are ordered according to their degrees in ascending order, the root node of the heap

holds the node with the minimum degree among all the other nodes in the list. The edges

in the sample reservoir are presented in a hash map as Figure 4.9(d).

Let’s explain the process of inserting the coming edge (XE), first, the size of

sample reservoir is checked, the sample reservoir size now is equal to 5, so there is a

space to insert the edge XE directly into the sample reservoir Figure 4.9(b), then the node

degree list is checked for the nodes X and E, it is found that both of them are already in

the list, the degrees of X and E are 3 and 1 respectively, now both of them are incremented

by 1, to become 4 for X and 2 for E Figure 4.9(c). The hash map in Figure 4.9(c) is

updated, in the map, node E is added as a neighbour of node X, and node X is added as a

neighbour of node E.

Figure 4.9. Example of MCRS after adding a new coming edge (XE), while the whole
reservoir (sample and heap reservoirs) is not full

56

Example 2

Figure 4.10 shows an example of the MCRS algorithms. The example is illustrated

when the whole reservoir is full. The example in this figure based on the previous example

of Figure 4.9. Given an evolving graph, the incoming edges are listed as in Figure 4.10(a).

This example is explained when a new edge (FG) comes. Suppose the maximum allowed

size of the sample reservoir is 6 edges. When the coming edges appears, they are inserted

one by one in the sample reservoir if it is not full Figure 4.10(b), the new nodes of the

coming edges are inserted in the node degree list (heap reservoir) if they are not already

in the list, otherwise their degrees are updated by increasing the degree of each node by

one. The records of these coming nodes are updated in the hash map also. In the example

of Figure 4.10; the first six coming edges (AB, CX, DE, XY, XZ, XE) are inserted directly

one by one into the sample reservoir, since the sample reservoir is not full. On the other

hand, when the edge (FG) comes, the sample reservoir size reaches the maximum allowed

size (6), so it is full, as a result, one edge from sample reservoir should be removed, this

edge is the edge with the maximum degrees of it two nodes, so the edge XE is the

candidate edge for removal, the degrees of with removing the edge XE from sample

reservoir, the counts of the nodes X and E in the node degree list are decreased, and the

connection edge between E and X is removed from the hash map of the sample graph.

Now, there is a space in the sample reservoir to insert the new edge (FG), then, and the

new nodes F and G are added to the list, the degrees of both nodes are one, since they are

newly added to the list Figure 4.10(c). The hash map is updated by adding F and G to it

Figure 4.10(d).

Figure 4.10. Example of MCRS after adding a new coming edge (FG), while the whole

reservoir is full

57

4.4. Deleting an Edge in UCRS, LCRS, MCRS and Random
algorithms

The example in Figure 4.11 illustrates the deletion process of an edge when the

whole reservoir is full, in this example; three types of edge deletion are illustrated, the

first one is random edge deletion as in Triest (De Stefani et al., 2016), SR (Aslay et al.,

2018) and OSR (Aslay et al., 2018), the second one is controlled deletion of an edge with

minimum degree of nodes, as it is done by controlled edge deletion in (UCRS and LCRS)

and the third one is controlled deletion of an edge with maximum degree of nodes as in

MCRS. In another words an example of edge deletion with random edge deletion and

controlled edge deletion is represented.

Given an original graph Figure 4.11(a), the table in the figure shows the nodes

and their degrees of the original graph. By applying random edge deletion, the method

that is used in (De Stefani et al., 2016), SR (Aslay et al., 2018) and OSR (Aslay et al.,

2018), suppose the candidate edge is: (X, Z), when it is removed; two triangle patterns of

the original graph are lost as shown in Figure 4.11(b). On the other hand, in controlled

deletion of an edge with minimum degree of nodes; the method that is used in UCRS and

LCRS, the edge (S, V) is a candidate to be removed since S is the lowest degree node and

V is the lowest degree neighbour of V. When the edge (S, V) is removed from the original

graph, no triangle pattern of six triangle patterns is lost as illustrated in Figure 4.11(c).

However, in controlled deletion of an edge with maximum degree of nodes; the method

that is used in MCRS, the edge (W, U) is a candidate to be removed since W is the highest

degree node and U is the highest degree neighbour of W. When the edge (W, U) is

removed from the original graph, three triangle patterns are lost as illustrated in Figure

4.11(d). The table under the figure shows, the number of lost triangles, the number of

remained triangles, and the percentage loss of random, minimum controlled edge deletion

and maximum controlled edge deletion processes, respectively. As a result, less patterns

are lost by minimum controlled edge deletion (UCRS and LCRS) and more patterns are

lost by maximum edge controlled deletion (MCRS). While the number of patterns that

affected by random edge deletion be between the other two mentioned types of edge

deletion.

58

Figure 4.11. Deleting edge with minimum node degrees, maximum node degrees and
random edge

From the above example, it is noticed that; removing edge with minimum degree of its

nodes, very few patterns are affected by this edge deletion.

By removing edge with maximum node degrees, most patterns are expected to be lost, so

this way of edge deletion supports the idea of deleting edge with minimum degrees of the

nodes. By using random edge deletion of nodes, the number of left patterns after edge

deletion are expected to be lower than it in the case of removing edge with minimum node

degrees, and higher than it in the case removing edge with maximum node degrees. So

removing edge with minimum node degrees is preferred to keep most patterns in the

graph.

In this Chapter, three algorithms (UCRS, LCRS and MCRS) are proposed for

approximate frequent-subgraph mining (FSM) in evolving graphs, where edge/vertex can

be arbitrary added using a fixed memory size of whole reservoir. Whole Reservoir keeps

the sample reservoir dynamic graph and heap reservoir, sample reservoir which represents

the characteristics of the original graph, and allows dynamic algorithms to work on

reduced sized graph, heap reservoir keeps the node degrees of the nodes that are in the

reservoir according to the type of algorithm. Both UCRS and LCRS use controlled edge

deletion for minimum node degree edge from sample reservoir, the advantage of this

controlled edge deletion is to keep more connected edges in the sample reservoir, by doing

so; recall is expected to be increased. While, the third algorithm MCRS is proposed, it

59

works in a similar manner to UCRS and LCRS, but the main difference is in determining

the candidate edge to be deleted from sample reservoir, whenever the whole reservoir is

full, in MCRS algorithm the candidate edge is the edge with maximum degree of its

nodes, by doing so, the high connectivity edges are deleted from the sample reservoir, as

a result, recall is expected to be decreased. So, the results of MCRS support the need for

the advantages of UCRS and LCRS algorithms.

60

CHAPTER 5

PERFORMANCE EVALUATION

The experimental evaluation of the proposed algorithms Unlimited Controlled

Reservoir Sampling (UCRS), Limited Controlled Reservoir Sampling (LCRS) and

Maximum Controlled Reservoir Sampling (LCRS) are conducted in comparison to three

existing algorithms: Triest (De Stefani et al., 2016), Subgraph Reservoir (Aslay et al.,

2018) and Optimized Subgraph Reservoir (OSR) (Aslay et al., 2018). These three

algorithms are devised to find the approximate frequent patterns in dynamic graphs as

UCRS, LCRS and MCRS. All algorithms including UCRS, LCRS and MCRS use

reservoir sampling technique. Triest, SR and OSR implement reservoir technique of

(Vitter, 1985), where edge deletion from sample reservoir is done randomly when sample

reservoir is full. However, UCRS, LCRS and MCRS use a heap reservoir to manage the

node degrees, UCRS and LCRS delete the low degree nodes when whole reservoir is full,

while MCRS delete the high degree nodes when the whole reservoir is full. Trade-off

between execution time and accuracy is measured in the following subsections as

execution time, scalability, recall and heap size measurement experiments.

