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ABSTRACT 

 

FREQUENT SUBGRAPH MINING OVER DYNAMIC GRAPHS 
 

 

Frequent subgraph mining (FSM) is an essential and challenging graph mining 

task used in several applications. Modern applications employ evolving graphs, so FSM 

is more challenging with evolving graphs due to the streaming nature of the input, and 

the exponential time complexity of the algorithms. Sampling schemes are used if 

approximate results serve the purpose. This thesis introduces three approximate frequent 

subgraph mining algorithms in evolving graphs. those algorithms use novel controlled 

reservoir sampling. A sample reservoir of the evolving graph and an auxiliary heap 

reservoir data structure are kept together in a fixed sized reservoir. When the whole 

reservoir is full, and space has required the edges of lower degree or higher nodes are 

deleted. This selection is done by utilizing the heap data structure as a heap reservoir, 

which keeps the node degrees. By keeping the edges of higher degree nodes in the sample 

reservoir, accuracy is maximized without sacrificing time and space, in contrast, keeping 

the edges of lower degree nodes in the sample reservoir, accuracy is minimized with 

higher time and space. The first algorithm is Controlled Reservoir Sampling with 

Unlimited heap size (UCRS), where the used heap reservoir size is unlimited.  The second 

algorithm is Controlled Reservoir Sampling with Limited heap size (LCRS). It is a 

modified version of UCRS, but the heap reservoir size is limited, as a result; sample 

reservoir size in the whole reservoir increases since the total number of nodes dedicated 

for the whole reservoir includes the nodes of the heap reservoir also. The third algorithm 

is Maximum Controlled Reservoir Sampling (MCRS). It is a modified version of UCRS, 

but the candidate edge for deletion is an edge with maximum node degrees. Experimental 

evaluations to measure scalability and recall performances of the three algorithms in 

comparison to state of art algorithms are performed on dense and sparse evolving graphs. 

Findings show that UCRS and LCRS algorithms are scalable and achieve better recall 

than edge based reservoir algorithms. LCRS achieves the best recall in comparison to 

edge or subgraph based reservoir algorithms. MCRS has the worst speed-up and recall 

among the other proposed and competitor algorithms. 
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ÖZET 
 

 

DEĞİŞKEN VERİ ÜZERİNDE SIK ALT ÇİZGE MADENCİLİĞİ 

 
 

Sık alt çizgeler madenciliği bir çok veri madenciliği uygulaması için temel ve 

zorlu bir iştir. Modern uygulamalar devingen çizgelerle çalışmakta olup, girdilerindeki 

veri akışı, sık alt çizge madenciliği algoritmalarının karmaşıklığını arttırmaktadır. 

Yaklaşık sonuçların yeterli olduğu durumlarda örneklemeye dayalı yaklaşımlar 

kullanılmaktadır. Bu tez kapsamında üç adet yaklaşık sık alt çizge madenciliği 

algoritması önerilmektedir. Önerilen algoritmalarda yenilikçi olarak, kontrollü depolama 

ile örneklem oluşturma yaklaşımı kullanılmıştır. Devingen çizgeye ilişkin örneklem sabit 

boyutlu depoda tutulmakta ve yardımcı bir yığın veri yapısı kullanılmaktadır. Bu yığın 

veri yapısında depodaki çizge düğümlerinin bağlantı dereceleri tutulmaktadır. Sabit 

boyutlu depo dolduğunda ve yeni alan gereksinimi ortaya çıktığında bu depodan çizgenin 

en düşük dereceli düğümleri çıkarılmaktadır. Devingen çizge örneklemini tutan sabit 

depoda yüksek dereceli düğümlerin kalması sağlanarak sonuçlardaki doğruluk, yer ve 

zaman maliyetini artırmadan yükseltebilmektedir. İlk olarak limitsiz boyutlu kontrollü 

depo örneklemesine dayalı “Controlled Reservoir Sampling with Unlimited heap size 

(UCRS)” algoritması önerilmiştir; adından da anlaşılacağı üzere kullanılan yardımcı 

yığının boyutu kısıtlanmamıştır. İkinci algoritma “Controlled Reservoir Sampling with 

Limited heap size (LCRS)” da büyüyen depo ile büyüyen yığının boyutuna sınır 

getirilmektedir. Üçüncü algoritma “Maximum Controlled Reservoir Sampling (MCRS)” 

ilk algoritmaya benzemektedir; yığın boyutu sınırlandırılmamıştır ancak depodan düğüm 

silmek gerektiğinde en düşük dereceli düğüm yerine en yüksek dereceli düğüm . 

çıkarılmaktadır. Her üç algoritmanın başarım değerlendirmeleri zaman, ölçeklenebilirlik 

ve doğruluk ölçütleri ile yapılmıştır. Başarım değerlendirmelerinde önerilen algoritmalar 

iki güncel rakip algoritma ile yoğun ve seyrek veri setleri üzerinde karşılaştırılmıştır. 

Bulgular UCRS ve LCRS algorithmalarının ölçeklenebilir olduğunu, rakip kenar tabanlı 

algoritmadan daha doğru sonuçlar verdiğini göstermiştir. LCRS tüm rakip 

algoritmalardan daha iyi başarım elde etmiştir. MCRS algoritmasının sonuçları tüm 

algoritmalar arasında en kötüdür.  
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CHAPTER 1 
 

 

INTRODUCTION 

 
 

Graphs represent the complex and arbitrary relations among attributes of real-world 

data, such as users (nodes) and the relationships between them (edges) in social networks, 

atoms (nodes) and bonds (edges) in chemical structures, proteins (nodes) and protein 

interactions (edges) in biological networks, computers (nodes) and links between them 

(edges) in computer networks (Chakrabarti and Faloutsos, 2006) (Fournier-Viger et al., 

2020). Due to the increase in structured and semi-structured data represented in graphs, 

there has been rising interest in the mining graph data. Graph mining has several sub-

categories such as graph classification, graph clustering and frequent subgraph mining, 

etc. (Jiang, Coenen and Zito, 2004) (Jiang, Coenen and Zito, 2013). 

Frequent subgraph mining is defined as finding all the subgraphs in a given graph that 

appear more than a given support threshold. It is a widely studied problem as it results in 

the discovery of recurrent structures, themes or ideas in the given graph database which 

can be used further for performing other graph mining applications such as graph 

classification, graph partitioning, graph clustering, graph correlations etc. (Cuzzocrea et 

al., 2015).  Nowadays dynamic graph-based applications which deal with the dynamic 

data emerged i.e., social networks where friendships (i.e., edges of graph) are linked and 

dissolved over time, protein-to-protein interaction networks where knowledge is 

frequently updated. Because of these applications, the need for incremental frequent 

subgraph mining approaches has become essential. The increments can be represented in 

two different ways in a graph: (a) by a series of small graphs, and (b) as a stream of node 

and edge updates to the graph (Ray, Holder and Choudhury, 2014). These increments can 

be done in three different ways; first edges or/and nodes are being added to the network 

over time. Second, attributes of existing edges or/and nodes are modified over time. Third, 

edges or/and nodes previously present are being removed from the network. 

Although frequent subgraph mining has been widely studied (Yan and Jiawei, 2002) 

(Huan, Wang and Prins, 2003) (Inokuchi, Washio and Motoda, 2000) (Ranu and Singh, 

2009) (Fournier-Viger et al., 2019), few works exist for dynamic frequent subgraph 
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mining (Kuramochi and Karypis, 2004) (Abdelhamid et al., 2017). Static algorithms 

assume that graphs do not change over time and try to find all frequent subgraphs in the 

data. On the other hand, dynamic frequent subgraph mining algorithms deal with change 

in the data, however most of them concentrate on exact output similar to static algorithms. 

Exact algorithms search for all the frequent patterns; this requires high execution time 

and memory consumption. Therefore, for faster results users are willing to trade-off 

accuracy in cases where approximate results can serve the purpose. There are two recent 

works that are designed for approximate outputs (frequent subgraphs); Triest (De Stefani 

et al., 2016), SR and OSR (Aslay et al., 2018). They provide simple approximate 

approaches with trade-off between time and accuracy. Both solutions in (De Stefani et al., 

2016) and (Aslay et al., 2018) use sampling technique based on the method which is 

proposed in (Vitter, 1985) where a randomized sampling schema that uses fixed sized 

reservoir is presented. The algorithm in (De Stefani et al., 2016) relies on sampling edges, 

while the algorithms in (Aslay et al., 2018) do sampling subgraphs to gain more accuracy. 

However, Triest (De Stefani et al., 2016), SR and OSR (Aslay et al., 2018) algorithms 

have some limitations; these limitations are trade-off between time and accuracy. SR and 

OSR are more accurate than Triest, while the recent one is faster than SR and OSR as 

appear in empirical results in (Aslay et al., 2018). The main purpose of approximation is 

having high number of retrieved patterns (high recall) with a minimized execution time, 

so faster solutions with higher recall are still needed. 
 

 

1.1. Contributions of the Thesis 
 

 

 The main contribution of this thesis is to introduce frequent subgraph mining 

algorithms in dynamic environment. We propose three approximate frequent subgraph 

mining algorithms that work on evolving graph data. Sampling is done by selecting a 

representative subset of the original graph by facilitating fixed size reservoir similar to 

recent competitors (De Stefani et al., 2016) (Aslay et al., 2018) . The difference is in the 

management of the sample reservoir in the whole reservoir. Competitors use randomized 

sampling where the degrees of the nodes are not considered. When the reservoir is full 

any node even with highest degree can be deleted. This results in low recall.  
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The main contributions of this thesis are as follows. 

 Controlled Reservoir Sampling Algorithm with Unlimited heap size 

(UCRS): this proposed algorithm use novel controlled edge-based sampling 

strategy with again fixed sized reservoir. Reservoir keeps the edges of the sample 

reservoir together with the nodes of the heap reservoir; the heap reservoir is a heap 

data structure keeps the degrees of the nodes in the sample. Management of the 

sample in the reservoir is done with the help of a heap data structure. Whenever 

an edge deletion is required, nodes of the edges that have lowest degree are 

chosen. In other words, in reservoir management, instead of random edge 

deletion, the edges that have nodes with low connectivity are potential targets to 

be removed from the sample reservoir, and if the node degrees are 1, they should 

be removed from heap reservoir. By this way, accuracy is maximized.  

 Controlled Reservoir Sampling Algorithm with Limited heap size (LCRS), 

this algorithm is a modified version of UCRS. In LCRS, the heap reservoir size is 

minimized, as a result; sample reservoir size increases since the total number of 

nodes dedicated for the reservoir includes the nodes of the heap reservoir together 

with the nodes of the edges of the sample reservoir.  

 Maximum Controlled Reservoir Sampling (MCRS): in this proposed 

algorithm, when the whole reservoir is full, an edge should be deleted from the 

sample reservoir to be replaced by a new edge, this candidate edge is an edge with 

maximum node degrees of its source and destination, while in UCRS the 

candidate edge for deletion is an edge with minimum node degrees of its source 

and destination. It is very similar to UCRS, but instead of deleting edges with 

minimum node degrees, it deletes edges with maximum node degrees. This 

algorithm is proposed as a heuristic and to check the validity of UCRS and LCRS. 

The performance of UCRS, LCRS and MCRS algorithms are evaluated 

together with comparison to Triest (De Stefani et al., 2016) and SR, OSR  (Aslay 

et al., 2018) using sparse and dense datasets.  In the experiments the scalability, 

recall and heap size are measured. The findings are as follows; LCRS and UCRS 

have noticeable speed-up over (SR and OSR). UCRS and LCRS achieve high 

scalability, they can be as good as the fastest competitor algorithm. For the recall 

measurements, both LCRS and UCRS algorithms are better than Triest. LCRS 

achieves the highest recall on sparse datasets, while on dense dataset; LCRS can 
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achieve the highest recalls with large sizes of whole reservoir.  MCRS has the 

worst speed-up and recall among the other proposed and competitor algorithms. 
 

 

1.2.  Organization of the Thesis 
  
 

This thesis is organized as follows. 

 In Chapter 2 the fundamentals of graph terminology, frequent subgraph mining in 

dynamic and static graphs are given. then some graph sampling methods and techniques 

are explained. in addition, the problem and problem formulation are given. 

In Chapter 3 a detailed discussion the state of art in frequent subgraph mining 

algorithms is reviewed. The main methodologies of existing frequent subgraph mining 

algorithms for static and dynamic environments are discussed. In both environments, 

some exact and approximate algorithms are explained and discussed. 

In Chapter 4 three approximate frequent subgraph mining algorithms are 

introduced. They are designed to work in dynamic environment. Proposed algorithms use 

controlled reservoir sampling. Two of the methods namely UCRS and LCRS are designed 

for deleting edges with minimum node degrees when whole reservoir is full, while one is 

namely MCRS is designed for deleting edges with maximum node degrees when whole 

reservoir is full. each algorithm is explained with a motivating example. 

In Chapter 5 the proposed algorithms are evaluated by using a set of experiments. 

These experiments are for measuring the scalability, the recall, and the heap size, the 

experiments are done in comparison to recent competitors, and then the experiments are 

discussed. 

In Chapter 6 conclusion of this thesis is given with a summary, and possible future 

research directions are pointed out.  
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CHAPTER 2 
 

 

BACKGROUND AND PROBLEM FORMULATION 
 

       

Graphs represent the complex and arbitrary relations among attributes of real-

world data, such as users (nodes) and the relationships between them (edges) in social 

networks. There has been rising interest in the mining graph data.  

Frequent subgraph mining is defined as finding all the subgraphs in a graph that 

appear more than a given support threshold. It is a widely studied problem as it results in 

the discovery of recurrent structures. Frequent subgraph mining process consists of two 

phases, i.e., candidate generation and support computation (Dhiman and Jain, 2016). 

Recently, dynamic graph-based applications which deal with the dynamic data 

emerged i.e., social networks where friendships (i.e., edges of graph) are linked and 

dissolved over time, etc. So, the need for incremental frequent subgraph mining 

approaches has become essential. The increments can be represented in two different 

ways in a graph: (a) by a series of small graphs, and (b) as a stream of node and edge 

updates to the graph (Ray, Holder and Choudhury, 2014). Some works exist for dynamic 

frequent subgraph mining (Kuramochi and Karypis, 2004), (Abdelhamid et al., 2017). 

Static algorithms assume that graphs do not change over time, those static algorithms try 

to find frequent subgraphs in the data. While dynamic frequent subgraph mining 

algorithms deal with change in the data, however most of them concentrate on exact 

output similar to static algorithms. Exact algorithms search for all the frequent patterns, 

which requires high execution time and memory consumption. Therefore, for faster 

results with lower accuracy in some cases; approximate results can serve the purpose. But 

to do approximation, sampling of the input data is needed, there are several sampling 

techniques are explained in this chapter. 

In this chapter, basic terminology graph basics, frequent subgraph mining, graph 

sampling, and problem formulation are presented. 
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2.1.  Graph Basics 
 

 

A graph is defined as a set of vertexes (nodes) that are interconnected by a set of 

edges. An example of a graph is shown in Figure 2.1.  A graph G is an ordered pair (V, 

E) consisting of a set of vertices V= {v1, v2, v3, v4, v5} and V is connected to each other 

by and a set of edges E= {e1, e2, e3, e4}. A label function, , maps a vertex or an edge 

to a label. 

 

 
 

Figure 2.1. Example of Graph G 
 

 

Assume subgraph G '(V', E') is a subgraph of the graph G (V, E), where edges and vertices 

are subsets of E and V respectively:  

 V’ V  

 

  

Figure 2.2. shows examples of subgraphs such that S1, S2, and S3 are subgraphs of G in 

Figure 2.1. 

 

 

 

Figure 2.2. Subgraphs of the Graph G 
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Static graph: A graph G = (V, E) consists of a set of nodes V, and a set of edges E  V×V, 

where V and E do not change over time.  

Dynamic graph (evolving graph): An evolving graph GD = (VD, ED) consists of a set of 

nodes VD, and a set of edges ED  VD × VD. GD is changed by node and edge additions 

or deletions over time. Figure 2.3 shows an example of a dynamic graph at three points 

of time (t1, t2 and t3). At time t2, there is a deletion of the edge u7- u8. At time t3, edge u7-

u8 and edge u3-u10 are added. 

 

 
Figure 2.3. Dynamic graph G at different points of time 

 

In incremental frequent subgraph mining approaches, the increments can be represented 

in two different ways in a graph: (a) by a series of small graphs, and (b) as a stream of 

node and edge updates to the graph. The following is explanation of the two kinds of 

increments (Ray, Holder and Choudhury, 2014). 

A. Increments as a series of small graphs 
In this kind of dynamic graphs, the increments are done by using a series of graph objects, 

i.e. each object in the stream is considered as a (static) graph snapshot. 

Definition: (Series of Graphs) Given a sequence Gts of n graphs {G1, . . . , Gn} 

with Gi = (Vi, Ei) for 1 ≤ i ≤ n. We define Gts to be a time series of graphs if V1 = Vi for 

all 1 ≤ i ≤ n. Gi is the i-th state of Gts (Borgwardt, Kriegel and Wackersreuther, 2006). 

