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ABSTRACT

AN INVESTIGATION ON DATA-BASED FAULT DETECTION
METHODS IN PETROLEUM REFINERIES

The petroleum refineries are complex systems vital for energy and production
sectors. During production, these complex systems might experience various faults,
including fluid leaks in unit operations. The detection of leaks is important for a reliable,
safe, and efficient operation. Among the possible leak detection mechanisms, data-based
leak detection methods are promising in terms of low investment cost, less human
intervention, ability to detect small leaks in advance and direct integration capability to
distributed control systems. The aim of this study is to investigate data-based leak
detection methods in a heat exchanger in a petroleum refinery. To that end, possible
leaking problems in petroleum refineries are assessed, multiple leak cases from a real heat
exchanger in a petroleum refinery are determined, literature studies are searched for
appropriate data-based leak detection methods, applicability of a set of data-based leak
detection methods is studied with a literature benchmark data set, and the real cases of
heat exchanger leaks are studied with the determined leak detection methods. Data sets
for multiple leak cases of a heat exchanger are obtained from a TUPRAS refinery. The
benchmark data set is obtained from Tennessee Eastman Process (TEP). Discrete Wavelet
Transform (DWT), Auto Encoder (AE), and Exponentially Weighted Moving Average
(EWMA) are selected as the data-based leak detection methods. The selected data-based
methods are first studied with TEP data set, and good fault detection capability is
observed. Then, the real leak cases are studied. All three data-based methods are found
successful in detecting the actual leak cases. For some of the cases, leaks are detected

with data-based methods in advance of the operation engineers noticing the leak.



OZET

PETROL RAFINERILERINDE VERI TABANLI HATA TESPIT
METOTLARI UZERINE BIR INCELEME

Petrol rafinerileri, enerji ve iiretim sektorleri i¢in hayati 6nem tasiyan karmasik
sistemlerdir. Bu karmasik sistemler iiretim sirasinda, temel operasyonlardaki sivi
sizintilar1 dahil olmak {izere, gesitli arizalarla karsilagabilir. Sizintilarin tespiti giivenilir,
emniyetli ve verimli bir ¢alisma i¢in 6nemlidir. Olas1 kagak tespit mekanizmalarindan
veri tabanli kagak tespit yontemleri, diisiik yatirim maliyeti, daha az insan miidahalesi,
kiiciik kagaklari onceden tespit edebilme ve dagitik kontrol sistemlerine dogrudan
entegrasyon kabiliyeti acisindan umut vericidir. Bu g¢aligmanin amaci, bir petrol
rafinerisindeki bir 1s1 esanjoriinde veriye dayali kagak tespit yontemlerini aragtirmaktir.
Bu amagla, petrol rafinerilerinde olasi sizinti problemleri degerlendirilmis, bir petrol
rafinerisindeki gercek bir 1s1 esanjoriinden ¢oklu sizinti durumlart belirlenmis, veriye
dayal1 uygun sizint1 tespit yontemleri i¢in literatiir arastirmasi yapilmis, bir dizi veriye
dayali sizint1 tespit yonteminin uygulanabilirligi literatiir referans veri seti ile ¢alisilmis
ve belirlenen kagak tespit yontemleri ile ger¢ek 1s1 esanjorii kagak durumlarn
incelenmistir. Is1 esanjoriiniin ¢oklu kacak durumlari icin veri setleri bir TUPRAS
rafinerisinden alimmustir. Literatlir referans veri seti Tennessee Eastman Process'ten
(TEP) elde edilmistir. Kesikli Dalgacik Doniistimii (DWT), Otomatik Kodlayici (AE) ve
Ustel Agirlikli Hareketli Ortalama (EWMA) yontemleri, veri tabanl kagak tespit
yontemleri olarak secilmistir. Secilen veriye dayali yontemler 6nce TEP veri seti ile
calisilmig ve iyi bir kacak tespit kabiliyeti gézlemlenmistir. Ardindan gercek sizinti
vakalar1 incelenmistir. Her {i¢ veriye dayali yontem de gercek sizinti vakalarini tespit
etmede basarili bulunmustur. Baz1 durumlarda sizintilar, operasyon miihendisleri sizintry1

fark etmeden once veriye dayali yontemlerle tespit edilmistir.
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CHAPTER 1

INTRODUCTION

1.1. Faults and Leaks in Petroleum Refineries

Petroleum refineries have an important role in energy market. In petroleum
refineries (also known as oil refineries), crude petroleum is processed and turned into
valuable products. Some of the processed petroleum products, such as diesel and gasoline,
are among the major fuel sources of world. TUPRAS is one of the largest oil and gas
refinery in Turkey. It continues its production in 4 different locations, as izmir, Kirikkale,
Batman and Izmit. The petroleum refining is a complex process which require constant
monitoring of process variables (Rosenfeld and Feng 2011).