All experimental results are reported as an average of 3 runs. The properties of

the datasets used in all experiments are shown in the Table 5.1. D1 is Patents dataset

which is publicly available (Hall, Jaffe and Trajtenberg, 2001) and contains citations

among US Patents from January 1963 to December 1999. D2 is LastFM is Asia Social

Network dataset (https://snap.stanford.edu/index.html); social network of LastFM users which

was collected from the public API. Nodes are LastFM users from Asian countries and

edges are mutual follower relationships between them. D2 has approximately double

density of the Patents dataset, where the density of the datasets is calculated as D

= where |E| and |V| represents the total number of edges and vertices (nodes) in

the dataset (Chakraborty, Byshkin and Crestani, 2020).

61

Table 5.1. Properties of the datasets

Dataset |V| |E| Density

D1 (Patents) 3M 14M 2.3
D2 (LastFM) 7.6 27.8 4.8

In the following subsections the performance evaluation of Triest, UCRS, LCRS, MCRS,

SR, and OSR algorithms is measured; experiments are conducted on D1 (Patents) and D2

(LastFM).

5.1. Scalability

To measure the scalability performances of Triest (De Stefani et al., 2016), UCRS,

LCRS, MCRS, SR (Aslay et al., 2018), and OSR (Aslay et al., 2018); an experiment is

conducted on D1 and D2 datasets. In this experiment, the data size changes between 4000

to 20000 transactions. Execution time is measured; the maximum whole reservoir size

(M) is kept constant. Whole reservoir size M is measured in terms of number of nodes as

an abstract common metric for all the algorithms. Triest algorithm keeps edges in the

sample reservoir (Whole reservoir in Triest); each edge is counted as 2 nodes. SR and

OSR algorithms keep subgraphs of 3 nodes in the sample reservoir (Whole reservoir in

SR and OSR). UCRS, LCRS and MCRS keeps edges (2 nodes) in the sample reservoir

and the nodes that are in the heap reservoir. In another words, Triest spends 2 nodes with

each edge addition, SR and OSR spends 3 nodes with each subgraph addition, UCRS,

LCRS and MCRS spend 2 nodes and 0/1/2 node(s) depending on the existence/absence

of the node(s) of the sample in the heap reservoir. The whole reservoir in UCRS, LCRS

and MCRS consists of both of sample reservoir and heap reservoir. Heap reservoir size

in LCRS is limited to a specified size. In this experiment maximum allowed heap size is

0.4 of the maximum whole reservoir size M.

The graph of Figure 5.1.A illustrates the scalability of Triest, UCRS, LCRS,

MCRS, SR, and OSR on dataset D1 when M is assigned to 600 nodes. The graph of the

Figure 5.1.B describes the same experiment but since Triest, UCRS, LCRS and MCRS

have a very small execution time compared with SR and OSR, and can’t appear in the

62

first graph, they are shown separately in the second graph. It is noticed from the figures

that; as the data size increases; the execution times of all algorithms increase. SR and

OSR have the highest execution time, since they search for subgraphs of neighbourhood

of incoming edges and store them in sample reservoir, searching and storing subgraphs

have higher complexity than searching edges only as in (Triest, UCRS, LCRS and

MCRS). UCRS and LCRS have higher execution time than Triest, this is because of the

heap management cost. UCRS has a higher execution time than LCRS because of

increasing heap size. The limited size of the heap in LCRS requires less time for heap

management. While MCRS has the highest execution time among the algorithms in

Figure 5.1.B. Triest has the lowest execution time, since it has no heap management like

UCRS, LCRS and MCRS, MCRS has higher execution time than UCRS and LCRS since

the heap sizes in the recent two algorithms are smaller than it in MCRS, this is because

the after each deletion of edges with lowest node degrees at least one of the nodes (root

node) is deleted from the heap reservoir, while in MCRS the nodes of the deleted edge

are decremented without deletion, so the time required to manage the a heap with larger

size is more in MCRS. Also searching for minimum node degree is much cheaper than

searching for maximum node degrees in the minimum heap.

Figure 5.1.A. Scalability performance of the algorithms while changing the dataset size
on Datasets D1 for M= 600

0

100

200

300

400

500

600

700

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)
Triest UCRS LCRS MCRS SR OSR

63

Figure 5.1.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D1 for M= 600

Figure 5.2.A and Figure 5.2.B show the scalability performance of Triest, UCRS,

LCRS, MCRS, SR, and OSR algorithms, this experiment is done on dataset D1 when M

is assigned to 1200 nodes. This experiment is similar to previous experiment only the

maximum whole reservoir size is larger now (1200 nodes). The first graph presents all

algorithms whereas the second graph focuses on Triest, UCRS, LCRS and MCRS

execution times. It is shown in the figure that; as the data size increases; the execution

times of all algorithms increase as in the previous experiment. SR and OSR have the

highest execution time, since they search for subgraphs instead of edges. UCRS, LCRS

and MCRS have higher execution time than Triest due to additional heap management

cost. UCRS has a higher execution time than LCRS. Limited size of the heap in LCRS

requires less time for its management. MCRS has the highest execution time among

Triest, UCRS and LCRS. Triest has the lowest execution time, this is due to the

nonexistence of heap management like UCRS, LCRS and MCRS, the execution time of

MCRS is higher than UCRS and LCRS execution times, the reason for that is: the heap

sizes in the UCRS and LCRS are smaller than the heap size in MCRS, in UCRS and

LCRS; after each deletion of edges with lowest node degrees, at least one of the nodes

(root node) is deleted from the heap, while in MCRS the nodes of the deleted edge are

decremented without deletion, so the time required to manage the a heap with larger size

0

0.5

1

1.5

2

2.5

3

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

64

is more in MCRS. Also searching for minimum node degree is much cheaper than

searching for maximum node degrees in the minimum heap. The heap size is limited in

LCRS, while the heap size is unlimited in UCRS and MCRS.

Figure 5.2.A. Scalability performance of the algorithms while changing the dataset size
 on Datasets D1 for M= 1200

Figure 5.2.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D1 for M= 1200

0

100

200

300

400

500

600

700

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

0

2

4

6

8

10

12

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

65

The scalability performance of Triest, UCRS, LCRS, MCRS, SR, and OSR algorithms is

illustrated in Figure 5.3.A and Figure 5.3.B, this experiment is done on dataset D1 when

M is assigned to 1800 nodes. This experiment is similar to previous two experiments, but

in this experiment, the maximum whole reservoir size is assigned to a larger value (1800

nodes). The first graph presents all algorithms while the second graph focuses on Triest,

UCRS, LCRS and MCRS execution times. It is shown in the figure that; as the data size

increases; the execution times of all algorithms increase as in the previous experiments.