Figure 2.4 shows an example of a dynamic graph when the input is  a series of 

small graphs, it shows a graph input, where each incoming object is an entire graph. 
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Transaction ID Graph 
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Figure 2.4. Example of (graph inputs as a series of small graphs) Transformation of a      
time series 

 

B. Increments as a stream of nodes and edges 
In this kind of dynamic graphs, the increments consist of nodes and edges that change 

over time, and it can be addition or deletion. 
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Definition: Dynamic graph (evolving graph): An evolving graph GD = (VD, ED) consists 

of a set of nodes VD, and a set of edges ED  VD × VD. GD is changed by node additions 

or deletions, edge additions or deletions over time. Figure 2.5(a) shows an example of a 

dynamic graph at three points of time (t1, t2 and t3). At time t2, there is a deletion of the 

edge u7- u8. At time t3, edge u7-u8 and edge u3-u10 are added. 

Figures 2.5 shows an example of  an edge updates, it shows the dynamic graph at 

different time points t1, t2 and t3 when edges are coming as updates. 

 

 

 
Figure 2.5. (a) Dynamic graph G at different points of time (b) Subgraph g1 (c) Subgraph  

g2 

 

Subgraph isomorphism: Given two undirected graphs G and H. There is an isomorphism 

between G and H, if there is a bijection f between their vertices (f: V(G)→V(H)), Hence, 

two vertices u, v are adjacent to each other in G if and only if f(u), f(v) are adjacent in H. 

These two graphs are topologically identical in topology.     
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2.2.  Frequent Subgraph Mining 
 

 

The main task of frequent subgraph mining (FSM) is to find all frequent subgraphs 

in a given graph or a set of graphs for a given user-defined threshold (Aggarwal and 

Wang, 2010). The support of a subgraph (g) is defined the number of occurrences of this 

graph in a graph dataset.  

Given a graph G = (Vg, Eg), a graph F = (Vf, Ef) will be a subgraph of G if and 

only if the vertices and edges of graph H are a subset of the vertices (Vf  Vg) and edges 

(Ef  Eg) of graph G. If the support of subgraph is equal or greater than the user-defined 

minimum support threshold, then this subgraph is considered as a frequent subgraph. If a 

graph is frequent, all its subsets must be frequent (downward closure property) (Dinari 

and Naderi, 2014). 

Figure 2.6 illustrates an example of finding frequent subgraphs. Input is a database 

of graph transactions, undirected simple graph (no loops, no multiples edges), each graph 

transaction has labels associated with its edges and vertices, transactions might not be 

connected and a minimum support threshold σ; example (60%). The Output is frequent 

subgraphs that satisfy the minimum support threshold, and each frequent subgraph is 

connected. 

 

 

 
 

Figure 2.6.  Finding Frequent Subgraphs (Input and Output) 
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Frequent subgraph mining process consists of two phases, i.e., candidate generation and 

support computation (Dhiman and Jain, 2016). 

Frequent subgraph:  Subgraph g to be frequent in an input graph G, if it has support 

larger than or equal to a user-defined threshold. 

Frequent Subgraph Mining: It is the process of finding all frequent subgraphs in a given 

graph G. Finding isomorphic subgraphs is one the challenges of this process.  

Dynamic Subgraph Mining: It is the process of finding all frequent subgraphs on 

evolving graph. In the example presented in Figure 2.5 given an input dynamic graph G 

and support threshold 2, let us see the status of subgraphs g1 and g2. Addition of an edge 

to input graph increases the support of one or more subgraphs, removal of an edge of the 

input graph decreases the support of one or more subgraphs (Abdelhamid et al., 2017). 

At time t1, the subgraph g1 has 2 matches in G, however the subgraph g2 has only one 

match. As a result, g1 is frequent subgraph and g2 is not frequent subgraph. At time t2, 

there is a deletion of the edge u7- u8, so the number of embeddings of g1 decreases to one, 

however the number of embedding of g2 does not change. Therefore, both subgraphs g1 

and g2 are not frequent. At time t3, there is an addition of edge u3-u10, this addition 

increases the number of matches of g2 to two; so, g2 becomes frequent. 
 

 

2.3.  Graph Sampling 
 

 

Graph sampling is done by selecting a representative subset of the original graph 

as shown in Figure 2.7, so the graph sampling can make the graph size smaller while 

keeping the characteristics of the original graph (Sahu et al., 2021) (Wang et al., 2011).  

 

 

 

 

 

 

 

Figure 2.7. Graph sampling 

Single graph 

Graph Sampling 

Small Representative Graph 
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Graph sampling: Graph sample of Graph G= (V, E) is defined as Gs= (Vs, Es) where Vs 

 V, Es  E and Es  {(u, v) |u  Vs, and v  Vs}. 

Approximate Frequent Subgraph Mining: If the frequent subgraph mining algorithm is 

applied on a sample graph of the original graph, the results is approximate. 

To do approximation, sampling is needed, in the following, we will talk about graph 

sampling in context, need for Sampling, notations and definition, and finally graph 

sampling methods with examples.  

Graph sampling is needed Social network analysis, to keep the graph scale small 

while capturing the properties of the original social graph, graph sampling provides an 

efficient, yet inexpensive solution for social network analysis (Wang et al., 2011). 

Sampling can be used in graph analysis in applications such as security, high performance 

computing, etc (Zhang et al., 2017). Also, survey hidden population in sociology, scale 

down Internet AS graph, graph sparsification, etc. (Stutzbach et al., 2006). Sampling 

provides an abstract version of the original graph. Thus, visualizing sampling results is 

easier than visualizing the original. Secondly, the analysis of a large graph is costly. The 

third reason is incomplete graph data. In some cases, obtaining all data for a graph is not 

permitted or is very time-consuming. Thus, we must obtain the properties of the graph by 

sampling. 

For the above reasons, sampling algorithms aims to reduce the complexity of 

graph drawing while preserving properties of the original graph, allowing analysis of the 

small sample to yield the characteristics similar to those of the original graph (Zhang et 

al., 2017).  

Graph Sampling Methods 

There are four sampling methods, which are Node Sampling, Edge Sampling, Traversal-

based sampling (Zhang et al., 2017) and Sampling with Neighbourhood (VSN) (Hu and 

Lau, 2013). In the following we will explain each one with algorithmic example. 

 Node Sampling 

In node sampling, vertices are sampled. A subgraph is created from sampled nodes and 

existing edges of original graph. For example, Random Node (RN) sampling. 

Example:  

Random Node (RN) sampling (Leskovec and Faloutsos, 2006): it is the most common 

method; it selects a set of nodes uniformly at random from the graph. Using this set, an 
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induced subgraph can be created by including every edge that connects a pair of nodes in 

the set. RN is simple and efficient (Wu et al., 2017), Figure 2.8 shows random node 

sampling from a graph. 

 

(a) Original graph 

 

 

(a) Random Node 

Figure 2.8. Random node sampling from a graph 

 

 

 Edge Sampling 

 In edge sampling, edges are sampled, and then a subgraph is created from those 

edges. Induced edge sampling includes totally induced edge sampling and partially 

induced edge sampling. For example, Random Edge (RE) sampling, First (FS) 

sampling and Traversal-based sampling. 
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 Example 1: Random Edge (RE) sampling  

It generates an induced subgraph by selecting edges uniformly at random. The random 

edge deletion from graph is shown in Figure 2.9. 

 

 

 

 

(a) Original graph 

 

 

 

 

(b) Random Edge 

Figure 2.9. Random edge sampling from a graph 
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Example 2: FS 

- FS firstly randomly chooses a set of nodes, S, as seeds.  

- Then FS will select a seed v from the set of seeds with the probability defined as 

follows: 

 

An edge (v, w) is selected uniformly from node v’s outgoing edges, and v will be 

replaced with w in the set of seeds and edge (v, w) will be added to the sequence of 

sampled edges.  

- FS repeats these steps until the budget is reached.  

 FS requires that at least one of the in degree and out degree of the nodes is not 0. 

 Otherwise, the node has neither incoming nor outgoing edges, which means, this 

node is isolated. In real OSNs the number of isolated nodes is small and in most researches 

isolated nodes are not considered (Wang et al., 2011). 

 Traversal-based sampling 

Traversal-based sampling uses topology information to sample a subgraph. For 

example, Random walk sampling and Breadth-first sampling. 

Example 1. Random walk sampling (Stutzbach et al., 2006) starts at a seed vertex, and 

then chooses a vertex uniformly at random from the neighbours of the current vertex. A 

subgraph is created from the walking paths. Figure 2.10 shows random walk sampling. 
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(a) Original graph 

 

 

 

(b) Random Walk 

Figure 2.10. Random walk sampling from a graph 
 

 

Example 2. Breadth-first sampling (Hu and Lau, 2013) (Zhang et al., 2017)  is induced 

from the graph traversal algorithm breadth-first search. It begins with a random vertex 

and visits its neighbours iteratively. An example of BFS is shown in Figure 2.11. 
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d  b  a  c  f e I h g k j 
Sampling budget  

 

Figure 2.11. Breadth-first sampling of a large graph  

 

 

Sampling algorithms in data streams 

1. Simple random sampling (srs) (Yates et. al, 2002)  

In srs, a sample is chosen by picking each item in the data stream with an equal probability 

of being selected. The inclusion probability is provided as an input parameter to the 

sampling algorithm. Consider a p = 0.5, then each item in the data stream has half the 

chance to be included in the sample. srs is extremely simple, however one downside of 

srs is that the size of the sample grows along with size of the data stream (Anis and Nasir, 

2018). 

 

2. Reservoir sampling (rs) (Vitter, 1985) 

It is a fixed-size randomized sampling scheme, which maintains a fixed-size uniform 

sample of the data stream. The size of the sample is provided as the input parameter. The 

algorithm initializes with a fixed-size input array, which initially gets filled by the items 

in the data stream. Once the array is filled, each i-th item is added to the sample with 

probability 1/i by replacing it with a randomly selected item from the sample. Random 

pairing (Gemulla et al., 2006) is a fully dynamic algorithm for reservoir sampling, that 

compensate for item deletions using the future addition (Anis and Nasir, 2018). 
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2.4.  Problem Definition 
 

 

We consider the problem of finding approximate frequent subgraphs on a dynamic 

undirected graph where changes are additions of edges occurring over time. In other 

words, we observe a sample graph that changes over time t and its size does not exceed 

pre-defined threshold (maximum whole reservoir size). Assume the sample graph Gt = 

(Vt, Et), for any time t ≥ 0, where Vt represents the vertices and Et represents the edges. 

For any time instant t ≥ 0, we receive an edge element et+1 which consists of a pair of 

vertices (u, v). The sample graph Gt+1 = (Vt+1, Et+1) is obtained by adding a new edge to 

the existing sample graph as follow: E(t+1) = E(t)  (u, v). If u or v are not in V(t); they 

will be added to V(t+1).  

The details of the management of fixed size reservoir reserved for the sample 

reservoir and heap reservoir are explained in the next chapter. 
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CHAPTER 3 
 

 
RELATED WORK  

 

 

          In this chapter, a literature review on existing frequent subgraph mining approaches 

are presented. These algorithms are classified into two categories according to their 

environment: static and dynamic as in Figure 3.1. 

         In dynamic environment the graph datasets are evolving over time, while in static 

environment the state of the graphs doesn’t change. In the literature many approaches are 

proposed to work in static environment. The Figure 3.1. shows that the frequent subgraph 

mining for dynamic data can be classified into two categories: exact and approximate.  

Most algorithms in dynamic environment concentrate on exact algorithms, where the 

exact approaches search for all the frequent patterns. However, for faster results users are 

willing to trade-off accuracy, whenever approximate results can serve the purpose. Those 

approximate algorithms use different sampling approaches. The basic idea in 

approximation is to execute the exact algorithm on a small portion of the data (sample) 

(Iyer, A. Liu, Z. Jin, X. Venkataraman, S. Braverman, V. Stoica, 2018). Sampling is done 

by selecting a representative subset of the original graph where the purpose is to reduce 

graph size while preserving the characteristics of the original graph (Wang et al., 2011).  

Frequent subgraph mining process consists of two phases, i.e., candidate 

generation and support computation (Dhiman and Jain, 2016). Several algorithms are 

proposed to solve this problem. In the following two sections, some graph mining 

algorithms for static and dynamic environment are presented. 

 

 

 

Figure 3.1. Frequent Subgraph Mining Algorithms 



20 
 

 3.1.  Graph Mining Algorithms for Static Environment 
 

 

In static graph mining literature, several algorithms are proposed using different 

approaches with different attributes such as input and output type, graph type, graph 

representation, algorithmic approach, programming approach. Let us explain different 

comparison attributes. 

The input type can be different from an algorithm to another. It can be a set of graphs that 

consist of a group of small graphs as chemical molecules. It is also possible to be a one 

single graph that is generated from associations of many small subgraphs as social 

networks. In frequent subgraph mining algorithms, the main difference between the two 

types is in frequency calculation. 

The graph type of the input graphs can have one of the following possible types: 

undirected labelled graphs, undirected graphs, directed graphs, connected graphs, 

connected undirected graphs, or labeled graph. 

The graph representation is considered as one of the most effective attributes on the 

consumption of runtime and memory. In general, the graphs can be represented by the 

adjacency matrix, adjacency list and canonical labelling. 

Algorithmic approach shows pattern finding approach of the base algorithm 

where the possible values can be Apriori or Pattern growth. The Apriori based algorithms 

(Inokuchi, Washio and Motoda, 2000) generate candidates using breadth first strategy 

(BFS) and apply subgraph isomorphism testing to calculate frequencies of candidates. 

Pattern growth-based algorithms (Yan and Han, 2003) generate candidates based on depth 

first strategy (DFS). The pattern growth approach avoids the cost of generating candidates 

and subgraph isomorphism testing. The candidates are generated by extending frequent 

subgraphs starting from minimal frequent subgraphs by adding one edge at every step 

until they are still frequent. 

Programming approach: some algorithms utilizes parallel programming, in order 

to take advantage of the existing multicore processor technology, or distributed, and as a 

result the time complexity is reduced. While other uses serial programming approach. 

Type of output, the essential purpose of each algorithm is extracting a reduced set 

of frequent subgraphs. So, the nature of each output could be different from one algorithm 

to another, the retrieved output could be all, approximate, or closed frequent subgraphs. 
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Due to the existence of several static subgraph mining approaches. Table 3.1 

summarizes a literature about some algorithms in static subgraph mining. 

 

Table 3.1. Algorithms for static frequent subgraph mining 

  
 
Algorithm 

In
pu

t t
yp

e 

G
ra

ph
 ty

pe
 

*
G

ra
ph

 
re

pr
es

en
ta

ti
on

 

A
lg

or
ith

m
ic

 
ap

pr
oa

ch
 

Pr
og

ra
m

m
i

ng
 a

pp
ro

ac
h 

O
ut

pu
t t

yp
e  

 
Limitations 

gSpan (Yan and Han, 
2002) 

set of 
graphs 

U Canonical 
label(min 
DFS) 

Pattern growth  Serial  All frequent 
subgraphs 

It is unable to process large datasets 

FFSM (Huan, Wang 
and Prins, 2003) 

set of 
graphs 

U Canonical 
label(CAM
) 

Apriori based 
& 
pattern growth 

Serial All frequent 
subgraphs 

NP-complete problem 

CloseGraph (Yan and 
Han, 2003) 

set of 
graphs 

U / 
D 

Canonical 
label(min 
DFS) 

Pattern growth  Serial Closed 
frequent 
subgraphs 

Failure detection takes lot of time overhead 

AGM (Inokuchi, 
Washio and Motoda, 
2000) 

set of 
graphs 

U / 
D 

adjacency 
matrix 

Apriori based Serial All Frequent 
subgraphs 

High complexity due to multiple candidate 
generation 

FSG (Kuramochi and 
Karypis, 2001) 

set of 
graphs 

U adjacency 
list 
CAM 

Apriori based Serial All frequent 
subgraphs 

High complexity due to multiple candidate 
generation 

FSM-H (Bhuiyan and 
Al Hasan, 2015) 

set of 
graphs 

U adjacency 
list 
 

Apriori based Parallel  All Frequent 
subgraphs 

High complexity due to multiple candidate 
generation 

gSpan-H algorithm 
(Sangle and Bhavsar, 
2016) 

set of 
graphs 

D Canonical 
label(min 
DFS) 

Apriori  based Parallel All Frequent 
subgraphs 

Multiple candidate generation 

HSIGRAM 
(Kuramochi and 
Karypis, 2005) 

single large 
graph 
undirected 

U Canonical 
label(CAM
) 

Apriori based Serial  Approximate 
frequent 
subgraphs 

Multiple  candidate generation 

VSIGRAM 
(Kuramochi and 
Karypis, 2005) 

single large 
graph 
 

U Canonical 
label(CAM
) 

Pattern growth Serial Approximate 
frequent 
subgraphs 

Some interesting patterns can be lost 

SPIN (Huan et al., 
2004) 

Set of 
graphs 

U Adjacency 
matrix 

Pattern growth  Serial Maximal 
frequent 
subgraphs 

Interesting patterns may be lost 

Ap-FSM (Bhatia and 
Rani, 2018) 

single large 
graph 
 

L Canonical 
label(CAM
) 

Pattern growth  Parallel Approximate 
frequent 
subgraphs 

It handles only distributed systems 

MaNIACS (Preti, De 
Francisci Morales and 
Riondato, 2021) 

single large 
graph 
 

L Canonical 
label 

Apriori based Serial Approximate 
frequent 
subgraphs 

It is compared with the exact algorithm; it 
is preferred to be compared with recent 
approximate algorithms. 
Not scalable for small graphs, it uses 
random sampling for approximation, 
interesting patterns might be lost 

Approximate GraMi 
(Sahu et al., 2021) 

single large 
graph  

 adjacency 
matrix 

Apriori based Serial Approximate 
frequent 
subgraphs 

Works only with static graphs 

Graph type*:        
U: Undirected graphs   
D: Directed graphs 
C: Connected graphs        
L: Labeled graph 

 

 

Frequent subgraph mining algorithms can be categorized into two main approaches 

according to their base algorithm, the two categories are Apriori based approach or 

pattern-growth based approach. 
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Algorithms based on Apriori: The Apriori based algorithms consist of two main steps: 

the first step is generating candidates using breadth first strategy (BFS), the second step 

is applying subgraph isomorphism testing to calculate frequencies of candidates. Apriori 

based algorithms are extended from Apriori algorithm (Inokuchi, Washio and Motoda, 

2000). In the first step, the level-wise strategy for candidate generation is used. Apriori 

based approaches has a drawback because of the large number of candidates that are 

generated on large datasets. As a result, downward closure property is employed to 

minimize the search space, this property states that, if a subgraph is not frequent, its 

superset (set containing it) is considered not frequent. In the next step, there is no need to 

check whether any candidate graph containing this subgraph is frequent or not. In Apriori 

based algorithms the number of candidates is reduced, but on large datasets and minimum 

support threshold, these algorithms do not work well. This is due to the large number of 

generated candidates, also this process requires multiple scans for the database. Apriori 

based algorithms have challenges regard to subgraph isomorphism testing.  