In recent years, the oil and gas industry has been experiencing difficulties in
meeting the demands of saving energy, trying not to harm the environment, and using
resources more efficiently in production process (Clavijo et al. 2019). Since the refining
process is complex, many process faults are encountered during the production. The most
common faults in the petroleum refining industry are divided into two groups: equipment
failure and human failure. Shutdowns caused by equipment failure cause great losses.
Early detection of equipment failures and causes have great importance. Equipment such
as pumps, compressors and rotating equipment can quickly fail due to wear, which can
deteriorate product quality (Ohtani 2020).

It is important to detect faults for a reliable and safe production. Fault can be
defined as non-admitted change of a feature of the system from appropriate and ordinary
conditions (Miljkovi¢ 2011). Commonly encountered faults in oil and gas industry
include turbine trips, heat exchanger contamination, and leaks. Leaks are important
because of the economic, health, environmental and structural problems they cause. Most
leaks are found to be sourced in connectors, valves, compressors and heat exchangers by
Environmental protection Agency (EPA) (Leak Detection and Repair, 2021).

Oil and gas industry consists of many complex units and pipelines. If leaks occur
in visible points such as pipelines, they can be easily noticed. However, detecting leaks

in invisible point such as equipment will take time and cause product losses. Therefore,



it is important to detect leaks in a timely manner. Leaks that have negative effects on the
environment, human health and economy should be determined as quickly as possible.
For this reason, interest in leak detection methods and applications is increasing day by
day.

The records kept in the USA are the main sources to investigate the reason of leaks
on all pipeline systems. The percentages of causes of leaks that have occurred in the last
20 years are shown in Figure 1.1. By looking at the chart, it can be said that excavation
damages are major causes of leaks, followed by material failures and corrosion (Bolotina
et al. 2017).

4.00/0—)‘

[l ALL OTHER CAUSES

[l CORROSION

[[] EXCAVATION DAMAGE

[] HUMAN ERROR

[l MATERIAL FAILURE

[l NATURAL FORCE DAMAGE

[[] OTHER OUTSIDE FORCE DAMAGE

5.3% —7

Figure 1.1. Causes of leaks
(Source: Bolotina et al., 2017)

It is also important to examine the damage caused by the leaks. The economic and
health aspects of these leaks are quite painful. The best example of this is the results of
the leak that occurred in the BP Alaska pipeline in March 2006. 4,800 barrels of oil were
recorded as lost within 5 days. In addition, Prudhoe Bay was phased out and a fine of $20
million was also imposed (Penner et al., n.d.). To give another example, approximately
600,700 tons Volatile Organic Compound leakage (VOC) in a year is leaked from valves,
compressors and connection point as reported by EPA (Leak Detection and Repair, 2021).
Another event in the USA (in 1999) is undetected the chemical leaking into the
groundwater for years. This situation lasted for a long time, as no leak monitoring method
was implemented. It was noticed at a much later stage with the samples taken from the
lake by the US Geological Survey. This situation greatly harmed the aquatic organisms



and contaminated the soil and the groundwater so leaks have to detect in a timely manner
(Rosenfeld and Feng 2011).

The leaks can occur at visible points on pipelines or in places that can not be seen
with the naked eye, such as underground pipelines. Considering a petroleum refinery,
there are many pipeline systems through which products are transferred, and the leakage
might occur due to mechanical and material related causes, such as pipe corrosion. Since
the oil and gas industry is a high-risk industry, leaks should be constantly monitored by
the operators and extra monitoring should be provided by detectors. According to
investigations in the literature and at the TUPRAS refinery, leaks occurring at visible
points such as pipes, flanges and valves are more common. They are detectable and easy
to respond to the failure. Heat exchangers are in the first place in terms of leakages
experienced in equipment. It has been noted in the literature that a leak occurs between
the first 3-5 years of their life. It is very difficult to detect the leaks in these areas and
their costs are quite high (Clover et al. 2010). Therefore, it is important to study methods

to monitor leaks in petroleum refineries.