SR and OSR have the highest execution time, since they search for subgraphs instead of

edges. UCRS, LCRS and MCRS have higher execution time than Triest due to additional

heap management cost. UCRS has a higher execution time than LCRS. Limited size of

the heap in LCRS requires less time for its management. MCRS has the highest execution

time among Triest, UCRS and LCRS. Triest has the lowest execution time, since it has

no heap management like UCRS, LCRS and MCRS, the execution time of MCRS is

higher than UCRS and LCRS execution times, the reason for that is: the heap sizes in the

UCRS and LCRS are smaller than the heap size in MCRS, in UCRS and LCRS; after

each deletion of edges with lowest node degrees, at least one of the nodes (root node) is

deleted from the heap, but in MCRS the nodes of the deleted edge are decremented

without deletion, so the time required to manage the a heap with larger size is higher in

MCRS. In addition to that, searching for minimum node degree is much cheaper than

searching for maximum node degrees in the minimum heap. In LCRS the heap size is

limited, however the heap size is unlimited in UCRS and MCRS.

66

Figure 5.3.A. Scalability performance of the algorithms while changing the dataset size

on Datasets D1 for M= 1800

Figure 5.3.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D1 for M= 1800

0
50

100
150
200
250
300
350
400
450
500

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

0

2

4

6

8

10

12

14

16

18

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

67

The graph of Figure 5.4.A illustrates the scalability of Triest, UCRS, LCRS,

MCRS, SR, and OSR on dataset D2 and M is assigned to 600 nodes. The graph of Figure

5.4.B describes the same experiment showing Triest, UCRS, LCRS and MCRS results

since they are not seen well in the first graph due to scale difference. It is noticed from

the Figure 5.4.A graph that; as the data size increases; the execution times of all

algorithms increase. SR and OSR have the highest execution time, since they search for

subgraphs instead of edges. It is noticed from the Figure 5.4.B graph that; UCRS, LCRS

and MCRS have higher execution time than Triest, this is because of the heap

management cost. UCRS has a higher execution time than LCRS since LCRS requires

less time for smaller heap. MCRS has higher execution time than UCRS and LCRS, since

the nodes of the deleted edge are decremented without node deletion from the heap

reservoir, so the time required to manage a heap with larger size is more in MCRS. Also

searching for maximum node degree is more expensive than searching for minimum node

degrees in the minimum heap.

Figure 5.4.A. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 600

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

68

Figure 5.4.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 600

The Graph of Figure 5.5.A illustrates the scalability of Triest, UCRS, LCRS,

MCRS, SR, and OSR on dataset D2 and M is assigned to 1200 nodes. The graph of the

Figure 5.5.B describe the same experiment, but it shows only Triest, UCRS, LCRS and

MCRS since they are not seen well on the graph of Figure 5.5.A. It is shown in the first

graph that; as the data size increases; the execution times of all algorithms increase. SR

and OSR have the highest execution time, since they search for subgraphs of

neighbourhood of incoming edges and store them in sample reservoir. Searching and

storing subgraphs have higher execution time than searching edges only. In Figure 5.5.B,

UCRS, LCRS and MCRS have higher execution time than Triest due to additional heap

management cost. UCRS has a higher execution time than LCRS since the heap size is

not limited as LCRS. UCRS and MCRS have lower execution time than MCRS since the

heap reservoir size in UCRS and LCRS always shrinks with each edge deletion process

from sample reservoir, because the root node always deleted, while the candidate node

that have maximum degree is decremented since it is still connected with other nodes.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

69

Figure 5.5.A. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 1200

Figure 5.5.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 1200

The Graph of Figure 5.6.A illustrates the scalability of Triest, UCRS, LCRS,

MCRS, SR, and OSR on dataset D2 and M is assigned to 1200 nodes. The graph of the

Figure 5.6.B describe the same experiment, but it shows only Triest, UCRS, LCRS and

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

70

MCRS since they are not seen well on the graph of Figure 5.6.A. It is shown in the first

graph that; as the data size increases; the execution times of all algorithms increase. SR

and OSR have the highest execution time, since they search for subgraphs of

neighbourhood of incoming edges and store them in sample reservoir. Searching and

storing subgraphs have higher execution time than searching edges only. In Figure 5.6.B,

UCRS, LCRS and MCRS have higher execution time than Triest due to additional heap

management cost. UCRS has a higher execution time than LCRS since the heap size is

not limited as LCRS. UCRS and MCRS have lower execution time than MCRS since the

heap reservoir size in UCRS and LCRS always shrinks with each edge deletion process

from sample reservoir, because the root node always deleted, while the candidate node

that have maximum degree is decremented since it is still connected with other nodes.

Figure 5.6.A. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 1800

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

71

Figure 5.6.B. Scalability performance of the algorithms while changing the dataset size
on Datasets D2 for M= 1800

Table 5.2 shows the scalability speed-up of the algorithms while varying the dataset size.

This speed up is calculated with respect to the slowest algorithm (OSR). From the table,

it is shown that, Triest has the highest speed up since it processes edges without managing

heap. LCRS is close to Triest in terms of speed-up. LCRS and UCRS have noticeable

speed-up over SR and OSR. LCRS has additional speed-up over UCRS algorithms since

LCRS has an extra heap pruning method that minimize the space of the heap, and as a

result, the required execution time for the heap is minimized. MCRS has lower speed-up

than UCRS, since the heap size in MCRS is larger than the heap size in UCRS, and it

needs more time to manage it.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

Data size (Number of transactions)

Triest UCRS LCRS MCRS

72

Table 5.2. Scalability speed-up of the algorithms while varying the dataset size

Dataset M

(nodes)

Speed-up with

Triest [a]

Speed-up with

UCRS [b]

Speed-up with

LCRS [c]

Speed-up with

MCRS [d]

Speed-up

with SR [e]

D1

600 22.99 – 407.17 15.94 – 306.12 20.42 – 390.09 11.16 – 207.59 0.47 – 0.96

1200 6.37 – 154.622 3.62 – 105.00 4.96 – 141.00 2.13 – 50.22 1.38 - 0.94

1800 7.25 – 108.55 1.79 – 47.97 5.43 – 87.06 2.36 – 32.63 1.2 – 1.03

D2

600 17.32 – 453.89 12.99 – 271.75 14.08 – 420.61 9.93 – 239.16 0.72 – 0.92

1200 9.91 – 123.51 2.37 – 29.01 7.54 – 98.71 2.28 – 28.43 0.60 – 0.91

1800 12.99 – 107.17 1.5.94 – 206.12 2.04 – 39.09 1.11 – 14.32 0.47 –0.96
 [a] Speed-up = Execution time of OSR algorithm / Execution time of Triest algorithm.
 [b] Speed-up = Execution time of OSR algorithm / Execution time of UCRS algorithm.
 [c] Speed-up = Execution time of OSR algorithm / Execution time of LCRS algorithm.
 [d] Speed-up = Execution time of OSR algorithm / Execution time of MCRS algorithm.
 [e] Speed-up = Execution time of OSR algorithm / Execution time of SR algorithm.

5.2. Recall
The algorithms Triest, UCRS, LCRS, MCRS, SR and OSR are compared and

evaluated in terms of recall. Recall is the ratio of the number of patterns found in the

sample by the algorithm to the number of patterns found by an exact algorithm that works

on whole data instead of the sample.

The experiment in Figure 5.7, Figure 5.8 and Figure 5.9 is conducted to measure

the recall. The data sizes are varied from 4000 to 20000 transactions, and the maximum

whole reservoir size M (number of nodes) is kept constant as 600, 1200 or 1800 nodes.