 Algorithms based on FP-Growth: the main purpose of FP-Growth  based 

algorithms (Han, Pei and Yin, 2000) is to discover frequent subgraphs without candidate 

generation and subgraph isomorphism testing. FP-Growth approach based on divide and 

conquer method. In this approach a frequent sub graph is extended by adding an extra 

edge in every possible position, this process continues until no more frequent subgraphs 

remains. This is instead of candidate generation. The mentioned extension of edges is 

done instead of candidate generation, but the drawback here is while adding an extra edge 

in every possible position, there is a probability that the same sub graph can be discovered 

several times, this results in duplication in candidate generation. There are works done to 

eliminate the duplication by using rightmost extension technique such as gSpan algorithm 

(Huan, Wang and Prins, 2003). Pattern growth-based FSM algorithms usually use the 

rightmost extension technique in the candidate generation process, and to avoid subgraph 

isomorphism testing in calculating the frequencies of subgraphs; the minimum DFS code 

is used.   

 One of the drawbacks of Apriori based algorithms is multiple scans for the 

database. To overcome this problem, pattern-growth based algorithms was developed, it 

handles a more compact and smaller data structure instead of working on the whole the 

database. In this approach, the number of generated candidates are reduced, also the 

subgraph isomorphism test is better than the Apriori based approaches. Pattern- Growth 
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approach algorithm include SPIN (Huan et al., 2004), gSpan (Yan and Jiawei, 2002) and 

FFSM (Huan, Wang and Prins, 2003).  

Type of output, the essential purpose of each algorithm is extracting a reduced set 

of frequent subgraphs. So, the nature of each output could be different from one algorithm 

to another, Some FSM algorithms retrieve all the frequent subgraphs, the output is called 

exact. while some algorithms retrieve part of the frequent patterns, in this case the 

algorithms are approximate. The exact and approximate types are presented in the 

following two subsections. 
 

 

3.1.1.  Exact Algorithms 
 

 

Exact algorithms search for all the frequent patterns; this requires high execution time 

and memory consumption.  Exact algorithms can be in dynamic or static environments. 

Several algorithms were proposed to serve this purpose e.g. (Huan, Wang and Prins, 

2003), (Huan, Wang and Prins, 2003), (Elseidy, Abdelhamid and Skiadopoulos, 2014) and 

(Abdelhamid et al., 2017). The following is an algorithm example the has an exact output. 

The SSIGRAM (Spark based Single Graph Mining) algorithm in Qiao et al., 2018; 

where Spark is an in-memory MapReduce-like general-purpose distributed computation 

platform which provides a high-level interface for users to build applications. Unlike 

(Zaharia et al., 2010). The proposed method is based on parallel frequent subgraph mining 

algorithm in a single large graph. It approaches the two computational challenges of 

frequent subgraph mining, it conducts the subgraph extension and support evaluation 

parallel across all the distributed cluster worker nodes. Also, it utilizes a heuristic search 

strategy and three novel optimizations: load balancing, pre-search pruning and top-down 

pruning in the support evaluation process that significantly improve the performance. 

experiments using four different real-world datasets demonstrate that the proposed 

algorithm outperforms the existing GRAMI (Elseidy, Abdelhamid and Skiadopoulos, 

2014) Graph Mining algorithm by an order of magnitude for all datasets and can work 

with a lower support threshold (Qiao et al., 2018). 

The AGM (Apriori graph based mining) (Inokuchi, Washio and Motoda, 2000) is 

employed to discover frequent subgraphs. Adjacency matrix is used to represent graph. 

A level wise search is used to discover the frequent subgraphs. It assumes that graph 
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contains only distinct vertexes. However, overall analysis showed that the time 

complexity of directed graphs is less than that of undirected graphs, this is since the 

possible edge directions in directed graphs results in more subgraph patterns, and their 

frequency will be less. In addition, the complexity of small graphs is less than larger 

graphs. In the experimentation of AGM on chemical carcinogenesis data; the output of 

AGM was subgraphs that are connected and subgraphs that are not connected with several 

isolated graph. It efficiently mined frequent subgraph, but complexity was high due to 

multiple candidate generation. Experiments reported in (Huan, Wang and Prins, 2003) 

showed that AGM performs good in dense synthetic graph datasets, and takes 40 minutes 

to 8 days (approx.) to tabulate all frequent sub graphs in a dataset containing 300 chemical 

compounds, when the minimum support threshold varies between 20% to 10%. 

The FSG algorithm (Kuramochi and Karypis, 2001) finds all frequent connected 

subgraphs. It generates candidate subgraphs based on edges i.e., Candidate subgraphs are 

generated by adding edge to the previous subgraph. For frequency counting, it uses 

transaction identifiers list for frequent subgraphs, and it uses adjacency list for graph 

representation. Canonical labels (A canonical code is a unique code of a given graph and 

it is always be the same no matter how the graphs are represented, as long as those graphs 

have the same topological structure and the same labelling of edges and vertices)  are 

used to check isomorphic graphs. It is very costly because it uses isomorphism testing, 

and it also generates a huge set of candidates. It requires multiple scans of database. It is 

inefficient for mining large sized subgraph patterns. It needs efficient finding of 

isomorphic graphs to count support. The advantages of FSG are that it can prune 

candidates without subgraph isomorphism. For large datasets, it checks only those graphs 

which may potentially contain the candidate. 

The gSpan algorithm (Yan and Han, 2002) is a Graph-Based Substructure Pattern 

Mining, it discovers frequent substructure without candidate generation, it uses a 

canonical representation for graphs, which called “DFS-Code”. gSpan maps subgraphs to 

a unique minimum depth-first search (DFS) code and uses a lexicographic order on these 

codes to order subgraphs. Based on this order, a DFS strategy is used to mine frequent 

subgraphs efficiently in gSpan. Such that, gSpan traverses the DFS Code Tree, where the 

code of a node corresponds to the parent’s code is extended by one edge and the siblings 

are ordered according to the lexicographic order. Using this approach, the traversal starts 

from the smallest subgraphs and it backtracks if the corresponding subgraph is not 

frequent (Yan and Han, 2002). In gSpan; refinement generation is done in two ways: 1) 
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fragments can only be extended at nodes which lie on the rightmost path of the DFS tree. 

2) Fragment generation is guided by occurrence in the appearance lists. Because these 

two pruning techniques cannot fully prevent isomorphism, gSpan calculates the canonical 

DFS code (lexicographically smallest) for each refinement by means of a permutation’s 

series. Refinements with non-minimal DFS-code can be pruned. Since instead of 

embeddings, gSpan only stores appearance lists for each fragment, explicit subgraph 

isomorphism testing must be done on all graphs in these appearance lists. NP-

completeness of the subgraph isomorphism leads to an exponential run time. 

Luckily, graphs with diverse labels can decrease the runtime substantially when 

experiments are applied. Another problem of gSpan, and frequent subgraph mining 

algorithms in general, is that for large or dense graphs, the number of frequent subgraphs 

is very large, and as a result, it is not practical to mine all of them (Cook and Holder, 

2007).  

The FFSM algorithm (Fast Frequent Subgraph Mining) (Huan, Wang and Prins, 

2003) considers large dense graphs with less labels. It represents graphs as triangle 

matrices (node labels on the diagonal, edge labels elsewhere). In this algorithm, vertical 

level search strategy is used to reduce the number of candidate generation.  The main 

features of the proposed method are: First; a novel graph canonical form and two efficient 

candidate proposing operations are employed which are: FFSM-Join and FFSM-

Extension, Second; suboptimal CAM (Canonical Adjacency Matrix) tree which is an 

algebraic graphical framework in order to ensure that all detected frequent subgraphs are 

enumerated unambiguously, and finally, avoiding subgraph isomorphism testing which 

is time consuming, this done by maintaining an embedding set for each frequent 

subgraph. However, FFSM only stores the matching nodes, while edges are ignored. As 

a result, this helps speeding up the join and extension operations, because the embedding 

lists of new fragments can be calculated by set operations on the nodes. Adjacency matrix 

is employed for graph representation. Limitation of FFSM algorithm is that it is NP-

complete problem. Experimentation showed that FFSM outperformed gSpan. 
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3.1.2. Approximate Algorithms 
 

 

There are two main drawbacks of exact algorithms, the first one is the requirement 

of high execution time, while the second one is the need for high memory consumption 

that required to search for all frequent patterns. Therefore, for faster results and lower 

memory consumption, approximate algorithms can serve the purpose, with 

approximation the user trade-off accuracy for much faster results. The main idea of 

approximate algorithms is executing the exact algorithm on a small subset of the data  set, 

which is called samples, there are different approximate algorithms are proposed recently 

like (Iyer, A. Liu, Z. Jin, X. Venkataraman, S. Braverman, V. Stoica, 2018), (Bhatia and 

Rani, 2018), (Aslay et al., 2018), (Preti, De Francisci Morales and Riondato, 2021) and 

(Sahu et al., 2021). Explanation about an approximate algorithm is presented next. 

The CloseGraph algorithm in (Yan and Han, 2003) is founded on gSpan. It uses 

an equivalent occurrence-based early termination in order to prune the search space. 

CloseGraph uses DFS strategy, lexicographic order, minimum DFS code and rightmost 

extension for finding closed frequent subgraphs. The concept of closed subgraph mining 

is not only reducing unnecessary subgraphs to be produced, but also substantially 

increasing the efficiency of mining, especially in the large graphs’ patterns are presented. 

Experimental results demonstrated that CloseGraph performed better than gSpan and 

FSG  (Yan and Han, 2003). Performance study shows that, CloseGraph not only reduces 

unnecessary subgraphs to be generated, but also increases the efficiency of mining, 

particularly in the presence of large graph patterns (Muttipati, 2015). 

 MaNIACS (Preti, De Francisci Morales and Riondato, 2021) is a sampling-based 

randomized algorithm for computing high quality approximations of the subgraph 

patterns, it works on a single, large, vertex labelled graph. It prunes the pattern search 

space, and thus to reduce the time spent in exploring subspaces containing no frequent 

patterns. It relies on uniform random sampling of vertices and on computing the patterns 

to which these vertices belong. It prunes parts of the search space that provably do not 

contain any frequent pattern, and to focus the exploration only on the “promising” 

subspaces, therefore avoiding expensive computations. Pruning leads to better bounds to 

the maximum frequency estimation error, which enables additional pruning. It is the first 

to use concepts from statistical learning theory for FPSM. In experimental evaluation, it 

is compared with exact algorithm, it shows that it returns high-quality collections of 
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frequent patterns in large graphs up to two orders of magnitude faster than the exact 

algorithm, it is scalable w.r.t. the size of the graph, Scalable for large graphs and no gain 

with small graphs.  

 Approximate GraMi (Sahu et al., 2021) is an approximate algorithm, it works on 

static graphs. In this work they proposed three sampling techniques, these techniques are 

applied on a single large graph, the results are a sampled graph, which is used as an input 

to an existing static exact algorithm (GRAMI), the results are approximate subgraphs. 

Block diagram of the phase of approximate GraMi solution is shown in Figure 3.2. 

 

  

 
 

Figure 3.2. Block diagram of proposed solution of Approximate GRAMI (Sahu et al., 

2021) 

 

 

The explanation of the three sampling techniques is follows:  

 

The first sampling technique: 

This technique samples the graph by picking up the vertices based on sampling 

rate.  This is done according to the following three steps: First a list of vertices that have 

the same degree is created; this list is sorted in increasing order according to the degrees 

of the vertices. Second, the vertices that have the same degree are put into a single list, 

finally, the vertices are selected according to user defined sampling rate and then they are 

merged into a single list. The pseudo code of this sampling technique is as shown in 

Figure 3.3. 
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Figure 3.3. The pseudo code of the first sampling technique (Sahu et al., 2021) 

 

The second sampling technique:  

In this technique randomness is employed to create sample from the original 

graph.  Sampling is done by selecting an edge randomly and added if it is not already 

existed in the list. The steps of this technique are as follows: 

First, from the edges in the list, an edge is selected randomly. Edge selection is done up 

to a user defined sampling rate. The selected edge is added if it is not already in the list. 

The pseudo code of the second sampling technique is as shown in Figure 3.4.  

 
Figure 3.4. The pseudo code of the second sampling technique (Sahu et al., 2021) 
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The third sampling technique:  

This sampling technique selects certain number of top vertices from the sorted list 

of the vertices. This process starts by sorting the vertex list on increasing order according 

to the degrees of vertices. Then topmost vertices are selected according to the sampling 

rate, then they are merged into a single list. The pseudo code of the third sampling 

technique is as shown in Figure 3.5. 

 

 
 

Figure 3.5. The pseudo code of the third sampling technique (Sahu et al., 2021) 
 

 

In this work, experimental results are done on one dataset (Mico), in the experiments; 

three sampling techniques compared with the exact static algorithm (GRAMI), But 

Approximate GraMi algorithms have disadvantages; they work only on static graph 

environment, and there is no limit for the memory size. 

        All mentioned algorithms in the previous sections assume that graphs are not 

changed over time, however; nowadays the emerging graph-based applications have the 

dynamicity nature. Examples include social networks, where friendships are formed and 

removed over time; protein-to-protein interaction networks, where information in 

biomedical databases is updated frequently. The following section presents the frequent 

subgraph mining in dynamic graphs.   
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3.2.  Frequent Subgraph Mining Algorithms for Dynamic   
Environment  

 

 

In dynamic graph mining literature, various algorithms have been proposed using 

different approaches in different fields such as input and output type, increments type, 

graph type, graph representation, data structure, algorithmic approach, programming 

approach, and Base algorithm. In this section, a classification among some algorithms is 

held according to the following attributes, let s explain each of them: 

The Increments type; as the listed algorithms are incremental algorithms, the increments 

can be a series of small graphs or a stream of nodes and edges. 

The graph type of the input graphs can have one of the following possible types: 

Undirected labelled graphs, undirected graphs, directed graphs, various kinds of graph 

data, connected graphs, connected undirected graphs, or labelled graph. 

The graph representation is considered as one of the most effective attributes on the 

consumption of runtime and memory. In general, the graphs can be represented by the 

adjacency matrix, adjacency list and canonical labelling. 

The increments can have nodes/edges where each column can have, A: Addition and D: 

Deletion. 

The data structure represents data structure that used in the application of the mentioned 

algorithm. It can be DFS tree, Suffix trees, dictionary data structure, DS-Tree, DS-Table, 

DS-Matrix or, Array with hashed based index. 

The algorithmic approach shows pattern finding approach of the base algorithm where 

the possible values can be Apriori or Pattern growth. The Apriori based algorithms 

(Inokuchi, Washio and Motoda, 2000) generate candidates using breadth first strategy 

(BFS) and apply subgraph isomorphism testing to calculate frequencies of candidates. 

Pattern growth-based algorithms (Yan and Han, 2003) generate candidates based on depth 

first strategy (DFS). The pattern growth approach avoids the cost of generating candidates 

and subgraph isomorphism testing. The candidates are generated by extending frequent 

subgraphs starting from minimal frequent subgraphs by adding one edge at every step 

until they are still frequent. 
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In programming approach some algorithms utilize parallel programming, to take 

advantage of the existing multicore processor technology, or distributed, and as a result 

the time complexity is reduced. While other uses serial programming approach. 

Base algorithm, some incremental algorithms are developed based on static ones, the base 

algorithms represent static algorithm with which the dynamic algorithm is extended.  

Output type, the essential purpose of each algorithm is extracting a reduced set of frequent 

subgraphs. So, the nature of each output could be different from one algorithm to another. 

It can be all, approximate or closed frequent subgraphs. 