1.2. Heat Exchanger Types

Since heat exchangers are major points of leaks, a brief overview of the heat
exchangers will be given in this section. Heat exchanger is the process equipment used
for transferring heat between two fluids. It is one of the main process units in many
industries such as oil and gas refinery, steam power station, plants of chemical processing,
etc. (Zohuri 2016). There are several types of heat exchangers. These are compablock,
shell and tube, plate, fluidized bed and storage type heat exchangers (Zohuri 2016; Shah
1983). In oil and gas industry, shell and tube heat exchangers are the most commonly
used heat exchanger types because of their robust geometry and easy repair. These type
of heat exchanger are classified into four groups within themselves as u-tube, fixed tube,
floating head and kettle type heat exchangers (Kundnaney and Kushwaha 2015). A brief
explanation of these types is given below.

Figure 1.2 shows a u-tube heat exchanger. This type of heat exchangers generally
is not preferred in oil and gas industry because it is difficult to clean in case of any

leakage.
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Figure 1.2. U-tube Heat Exchanger
(Source: Kundnaney & Kushwaha, 2015)

Figure 1.3 shows a fixed tube heat exchanger. This is the type of heat exchanger
that is mostly preferred in refineries due to its ease of operation, low cost, and easy repair

capability.
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Figure 1.3. Fixed Tube Heat Exchanger
(Source: Kundnaney & Kushwaha, 2015)

Figure 1.4 shows a floating head heat exchanger. Since they have the floating head
that improves the heat transfer between fluids, floating head is known as an efficient heat
exchanger type for oil and gas industry. In contrast to u-tube heat exchangers, floating

head heat exchangers are easier to clean.
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Figure 1.4. Floating Head heat Exchanger
(Source: Kundnaney & Kushwaha, 2015)

Figure 1.5 shows a kettle type heat exchanger. It is a special heat exchanger type

used in cases where high pressure gases are present. Shell part is suitable to encounter
expansion of gas in the system.
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Figure 1.5. Kettle Type Heat Exchanger
(Source: Kundnaney & Kushwaha, 2015)

Now, heat exchangers, the equipment where most leaks in petroleum refineries
occur, are introduced. We can continue with the leak detection methods.

1.3. Leak Detection Methods

The main purposes of leak detection are indication of leak and improvement of

system reliability. These methods are mainly classified into three groups as hardware,



software and biological methods, as schematically shown in Figure 1.6. The requirement
of external sensor installations is essential for detection of leaks in pipeline with
hardware-based methods. Biological methods are based on the senses of humans or
animals. Software-based methods are data-based methods. Software-based methods are
used online, or they utilize historical data to detect leaks. While sensors and devices are
important for the hardware based methods, data based and computational approaches are
important for software based methods (Mujtaba et al. 2020).

Ultrasonic Flow Meter

Smart Ball Computational Intelligence
Electric Sensor System Identification

Soil Monitoring State estimation

Liquid or Vapor Sensor. LEAK Statistical
Thermal Imaging DETECTION signal Processing
Optical Sensors AND : H
) DIAGNOSTICS Transient Modelling
Acoustic Sensors METHODS

Trained Humans

Trained Dogs

Drone

Soap Bubble

Figure 1.6. Classification of methods
(Source: Mujtaba et al., 2020)

If these methods are examined in more detail, in some sources, methods are
divided into three groups as direct, indirect and external methods, as shown in Figure 1.7
(Zaman et al. 2020). While hardware-based methods are classified as a direct method,
software methods are classified as an indirect method. Software-based methods are
further classified as data-based and model-based methods. Data-based methods are
separated based on data type, data source and technique. Based on the data type, there are
supervised and unsupervised methods (Tutkan, Ganiz, and Akyokus 2016). While
supervised technique is based on the principle of training the machine with the labeled
data, unsupervised technique uses unlabeled data. In addition, data based methods are
classifed acording to the data source such as pressure, flow, demand and flow-
pressure/demand pressure. Depending on the tehnique, data-based methods are separated

into classification, prediction classification, statistical and signal processing groups.
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Figure 1.7. Leak Detection Methods
(Source: Zaman et al., 2020)

In the next sections, we will briefly overview the leak detection methods.