The used dataset is D1. From the figures it is shown that; LCRS has the highest recall

among the other five tested algorithms. The reason for that is the novel method in UCRS

and LCRS, which is designed to replace the random edge deletion in sample reservoir

with controlled edge deletion. The idea behind this method is not to lose high degree

nodes, which have more impact on recall. Higher recall is gained since more connected

(higher degree) nodes remain in the sample reservoir, while in Triest the edge deletion

from sample reservoir is done randomly, by this way of edge deletion; patterns that are

more important can be lost. On D1, LCRS has higher recall than UCRS, this is because

of the pruning method that is done on the heap size, which give a chance to have a smaller

size of the heap reservoir and larger size of the sample reservoir (sample of incoming

73

edges), by this way, the number of retrieved patterns increases and as a result the recall

increases. On D1, with M= 1800 nodes, UCRS and LCRS have higher recall than the

other algorithms in the experiment, the reason for that is as the sample reservoir size

increases, the number on non-important edges were deleted and more important edges

that can affect the patterns are increases. MCRS has lowest recall among the other five

algorithms, MCRS works in a similar way to UCRS, but instead of removing the less

connected edge whenever the whole reservoir is full, in MCRS the most conned edge is

removed, this way supports the idea of UCRS and LCRS, which is: removing less

connected edges can keep important patterns in the sample reservoir, and as a result the

recall increases.

Figure 5.7. Recall of the algorithms while changing the dataset size on Dataset D1
(M=600 nodes)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

74

Figure 5.8. Recall of the algorithms while changing the dataset size on Dataset D1
(M=1200 nodes)

Figure 5.9. Recall of the algorithms while changing the dataset size on Dataset D1
(M=1800 nodes)

The experiment in Figure 5.10, Figure 5.11 and Figure 5.12 is conducted to

measure the recall. The data sizes are varied from 4000 to 20000 transactions and the

maximum whole reservoir size M (number of nodes) is kept constant as 600, 1200 or

1800 nodes. The used dataset is D2. It is noticed that SR and OSR have the highest recalls,

0

0.2

0.4

0.6

0.8

1

1.2

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

75

the reason for that is the dense nature of D2 and the storing subgraphs in sample reservoir

instead of edges. UCRS and LCRS have higher recalls than Triest since a controlled edge

deletion from sample reservoir is used instead of random edge deletion. LCRS has higher

recall than UCRS because of the heap reservoir pruning strategy that is used in LCRS,

which gives a chance to store a greater number of edges in the sample.

MCRS has lowest recall among the other five algorithms, since in MCRS the most

conned edge is removed, while in UCRS and LCRS the less connected edge is removed

whenever the whole reservoir is full, this way supports the idea of UCRS and LCRS,

which is: removing less connected edges that can keep important patterns in the sample,

and as a result the recall increases.

Figure 5.10. Recall of the algorithms while changing the dataset size on Dataset D2
(M=600 nodes)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

76

Figure 5.11. Recall of the algorithms while changing the dataset size on Dataset D2
(M=1200 nodes)

Figure 5.12. Recall of the algorithms while changing the dataset size on Dataset D2

(M=1800 nodes)

From Table 5.3, it is noticed that; on D1, UCRS and LCRS has a distinguished

recall with average (0.66 and 0.76) for M=600, (0.82 and 0.86) for M= 1200, (0.89 and

0.91) for M= 1800 respectively. Increasing the maximum whole reservoir size has

positive impact on the recall. Another positive impact comes with the controlled edge

deletion strategies of the UCRS and LCRS algorithms. However, the average recall

0.00
0.20
0.40
0.60
0.80
1.00
1.20

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4000 6000 8000 10000 12000 14000 16000 18000 20000

R
ec

al
l

Data size (Number of transactions)

Triest UCRS LCRS MCRS SR OSR

77

decreases on D2, e.g. (0.16 and 0.19) respectively for (M=600), (0.39 and 0.67)

respectively for (M=1200) and (0.62 and 0.78) respectively for (M=1800) this is because

of the nature of the datasets. D2 is denser than D1. In addition, it is noticed that; for higher

values of total number of nodes in the sample e.g., 1800 or 1200 instead of 600, higher

recall is achieved. This is because increased maximum whole reservoir size brings

increased sample reservoir size, which represents the original graph better.

When the total number of nodes in the whole reservoir is 1800 nodes, the recall of LCRS

becomes higher and closer to the recalls of SR and OSR, if the whole reservoir sizes

increases more and more, a higher recall can be gotten, until an equal recall to SR and

OSR at the whole reservoir size (M) 4510 nodes. of course, with similar behaviour of

execution time which is less than the execution time of SR and OSR. MCRS has lowest

recall among the other five algorithms, since in MCRS the most connected edge is

removed, so important patterns are expected to be lost while in UCRS and LCRS the less

connected edge is removed whenever the whole reservoir is full.

Therefore, LCRS is recommended for sparse datasets, SR and OSR are

recommended for dense datasets with small whole reservoir size, with a trade-off of high

execution time. For dense dataset LCRS is recommended with a high number of nodes in

the whole reservoir.

 Table 5.3. Recall of the algorithms while changing the datasets sizes

Dataset M (nodes) Average Recall

Triest UCRS LCRS MCRS SR OSR

D1

600 0.16 0.66 0.76 0.14 0.72 0.74

1200 0.64 0.82 0.86 0.28 0.85 0.85

 1800 0.64 0.89 0.91 0.56 0.87 0.88

D2 600 0.13 0.16 0.19 0.04 0.93 0.93

1200 0.37 0.39 0.67 0.19 0.93 0.93

 1800 0.59 0.62 0.78 0.27 0.93 0.93

78

5.3. Heap size

This experiment is to measure the space that the heap occupies in both algorithms

UCRS and LCRS, the heap size is measured in terms of number of nodes. D1 and D2

datasets are used in these experiments. The maximum whole reservoir size (M) in term

of (number of nodes) is constant.

Figure 5.13, Figure 5.14 and Figure 5.15 show the number of nodes in heap while

changing the dataset sizes from 4000 to 20000 transactions on Dataset D1. M is assigned

to 600 nodes in Figure 5.13 ,1200 nodes in Figure 5.14 and 1800 nodes in Figure 5.15.

From the figures, it is shown that, the heap size is growing until a certain data size, this

size depends on the nature of dataset and the whole reservoir size, in the experiments; for

UCRS and MCRS, the curve grows fast for the data sizes (4000 - 14000) and it becomes

slower after 12000. While for LCRS; the curve grows for the data sizes (4000 - 14000)

and it becomes constant after 14000 according to the maximum assigned heap size.

Figure 5.13. Number of nodes in heap while changing the dataset size on Dataset D1 (M
= 600 nodes)

0

100

200

300

400

500

600

4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

79

Figure 5.14. Number of nodes in heap while changing the dataset size on Dataset D1 (M
= 1200 nodes)

Figure 5.15. Number of nodes in heap while changing the dataset size on Dataset D1 (M
= 1800 nodes)

Figure 5.16, Figure 5.17 and Figure 5.18 show the number of nodes in heap while

changing the dataset sizes from 4000 to 20000 transactions on Dataset D2, and M is

assigned to 600 nodes in Figure 5.16, 1200 nodes in Figure 5.17 and 1800 nodes in Figure

5.18. From the figures, it is shown that, the heap size is growing until a certain data size,

according to the nature of dataset and whole reservoir size, in the experiments; for UCRS

0

200

400

600

800

1000

1200

4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

0

200

400

600

800

1000

1200

4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

80

and MCRS, the curve grows fast for the data sizes (4000 - 14000) and it becomes slower

after 12000. While for LCRS; the curve grows for the data sizes (4000 - 14000) and it

becomes constant after 14000 according to the maximum assigned heap size.