As there are currently many dynamic subgraph mining approaches. Table 3.2 

summarizes a literature about some recent algorithms in dynamic subgraph mining, this 

summary is done to facilitate visualizing the main properties of each algorithm.  
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Table 3.2. Algorithms for dynamic frequent subgraph mining 
 

Algorithm 
  

In
cr

em
en

ts
 

ty
pe

 

G
ra

ph
 ty

pe
 *

 

G
ra

ph
 

re
pr

es
en

ta
tio

n Increments 

D
at

a 
st

ru
ct

ur
e 

A
lg

or
ith

m
ic

 
ap

pr
oa

ch
 

Pr
og

ra
m

m
in

g 
ap

pr
oa

ch
 

B
as

e 
al

go
rit

hm
 

O
ut

pu
t t

yp
e 

Limitations 

A D 

Ed
ge

 

N
od

e 

Ed
ge

 

N
od

e 

span 
(Lakshmi 
and 
Meyyappan, 
2013) 

Small 
graphs  

U
L 

Adjace
ncy list 

    DFS 
tree 

Pattern 
growth  

Parallel  Gspan All frequent 
subgraphs 

Not general for all classes, it 
focuses on a special class of 
undirected labelled simple 
graphs, graphs with unique no 
labels. 

Germ 
(Berlingerio 
and Bonchi, 
2009) 

Stream 
of 
nodes 
and 
edges 

U Canoni
cal 
label 

    DFS 
tree 

Pattern 
growth 

Serial Gspan All frequent 
subgraphs 

It is assumed that node and 
edge labels do not change over 
time. 

Dynamic 
GREW 
(Borgwardt, 
Kriegel and 
Wackersreut
her, 2006) 

Small 
graphs  

L adjace
ncy 
matrix 

    Suffix 
trees 

Apriori Serial Grew  
 

All frequent 
subgraphs 

Extra overhead to identify 
dynamic patterns. Misses some 
interesting patterns. 

Time-
evolving 
Graph 
(Miyoshi, 
Ozaki and 
Ohkawa, 
2011) 

Stream 
of 
nodes 
and 
edges 

U Canoni
cal 
label 

    Direct
ed 
Acycli
c 
Graph 

Pattern 
growth 

Serial  Germ All frequent 
subgraphs 

Increments done by addition of 
nodes and edges only. 
 

StreamFSM 
(Ray, Holder 
and 
Choudhury, 
2014) 

Stream 
of 
nodes 
and 
edges 

V Canoni
cal 
label 

     diction
ary 
data 
structu
re  

Pattern 
growth 

Serial  Gspan  Approximat
e frequent 
subgraphs 

Simple heuristic and 
applicable only to incremental 
streams and without provable 
guarantees. 

Triest 
(Stefani et 
al., 2016) 

Stream 
of 
edges 

C
U 

canoni
cal 
label 

    Array 
with 
hash 
map 

Apriori Serial  Approximat
e frequent 
subgraphs 

It counts only 3-node 
subgraphs 

IncGM+ 
(Abdelhamid 
et al., 2017) 

Stream 
of 
edges 

D Canoni
cal 
label 

    index 
structu
re 

Pattern 
growth  

Serial  StreamFs
m, 
moment 

All frequent 
subgraphs 

Still needs to enumerate and 
track an exponential number of 
candidate subgraphs. 

FSM in an 
evolving 
graph (Aslay 
et al., 2018) 

Stream 
of 
edges 

C
U 

canoni
cal 
label 

    Array 
with 
hashed 
based 
index 

Apriori  Serial  StreamFS
M 

Approximat
e frequent 
subgraphs 

Consider only edges, it uses 
BFS to explore the graphs and 
may multiple candidate 
generation is done. Some 
interesting patterns can be lost. 

FP from 
dense graph 
streams 
(Braun et al., 
2014) 

Small 
graphs  

U canoni
cal 
label 

    DS- 
Tree, 
DSTab
le, 
DSMat
rix 

Pattern 
Growth 

Serial FP-
Growth 

All frequent 
pattern 

Handle  edges addition and 
deletion only 

edge-based 
FSM from 
graph 
streams 
(Cuzzocrea 
et al., 2015) 

Small 
graphs  

U canoni
cal 
label 

     DS- 
Tree, 
DSTab
le, 
DSMat
rix 

Pattern 
Growth 

Serial FP from 
dense 
graph 
streams 
(Braun et 
al., 2014) 

All frequent 
subgraphs 

Only handle edges addition 
and deletion without update or 
new node increments. 

IncGraphMi
ner (Bifet 
and Gavaldà, 
2011) 

Small 
graphs  

V canoni
cal 
label 

    DFS 
tree 

Pattern 
Growth 

Serial CloseGra
ph( 

Closed 
subgraphs 

It takes overhead time to 
summarize the pattern 

WinGraphM
iner  (Bifet 
and Gavaldà, 
2011) 

Stream 
of 
nodes 
and 
edges 

V canoni
cal 
label 

    DFS 
tree 

Pattern 
Growth 

Serial CloseGra
ph 

Closed 
subgraphs 

It is not able to adapt to 
changes on the stream since the 
right size of the sliding 
window should be known in 
advance. Time overhead to 
produce patterns. 

AdaGraphM
iner (Bifet 
and Gavaldà, 
2011) 

Stream 
of 
nodes 
and 
edges 

V canoni
cal 
label 

    DFS 
tree 

Pattern 
Growth 

Serial CloseGra
ph 

Closed 
subgraphs 

It takes overhead time to 
summarize the pattern 

Graph type*: 
UL: Undirected labelled graphs U: Undirected graphs  
D: Directed graphs  V: Various kinds of graph data 
C: Connected graphs  CU: Connected undirected graphs 
L: Labeled graph 
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Most algorithms are programmed in serial approach while very few are developed in 

parallel manner like span (Lakshmi and Meyyappan, 2013). Some algorithms are exact 

like IncGM+ (Abdelhamid et al., 2017) and moment (Chi et al., 2004), but keeping track 

of all the possible changes in the graph is subject to combinatorial explosion, thus, is 

highly challenging (Aslay et al., 2018). To overcome this challenge; some algorithms are 

proposed for the approximate purpose e.g. (Aslay et al., 2018). Enumerate and extract the 

emerged subgraphs is a drawback of some existing algorithms. In the approximate 

algorithms there is a trade-off between time and accuracy.   

Exact algorithms that focus on finding all subgraphs in the data require high 

execution times and high memory consumption. Therefore, for faster results users are 

willing to trade-off accuracy whenever approximate results can serve the purpose. Those 

approximate algorithms use different sampling approaches.  The basic idea in 

approximation is to execute the exact algorithm on a small portion of the data (samples) 

(Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin,  Shivaram Venkataraman, Vladimir 

Braverman, Ion Stoica, 2018). Sampling is done by selecting a representative subset of 

the original graph where the idea is to reduce graph size while keeping the characteristics 

of the original graph (Wang et al., 2011). Graph sampling provides an efficient, yet 

inexpensive solution for social network analysis where the graph size is huge (Wang et 

al., 2011). Sampling can be used in graph analysis in applications such as security, high 

performance computing, etc (Zhang et al., 2017). Also, survey hidden population in 

sociology; scale down Internet AS graph, graph sparsification, etc. (Stutzbach et al., 

2006).  

There are two types of sampling algorithms in data streams; simple random 

sampling (SRS) (Yates, Moore and Starnes, 2002) and reservoir sampling (RS) (Vitter, 

1985). In SRS, a sample is chosen by picking each item in the data stream with an equal 

probability of being selected. The inclusion probability is provided as an input parameter 

to the sampling algorithm. Consider a p = 0.5, then each item in the data stream has half 

the chance to be included in or excluded from the sample. SRS is extremely simple, 

however one downside of SRS is that the size of the sample grows along with size of the 

data stream (Anis and Nasir, 2018). On the other hand RS (Vitter, 1985) is a fixed-size 

randomized sampling scheme, which maintains a fixed-size uniform sample of the data 

stream. The size of the sample is provided as the input parameter. Random pairing 

(Gemulla, Lehner and Haas, 2006) is a fully dynamic algorithm as an example for 
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reservoir sampling, that compensate for item deletions using the future addition (Anis and 

Nasir, 2018). 

When the literature of dynamic subgraph mining is analysed, it is observed that 

most of the algorithms are devised to produce exact output like span (Lakshmi and 

Meyyappan, 2013), Germ (Berlingerio and Bonchi, 2009), Dynamic GREW (Borgwardt, 

Kriegel and Wackersreuther, 2006), Time-evolving Graph (Miyoshi, Ozaki and Ohkawa, 

2011), IncGM+ (Abdelhamid et al., 2017), FP from dense graph streams (Braun et al., 

2014) and edge-based FSM from graph streams (Cuzzocrea et al., 2015). However, 

keeping track of all the possible changes in the graph is subject to combinatorial 

explosion. On the other hand, there is a few work for approximate solutions like (Ray, 

Holder and Choudhury, 2014) (De Stefani et al., 2016) (Aslay et al., 2018).   These 

approaches use simple heuristics and do not provide any correctness guarantee. Both 

solutions in (De Stefani et al., 2016) and (Aslay et al., 2018) use sampling technique 

based on the method which is proposed in (Vitter, 1985), this method is a randomized 

sampling schema. The algorithm in (De Stefani et al., 2016) relies on sampling edges, 

while the algorithms in (Aslay et al., 2018) are based on sampling subgraphs  in order to 

gain more accuracy. These algorithms have limitations; the limitations are trade-off 

between time and accuracy. SR and OSR (Aslay et al., 2018) are more accurate than 

Triest (De Stefani et al., 2016) sacrificing time and space efficiency, while Triest (De 

Stefani et al., 2016) is faster with the cost of low accuracy. Solutions that minimize time 

and space consumption while maximizing the accuracy at the same time are still needed. 

In the following two subsections, exact and approximate approaches are introduced and 

discussed. 

 
 

3.2.1.  Exact Algorithms 
 

 

The Span (Lakshmi and Meyyappan, 2013) is based on gSpan. It focuses on a special 

class of undirected labelled simple graphs, graphs with unique no labels. Aims reduce the 

time complexity, using parallel programming. If graph dataset can fit in main memory, 

the proposed method can be applied directly; the two techniques, DFS lexicographic order 

and minimum DFS code, introduced in gSpan are the best, which form, a novel canonical 

labeling system, to support DFS search. But still the problem of finding minimum DFS 
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code used in gSpan is also NP- complete. The proposed algorithm addresses this issue by 

using a modified DFS representation. It retains all the advantages of gSpan, while taking 

advantage of the multi core processing technology by using the concept of parallel 

programming to improve the performance of the algorithm. The number of duplicate 

graphs generated may be comparatively little more than gSpan algorithm, as mining of 

sub graphs from frequent single edge graphs are done in parallel. Span is quadratic but 

not general for all classes. 

The GERM (Berlingerio and Bonchi, 2009) introduced Graph Evolution Rule 

Miner (GERM), a novel type of frequency based pattern that describe the evolution of 

large networks over time, at a local level. The input for this approach is a sequence of 

snapshots of an evolving graph, the main purpose is to mine the rules that describe the 

local changes in it. This approach uses the support based on minimum image to extract 

patterns which frequency is greater than a minimum support threshold. After that, graph-

evolution rules are extracted from frequent patterns that satisfy a given minimum 

confidence constraint, the rules extraction framework is similar to it in classical rule 

mining. Experiments are done on four large real-world networks (two social networks, 

and two co-authorship networks), using different time granularities. Experiments approve 

feasibility and the utility of a framework. The limitations of GERM: it is designed for 

undirected graphs, nodes and edges are only added and never deleted. It assumed that 

node and edge labels do not change over time.  

The Dynamic GREW (Borgwardt, Kriegel and Wackersreuther, 2006) 

investigates how pattern mining on static graphs can be extended to time series of graphs. 

Specifically, it handles dynamic graphs with edge insertions and edge deletions over time.  

They define a frequency and provide algorithmic solutions for finding frequent dynamic 

subgraph patterns. Existing subgraph mining algorithms can be easily integrated into this 

framework to make them handle dynamic graphs. Experimental results in the paperon 

real-world data confirm the practical feasibility of proposed approach, the limitations of 

Dynamic GREW are; it assumes that the input dynamic graph has a fixed set of nodes, 

and edges are inserted and deleted over time. Also, there is an extra overhead to identify 

dynamic patterns. It misses some interesting patterns. 

     In  (Bifet and Gavaldà, 2011), the first work on close stream while only two 

frequent close graph algorithms on static graphs are introduced. Bifet et al. proposed new 

method for mining frequent closed subgraphs. The method is IncGraphMiner, it works 

on frequent weighted closed graph mining. this method works on coresets of closed 
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subgraphs, compressed representations of graph sets, and maintain these sets in a batch-

incremental manner, it handles the potential concept drift. The proposed algorithm is 

based on close graph which takes time overhead to summarize the patterns. 

The  IncGM+ (Abdelhamid et al., 2017) is a fast incremental approach for 

continuous frequent subgraph mining on a single large evolving graph. It adapts the 

notion of “fringe” to the graph context, which is the set of subgraphs that are on the border 

between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and 

utilize them in the search space pruning. In order to increase the efficiency, an efficient 

index structure is proposed to maintain selected embeddings, with minimal memory 

overhead. These embeddings are employed to avoid subgraph isomorphism operations. 

Furthermore, the proposed system supports batch updates. Experiments are done using 

large real-world graphs, it verifies that IncGM+ outperforms existing algorithms by up to 

three orders of magnitude, scales to much larger graphs, and consumes less memory. The 

limitation of IncGM+ that it still needs to enumerate and track an exponential number of 

candidate subgraphs.  

The algorithm In (Miyoshi, Ozaki and Ohkawa, 2011) handles the problem of 

mining frequent patterns and valid rules representing graph evolutions (structural 

changes) in a graph with time information. They propose an efficient technique for 

extracting representative patterns and rules, they use graph-based summarization of 

discovered rules. This done by using certain measures provided by the summary, so it is 

expected to find more interesting information which are difficult to be discovered by the 

traditional support and confidence measures. Proposed algorithm based on gSpan and 

Germ, it differs from gSpan that it handles single graph input and work on graph patterns 

have time points, it differs from Germ that proposed method handle multi edges. 

The  FRISSMiner in (Inokuchi and Washio, 2012) defines subgraph subsequence 

class called an “induced subgraph subsequence” to enable the efficient mining of a 

complete set of frequent patterns from graph sequences containing large graphs and long 

sequences. In addition, it proposes an efficient method for mining frequent patterns, 

called “FRISSs (Frequent Relevant, and Induced Subgraph Subsequences)”, from graph 

sequences. The fundamental performance of the proposed method is evaluated using 

artificial datasets, and its practicality is confirmed by experiments using a real-world 

dataset.  

In (Bifet and Gavaldà, 2011), the first work on close stream. Bifet et al. proposed 

frameworks are for studying graph pattern mining on time-varying streams. Two new 
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methods for mining frequent closed subgraphs are presented. The methods are 

WinGraphMiner and AdaGraphMiner, it works on frequent weighted closed graph 

mining. All methods work on coresets of closed subgraphs, compressed representations 

of graph sets, and maintain these sets in a batch-incremental manner but use different 

approaches to address potential concept drift. The above three algorithms are based on 

close graph which takes time overhead to summarize the patterns. 

 
 

3.2.2.  Approximate Algorithms 
 
 

The StreamFSM (Ray, Holder and Choudhury, 2014) discovers the frequent 

subgraphs in a graph, represented by a stream of labeled nodes and edges. In this model, 

updates to the graph arrive in the form of batches that contain new nodes and edges. 

Proposed method continuously reports the frequent subgraphs that are estimated to be 

found in the entire graph as each batch arrives. It is evaluated using five large dynamic 

graph datasets: the Hetrec 2011 challenge data, Twitter, DBLP and two synthetic. It is 

evaluated against two popular static large graph miners, i.e., SUBDUE and GERM. 

Experimental results show that it can find the same frequent subgraphs as a non-

incremental approach applied to snapshot graphs, and in less time. The drawback of the 

StreamFSM algorithm: In terms of several parameters that have to be tuned in order to 

get the optimal performance in terms of time and accuracy/interestingness of results. 

Also, it assumes that we have access to the entire graph as the graph grows. This 

assumption will not work in a real world streaming scenario. (Ray, Holder and 

Choudhury, 2014). Also it only handles increments with additions. 
SR and OSR are two dynamic approximate algorithms (Aslay et al., 2018), Both 

algorithms use reservoir sampling technique (RS) as introduced in (Vitter, 1985). RS is a 

fixed size randomized sampling technique; it maintains a fixed-size uniform sample of 

the data. The sample size is assigned as an input parameter. The algorithms initialize with 

a fixed size input array, that initially gets filled by the items in the input data gradually. 

Once the maximum sample size is reached or the reservoir is filled, each new item (i) is 

added to the sample with probability 1/i by replacing it with a randomly selected item 

from the sample.  
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The addition of an edge affects only the subgraphs in the local neighbourhoods up to 

specified neighbourhood. A uniform sample of subgraphs is maintained by iterating 

through the subgraphs in the neighbourhood of the newly inserted edge. Standard 

reservoir sampling is used as follows: 

 If the sample size less than fixed memory size, then the new subgraph is added to the 

sample. Otherwise, if the sample size greater than fixed memory size then a subgraph is 

removed randomly from the sample to insert the new one. 

Triest algorithm  (De Stefani et al., 2016): 

             Triest counts triangles in incremental streams with fixed memory size, it uses 

standard reservoir sampling (Vitter, 1985) to maintain the edge sample:  

The standard reservoir sampling is used as follows: 

•  If the sample size less than fixed memory size, then the new edge is added to the 

sample. Otherwise, 

•  if the sample size greater than fixed memory size then an edge is removed 

randomly from the sample to insert the new one. 

The drawback of this algorithm that edge deletion from reservoir is done randomly when 

reservoir is full, by this random edge deletion some important pattens might be lost. 