1.3.1. Hardware Based Leak Detection

Some additional and special sensors are used to detect leaks in the class of
hardware-based leak detection techniques. These sensors consist of acoustic detectors,

fiber optic sensors, ultrasonic technologies, infrared thermograph, and radiotracers.

1.3.1.1. Acoustic Leak Detection

This method uses acoustic detectors to detect leak and leak localization. A basic
representation of the set-up is shown in Figure 1.8. Acoustic sensors are placed along the
pipeline. These sensors include auscultation sticks, aqua phones, and ground

microphones. These devices give the acoustic map of the system (Odusina 2008).
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Figure 1.8. Acoustic leak detection set up (a) external (b) in-pipe measurement
(Source: Khulief et al., 2012)

1.3.1.2. Fiber Optic Sensing Leak Detection

This technique gives an information about leak based on the measurements of
fiber optic probes. Figure 1.9 shows the basic set-up and representative result obtained
upon a leak (Nikles et al. 2004). Temperature change gives an information about
occurrence of a leak. Since these probes analyze the temperature change of leakage area,

they have to be carefully placed to touch both pipe and soil.

SUALA F R
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Figure 1.9. Fiber Optic Sensing Leak Detection
(Source: Nikles et al., 2004)



1.3.1.3. Infrared Thermography

Infrared Thermography (IT) method is useful for the pipeline leakage. Infrared
cameras are important to notice sudden temperature change caused by leak. Experimental
set up of IT is shown in Figure 1.10. Any anomaly can be detected with the color based
on the warm and cool environment. This method is user friendly and has a quick response
time (Adegboye, Fung, and Karnik 2019).

IR camera

Moitor! PC

Photograph of an impeller end
of a blower system

Figure 1.10. Set up of Infrared Thermography method
(Source: Adegboye et al., 2019)

1.3.1.4. Radiotracer

Radiotracer detector can be used for open and closed systems. Also, it is preferred
to detect leaks both in underground pipeline network and shell and tube type heat
exchangers. There are two types of detectors: injection detector known as inlet detector
and leak detector known as output detector. These detectors are located at tube input and
shell output, respectively, as shown in Figure 1.11 (Pipelines and Radiotracers 2009).
Injection pulse is monitored using injection detector. If any leakage occurs in the heat

exchanger, response peaks are observed from leak detectors,
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Figure 1.11. Location of Detectors
(Source: Pipelines&Radiotracers, 2009)

Table 1.1 below shows a summary of hardware-based leak detection methods.
Each method has its strengths and weaknesses according to its working principles. In
addition, these methods are costly because they require new hardware. This narrows their

usage areas even though they have high accuracy.

Table 1.1. Summary of Hardware Based Methods
(Source: Adegboye et al., 2019 & Adedeji et al., 2017)

Methods Cost Leak Principle Strengths Weakness
Localization
Acoustic High Yes Collect the Easy to install | Affected by

signal from and provides environment
where leak early detection | al conditions

occur
Insufficient
for small
leaks
Fiber Optic High Yes Takes Can act as High cost
advantage of | sensor and and low
temperature | transmission durability
changes medium
caused by
leak

(cont. on the next page)



Table 1.1 (cont.)

Methods Cost Leak Principle Strengths Weakness
Localization

Infrared High Yes Uses infrared | High power to | Not suitable

Thermography imaging visualize for small
techniques to | images, easy leak
detect to use detection
temperature
changes

Radiotracer High No Use the Sensitive for High cost
impulse and | leak, suitable
response for open and
peaks closed systems

1.3.2. Biological Based Leak Detection

Professional people and animals are required for visual or biological methods. On
the pipeline, occurrence of any leaks can be detected by an experienced person. This
detection can be supplied with visual and/or olfactive observation of leakage point. In
addition, noise and vibration caused by leakage can give information about the presence
of leak and leak location. Trained animals such as dogs and pigs also play an active role
in leak detection. Strong sense of smell of dogs can sometimes give better results than
human. Although this is the case, these trained dogs could be used for constant monitoring
(Adegboye, Fung, and Karnik 2019).