Figure 5.16. Number of nodes in heap while changing the dataset size on Dataset D2 (M
= 600 nodes)

Figure 5.17. Number of nodes in heap while changing the dataset size on Dataset D2 (M
= 1200 nodes)

0

100

200

300

400

500

600

4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

0

200

400

600

800

1000

1200

dataset
size

4000 6000 8000 10000 12000 14000 16000 18000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

81

Figure 5.18. Number of nodes in heap while changing the dataset size on Dataset D2 (M
= 1800 nodes)

From Figures 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18 it is noticed that; the heap sizes

when D2 is used are greater than heap sizes when D1 is used, this is due to the larger

density of D2 over the density of D1. As a result, increasing heap sizes when D2 is used

has a negative effect on the retrieved number of patterns. When the heap reservoir size

gets larger, the sample reservoir size in the reservoir gets smaller. As a solution for the

larger heap reservoir size and lower recall, LCRS is proposed, it has a limited heap size,

so it allows more space to sample in the reservoir. Also, it is noticed that the heap reservoir

size of MCRS is larger than the heap reservoir sizes in UCRS and LCRS, and it can have

more than a double size of LCRS, as result this has a negative effect on the retrieved

number of patterns, so MCRS supports the idea of UCRS and LCRS.

Table 5.4 shows the correlation between heap reservoir size and whole reservoir

sizes for UCRS, LCRS and MCRS algorithms, the used datasets are D1 and D2. M is

assigned to 600 and 1200 nodes. From the table is noticed that heap sizes on D2 are

greater than heap sizes on D1 for the same algorithm. The heap size is growing until a

certain data size, this size depends on the nature of dataset and whole reservoir size, e.g.,

for UCRS and MCRS, the curve grows fast for the data sizes (4000 - 14000) and it

becomes slower after 12000. While for LCRS; the curve grows for the data sizes (4000 -

14000) and it becomes constant after 14000 according to the maximum assigned heap

size. heap sizes in LCRS are lower than it in UCRS and MCRS, this is because of the

0

200

400

600

800

1000

1200

4000 6000 8000 10000 12000 14000 16000 18000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

82

pruning method that is added to LCRS. heap sizes in MCRS are larger than it in UCRS

and LCRS, this is because of deleting strategy in MCRS, which deletes the maximum

connected edge, and as a result these edges are deleted but its nodes are still connected

with other edges, so these nodes still in heap and keep it with a large size, this behaviour

of MCRS motivates the idea of LCRS and UCRS.

Table 5.4. Correlation between heap reservoir size and whole reservoir sizes for
UCRS, LCRS and MCRS

Dataset M (nodes) (Heap reservoir size / whole reservoir size)

*100%

UCRS LCRS MCRS

D1

600 53% - 70% 40% - 60% 77% - 84%

1200 38% - 60% 26% - 51% 72% - 82%

 1800 27% - 44% 27% - 28% 50% - 53%

D2 600 70% - 88% 23% - 18% 81% - 90%

1200 50% - 72% 35% - 43% 76% - 84%

 1800 33% - 48% 23% - 29% 51% - 56%

5.4. Discussion on Experiments

Table 5.5 shows the summary of execution time speed-ups and recall results for

Triest, UCRS, LCRS, SR and OSR algorithms on D1 and D2 datasets. M is assigned to

600, 1200 and 1800 nodes.

Triest always achieves best speed-up but worst recall on both datasets D1 and D2.

Since it manipulates edges without heap management like UCRS and LCRS, processing

edges has less time than processing subgraphs like SR and OSR.

LCRS has the closest speed-up to Triest on both datasets and outperforms all the

algorithms in terms of recall on D1. The reason for that is the novel method in UCRS and

LCRS, which is designed to replace the random edge deletion in whole reservoir with

controlled edge deletion. The idea behind this method is not to lose high degree nodes,

which have more impact on recall. Higher recall is gained since more connected (higher

degree) nodes remain in the sample reservoir, while in Triest the edge deletion from

83

sample reservoir is done randomly, by this way of edge deletion; patterns that are more

important can be lost. for higher values of total number of nodes in the sample e.g., 1800

instead of 1200 or 600, higher recall is achieved. This is because increased maximum

whole reservoir size brings increased sample reservoir size, which represents the original

graph better.

UCRS again is very close to Triest in speed-up on both datasets. It has much better

recall than Triest on D1, and a slightly better recall on D2. The reason for these results is

the novel method in UCRS that is designed to replace the random edge deletion in sample

reservoir with controlled edge deletion.

MCRS has lower speed-up than UCRS, since the heap size in MCRS is larger than

the heap size in UCRS, and it needs more time to manage it, also it has the lowest recall

among all the other five algorithms, since in MCRS the higher connectivity edge is a

candidate to be removed to keep a fixed memory size and replaced with edges, while in

UCRS and LCRS the less connected edge is removed whenever the whole reservoir is

full, this way supports the motivation for UCRS and LCRS, where less connected edges

are candidates to be removed, that can keep important patterns in the sample reservoir,

and as a result the recall increases.

SR is slightly faster than the slowest algorithm (OSR) over all the speed ups of

OSR, so it is the second slower algorithm after OSR on D1 and D2. The reason for that

is; both of them processing subgraphs and not edges, while handling subgraphs needs

higher time complexity than handling edges. SR achieves best recall on D2 only, since

D2 is denser than D1.

OSR is the slowest algorithm on both datasets D1 and D2 with best recall or close

to best on D2 only, OSR recall to SR recall is (0.74/0.72 – 0.85/.85– 0.88/.87) on D1 and

equal recall on D2(0.93). OSR best recall on D2 only since D2 is denser than D1. The

reason for these results since OSR handling subgraphs which consumes higher execution

time than handling edges, in addition it is a modified version of SR, that it has an added

procedure over SR, which is called “skip optimization” procedure to explore

neighbourhood efficiently.

84

Figure 5.19 shows the summary of execution time speed-ups and recall results for

Triest, UCRS, LCRS, SR and OSR algorithms on the datasets D1 and D2. M is assigned

to 600, 1200 and 1800 nodes.

Triest always scores the best speed-up but worst recall on both datasets D1 and

D2. This is because e it handles edges without heap management like UCRS and LCRS,

working on edges has less time than handling subgraphs like SR and OSR.