 
Example  
 

Figure 3.6 illustrates an example of Triest after adding a new coming edge (FG), 

while the reservoir is full. Given an input graph of coming edges Figure 3.6(a), it is 

supposed that the maximum allowed size of the reservoir is assigned to a value of “6”. 

When the first five coming edges (AB, CX, DE, XY, XZ, XE) are received, they are 

inserted directly into the edge reservoir Figure 3.6(b), this insertion into the reservoir is 

done directly since it is not full. The edges in the reservoir are presented in a hash map as 

Figure 3.6(c). Now when a new edge (FG) is coming, the reservoir size is checked if it 

still has an empty space, at this time; it is found that it is full, in this case one edge from 

reservoir should be deleted, and replaced by the new edge (FG), the selection of a 

candidate edge is done randomly, in this example; the edge (DE) is selected as a candidate 

edge to be deleted from reservoir, and replaced with new edge (FG). After inserting the 

new edge (FG) in the edge reservoir, the node degree list is updated by adding the nodes 
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F and G with a degree of 1, since they are newly appeared, also the hash map is updated 

by adding F and G to it.  

 

 

Figure 3.6. Example of Triest algorithm after adding a new coming edge (FG), when the 
sample reservoir is full 

 

 

Example  
 

Figure 3.7 shows an example of SR or OSR after adding a new coming edge (FG), 

while the reservoir is full. Suppose that an input graph of coming edges as given in Figure 

3.7(a), let the maximum allowed size of the subgraph reservoir is assigned to a value of 

“5”. When the first coming edges are received, a three nodes subgraph is formed, then it 

is inserted into the subgraph reservoir Figure 3.7(b), this insertion into the reservoir is 

done directly since it is not full. The nodes of the subgraph in the reservoir are presented 

in a hash map as Figure 3.7(c). Now when a new edge (FG) is coming, the three nodes 

subgraph (FGB) is formed, then the reservoir size is checked if it still has an empty space 

or not, at this time; it is found that it is full, so one subgraph from reservoir should be 

deleted, and replaced by the new subgraph (FGB), the selection of a candidate subgraph 

is done randomly, in this example; the subgraph (XZE) is selected as a candidate subgraph 

to be deleted from reservoir, and replaced with new subgraph (FGB). After inserting the 

new subgraph (FGB) in the edge reservoir, the hash map is updated by adding F and G to 

it.  
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Figure 3.7. Example of SR or OSR algorithm after adding a new coming edge (FG), when 
the sample reservoir is full 

 

 

Triest, SR and OSR are dynamic approximate algorithms, they use a fixed 

specified memory size (reservoir sampling), to keep this size of memory; random edge 

deletion from reservoir is employed when the sample reservoir is full, but this random 

edge deletion has a drawback; high connectivity edges might be deleted, as a result; these 

types of edge deletions can reduce recall. There are another limitation of SR and OSR 

algorithms, that they keep subgraphs in the reservoir instead of edges, which can increase 

the recall, but this expenses a high execution time, this time can be closed to the execution 

time of the exact algorithm. 
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CHAPTER 4 
 
 

CONTROLLED RESERVOIR SAMPLING 
    

 
In this chapter, three novel algorithms for approximate frequent subgraph mining 

on dynamic graphs are introduced. The first one is the Controlled Reservoir Sampling 

Algorithm with Unlimited heap size (UCRS), the second one is the Controlled Reservoir 

Sampling Algorithm with Limited heap size (LCRS), the third one is Maximum 

Controlled Reservoir Sampling (MCRS). All introduced algorithms use reservoir 

sampling technique (RS) as introduced in (Vitter, 1985). RS is a fixed size randomized 

sampling technique; it maintains a fixed-size uniform sample of the data. The sample size 

is assigned as an input parameter. The algorithms initialize with a fixed size input array, 

that initially gets filled by the items in the input data gradually. Once the maximum 

sample size is reached or the reservoir is filled, each new item (i) is added to the sample 

with probability 1/i by replacing it with a randomly selected item from the sample 

reservoir. But this random edge deletion has a drawback; high connectivity edges might 

be deleted, as a result; these types of edge deletions can reduce recall. For this reason, 

UCRS and LCRS are proposed in this work, both UCRS and LCRS use controlled 

deletion for minimum node degree edge from sample reservoir and deleting nodes from 

heap reservoir if their degrees are 1, the advantage of this controlled edge deletion is to 

keep more connected edges in the sample reservoir, by doing so; recall is expected to be 

increased. On the other hand, as a kind of heuristic, the third algorithm MCRS is 

proposed, it works in a similar manner to UCRS and LCRS, but the main difference is in 

determining the candidate edge to be deleted from sample reservoir and deleting nodes 

that has degree 1 from heap reservoir, whenever the whole reservoir is full, in this 

algorithm the candidate edge is the edge with maximum degree of its nodes, by this way, 

the high connectivity edges are deleted from the sample reservoir, as a result, recall is 

expected to be decreased. So, the results of MCRS motivate the need for the advantages 

of UCRS and LCRS algorithms. 

UCRS, LCRS and MCRS methods use reservoir sampling technique with a 

modification. In all algorithms, random edge deletion from sample reservoir is replaced 
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by a controlled edge and node deletion from whole reservoir, in the case when the whole 

reservoir is full. To achieve the controlled edge deletion from sample reservoir, an 

additional minimum heap data structure is added to edge sampling schema, this heap is 

called heap reservoir. The whole reservoir keeps the edges of the sample reservoir 

together with the nodes of the heap reservoir. This heap reservoir contains the nodes in 

ascending/descending order of their degrees; this order helps to select the edge connecting 

the low/high degree nodes in deletion instead of deleting a random edge.  

In the following sections first, our novel algorithm (UCRS) is introduced with 

motivating examples. Second, a modified version of UCRS is introduced, which is called 

(LCRS), is presented with illustrating examples. Third, MCRS algorithm is introduced 

with examples.  And in the last section, an example of deleting an edge in UCRS, LCRS, 

MCRS and random algorithms is illustrated. 

 
 

4.1.  Controlled Reservoir Sampling Algorithm with Unlimited Heap 
Size (UCRS)  

 

 
Controlled Reservoir Sampling with Unlimited heap (UCRS) algorithm is 

modified version of reservoir sampling, where an additional heap data structure is 

employed to manage the node degrees, which is called heap reservoir. Degree of a node 

indicates the number of connections of the node. When an edge deletion is required in 

other words when the fixed size reservoir is full (whole reservoir size), edge with lowest 

degree node is selected and removed from the sample reservoir, and if node degrees of 

this edge is 1, they are removed from heap reservoir, otherwise their degrees are decreased 

by 1. The idea is not to lose high degree nodes those of which might have more impact 

on accuracy. More accuracy is expected in sampling since more connected edges (higher 

degree nodes) remain in the sample reservoir and heap reservoir, while less connected 

nodes are deleted.  

The pseudo code of UCRS is shown in Figure 4.1. This code is designed to 

manage the insertion process of new edges in controlled reservoir sampling.  The input 

for UCRS is an incremental graph data d in an evolving graph environment. UCRS keeps 

sample reservoir S of edges and heap reservoir up to (M) from the input graph stream, 

where M is a positive integer parameter, it indicates fixed memory size in terms of nodes 
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in an abstract way. This size represents the maximum whole reservoir in nodes, which is 

equal to size of edges (2 nodes/edge) in the sample reservoir and the nodes that are in the 

heap reservoir in total. The output of the algorithm is a sample of the incoming edges 

(sample reservoir), which represents the characteristics of the whole graph. This sample 

is used to search for an approximate frequent pattern instead of searching whole graph.   

  

 

Controlled Reservoir Sampling UCRS 

Input: incremental graph data d, integer M                        /* M: maximum whole reservoir size in terms of 
nodes  
Output: updated Sample, updated Heap 
  
1: s  , h  , i  0 ,      /*  s: sample size, h: minimum heap reservoir size,  
   
 2: procedure addEdge((u, v)) 
 3: for each edge (u,v) from d do 
 4:     i  i+1 
 5:     if sampleEdge(u, v) then 
 6:  addToSample (u, v) 
 
 7: procedure sampleEdge (u, v) 
 8:      if sampleSize < M then                                            /* whole reservoir is not full 
 9:       return True 
10:      else 
11: minEdge(x,y)  minEdge()                        
12:         removeFromSample (x, y)    
13: return True  
 
14: procedure minEdge ()  
15:      x  source node with lowest node degree  
16:      y  destination node with lowest node degree 
           among neighbours of (x) 
17:      return edge (x, y)                                             /* candidate edge for deletion is chosen 
 
18: procedure addToSample (u, v)  
19:      s  s + {(u, v)}   
20:      addToHeap (u, v)   
 
21: procedure removeFromSample (u, v)  
22:      s  s - {(u, v)}   
23:      removeFromHeap (u, v)  
 
24: procedure addToHeap (u, v)   
25:          h  h + {(u, v)} 
 
26: procedure removeFromHeap (u,  v)    
27:          h  h - {(u, v)} 
        

 

Figure 4.1. Pseudo code of the UCRS algorithm 
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UCRS algorithm that is represented in Figure 4.1 works as follows; (Line 2-6) when 

new increment d arrives; each edge (u, v) in the increment is added to the sample by 

addToSample (u,v) procedure, to do this; edge sampling is applied by sampleEdge (u, v) 

procedure (Line 7-13). This procedure works as follows: 

• If the sample size is less than (M), then the new edge is added to the sample directly. 

Otherwise, 

•  If the sample size is greater than or equal to (M), then an existing edge is removed 

from the sample to insert the new one.  

The edge that should be removed is the edge that has the minimum node degree (Line 

14-17), it is determined from the min heap, which classifies the nodes according to their 

node degrees. First, it detects the node with the minimum degree as the source node. 

Second, from the neighbours of the selected source node; the neighbour node with the 

minimum node degree is selected as the destination node. The result of the previous two 

steps finds an edge connecting the minimum node degrees. This edge is the candidate 

edge to be deleted from the sample reservoir, to replace it with a new incoming edge in 

the sample reservoir.  

The required updates are done on the sample reservoir (Line 18-23). This update can 

be addition to the sample reservoir or deletion from the sample reservoir, the addition to 

the sample reservoir is done through the procedure addToSample (u, v), while the edge 

deletion from the sample reservoir is done using the procedure removeFromSample (u, 

v). 

In the same manner heap reservoir is updated either by node addition or by node 

deletion  (Line 24-27). In UCRS there is no limit in the size of the heap reservoir, all 

incoming nodes are added to the heap reservoir if they do not exist before. Heap reservoir 

contains all the nodes of the sample reservoir. 

 

Illustrating Examples 

 

Example 1 

The example in Figure 4.2 shows the deletion process of an edge when the whole 

reservoir is full as it is done by minimum controlled edge deletion in (UCRS) and random 

edge deletion as in Triest (De Stefani et al., 2016), SR (Aslay et al., 2018) and OSR 



45 
 

(Aslay et al., 2018). In another words an example of edge deletion with random edge 

deletion and controlled edge deletion is represented.  

Suppose we have an original graph Figure 4.2(a), the left table in the figure shows 

the nodes and their degrees of the original graph. By applying random edge deletion, 

suppose the candidate edge is: (W, U), when it is removed; three triangle patterns of the 

original graph are lost as shown in Figure 4.2(b).   On the other hand, in controlled edge 

deletion method that is used in UCRS and LCRS, the edge (V, Y) is a candidate to be 

removed since V is the lowest degree node and Y is the lowest degree neighbour of V. 

When the edge (V, Y) is removed from the original graph, only one triangle patterns of 

six is lost as illustrated in Figure 4.2(c). As a result, less patterns are affected by controlled 

deletion.  The table below the figure shows, the number of lost triangles, the number of 

remained triangles, and the percentage lost of random and minimum controlled edge 

deletion processes, respectively.  

 
 

 
 

Figure 4.2. Deleting edge by random edge deletion and minimum controlled edge deletion 

 

 

Example 2 

The example in Figure 4.3 shows the addition process of the coming edges when 

the whole reservoir is not full, as it is done by UCRS algorithm. Suppose the maximum 

allowed size of the whole reservoir is assigned to a value of “6”. Given an input graph of 

coming edges Figure 4.3(a), when those coming edges are received, they are inserted in 
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the sample reservoir Figure 4.3(b), this insertion is done into the sample reservoir as long 

as the whole reservoir is not full (it doesn’t reach the maximum allowed size), in this 

example; the whole reservoir is not full, and all coming edges are inserted directly in it. 

The nodes of the edges in the sample reservoir are enrolled in the node degree list (heap 

reservoir) Figure 4.3(c), this list represents the nodes and their degrees, however the 

degree of each node is considered as the number of connections of each node in the 

reservoir, this node degrees list is presented in UCRS algorithm by the minimum heap 

data structure, where the nodes are ordered according to their degrees in ascending order, 

while the root node holds the node with the minimum degree among all the other nodes 

in the list. The edges in the sample reservoir are presented in a hash map as Figure 4.3(d), 

as seen in the hash; the nodes are on the left list and the neighbours of each node are on 

the right list. 

 

 

 

Figure 4.3. Example of the UCRS algorithm when whole reservoir (sample and heap 
reservoirs) is not full 

 

Example 3 

Figure 4.4 illustrates an example of UCRS after adding a new coming edge (FG), 

while the whole reservoir is full. Given an input graph of coming edges Figure 4.4(a), it 

is supposed that the maximum allowed size of the whole reservoir is assigned to a value 

of “6”. When the first five coming edges (AB, CX, DE, XY, XZ, XE) are received, they 

are inserted directly into the sample reservoir Figure 4.4(b), this insertion into the sample 

reservoir is done directly since the whole reservoir is not full. The nodes of the edges in 

the sample reservoir and their degrees are listed in the node degree list (heap reservoir) 
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Figure 4.4(c), where the degree of each node represents the number of connections of 

each node with other nodes in the sample reservoir, the node degree list is implemented 

in UCRS algorithm by the minimum heap. The edges in the sample reservoir are presented 

in a hash map as Figure 4.4(d). Now when a new edge (FG) is coming, the whole reservoir 

size is checked if it still has an empty space, at this time; it is found that it is full, in this 

case one edge from sample reservoir should be deleted, and replaced by the new edge 

(FG), but the selection of a candidate edge couldn’t be done randomly in UCRS, the 

candidate edge should be the edge with the minimum node degree of its source and 

destination nodes, in this example; the node (A) is marked as a source node, since it has 

the minimum node degree, then from the neighbours of node (A), the neighbour node 

with the minimum node degree is selected as a destination node, since there is only one 

neighbour node which is (B), so it selected as a destination node, now the edge (AB) is 

formed as a candidate edge to be deleted from sample reservoir, and replaced with new 

edge (FG), as a consequent steps of deleting the edge (AB), the nodes A and B are deleted 

from node degree list if they have degree of 1, or their degrees are decremented by 1 if 

their degrees are greater than 1. Also, the nodes are deleted from the hash map if they 

don’t have connections with any other nodes of the sample reservoir. After inserting the 

new edge (FG) in the sample reservoir, the node degree list is updated by adding the nodes 

F and G with a degree of 1, since they are newly appeared, also the hash map is updated 

by adding F and G to it. 

 

 

Figure 4.4. Example of UCRS after adding a new coming edge (FG), while the whole 
reservoir (sample and heap reservoirs) is full 
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4.2.  Controlled Reservoir Sampling Algorithm with Limited Heap 
Size (LCRS) 

 

 

In UCRS algorithm heap keeps all the degrees of the nodes that are presented in 

the sample. It is noticed from the empirical results of the UCRS algorithm; the heap size 

becomes large especially with higher density datasets. As a result, space left for the 

sample decreases. This results in lower number of retrieved patterns, so if the heap is 

pruned, the efficiency of the UCRS algorithm is expected to increase in terms of number 

of patterns, execution time and memory usage.  

A modified version of UCRS is introduced Controlled Reservoir Sampling with 

Limited heap (LCRS). As the name indicates in LCRS the heap size is minimized.  If heap 

size is minimized or limited, then it will be possible to store more edges in the sample. 

Increased sample size leads to larger number of patterns that are retrieved, lower 

execution time than UCRS due to the management of smaller heap.  

 LCRS algorithm that is represented in Figure 4.5 works as follows; (Line 2-6) 

when new increment d arrives; each edge (u, v) in the increment is added to the sample 

by addToSample (u,v) procedure, to do this; edge sampling is applied by sampleEdge (u, 

v) procedure (Line 7-13). This procedure works as follows  : If the sample size is less than 

(M), then the new edge is added to the sample directly. On the other hand, if the sample 

size is greater than or equal to (M), then an existing edge is removed from the sample to 

insert the new one.  

 The edge that should be removed is the edge that has the minimum node degree 

(Line 14-17), it is determined from the min heap, which classifies the nodes according to 

their node degrees. First, it detects the node with the minimum degree as the source node. 

Second, from the neighbours of the selected source node; the neighbour node with the 

minimum node degree is selected as the destination node. The result of the previous two 

steps finds an edge connecting the minimum node degrees. This edge is the candidate 

edge to be deleted from the sample reservoir, to replace it with a new incoming edge in 

the sample reservoir.  

 The required updates are done on the sample (Line 18-23). This update can be 

addition of an edge to the sample reservoir or deletion of an edge from the sample 

reservoir, the addition to the sample is done through the procedure addToSample (u, v), 
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while the deletion from the sample reservoir is done using the procedure 

removeFromSample (u, v). 