1.3.3. Software Based Leak Detection

Software base leak detection methods are investigated into two groups as model-
based and data-based methods. In software-based methods, operational parameters such

as pressure, flow rate, temperature, density, volume are used to detect anomalies.
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1.3.3.1. Model Based Techniques

1.3.3.1.1. Mass-Volume Balance

The principle of this method is mass conservation. This method is generally
applied for pipeline leakage cases. Mass inflow and outflow values must be in balance in
the absence of leaks. Any differences in flow values give an information about anomaly

in the pipe. The mass balance is given in Equation 1 (Adegboye, Fung, and Karnik 2019).

My (6) = M, (1) = S Eqn 1.

where t is time, and M;(t) and M, (t)values show inlet and outlet mass flow rates,
respectively, and M; is the mass stored in the pipeline length L. Along the pipeline, stored

mass amount changes and this changing can be represented with Equation 2.

aMj, _ i L _ Li
= ado POOAMAx = [ < p(D)A() > dx Eqn 2.

where A is cross-sectional area of the pipe and p is the density of the fluid. If p

and A are assumed constant in Equation 2, % will be zero. In that case, we obtain:

M;(t) = M,(t) =0 Eqn 3.

Also, according to assumption that p is constant, we obtain as Equation 4
Vi(t) =V,(5) =0 Eqn 4.
where V;(t) and V, (t) are inlet and outlet volumetric flowrates, respectively.

Any imbalances in Equation 5 represented as R, gives an information about

existence of leak considering the threshold, Ryy,.
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R(t) = Wi(t) = Vp(®) EqnS.

N R, in absence of leak
> Ry, if thereis a leak

The main disadvantage of this method is inability to determine leak location.

Additionally, this method is affected by random disturbance and pipeline dynamics.
1.3.3.1.2. Negative Pressure Wave

Basic representation of the setup for negative pressure wave method is shown in
Figure 1.12 (Adegboye, Fung, and Karnik 2019). Occurrence of leak causes pressure drop
and reduction of flow rate in pipe. These changes create a negative pressure wave (NPW)
at the leakage point and this wave spread towards the ends of the pipe. Arrival time of the
wave to a detector gives an information about location of leak (Sheltami, Bala, and
Shakshuki 2016).

Leak point
Sensor Sensor
Upstream Downstream
_— : & K P»» :
Fluid flow j
direction

Negative pressure
waves

F
L 4

X

Figure 1.12. NPW representation
(Source: Sheltami et al., 2016)

The arrival time of the wave is calculated by Equations 6, Equations 7, Equations
8, and Equations 9. In these equations, t, is the leakage time, t; is the wave arrival time

to upstream sensor, t, is the wave arrival time to the downstream sensor, V is liquid
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velocity, X is the distance between leak point and upstream sensor, a, is propagation
velocity of NPW, p is liquid density, K is liquid bulk modulus, E is elasticity modulus,
C is correction factor due to constraints of pipeline, D is the diameter of pipeline, and e

is the thickness of pipeline.

ty—to = J, — dx Eqn 6.
L 1

ty—to = [ e dx Eqn 7.

At =2 12X Eqgn 8.

_ K/p
Ax = \’ 1+(K/E)(D/e)C Eagn 9.

1.3.3.1.3. Pressure Point Analysis

The pressure point analysis (PPA) takes into consideration pressure values taken
from certain points on the pipeline. If the measured value falls below the threshold values
which are determined according to the average of the previous measurements (Adedeji et
al. 2017) or the trend of the old measurements (Adegboye, Fung, and Karnik 2019), it
indicates the leakage that has occurred on the pipeline.

This method is based on the principle of pressure drop that will occur in the event
of a leak. It is one of the easy and inexpensive methods to apply. It is used to detect the
leak, but it is not appropriate for detecting the leak location (Adegboye, Fung, and Karnik
2019).