LCRS has the closest speed-up to Triest on both datasets and outperforms all the

algorithms in terms of recall on D1. The reason for that is the novel method in UCRS and

LCRS, which is designed to replace the random edge deletion in sample reservoir with

controlled edge deletion. The working idea of this method is not to lose high connected

edges, which have more impact on recall. Higher recall is gained since more connected

(higher degree) nodes remain in the sample reservoir, while in Triest the edge deletion

from sample reservoir is done randomly, by this way of edge deletion; patterns that are

more important can be lost. for higher values of total number of nodes in the sample e.g.,

1800 instead of 1200 or 600, higher recall is achieved. This is because increased

 Table 5.5. Summary of Execution Time Speed-ups and Recall Results

Dataset M

(nodes)

 Triest UCRS LCRS MCRS SR OSR

600 Speed-up 183.43 137.78 173.04 95.74 0.94

Recall 0.16 0.66 0.76 0.14 0.72 0.74

D1 1200

1800

Speed-up 67.87 43.51 61.63 22.74 0.96
Recall 0.64 0.82 0.86 0.28 0.85 0.85

Speed-up 38.08 19.16 34.54 12.13 0.99

 Recall 0.64 0.89 0.91 0.56 0.87 0.88

D2 600 Speed-up 200.76 126.56 172.65 109.78 0.88
Recall 0.13 0.16 0.19 0.04 0.93 0.93

D2 1200 Speed-up 61.76 13.82 44.57 12.96 0.88
Recall 0.37 0.39 0.67 0.19 0.93 0.93

 Speed-up 35.08 12.03 28.26 7.715 0.72

D2 1800 Recall 0.59 0.62 0.78 0.07 0.93 0.93

85

maximum whole reservoir size brings increased sample reservoir size, which represents

the original graph better.

UCRS achieves a very close speed-up to Triest on both datasets. It has much better

recall than Triest on D1, and a slightly better recall on D2. The reason for these results is

the novel method in UCRS that is designed to replace the random edge deletion in sample

reservoir with controlled edge deletion.

MCRS has lower speed-up than UCRS, since the heap size in MCRS is larger than

the heap size in UCRS, and it needs more time to manage it, also it has the lowest recall

among all the other five algorithms., since in MCRS the higher connectivity edge is a

candidate to be removed to keep a fixed memory size and replaced with edges, while in

UCRS and LCRS the less connected edge is removed whenever the whole reservoir is

full, this way supports the motivation for UCRS and LCRS, where less connected edges

are candidates to be removed, that can keep important patterns in the sample, and as a

result the recall increases.

SR is slightly faster than the slowest algorithm (OSR), so it is the second slower

algorithm after OSR on D1 and D2. The reason for that is; both of them processing

subgraphs in the sample reservoir and not edges, handling items of subgraphs needs

higher time complexity than handling items of edges. SR has best recall on D2 only, since

D2 is denser than D1.

OSR is the slowest algorithm on both datasets D1 and D2 with best recall or close

to best on D2 only. OSR best recall on D2 only since D2 is denser than D1. The reason

for these results since OSR handling subgraphs which consumes higher execution time

than handling edges, in addition it is a modified version of SR, that it has an added

procedure over SR, which is called “skip optimization” procedure to explore

neighbourhood efficiently.

On D1 and M= 1800; LCRS and UCRS achieve higher recall than the other

compared algorithms, it noticed that as the M size increases, the recall of LCRS increases,

and on D2, and M= 1800; the recall of LCRS becomes closer to SR and OSR, by applying

extreme values of M on D2, LCRS can achieve an equal recall to SR and OSR, the reason

for that is as the whole reservoir size increases, the sample reservoir size increases and

the number on non-important edges were deleted and more important edges that can affect

the patterns are increases.

86

Figure 5.19. Summary of Recall and Speed-up on Datasets D1 and D2

87

CHAPTER 6

CONCLUSION

Frequent subgraph mining is defined as finding all the subgraphs in a graph that

appear more than a given support threshold. It is a widely studied problem as it results in

the discovery of recurrent structures. Frequent subgraph mining process consists of two

phases, i.e., candidate generation and support computation (Dhiman and Jain, 2016).

There are several challenges of Frequent Subgraph Mining, they are as follows.

1) the total number of frequent subgraphs can become too large to allow a full

enumeration using reasonable computational resources. 2) Subgraph isomorphism

process is the most expensive step since it is an NP-complete problem. 3) Graph related

operations such as subgraph testing, generally have higher time complexity than the

corresponding operations on itemsets, sequences, and trees have higher time complexity.

4) candidate generation which occur in Apriori based approach, candidate generation is a

very complicated and costly process and second, the pruning of the false positives is

costly as subgraph isomorphism is NP- Complete. 5) mining frequent patterns from a

large data set, such mining often generates a huge number of patterns satisfying the

minimum support threshold, A large pattern will contain an exponential number of

smaller, frequent sub-patterns. 6) distributed FSM from single massive graphs, due to

not only the special constraints of FSM algorithm design, but also the deficient support

from existing distributed programming frameworks. 7) large sizes of graphs, therefore,

a natural solution is to reduce the size of the call graph with the use of a compression-

based approach. This naturally results in loss of information, 8) privacy preserving data

mining of graphs is especially challenging, because background information about many

structural characteristics such as the node degrees or structural distances can be used in

order to mount identity-attacks on the nodes. 9) Dynamic graphs is challenging since

most existing frequent subgraph mining algorithms are devised to handle static graphs.

10) Response time in continuous evolving graphs. Such dynamic applications require

quick responses to queries to a number of traditional applications such as the shortest path

problem or connectivity queries. Such queries are an enormous challenge, since it is

88

impossible to restore the massive volume of the data for future analysis. 11) Subgraph

matching in dynamic graphs due to the emerging use of dynamic graphs. 12) single large

graph is challenging due to the very high complexity of handling it. This work focuses on

the last four challenges, to minimize the challenges in such dynamic environments,

sampling is used to produce approximate algorithms.

In this work, three algorithms (UCRS, LCRS and MCRS) are proposed for

approximate frequent subgraph mining (FSM) in evolving graphs, where edge/vertex can

be arbitrary added using a fixed sized whole reservoir. Whole reservoir keeps the sample

reservoir and the heap reservoir, the sample reservoir represents the characteristics of the

original dynamic graph and allows dynamic algorithms to work on reduced sized graph,

while the heap reservoir consists of distinct nodes of the edges in the sample reservoir.

The three algorithms manage the edges in the sample reservoir with the help of an

auxiliary heap reservoir. This heap reservoir keeps the degrees of the nodes corresponding

to the edges in the sample reservoir, the node degrees are kept in ascending order starting

from the root node, and the node with minimum degree is retrieved directly whenever

necessary. In UCRS and LCRS the edges of low connectivity nodes are deleted from the

sample, which can maximize accuracy without sacrificing time and space. The third

algorithm MCRS is proposed as a kind of heuristic, it works in a similar manner to UCRS

and LCRS, while the main difference is in selecting the candidate edge to be deleted from

sample reservoir, whenever the whole reservoir is full, in this algorithm the candidate

edge is the edge with maximum degree of its nodes, by this way, the high connectivity

edges are deleted from the sample reservoir, as a result, the recall is expected to be

decreased. So, the results of MCRS motivate the need for the advantages of UCRS and

LCRS algorithms.

 Our experimental evaluation reveals that; UCRS and LCRS can outperform state-

of-the-art approaches in terms of recall and execution time. The findings are, i) on sparse

datasets; LCRS achieves highest recall in comparison to recent works, ii) on dense

datasets; UCRS and LCRS can’t achieve the highest recall, but it can be higher than one

of recent works, the recall of LCRS is getting higher and closer to the recall as the total

number of nodes in the sample is getting higher, iii) on sparse and dense datasets; LCRS

outperforms UCRS in recall and scalability, UCRS and LCRS achieve high scalability,

they can be as good as the fastest competitor algorithm, the speed up of LCRS can be up

to 99% faster than the exact algorithm. iv) on sparse datasets and high values of whole

reservoir size, UCRS and LCRS can achieve highest recall with smaller closer time to

89

fastest algorithm, v) on dense datasets and higher values of whole reservoir sizes, the

recall of UCRS and LCRS getting closer to the highest recall until it achieves the highest

recall. LCRS is recommended for sparse datasets, and it is recommended for dense

datasets with large values of whole reservoir size. MCRS has the worst speed-up and

recall among the other proposed and competitor algorithms.