 By the same way, heap reservoir is updated either by node addition or by node 

deletion  (Line 24-31). In LCRS there is a limit in the size of the heap reservoir, so the 

addition of nodes to the heap reservoir is done only if its size is doesn’t exceed the 

maximum allowed node capacity of the heap reservoir. 

 

 

Figure 4.5. Pseudo code of the LCRS algorithms 

Controlled Reservoir Sampling LCRS 

Input: incremental graph data d, integer M                        /* M: maximum whole reservoir size in terms of 
nodes  
Output: updated Sample, updated Heap 
  
1: s  , h  , i  0 , x  ,  maxHeapSize           /*  s: sample size, h: minimum heap size, x: 
maximum limited heap size,  
   
 2: procedure addEdge((u, v)) 
 3: for each edge (u,v) from d do 
 4:     i  i+1 
 5:     if sampleEdge(u, v) then 
 6:  addToSample (u, v) 
 
 7: procedure sampleEdge (u, v) 
 8:      if sampleSize < M then                                            /* whole reservoir is not full 
 9:       return True 
10:      else 
11: minEdge(x,y)  minEdge()                        
12:         removeFromSample (x, y)    
13: return True  
 
14: procedure minEdge ()  
15:      x  source node with lowest node degree  
16:      y  destination node with lowest node degree 
           among neighbours of (x) 
17:      return edge (x, y)                                              /* candidate edge for deletion is chosen 
 
18: procedure addToSample (u, v)  
19:      s  s + {(u, v)}   
20:      addToHeap (u, v)   
 
21: procedure removeFromSample (u, v)  
22:      s  s - {(u, v)}   
23:      removeFromHeap (u, v)  
 
24: procedure addToHeap (u, v)   
25:      if maxHeapSize < x do                                  /* there is space in the heap 
26:          h  h + {(u, v)}   
 
27: procedure removeFromHeap (u,  v)    
28:          h  h - {(u, v)} 
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Illustrating Examples 

 

Example 1 

The example in Figure 4.6 illustrates an example of the LCRS algorithms.  It 

shows the addition process of the coming edges when the sample reservoir is not full, and 

the heap reservoir is not full also. In this situation LCRS algorithm behaves in the same 

manner as UCRS algorithm.   

Suppose we have an input graph of coming edges Figure 4.6(a), suppose the 

maximum allowed whole reservoir size is assigned to 6, and the maximum allowed node 

capacity of the heap reservoir is assigned to 6. When the coming edges are received, they 

are inserted in the sample reservoir Figure 4.6(b), at each time of inserting a new edge, 

the size of the whole reservoir is checked, to make sure if it is still having a free space to 

insert the new coming edge. In this example, the 6 coming edges (AB, BC, CX, DX, DE, 

AC, DX) are inserted directly one by one into the sample reservoir, since it doesn’t exceed 

the maximum allowed size (6). After inserting each edge in the sample reservoir; the two 

nodes of each inserted edge are enrolled in the node degree list if they aren’t enrolled 

before, if they are already exist in the degree list (heap reservoir), their degrees are 

incremented by one as shown in Figure 4.6(c), this list represents the nodes and their 

degrees, while the degree of each node is the number of connections of each node in the 

sample reservoir, before insertion of the nodes and their degrees in node degree list is 

done as long as it doesn’t exceed the maximum allowed size of the list(maximum heap 

reservoir size). The edges in the sample reservoir are presented in a hash map as Figure 

4.6(d).  

Let’s take an example of inserting the coming edge (DX), first, the size of sample 

reservoir is checked, the sample reservoir size now is equal to 5, so there is a chance to 

insert DX directly into the sample reservoir Figure 4.6(a), then the size of the node degree 

list is checked also, and it is found 6, so it’s size is equal to the maximum allowed size of 

the heap reservoir (node degree list), however the both nodes of the edge (DX) are already 

exist before in the heap reservoir, so the degrees of the nodes D and X are just needed to 

be incremented by one as in Figure 4.6(b). The hash map in Figure 4.6(c) is updated, in 

the map, node D is added as a neighbour of node X, and node X is added as a neighbour 

of node D. 
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Figure 4.6. Example of the LCRS algorithm when whole reservoir (sample and heap  
reservoirs) is not full 

 

 

Example 2 

Figure 4.7 illustrates an example of the LCRS algorithms.  The example is shown 

when the sample reservoir is full, and the heap reservoir reaches it maximum allowed 

limit. The example in this figure based on the previous example of Figure 4.6. But in here 

when a new edge (FG) comes. Given an evolving graph, the incoming edges are listed as 

in Figure 4.7(a). 

Suppose the maximum allowed size of the sample reservoir is 6 edges, and the 

maximum allowed size for the heap is assigned to 6 nodes. When the coming edges are 

received, they are inserted in the sample reservoir if it is not full Figure 4.7(b), their new 

nodes are inserted in the node degree list if they are not in the list, otherwise their degrees 

are incremented. The records of these coming nodes are updated in the hash map also. In 

the example of Figure 4.7; the first six coming edges (AB, BC, CX, DX, DE, AC, DX) 

are inserted directly one by one into the sample reservoir, since the sample reservoir is 

not full, and the heap reservoir is not full also. On the other hand, when the edge (FG) 

comes, the sample reservoir size reaches the maximum allowed size (6), so it is full, as a 

result, one edge from sample reservoir should be removed, this edge is the edge with the 

minimum degrees of it two nodes, so the edge AB is the candidate edge for removal, with 

removing the edge AB from sample reservoir, the counts of the nodes A and B in heap 

reservoir are decreased, and it is removed from the hash map of the sample graph. Now, 

there is a space in the sample reservoir to insert the new edge (FG), after that, the size of 

heap (node degree list) is checked, it’s size (6) so it is full, and the new nodes F and G 
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will not be added to the list Figure 4.7(c). The hash map is updated by adding F and G to 

it Figure 4.7(d). 

 

 

 

Figure 4.7. Example of the LCRS algorithms, adding a coming node (FG) while the whole 
reservoir (sample reservoir and heap reservoir) is full  

 

   

4.3.  Maximum Controlled Reservoir Sampling (MCRS) Algorithm 
 

 

A modified version of controlled reservoir sampling is introduced Maximum 

Controlled Reservoir Sampling (MCRS). As the name indicates, in MCRS, when the 

whole reservoir is full, an edge should be deleted to be replaced by a new edge, this 

candidate edge is an edge with maximum node degrees of its source and destination, while 

in UCRS the candidate edge for deletion is an edge with minimum node degrees of its 

source and destination. It is very similar to UCRS, but instead of deleting edges with 

minimum node degrees, it deletes edges with maximum node degrees.  

The pseudo code of MCRS algorithm is represented in Figure 4.8. It works as follows; 

(Line 2-6) represents the addition of an edge, such that when new increment d arrives; 

each edge (u, v) in the increment is added to the sample, this addition is done by the 

procedure addToSample (u,v), to do this; edge sampling is done by sampleEdge (u, v) 

procedure (Line 7-13). There are two case for this procedure to work, the cases are as 

follows:  

• If the sample size is less than (M), then the new edge is added to directly to the sample. 

Otherwise, 
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•  If the sample size is greater than or equal to (M), then an existing edge is removed 

from the sample to insert the new one.  

     The candidate edge for removal is the edge that has the maximum node degree 

(Line 14-17), this edge is detected from the heap, that keeps the nodes according to their 

node degrees. This detection is done as follows: First, it determines the node with the 

maximum degree as the source node. Second, from the neighbours of the determined 

source node; the neighbour node with the maximum node degree is selected as the 

destination node. The result of the previous two steps determines an edge connecting the 

maximum node degrees. This edge is the candidate edge to be deleted from the sample 

reservoir, to be replace with a new incoming edge in the sample reservoir.  

There are consequent modifications required after the previous steps on the 

sample (Line 18-23). This modification can be addition of an edge to the sample reservoir 

or deletion of an edge from the sample reservoir, the addition to the sample is done by the 

procedure addToSample (u, v), while the deletion from the sample reservoir is done 

through the procedure removeFromSample (u, v). 

By the same way, heap is updated either by node addition or by node deletion  (Line 24-

27).  
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Maximum Controlled Reservoir Sampling (MCRS)  

Input: incremental graph data d, integer M        /* M: maximum whole 
reservoir size in terms of nodes  
Output: updated Sample, updated Heap 
  
1: s  , h  , i  0 , x    
/*  s: sample size, h: minimum heap size 
 
 2: procedure addEdge((u, v)) 
 3: for each edge (u,v) from d do 
 4:     i  i+1 
 5:     if sampleEdge(u, v) then 
 6:  addToSample (u,v) 
  
 7: procedure sampleEdge ((u, v)) 
 8:      if sampleSize < M then 
 9:       return True 
10:      else 
11:  maxEdge(x,y)  maxEdge()   
12:          removeFromSample (x,y)     
13:  return True  
  
14: procedure maxEdge ()  
15:      x  source node with highest node degree  
16:      y  destination node with highest node degree 
           among neighbours of (x) 
17:      return edge(x,y) 
  
18: procedure addToSample (u,v)  
19:      s  s + {(u, v)}   
20:      addToHeap (u,v)   
 
21: procedure removeFromSample (u,v)  
22:      s  s - {(u, v)}   
23:      removeFromHeap (u,v)  
 
24: procedure addToHeap (u,v)   
25           h  h + {(u, v)}   
 
26: procedure removeFromHeap (u,v)    
27:          h  h - {(u, v)}  

 

Figure 4.8. Pseudo code of the MCRS algorithm 

 

 

Illustrating Examples on MCRS 

Example 1 

The example in Figure 4.9 shows the addition process of the coming edges when 

the whole reservoir is not full, as it is done by MCRS algorithm.  
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Given an input graph of coming edges Figure 4.9(a), each coming edge is inserted 

in the sample reservoir Figure 4.9(b), this insertion is done into the sample reservoir as 

long as the whole reservoir is not full, in this example; the whole reservoir is not full, and 

all coming edges are inserted directly into the sample reservoir. Then; the nodes of each 

edge in the sample reservoir are registered in the node degree list (heap reservoir) if they 

are not in the list before, otherwise the degrees are incremented as in Figure 4.9(c), this 

list consists of the nodes and their degrees, however the degree of each node is considered 

as the number of connections of each node in the sample reservoir, this node degrees list 

(heap reservoir) is presented in MCRS algorithm by the heap data structure, where the 

nodes are ordered according to their degrees in ascending order, the root node of the heap 

holds the node with the minimum degree among all the other nodes in the list. The edges 

in the sample reservoir are presented in a hash map as Figure 4.9(d). 

Let’s explain the process of inserting the coming edge (XE), first, the size of 

sample reservoir is checked, the sample reservoir size now is equal to 5, so there is a 

space to insert the edge XE directly into the sample reservoir Figure 4.9(b), then the node 

degree list is checked for the  nodes X and E, it is found that both of them are already in 

the list, the degrees of X and E are 3 and 1 respectively, now both of them are incremented 

by 1, to become 4 for X and 2 for E Figure 4.9(c). The hash map in Figure 4.9(c) is 

updated, in the map, node E is added as a neighbour of node X, and node X is added as a 

neighbour of node E. 

 

 

 

Figure 4.9. Example of MCRS after adding a new coming edge (XE), while the whole 
reservoir (sample and heap reservoirs) is not full 
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Example 2 

Figure 4.10 shows an example of the MCRS algorithms. The example is illustrated 

when the whole reservoir is full. The example in this figure based on the previous example 

of Figure 4.9. Given an evolving graph, the incoming edges are listed as in Figure 4.10(a). 

This example is explained when a new edge (FG) comes. Suppose the maximum allowed 

size of the sample reservoir is 6 edges. When the coming edges appears, they are inserted 

one by one in the sample reservoir if it is not full Figure 4.10(b), the new nodes of the 

coming edges are inserted in the node degree list (heap reservoir) if they are not already 

in the list, otherwise their degrees are updated by increasing the degree of each node by 

one. The records of these coming nodes are updated in the hash map also. In the example 

of Figure 4.10; the first six coming edges (AB, CX, DE, XY, XZ, XE) are inserted directly 

one by one into the sample reservoir, since the sample reservoir is not full. On the other 

hand, when the edge (FG) comes, the sample reservoir size reaches the maximum allowed 

size (6), so it is full, as a result, one edge from sample reservoir should be removed, this 

edge is the edge with the maximum degrees of it two nodes, so the edge XE is the 

candidate edge for removal, the degrees of with removing the edge XE from sample 

reservoir, the counts of the nodes X and E in the node degree list  are decreased, and the 

connection edge between E and X is removed from the hash map of the sample graph. 

Now, there is a space in the sample reservoir to insert the new edge (FG), then, and the 

new nodes F and G are added to the list, the degrees of both nodes are one, since they are 

newly added to the list Figure 4.10(c). The hash map is updated by adding F and G to it 

Figure 4.10(d). 

 

 
Figure 4.10. Example of MCRS after adding a new coming edge (FG), while the whole 

reservoir is full 
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4.4.  Deleting an Edge in UCRS, LCRS, MCRS and Random 
algorithms 

 

 

The example in Figure 4.11 illustrates the deletion process of an edge when the 

whole reservoir is full, in this example; three types of edge deletion are illustrated, the 

first one is random edge deletion  as in Triest (De Stefani et al., 2016), SR (Aslay et al., 

2018) and OSR (Aslay et al., 2018), the second one is controlled deletion of an edge with 

minimum degree of nodes, as it is done   by controlled edge deletion in (UCRS and LCRS) 

and the third one is controlled deletion of an edge with maximum degree of nodes as in 

MCRS. In another words an example of edge deletion with random edge deletion and 

controlled edge deletion is represented.  

Given an original graph Figure 4.11(a), the table in the figure shows the nodes 

and their degrees of the original graph. By applying random edge deletion, the method 

that is used in (De Stefani et al., 2016), SR (Aslay et al., 2018) and OSR (Aslay et al., 

2018), suppose the candidate edge is: (X, Z), when it is removed; two triangle patterns of 

the original graph are lost as shown in Figure 4.11(b).  On the other hand, in controlled 

deletion of an edge with minimum degree of nodes; the method that is used in UCRS and 

LCRS, the edge (S, V) is a candidate to be removed since S is the lowest degree node and 

V is the lowest degree neighbour of V. When the edge (S, V) is removed from the original 

graph, no triangle pattern of six triangle patterns is lost as illustrated in Figure 4.11(c). 

However, in controlled deletion of an edge with maximum degree of nodes; the method 

that is used in MCRS, the edge (W, U) is a candidate to be removed since W is the highest 

degree node and U is the highest degree neighbour of W. When the edge (W, U) is 

removed from the original graph, three triangle patterns are lost as illustrated in Figure 

4.11(d). The table under the figure shows, the number of lost triangles, the number of 

remained triangles, and the percentage loss of random, minimum controlled edge deletion 

and maximum controlled edge deletion processes, respectively. As a result, less patterns 

are lost by minimum controlled edge deletion (UCRS and LCRS) and more patterns are 

lost by maximum edge controlled deletion (MCRS). While the number of patterns that 

affected by random edge deletion be between the other two mentioned types of edge 

deletion. 
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Figure 4.11. Deleting edge with minimum node degrees, maximum node degrees and 
random edge 

 
 

From the above example, it is noticed that; removing edge with minimum degree of its 

nodes, very few patterns are affected by this edge deletion.  

By removing edge with maximum node degrees, most patterns are expected to be lost, so 

this way of edge deletion supports the idea of deleting edge with minimum degrees of the 

nodes. By using random edge deletion of nodes, the number of left patterns after edge 

deletion are expected to be lower than it in the case of removing edge with minimum node 

degrees, and higher than it in the case removing edge with maximum node degrees. So 

removing edge with minimum node degrees is preferred to keep most patterns in the 

graph. 

In this Chapter, three algorithms (UCRS, LCRS and MCRS) are proposed for 

approximate frequent-subgraph mining (FSM) in evolving graphs, where edge/vertex can 

be arbitrary added using a fixed memory size of whole reservoir. Whole Reservoir keeps 

the sample reservoir dynamic graph and heap reservoir, sample reservoir which represents 

the characteristics of the original graph, and allows dynamic algorithms to work on 

reduced sized graph, heap reservoir keeps the node degrees of the nodes that are in the 

reservoir according to the type of algorithm. Both UCRS and LCRS use controlled edge 

deletion for minimum node degree edge from sample reservoir, the advantage of this 

controlled edge deletion is to keep more connected edges in the sample reservoir, by doing 

so; recall is expected to be increased. While, the third algorithm MCRS is proposed, it 
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works in a similar manner to UCRS and LCRS, but the main difference is in determining 

the candidate edge to be deleted from sample reservoir, whenever the whole reservoir is 

full, in MCRS algorithm the candidate edge is the edge with maximum degree of its 

nodes, by doing so, the high connectivity edges are deleted from the sample reservoir, as 

a result,  recall is expected to be decreased. So, the results of MCRS support the need for 

the advantages of UCRS and LCRS algorithms. 
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CHAPTER 5 
 

 

PERFORMANCE EVALUATION 
    
 

The experimental evaluation of the proposed algorithms Unlimited Controlled 

Reservoir Sampling (UCRS), Limited Controlled Reservoir Sampling (LCRS) and 

Maximum Controlled Reservoir Sampling (LCRS) are conducted in comparison to three 

existing algorithms: Triest (De Stefani et al., 2016), Subgraph Reservoir  (Aslay et al., 

2018) and Optimized Subgraph Reservoir (OSR) (Aslay et al., 2018). These three 

algorithms are devised to find the approximate frequent patterns in dynamic graphs as 

UCRS, LCRS and MCRS. All algorithms including UCRS, LCRS and MCRS use 

reservoir sampling technique. Triest, SR and OSR implement reservoir technique of 

(Vitter, 1985), where edge deletion from sample reservoir is done randomly when sample 

reservoir is full. However, UCRS, LCRS and MCRS use a heap reservoir to manage the 

node degrees, UCRS and LCRS delete the low degree nodes when whole reservoir is full, 

while MCRS delete the high degree nodes when the whole reservoir is full. Trade-off 

between execution time and accuracy is measured in the following subsections as 

execution time, scalability, recall and heap size measurement experiments. 