This research can be continued with some challenges left to explore as follows:

 The UCRS, LCRS and MCRS algorithms are designed to handle 3 nodes

subgraph patterns, they can be extended to retrieve 4 or 5 node subgraph

patterns.

 Applying different heuristics in controlling the edge deletion from sample

reservoir (other than edges with minimum or maximum node degrees), then

the performance evaluation can be measured and compared with UCRS,

LCRS and MCRS algorithms.

 Shuffling the used datasets in the experiments, then monitoring the new

results and comparing them with the previous results.

 Determining the proper sample reservoir size for the UCRS, LCRS and

MCRS algorithms.

 Modifying a new CRS algorithm based on subgraph sample reservoir and

trying to find a way that can reduce the execution time.

90

REFERENCES

Abdelhamid, E. et al. (2017) ‘Incremental frequent subgraph mining on large evolving
graphs’, IEEE Transactions on Knowledge and Data Engineering, 29(12), pp.
2710–2723. doi: 10.1109/TKDE.2017.2743075.

Aggarwal, C. and Wang, H. (2010) Managing and Mining Graph Data. doi:
10.1007/978-1-4419-6045-0.

Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, Ion Stoica, U. (2018) ‘ASAP: Fast, Approximate Graph Pattern
Mining at Scale’, Proceedings of the 13th USENIX Symposium on Operating
System Design and Implementation (OSDI’18), pp. 745–761.

Anis, M. and Nasir, U. (2018) Mining Big and Fast Data: Algorithms and Optimizations
for Real-Time Data Processing. Available at: http://www.diva-
portal.org/smash/get/diva2:1195589/FULLTEXT02.pdf.

Aslay, C. et al. (2018) ‘Mining Frequent Patterns in Evolving Graphs’, The 27th ACM
International Conference on Information and Knowledge Management (CIKM
’18), pp. 923–932. doi: 10.1145/3269206.3271772.

Berlingerio, M. and Bonchi, F. (2009) ‘Mining graph evolution rules’, Proceedings of
the European Conference on Machine Learn- ing and Knowledge Discovery in
Databases: Part I, (ECML PKDD, pp. 115–130.

Bhatia, V. and Rani, R. (2018) ‘Ap-FSM: A parallel algorithm for approximate frequent
subgraph mining using Pregel’, Expert Systems with Applications. Elsevier Ltd,
106, pp. 217–232. doi: 10.1016/j.eswa.2018.04.010.

Bifet, A. and Gavaldà, R. (2011) ‘Mining Frequent Closed Graphs on Evolving Data
Streams’, Intelligent Data Analysis, 15(1), pp. 29–48. doi: 10.3233/IDA-2010-
0454.

Borgwardt, K. M., Kriegel, H. P. and Wackersreuther, P. (2006) ‘Pattern mining in
frequent dynamic subgraphs’, Proceedings - IEEE International Conference on
Data Mining, ICDM, pp. 818–822. doi: 10.1109/ICDM.2006.124.

Braun, P. et al. (2014) ‘Effectively and efficiently mining frequent patterns from dense
graph streams on disk’, Procedia Computer Science, 35(C), pp. 338–347. doi:
10.1016/j.procs.2014.08.114.

Chakrabarti, D. and Faloutsos, C. (2006) ‘Graph Mining : Laws , Generators , and
Algorithms’, ACM Computing Surveys, 38(1), pp. 2-es. doi:
10.1145/1132952.1132954.

Chakraborty, M., Byshkin, M. and Crestani, F. (2020) ‘Patent citation network analysis:
A perspective from descriptive statistics and ERGMs’, PLoS ONE, 15(12
December), pp. 1–28. doi: 10.1371/journal.pone.0241797.

Chi, Y. et al. (2004) ‘Moment : Maintaining Closed Frequent Itemsets over a Stream
Sliding Window’, Proceedings - Fourth IEEE International Conference on Data
Mining, ICDM 2004, pp. 59–66.

91

Cook, D. J. and Holder, L. B. (2007) ‘Mining graph data’.

Cuzzocrea, A. et al. (2015) ‘Edge-based mining of frequent subgraphs from graph
streams’, Procedia - Procedia Computer Science. Elsevier Masson SAS, 60, pp.
573–582. doi: 10.1016/j.procs.2015.08.184.

Dhiman, A. and Jain, S. K. (2016) ‘Frequent subgraph mining algorithms for single
large graphs - A brief survey’, Proceedings - 2016 International Conference on
Advances in Computing, Communication and Automation, ICACCA 2016. doi:
10.1109/ICACCA.2016.7578886.

Dinari, H. and Naderi, H. (2014) ‘A Survey of Frequent Subgraphs and Subtree Mining
Methods’, 14(1), pp. 39–57.

Elseidy, M., Abdelhamid, E. and Skiadopoulos, S. (2014) ‘GRAMI: Frequent Subgraph
and Pattern Mining in a Single Large Graph’, Proceedings of the VLDB
Endowment, 7(7), pp. 517–528. doi: 10.14778/2732286.2732289.

Fournier-Viger, P. et al. (2019) ‘TKG: efficient mining of top-K frequent subgraphs’,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 11932
LNCS(December), pp. 209–226. doi: 10.1007/978-3-030-37188-3_13.

Fournier-Viger, P. et al. (2020) ‘A survey of pattern mining in dynamic graphs’, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6). doi:
10.1002/widm.1372.

Gemulla, R., Lehner, W. and Haas, P. J. (2006) ‘A dip in the reservoir: Maintaining
sample synopses of evolving datasets’, VLDB 2006 - Proceedings of the 32nd
International Conference on Very Large Data Bases, pp. 595–606.

Hall, B., Jaffe, A. and Trajtenberg, M. (2001) ‘The NBER Patent Citation Data File:
Lessons, Insights and Methodological Tools’, (October 2014). doi:
10.3386/w8498.

Han, J., Pei, J. and Yin, Y. (2000) ‘Mining Frequent Patterns without Candidate
generation’, ACM SIGMOD Record, 29(2), pp. 1–12.

Hu, P. and Lau, W. C. (2013) ‘A Survey and Taxonomy of Graph Sampling’, pp. 1–34.
Available at: http://arxiv.org/abs/1308.5865.

Huan, J. et al. (2004) ‘Spin: mining maximal frequent subgraphs from graph databases’,
Proceedings of the 10th ACM SIGKDD international conference on Knowledge
discovery and data mining, (1), pp. 581–586. doi: 10.1145/1014052.1014123.

Huan, J., Wang, W. and Prins, J. (2003) ‘Efficient mining of frequent subgraphs in the
presence of isomorphism’, The Proceedings of 3rd IEEE International
Conference on Data Mining, pp. 2–5. doi: 10.1109/ICDM.2003.1250974.

Inokuchi, A. and Washio, T. (2012) ‘FRISSMiner: Mining frequent graph sequence
patterns induced by vertices’, IEICE Transactions on Information and Systems,
E95-D(6), pp. 1590–1602. doi: 10.1587/transinf.E95.D.1590.