All experimental results are reported as an average of 3 runs. The properties of 

the datasets used in all experiments are shown in the Table 5.1. D1 is Patents dataset 

which is publicly available (Hall, Jaffe and Trajtenberg, 2001) and contains citations 

among US Patents from January 1963 to December 1999. D2 is LastFM is Asia Social 

Network dataset (https://snap.stanford.edu/index.html); social network of LastFM users which 

was collected from the public API. Nodes are LastFM users from Asian countries and 

edges are mutual follower relationships between them. D2 has approximately double 

density of the Patents dataset, where the density of the datasets is calculated as D 

=      where |E| and |V| represents the total number of edges and vertices (nodes) in 

the dataset  (Chakraborty, Byshkin and Crestani, 2020). 
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Table 5.1.  Properties of the datasets 

Dataset |V| |E| Density  

D1 (Patents) 3M 14M 2.3 
D2 (LastFM) 7.6 27.8 4.8 

 

 

In the following subsections the performance evaluation of Triest, UCRS, LCRS, MCRS, 

SR, and OSR algorithms is measured; experiments are conducted on D1 (Patents) and D2 

(LastFM).  
 

 

5.1.  Scalability 
 

 

To measure the scalability performances of Triest (De Stefani et al., 2016), UCRS, 

LCRS, MCRS, SR (Aslay et al., 2018), and OSR (Aslay et al., 2018); an experiment is 

conducted on D1 and D2 datasets. In this experiment, the data size changes between 4000 

to 20000 transactions. Execution time is measured; the maximum whole reservoir size 

(M) is kept constant. Whole reservoir size M is measured in terms of number of nodes as 

an abstract common metric for all the algorithms. Triest algorithm keeps edges in the 

sample reservoir (Whole reservoir in Triest); each edge is counted as 2 nodes. SR and 

OSR algorithms keep subgraphs of 3 nodes in the sample reservoir (Whole reservoir in 

SR and OSR). UCRS, LCRS and MCRS keeps edges (2 nodes) in the sample reservoir 

and the nodes that are in the heap reservoir. In another words, Triest spends 2 nodes with 

each edge addition, SR and OSR spends 3 nodes with each subgraph addition, UCRS, 

LCRS and MCRS spend 2 nodes and 0/1/2 node(s) depending on the existence/absence 

of the node(s) of the sample in the heap reservoir. The whole reservoir in UCRS, LCRS 

and MCRS consists of both of sample reservoir and heap reservoir. Heap reservoir size 

in LCRS is limited to a specified size. In this experiment maximum allowed heap size is 

0.4 of the maximum whole reservoir size M.    

The graph of Figure 5.1.A illustrates the scalability of Triest, UCRS, LCRS, 

MCRS, SR, and OSR on dataset D1 when M is assigned to 600 nodes. The graph of the 

Figure 5.1.B describes the same experiment but since Triest, UCRS, LCRS and MCRS 

have a very small execution time compared with SR and OSR, and can’t appear in the 
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first graph, they are shown separately in the second graph. It is noticed from the figures 

that; as the data size increases; the execution times of all algorithms increase. SR and 

OSR have the highest execution time, since they search for subgraphs of neighbourhood 

of incoming edges and store them in sample reservoir, searching and storing subgraphs 

have higher complexity than searching edges only as in (Triest, UCRS, LCRS and 

MCRS). UCRS and LCRS have higher execution time than Triest, this is because of the 

heap management cost. UCRS has a higher execution time than LCRS because of 

increasing heap size. The limited size of the heap in LCRS requires less time for heap 

management. While MCRS has the highest execution time among the algorithms in 

Figure 5.1.B. Triest has the lowest execution time, since it has no heap management like 

UCRS, LCRS and MCRS, MCRS has higher execution time than UCRS and LCRS since 

the heap sizes in the recent two algorithms are smaller than it in MCRS, this is because 

the after each deletion of edges with lowest node degrees at least one of the nodes (root 

node) is deleted from the heap reservoir, while in MCRS the nodes of the deleted edge 

are decremented without deletion, so the time required to manage the a heap with larger 

size is more in MCRS. Also searching for minimum node degree is much cheaper than 

searching for maximum node degrees in the minimum heap. 

 

 

 

Figure 5.1.A. Scalability performance of the algorithms while changing the dataset size 
on Datasets D1 for M= 600 
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Figure 5.1.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D1 for M= 600 

 

 

Figure 5.2.A and Figure 5.2.B show the scalability performance of Triest, UCRS, 

LCRS, MCRS, SR, and OSR algorithms, this experiment is done on dataset D1 when M 

is assigned to 1200 nodes. This experiment is similar to previous experiment only the 

maximum whole reservoir size is larger now (1200 nodes). The first graph presents all 

algorithms whereas the second graph focuses on Triest, UCRS, LCRS and MCRS 

execution times. It is shown in the figure that; as the data size increases; the execution 

times of all algorithms increase as in the previous experiment. SR and OSR have the 

highest execution time, since they search for subgraphs instead of edges. UCRS, LCRS 

and MCRS have higher execution time than Triest due to additional heap management 

cost. UCRS has a higher execution time than LCRS. Limited size of the heap in LCRS 

requires less time for its management. MCRS has the highest execution time among 

Triest, UCRS and LCRS. Triest has the lowest execution time, this is due to the 

nonexistence of heap management like UCRS, LCRS and MCRS, the execution time of 

MCRS is higher than UCRS and LCRS execution times, the reason for that is: the heap 

sizes in the UCRS and LCRS are smaller than the heap size in MCRS, in UCRS and 

LCRS; after each deletion of edges with lowest node degrees, at least one of the nodes 

(root node) is deleted from the heap, while in MCRS the nodes of the deleted edge are 

decremented without deletion, so the time required to manage the a heap with larger size 
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is more in MCRS. Also searching for minimum node degree is much cheaper than 

searching for maximum node degrees in the minimum heap. The heap size is limited in 

LCRS, while the heap size is unlimited in UCRS and MCRS. 

 

 

 

Figure 5.2.A. Scalability performance of the algorithms while changing the dataset size 
                      on Datasets D1 for M= 1200 
 

 

 

 
 

Figure 5.2.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D1 for M= 1200 
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The scalability performance of Triest, UCRS, LCRS, MCRS, SR, and OSR algorithms is 

illustrated in Figure 5.3.A and Figure 5.3.B, this experiment is done on dataset D1 when 

M is assigned to 1800 nodes. This experiment is similar to previous two experiments, but 

in this experiment, the maximum whole reservoir size is assigned to a larger value (1800 

nodes). The first graph presents all algorithms while the second graph focuses on Triest, 

UCRS, LCRS and MCRS execution times. It is shown in the figure that; as the data size 

increases; the execution times of all algorithms increase as in the previous experiments. 

SR and OSR have the highest execution time, since they search for subgraphs instead of 

edges. UCRS, LCRS and MCRS have higher execution time than Triest due to additional 

heap management cost. UCRS has a higher execution time than LCRS. Limited size of 

the heap in LCRS requires less time for its management. MCRS has the highest execution 

time among Triest, UCRS and LCRS. Triest has the lowest execution time, since it has 

no heap management like UCRS, LCRS and MCRS, the execution time of MCRS is 

higher than UCRS and LCRS execution times, the reason for that is: the heap sizes in the 

UCRS and LCRS are smaller than the heap size in MCRS, in UCRS and LCRS; after 

each deletion of edges with lowest node degrees, at least one of the nodes (root node) is 

deleted from the heap, but in MCRS the nodes of the deleted edge are decremented 

without deletion, so the time required to manage the a heap with larger size is higher in 

MCRS. In addition to that, searching for minimum node degree is much cheaper than 

searching for maximum node degrees in the minimum heap. In LCRS the heap size is 

limited, however the heap size is unlimited in UCRS and MCRS. 
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Figure 5.3.A. Scalability performance of the algorithms while changing the dataset size 

on Datasets D1 for M= 1800 

 

 

 
 

Figure 5.3.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D1 for M= 1800 
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The graph of Figure 5.4.A illustrates the scalability of Triest, UCRS, LCRS, 

MCRS, SR, and OSR on dataset D2 and M is assigned to 600 nodes. The graph of Figure 

5.4.B describes the same experiment showing Triest, UCRS, LCRS and MCRS results 

since they are not seen well in the first graph due to scale difference. It is noticed from 

the Figure 5.4.A graph that; as the data size increases; the execution times of all 

algorithms increase. SR and OSR have the highest execution time, since they search for 

subgraphs instead of edges. It is noticed from the Figure 5.4.B graph that; UCRS, LCRS 

and MCRS have higher execution time than Triest, this is because of the heap 

management cost. UCRS has a higher execution time than LCRS since LCRS requires 

less time for smaller heap. MCRS has higher execution time than UCRS and LCRS, since 

the nodes of the deleted edge are decremented without node deletion from the heap 

reservoir, so the time required to manage a heap with larger size is more in MCRS. Also 

searching for maximum node degree is more expensive than searching for minimum node 

degrees in the minimum heap.  

 

 

 

 

Figure 5.4.A. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 600 
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Figure 5.4.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 600 

 

 

The Graph of Figure 5.5.A illustrates the scalability of Triest, UCRS, LCRS, 

MCRS, SR, and OSR on dataset D2 and M is assigned to 1200 nodes. The graph of the 

Figure 5.5.B describe the same experiment, but it shows only Triest, UCRS, LCRS and 

MCRS since they are not seen well on the graph of Figure 5.5.A. It is shown in the first 

graph that; as the data size increases; the execution times of all algorithms increase. SR 

and OSR have the highest execution time, since they search for subgraphs of 

neighbourhood of incoming edges and store them in sample reservoir. Searching and 

storing subgraphs have higher execution time than searching edges only. In Figure 5.5.B, 

UCRS, LCRS and MCRS have higher execution time than Triest due to additional heap 

management cost. UCRS has a higher execution time than LCRS since the heap size is 

not limited as LCRS. UCRS and MCRS have lower execution time than MCRS since the 

heap reservoir size in UCRS and LCRS always shrinks with each edge deletion process 

from sample reservoir, because the root node always deleted, while the candidate node 

that have maximum degree is decremented since it is still connected with other nodes. 
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Figure 5.5.A. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 1200 

 

 

 
 

Figure 5.5.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 1200 
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MCRS since they are not seen well on the graph of Figure 5.6.A. It is shown in the first 

graph that; as the data size increases; the execution times of all algorithms increase. SR 

and OSR have the highest execution time, since they search for subgraphs of 

neighbourhood of incoming edges and store them in sample reservoir. Searching and 

storing subgraphs have higher execution time than searching edges only. In Figure 5.6.B, 

UCRS, LCRS and MCRS have higher execution time than Triest due to additional heap 

management cost. UCRS has a higher execution time than LCRS since the heap size is 

not limited as LCRS. UCRS and MCRS have lower execution time than MCRS since the 

heap reservoir size in UCRS and LCRS always shrinks with each edge deletion process 

from sample reservoir, because the root node always deleted, while the candidate node 

that have maximum degree is decremented since it is still connected with other nodes. 

 

 

 

 

Figure 5.6.A. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 1800 
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Figure 5.6.B. Scalability performance of the algorithms while changing the dataset size 
on Datasets D2 for M= 1800 

 

 

Table 5.2 shows the scalability speed-up of the algorithms while varying the dataset size. 
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Table 5.2. Scalability speed-up of the algorithms while varying the dataset size 

Dataset M 

(nodes) 

Speed-up with 

Triest [a] 

Speed-up with 

UCRS [b] 

Speed-up with 

LCRS [c] 

Speed-up with 

MCRS [d] 

Speed-up 

with SR [e]   

D1 
 

600 22.99 – 407.17 15.94 – 306.12 20.42 – 390.09 11.16 – 207.59 0.47 – 0.96 

1200 6.37 – 154.622 3.62 – 105.00 4.96 – 141.00 2.13 – 50.22 1.38 - 0.94  

1800 7.25 – 108.55 1.79 – 47.97 5.43 – 87.06 2.36 – 32.63 1.2 – 1.03 

D2 
 

600 17.32 – 453.89 12.99 – 271.75 14.08 – 420.61 9.93 – 239.16 0.72 – 0.92 

1200 9.91 – 123.51 2.37 – 29.01 7.54 – 98.71 2.28 – 28.43 0.60 – 0.91 

1800 12.99 – 107.17 1.5.94 – 206.12 2.04 – 39.09 1.11 – 14.32 0.47 –0.96 
                           [a] Speed-up = Execution time of OSR algorithm / Execution time of Triest algorithm. 
                           [b] Speed-up = Execution time of OSR algorithm / Execution time of UCRS algorithm. 
                           [c] Speed-up = Execution time of OSR algorithm / Execution time of LCRS algorithm.          
                           [d] Speed-up = Execution time of OSR algorithm / Execution time of MCRS algorithm. 
                           [e] Speed-up = Execution time of OSR algorithm / Execution time of SR algorithm. 

 

 

5.2.  Recall 
The algorithms Triest, UCRS,  LCRS, MCRS, SR and OSR are compared and 

evaluated in terms of recall. Recall is the ratio of the number of patterns found in the 

sample by the algorithm to the number of patterns found by an exact algorithm that works 

on whole data instead of the sample.  

The experiment in Figure 5.7, Figure 5.8 and Figure 5.9 is conducted to measure 

the recall. The data sizes are varied from 4000 to 20000 transactions, and the maximum 

whole reservoir size M (number of nodes) is kept constant as 600, 1200 or 1800 nodes. 

The used dataset is D1. From the figures it is shown that; LCRS has the highest recall 

among the other five tested algorithms. The reason for that is the novel method in UCRS 

and LCRS, which is designed to replace the random edge deletion in sample reservoir 

with controlled edge deletion.  The idea behind this method is not to lose high degree 

nodes, which have more impact on recall. Higher recall is gained since more connected 

(higher degree) nodes remain in the sample reservoir, while in Triest the edge deletion 

from sample reservoir is done randomly, by this way of edge deletion; patterns that are 

more important can be lost. On D1, LCRS has higher recall than UCRS, this is because 

of the pruning method that is done on the heap size, which give a chance to have a smaller 

size of the heap reservoir and larger size of the sample reservoir (sample of incoming 
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edges), by this way, the number of retrieved patterns increases and as a result the recall 

increases. On D1, with M= 1800 nodes, UCRS and LCRS have higher recall than the 

other algorithms in the experiment, the reason for that is as the sample reservoir size 

increases, the number on non-important edges were deleted and more important edges 

that can affect the patterns are increases. MCRS has lowest recall among the other five 

algorithms, MCRS works in a similar way to UCRS, but instead of removing the less 

connected edge whenever the whole reservoir is full, in MCRS the most conned edge is 

removed, this way supports the idea of UCRS and LCRS, which is: removing less 

connected edges can keep important patterns in the sample reservoir, and as a result the 

recall increases.  

 

 

 
 

Figure 5.7. Recall of the algorithms while changing the dataset size on Dataset D1 
(M=600 nodes) 
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Figure 5.8. Recall of the algorithms while changing the dataset size on Dataset D1 
(M=1200 nodes) 

 
 

Figure 5.9. Recall of the algorithms while changing the dataset size on Dataset D1 
(M=1800 nodes) 
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the reason for that is the dense nature of D2 and the storing subgraphs in sample reservoir 

instead of edges. UCRS and LCRS have higher recalls than Triest since a controlled edge 

deletion from sample reservoir is used instead of random edge deletion. LCRS has higher 

recall than UCRS because of the heap reservoir pruning strategy that is used in LCRS, 

which gives a chance to store a greater number of edges in the sample. 

MCRS has lowest recall among the other five algorithms, since in MCRS the most 

conned edge is removed, while in UCRS and LCRS the less connected edge is removed 

whenever the whole reservoir is full, this way supports the idea of UCRS and LCRS, 

which is: removing less connected edges that can keep important patterns in the sample, 

and as a result the recall increases.  

 

 

 
 

Figure 5.10. Recall of the algorithms while changing the dataset size on Dataset D2 
(M=600 nodes) 
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Figure 5.11. Recall of the algorithms while changing the dataset size on Dataset D2 
(M=1200 nodes) 

 

 

 

 
Figure 5.12. Recall of the algorithms while changing the dataset size on Dataset D2 

(M=1800 nodes) 
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decreases on D2, e.g. (0.16 and 0.19) respectively for (M=600), (0.39 and 0.67) 

respectively for (M=1200) and (0.62 and 0.78) respectively for (M=1800) this is because 

of the nature of the datasets. D2 is denser than D1. In addition, it is noticed that; for higher 

values of total number of nodes in the sample e.g., 1800 or 1200 instead of 600, higher 

recall is achieved. This is because increased maximum whole reservoir size brings 

increased sample reservoir size, which represents the original graph better.  

When the total number of nodes in the whole reservoir is 1800 nodes, the recall of LCRS 

becomes higher and closer to the recalls of SR and OSR, if the whole reservoir sizes 

increases more and more, a higher recall can be gotten, until an equal recall to SR and 

OSR at the whole reservoir size (M) 4510 nodes. of course, with similar behaviour of 

execution time which is less than the execution time of SR and OSR. MCRS has lowest 

recall among the other five algorithms, since in MCRS the most connected edge is 

removed, so important patterns are expected to be lost while in UCRS and LCRS the less 

connected edge is removed whenever the whole reservoir is full.  

Therefore, LCRS is recommended for sparse datasets, SR and OSR are 

recommended for dense datasets with small whole reservoir size, with a trade-off of high 

execution time. For dense dataset LCRS is recommended with a high number of nodes in 

the whole reservoir. 

 

 
 Table 5.3.  Recall of the algorithms while changing the datasets sizes 

Dataset M (nodes)  Average Recall 

Triest  UCRS LCRS MCRS SR OSR 

D1 

 

600 0.16 0.66 0.76 0.14 0.72 0.74 

1200 0.64 0.82 0.86 0.28 0.85 0.85 

 1800 0.64 0.89 0.91 0.56 0.87 0.88 

D2 600 0.13 0.16 0.19 0.04 0.93 0.93 

1200 0.37 0.39 0.67 0.19 0.93 0.93 

 1800 0.59 0.62 0.78 0.27 0.93 0.93 
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5.3.  Heap size  
 

 

This experiment is to measure the space that the heap occupies in both algorithms 

UCRS and LCRS, the heap size is measured in terms of number of nodes. D1 and D2 

datasets are used in these experiments. The maximum whole reservoir size (M) in term 

of (number of nodes) is constant.   

Figure 5.13, Figure 5.14 and Figure 5.15 show the number of nodes in heap while 

changing the dataset sizes from 4000 to 20000 transactions on Dataset D1. M is assigned 

to 600 nodes in Figure 5.13 ,1200 nodes in Figure 5.14 and 1800 nodes in Figure 5.15. 

From the figures, it is shown that, the heap size is growing until a certain data size, this 

size depends on the nature of dataset and the whole reservoir size, in the experiments; for 

UCRS and MCRS, the curve grows fast for the data sizes (4000 - 14000) and it becomes 

slower after 12000. While for LCRS; the curve grows for the data sizes (4000 - 14000) 

and it becomes constant after 14000 according to the maximum assigned heap size. 

 
 

Figure 5.13. Number of nodes in heap while changing the dataset size on Dataset D1 (M 
= 600 nodes) 
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Figure 5.14. Number of nodes in heap while changing the dataset size on Dataset D1 (M 
= 1200 nodes) 

 

 

 
 

Figure 5.15. Number of nodes in heap while changing the dataset size on Dataset D1 (M 
= 1800 nodes) 
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and MCRS, the curve grows fast for the data sizes (4000 - 14000) and it becomes slower 

after 12000. While for LCRS; the curve grows for the data sizes (4000 - 14000) and it 

becomes constant after 14000 according to the maximum assigned heap size. 
 

 
 

Figure 5.16. Number of nodes in heap while changing the dataset size on Dataset D2 (M 
= 600 nodes) 

 
 

Figure 5.17. Number of nodes in heap while changing the dataset size on Dataset D2 (M 
= 1200 nodes)  

 

 

0

100

200

300

400

500

600

4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS

0

200

400

600

800

1000

1200

dataset
size

4000 6000 8000 10000 12000 14000 16000 18000

N
um

be
r o

f n
od

es
 in

 h
ea

p

Data size (Number of transactions)

UCRS LCRS MCRS



81 
 

 

 

Figure 5.18. Number of nodes in heap while changing the dataset size on Dataset D2 (M 
= 1800 nodes)  
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pruning method that is added to LCRS. heap sizes in MCRS are larger than it in UCRS 

and LCRS, this is because of deleting strategy in MCRS, which deletes the maximum 

connected edge, and as a result these edges are deleted but its nodes are still connected 

with other edges, so these nodes still in heap and keep it with a large size, this behaviour 

of MCRS motivates the idea of LCRS and UCRS.  

 

 

Table 5.4. Correlation between heap reservoir size and whole reservoir sizes for 
UCRS, LCRS and MCRS 

 

Dataset M (nodes) (Heap reservoir size / whole reservoir size) 

*100% 

 

UCRS LCRS MCRS 

D1 

 

600 53% - 70% 40% - 60% 77% - 84% 

1200 38% - 60% 26% - 51% 72% - 82% 

 1800 27% - 44% 27% - 28% 50% - 53% 

D2 600 70% - 88% 23% - 18% 81% - 90% 

1200 50% - 72% 35% - 43% 76% - 84% 

 1800 33% - 48% 23% - 29% 51% - 56% 

 

 

5.4.  Discussion on Experiments  
 

 

Table 5.5 shows the summary of execution time speed-ups and recall results for 

Triest, UCRS, LCRS, SR and OSR algorithms on D1 and D2 datasets. M is assigned to 

600, 1200 and 1800 nodes. 

Triest always achieves best speed-up but worst recall on both datasets D1 and D2. 

Since it manipulates edges without heap management like UCRS and LCRS, processing 

edges has less time than processing subgraphs like SR and OSR.  

LCRS has the closest speed-up to Triest on both datasets and outperforms all the 

algorithms in terms of recall on D1. The reason for that is the novel method in UCRS and 

LCRS, which is designed to replace the random edge deletion in whole reservoir with 

controlled edge deletion.  The idea behind this method is not to lose high degree nodes, 

which have more impact on recall. Higher recall is gained since more connected (higher 

degree) nodes remain in the sample reservoir, while in Triest the edge deletion from 
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sample reservoir is done randomly, by this way of edge deletion; patterns that are more 

important can be lost. for higher values of total number of nodes in the sample e.g., 1800 

instead of 1200 or 600, higher recall is achieved. This is because increased maximum 

whole reservoir size brings increased sample reservoir size, which represents the original 

graph better. 

UCRS again is very close to Triest in speed-up on both datasets. It has much better 

recall than Triest on D1, and a slightly better recall on D2. The reason for these results is 

the novel method in UCRS that is designed to replace the random edge deletion in sample 

reservoir with controlled edge deletion.   

MCRS has lower speed-up than UCRS, since the heap size in MCRS is larger than 

the heap size in UCRS, and it needs more time to manage it, also it has the lowest recall 

among all the other five algorithms, since in MCRS the higher  connectivity edge is  a 

candidate to be removed to keep a fixed memory size and replaced with edges, while in 

UCRS and LCRS the less connected edge is removed whenever the whole reservoir is 

full, this way supports the motivation for UCRS and LCRS, where  less connected edges 

are candidates to be removed, that can keep important patterns in the sample reservoir, 

and as a result the recall increases.  

SR is slightly faster than the slowest algorithm (OSR) over all the speed ups of 

OSR, so it is the second slower algorithm after OSR on D1 and D2. The reason for that 

is; both of them processing subgraphs and not edges, while handling subgraphs needs 

higher time complexity than handling edges. SR achieves best recall on D2 only, since 

D2 is denser than D1.  

OSR is the slowest algorithm on both datasets D1 and D2 with best recall or close 

to best on D2 only, OSR recall to SR recall is (0.74/0.72 – 0.85/.85– 0.88/.87) on D1 and 

equal recall on D2(0.93). OSR best recall on D2 only since D2 is denser than D1. The 

reason for these results since OSR handling subgraphs which consumes higher execution 

time than handling edges, in addition it is a modified version of SR, that it has an added 

procedure over SR, which is called “skip optimization” procedure to explore 

neighbourhood efficiently. 
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Figure 5.19 shows the summary of execution time speed-ups and recall results for 

Triest, UCRS, LCRS, SR and OSR algorithms on the datasets D1 and D2. M is assigned 

to 600, 1200 and 1800 nodes. 

Triest always scores the best speed-up but worst recall on both datasets D1 and 

D2. This is because e it handles edges without heap management like UCRS and LCRS, 

working on edges has less time than handling subgraphs like SR and OSR.  

LCRS has the closest speed-up to Triest on both datasets and outperforms all the 

algorithms in terms of recall on D1. The reason for that is the novel method in UCRS and 

LCRS, which is designed to replace the random edge deletion in sample reservoir with 

controlled edge deletion.  The working idea of this method is not to lose high connected 

edges, which have more impact on recall. Higher recall is gained since more connected 

(higher degree) nodes remain in the sample reservoir, while in Triest the edge deletion 

from sample reservoir is done randomly, by this way of edge deletion; patterns that are 

more important can be lost. for higher values of total number of nodes in the sample e.g., 

1800 instead of 1200 or 600, higher recall is achieved. This is because increased 

 Table 5.5.   Summary of Execution Time Speed-ups and Recall Results 

Dataset M 

(nodes) 

 Triest  UCRS LCRS  MCRS SR OSR 

 
600 Speed-up 183.43 137.78 173.04 95.74 0.94   

Recall 0.16 0.66 0.76 0.14 0.72 0.74 

D1 1200 

 

1800 

Speed-up 67.87 43.51 61.63 22.74 0.96   
Recall 0.64 0.82 0.86 0.28 0.85 0.85 

Speed-up 38.08 19.16 34.54 12.13 0.99  

  Recall 0.64 0.89 0.91 0.56 0.87 0.88 

D2 600 Speed-up 200.76 126.56 172.65 109.78 0.88   
Recall 0.13 0.16 0.19 0.04 0.93 0.93 

D2 1200 Speed-up 61.76 13.82 44.57 12.96 0.88   
Recall 0.37 0.39 0.67 0.19 0.93 0.93 

  Speed-up 35.08 12.03 28.26 7.715 0.72   

D2 1800 Recall 0.59 0.62 0.78 0.07  0.93 0.93 



85 
 

maximum whole reservoir size brings increased sample reservoir size, which represents 

the original graph better. 

UCRS achieves a very close speed-up to Triest on both datasets. It has much better 

recall than Triest on D1, and a slightly better recall on D2. The reason for these results is 

the novel method in UCRS that is designed to replace the random edge deletion in sample 

reservoir with controlled edge deletion.   

MCRS has lower speed-up than UCRS, since the heap size in MCRS is larger than 

the heap size in UCRS, and it needs more time to manage it, also it has the lowest recall 

among all the other five algorithms., since in MCRS the higher  connectivity edge is  a 

candidate to be removed to keep a fixed memory size and replaced with edges, while in 

UCRS and LCRS the less connected edge is removed whenever the whole reservoir is 

full, this way supports the motivation for UCRS and LCRS, where less connected edges 

are candidates to be removed, that can keep important patterns in the sample, and as a 

result the recall increases.  

SR is slightly faster than the slowest algorithm (OSR), so it is the second slower 

algorithm after OSR on D1 and D2. The reason for that is; both of them processing 

subgraphs in the sample reservoir and not edges, handling items of subgraphs  needs 

higher time complexity than handling items of edges. SR has best recall on D2 only, since 

D2 is denser than D1.  

OSR is the slowest algorithm on both datasets D1 and D2 with best recall or close 

to best on D2 only. OSR best recall on D2 only since D2 is denser than D1. The reason 

for these results since OSR handling subgraphs which consumes higher execution time 

than handling edges, in addition it is a modified version of SR, that it has an added 

procedure over SR, which is called “skip optimization” procedure to explore 

neighbourhood efficiently. 

On D1 and M= 1800; LCRS and UCRS achieve higher recall than the other 

compared algorithms, it noticed that as the M size increases, the recall of LCRS increases, 

and on D2, and M= 1800; the recall of LCRS becomes closer to SR and OSR, by applying 

extreme values of M on D2, LCRS can achieve an equal recall to SR and OSR, the reason 

for that is as the whole reservoir size increases, the sample reservoir size increases and 

the number on non-important edges were deleted and more important edges that can affect 

the patterns are increases.  
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Figure 5.19. Summary of Recall and Speed-up on Datasets D1 and D2  
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CHAPTER 6 
 

 

CONCLUSION 
 

 

Frequent subgraph mining is defined as finding all the subgraphs in a graph that 

appear more than a given support threshold. It is a widely studied problem as it results in 

the discovery of recurrent structures. Frequent subgraph mining process consists of two 

phases, i.e., candidate generation and support computation (Dhiman and Jain, 2016). 

There are several challenges of Frequent Subgraph Mining, they are as follows. 

1) the total number of frequent subgraphs can become too large to allow a full 

enumeration using reasonable computational resources. 2) Subgraph isomorphism 

process is the most expensive step since it is an NP-complete problem. 3) Graph related 

operations such as subgraph testing, generally have higher time complexity than the 

corresponding operations on itemsets, sequences, and trees have higher time complexity. 

4) candidate generation which occur in Apriori based approach, candidate generation is a 

very complicated and costly process and second, the pruning of the false positives is 

costly as subgraph isomorphism is NP- Complete. 5) mining frequent patterns from a 

large data set, such mining often generates a huge number of patterns satisfying the 

minimum support threshold, A large pattern will contain an exponential number of 

smaller, frequent sub-patterns.  6) distributed FSM from single massive graphs, due to 

not only the special constraints of FSM algorithm design, but also the deficient support 

from existing distributed programming frameworks.  7) large sizes of graphs, therefore, 

a natural solution is to reduce the size of the call graph with the use of a compression-

based approach. This naturally results in loss of information, 8) privacy preserving data 

mining of graphs is especially challenging, because background information about many 

structural characteristics such as the node degrees or structural distances can be used in 

order to mount identity-attacks on the nodes.  9) Dynamic graphs is challenging since 

most existing frequent subgraph mining algorithms are devised to handle static graphs. 

10) Response time in continuous evolving graphs. Such dynamic applications require 

quick responses to queries to a number of traditional applications such as the shortest path 

problem or connectivity queries. Such queries are an enormous challenge, since it is 
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impossible to restore the massive volume of the data for future analysis. 11) Subgraph 

matching in dynamic graphs due to the emerging use of dynamic graphs. 12) single large 

graph is challenging due to the very high complexity of handling it. This work focuses on 

the last four challenges, to minimize the challenges in such dynamic environments, 

sampling is used to produce approximate algorithms. 

In this work, three algorithms (UCRS, LCRS and MCRS) are proposed for 

approximate frequent subgraph mining (FSM) in evolving graphs, where edge/vertex can 

be arbitrary added using a fixed sized whole reservoir. Whole reservoir keeps the sample 

reservoir and the heap reservoir, the sample reservoir represents the characteristics of the 

original dynamic graph and allows dynamic algorithms to work on reduced sized graph, 

while the heap reservoir consists of distinct nodes of the edges in the sample reservoir. 

The three algorithms manage the edges in the sample reservoir with the help of an 

auxiliary heap reservoir. This heap reservoir keeps the degrees of the nodes corresponding 

to the edges in the sample reservoir, the node degrees are kept in ascending order starting 

from the root node, and the node with minimum degree is retrieved directly whenever 

necessary. In UCRS and LCRS the edges of low connectivity nodes are deleted from the 

sample, which can maximize accuracy without sacrificing time and space. The third 

algorithm MCRS is proposed as a kind of heuristic, it works in a similar manner to UCRS 

and LCRS, while the main difference is in selecting the candidate edge to be deleted from 

sample reservoir, whenever the whole reservoir is full, in this algorithm the candidate 

edge is the edge with maximum degree of its nodes, by this way, the high connectivity 

edges are deleted from the sample reservoir, as a result,  the recall is expected to be 

decreased. So, the results of MCRS motivate the need for the advantages of UCRS and 

LCRS algorithms. 

 Our experimental evaluation reveals that; UCRS and LCRS can outperform state-

of-the-art approaches in terms of recall and execution time. The findings are, i) on sparse 

datasets; LCRS achieves highest recall in comparison to recent works, ii) on dense 

datasets; UCRS and LCRS can’t achieve the highest recall, but it can be higher than one 

of recent works, the recall of LCRS is getting higher and closer to the recall as the total 

number of nodes in the sample is getting higher,  iii) on sparse and dense datasets; LCRS 

outperforms UCRS in recall and scalability, UCRS and LCRS achieve high scalability, 

they can be as good as the fastest competitor algorithm, the speed up of LCRS can be up 

to 99% faster than the exact algorithm. iv) on sparse datasets and high values of whole 

reservoir size, UCRS and LCRS can achieve highest recall with smaller closer time to 
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fastest algorithm, v) on dense datasets and higher values of whole reservoir sizes, the 

recall of UCRS and LCRS getting closer to the highest recall until it achieves the highest 

recall. LCRS is recommended for sparse datasets, and it is recommended for dense 

datasets with large values of whole reservoir size.  MCRS has the worst speed-up and 

recall among the other proposed and competitor algorithms. 

This research can be continued with some challenges left to explore as follows:  

 The UCRS, LCRS and MCRS algorithms are designed to handle 3 nodes 

subgraph patterns, they can be extended to retrieve 4 or 5 node subgraph 

patterns. 

 Applying different heuristics in controlling the edge deletion from sample 

reservoir (other than edges with minimum or maximum node degrees), then 

the performance evaluation can be measured and compared with UCRS, 

LCRS and MCRS algorithms. 

 Shuffling the used datasets in the experiments, then monitoring the new 

results and comparing them with the previous results. 

 Determining the proper sample reservoir size for the UCRS, LCRS and 

MCRS algorithms. 

 Modifying a new CRS algorithm based on subgraph sample reservoir and 

trying to find a way that can reduce the execution time. 
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