Inokuchi, A., Washio, T. and Motoda, H. (2000) ‘An Apriori-Based Algorithm for
Mining Frequent Substructures from Graph Data’, pp. 13–23. doi: 10.1007/3-
540-45372-5_2.

92

Iyer, A. Liu, Z. Jin, X. Venkataraman, S. Braverman, V. Stoica, I. (2018) ‘ASAP: Fast,
Approximate Graph Pattern Mining at Scale’, Proceedings of the 13th USENIX
Symposium on Operating System Design and Implementation (OSDI’18), pp.
745–761.

Jiang, C., Coenen, F. and Zito, M. (2004) ‘A Survey of Frequent Subgraph Mining
Algorithms’, The Knowledge Engineering Review, 000, pp. 1–31. doi:
10.1017/S000000000000000.

Jiang, C., Coenen, F. and Zito, M. (2013) ‘A survey of frequent subgraph mining
algorithms’, Knowledge Engineering Review, 28(1), pp. 75–105. doi:
10.1017/S0269888912000331.

Kuramochi, M. and Karypis, G. (2001) ‘Frequent subgraph discovery’, Proceedings
2001 IEEE International Conference on Data Mining, pp. 313–320. doi:
10.1109/ICDM.2001.989534.

Kuramochi, M. and Karypis, G. (2004) ‘GREW - A scalable frequent subgraph
discovery algorithm’, Proceedings - Fourth IEEE International Conference on
Data Mining, ICDM 2004, pp. 439–442. doi: 10.1109/ICDM.2004.10024.

Kuramochi, M. and Karypis, G. (2005) ‘Finding Frequent Patterns in a Large Sparse
Graph*’, Journal of Data Mining and Knowledge Discovery, 11(3), pp. 243–
271. doi: 10.1007/s10618-005-0003-9.

Lakshmi, K. and Meyyappan, T. (2013) ‘Efficient Algorithm for Mining Frequent
Subgraphs (Static and Dynamic) based on gSpan’, International Journal of
Computer Applications, 63(19), pp. 9–12.

Leskovec, J. and Faloutsos, C. (2006) ‘Sampling from large graphs’, Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006, pp. 631–636. doi: 10.1145/1150402.1150479.

Miyoshi, Y., Ozaki, T. and Ohkawa, T. (2011) ‘Mining Interesting Patterns and Rules in
a Time-evolving Graph’, Proceedings of the International MultiConference of
Engineers and Computer Scientist, I, pp. 1–6.

Preti, G., De Francisci Morales, G. and Riondato, M. (2021) ‘MaNIACS: Approximate
Mining of Frequent Subgraph Patterns through Sampling’, Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1348–1358. doi: 10.1145/3447548.3467344.

Qiao, F. et al. (2018) ‘A Parallel Approach for Frequent Subgraph Mining in a Single
Large Graph Using Spark’, Applied Sciences, 8(2), p. 230. doi:
10.3390/app8020230.

Ranu, S. and Singh, A. K. (2009) ‘GraphSig: a scalable approach to mining significant
subgraphs in large graph databases’, Proceedings - International Conference on
Data Engineering, pp. 844–855. doi: 10.1109/ICDE.2009.133.

Ray, A., Holder, L. and Choudhury, S. (2014) ‘Frequent Subgraph Discovery in Large
Attributed Streaming Graphs’, JMLR: Workshop and Conference Proceedings,
36, pp. 166–181.

Sahu, S. et al. (2021) ‘Mining approximate frequent subgraph with sampling
techniques’, Materials Today: Proceedings. Elsevier Ltd, (xxxx). doi:

93

10.1016/j.matpr.2021.03.425.

De Stefani, L. et al. (2016) ‘TRIÈST: Counting local and global triangles in fully-
dynamic streams with fixed memory size’, Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 13-17-
Augu(X), pp. 825–834. doi: 10.1145/2939672.2939771.

Stutzbach, D. et al. (2006) ‘Sampling techniques for large, dynamic graphs’,
Proceedings - IEEE INFOCOM. doi: 10.1109/INFOCOM.2006.39.

Vitter, J. S. (1985) ‘Random Sampling with a Reservoir’, ACM Transactions on
Mathematical Software (TOMS), 11(1), pp. 37–57. doi: 10.1145/3147.3165.

Wang, T. et al. (2011) ‘Understanding graph sampling algorithms for social network
analysis’, Proceedings - International Conference on Distributed Computing
Systems, pp. 123–128. doi: 10.1109/ICDCSW.2011.34.

Wu, Y. et al. (2017) ‘Evaluation of Graph Sampling: A Visualization Perspective’,
IEEE Transactions on Visualization and Computer Graphics, 23(1), pp. 401–
410. doi: 10.1109/TVCG.2016.2598867.

Yan, X. and Han, J. (2003) ‘CloseGraph : Mining Closed Frequent Graph Patterns’,
Proc. ofthe 9th ACMSIGKDD Interna- tional Conference on Knowledge
Discovery and Data Min- ing (KDD-2003), 6, pp. 1–10.

Yan, X. and Jiawei, H. (2002) ‘gSpan: Graph-based substructure pattern mining’,
Journal of Chemical Information and Modeling, 53(9), pp. 1689–1699. doi:
10.1017/CBO9781107415324.004.

Yates, D. S., Moore, D. S. and Starnes, D. S. (2002) The practice of statistics.
Macmillan.

Zaharia, M. et al. (2010) ‘Spark : Cluster Computing with Working Sets’.

Zhang, F. et al. (2017) ‘A visual evaluation study of graph sampling techniques’, IS and
T International Symposium on Electronic Imaging Science and Technology, pp.
110–117. doi: 10.2352/ISSN.2470-1173.2017.1.VDA-394.

94

VITA

Nourhan N. I. El-Dabba Abuzayed received her BSc degree in Computer Engineering

from the Islamic University of Gaza (IUG), Palestine. From 2005 to 2010 she worked as

a software engineer in Palestinian National Internet Naming Authority (PNINA). From

2014 to 2016 she completed her master study in Computer Engineering from Izmir

Institute of Technology (IzTech), during her master study; she worked on a project of The

Scientific and Technological Research Council of Turkey (TÜBİTAK) under ARDEB

3501 Project No: 114E779. In 2016 she joined the PhD program at (IzTech), during her

PhD study she was accepted as a PhD scholar from the Islamic Development bank (IDB).

The List of Her Publications:

 Abuzayed, Nourhan & Ergenç, Belgin. (2022) “Approximate Frequent
Subgraph Mining on Dynamic Graphs”, Knowledge and Information Systems
(KAIS) Journal, Submitted

 Abuzayed, Nourhan & Ergenç, Belgin. (2017) “Comparison of Dynamic Itemset
Mining Algorithms for Multiple Support Thresholds”, 21st International Database
Engineering and Applications Symposium IDEAS 2017, Byte Press, 12-14 July,
Bristol, England, pp 309-316

 Abuzayed, Mazen, El-Dabba, Nourhan, Frary, Anne and Doganlar, Sami.
(2016) “GDdom: An online tool for calculation of dominant marker gene
diversity”, Biochem. Genet. 55, pp 155-157

 Abuzayed, Nourhan & Ergenç, Belgin. (2016) “Dynamic Itemset Mining
under Multiple Support Thresholds”, In: The 2nd International Conference on
Fuzzy Systems and Data Mining, China Macau, pp 11-14