1.3.3.2. Data Based Techniques

The main source of data-based methods is data acquired from sensors. These

methods can be applied by using online or historical data. The complexity of the pipeline
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or process does not affect the applicability of these methods. Generally, variables such as
flow, pressure, temperature, vibration are used. Among the possible leak detection
mechanisms, data-based leak detection methods are promising in terms of low investment
cost, less human intervention, ability to detect small leaks in advance and direct
integration capability to distributed control systems. As stated in the Introduction section,
data-based methods are examined in three groups according to data type, data source and
technique (Wu and Liu 2017), (Zaman et al. 2020). When methods are investigated
according to the technique, the methods according to the classification are support vector
machine, Bayesian network, rule-based and neural network methods. Statistical methods
include principal component analysis (PCA), independent component analysis,
exponentially weighted moving average (EWMA). Signal processing methods include
fast Fourier transform (FFT) (signal based), discrete or continuous wavelet transform
(DWT or CWT) (wavelet based) (Ahmed, Naser Mahmood, and Hu 2016). Autoencoder
(AE) is a kind of artificial neural network (Mirsky et al. 2018). Considering the studies
in the literature, DWT, AE, PCA and EWMA methods are used in this study and the
detailed explanations of the methods are given in methods section (Perera, Rajapakse,
and Jayasinghe 2007), (Chen et al. 2018), (Ye, Borror, and Zhang 2002).

1.4. Aim of Thesis

The aim of this thesis is to investigate data-based leak detection methods on a real
unit operation in a petroleum refinery. The real leak cases are extracted from a heat
exchanger in the TUPRAS Izmit Refinery. The data-based methods extracted from
literature are first validated on a literature benchmark data set, and then applied on the

real leak cases.

1.5. Thesis Organization

This thesis comprises of six chapters. In chapter 1, brief information is given about
the leaks in refinery and leak detection methods. Also, types of heat exchangers are
explained. In Chapter 2, studies using data-based anomaly detection methods in the
literature and leak detection in heat exchangers are included. Detailed information about
DWT, EWMA and AE is given in Chapter 3. In Chapter 4, the benchmark dataset and
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chemical process are briefly explained, and the results of the data-based methods applied
on benchmark dataset are provided. In Chapter 5, TUPRAS cases are explained, the
methods are applied on each case and the obtained results are presented. In chapter 6, the

obtained results are briefly summarized, and future work and recommendations are given.
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CHAPTER 2

LITERATURE SURVEY

2.1. Literature Search Criteria

In the literature, there are many methods for detecting leaks or anomalies that may
occur in heat exchangers. Most of these include additional sensors placed in the system
or offline detection mechanisms. In order to focus on the aim of applying data-based
methods to detect leaks in heat exchangers, the following criteria have been followed in

the article selection from the literature:

e Leaks occur in heat exchanger.

e Studies are carried out online.

e Only real cases are studied which includes either operational industrial equipment
or pilot scale equipment.

e Only data-based methods are studied.

e Studies in which only physics-based models (i.e., first principle-based models)

are utilized in leak detection are excluded.

When the literature is searched according to the criteria, only a few studies are
found. In the next section, the studies of Panday et al., Guillen et al., and Habibi et al. are
summarized briefly (Panday et al. 2021), (Guillen et al. 2020), (Habbi, Kinnaert, and
Zelmat 2009).

2.2. Literature Studies Satisfying the Criteria

Panday et al. carried out studies aimed to detect heat exchanger leaks in a with
300 MW coal-fired power plant. The purpose of their work was to reduce the number of
unit shutdowns because of leaks in the tubes of heat exchanger. For this purpose, they
carried out detection studies by applying data-based methods with the time-series data

they had taken collected from the process (Panday et al. 2021).
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The boiler part of the plant where data collected is shown in the Figure 2.1. Mass
balance was made around the steam drum (shown in the form of a balloon in Figure 2.1)
with collected the time-series data. The most important parameter for leakage was
determined as the ratio of feed water mass flow rate to steam mass flow rate. Here, riis
steam mass flowrate, m, is feed water flowrate, m,, is water mass flowrate, 7, is
blowdown rate, 7, is sootblowing rate, Q;,, is the heat obtained from the furnace and is
used to heat the water in the boiler walls. m,, /1 ratio was calculated and threshold was

determined based on this ratio.

Main Steam / Superheat Spray Main Steam
SUPERHEAT SPRAY TEMPERATUREPRESSURE TEMPERATURETHROTTLE PRESSURE
N
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Figure 2.1. Basic representation of boiler part
(Source: Panday et al., 2021)

In this study, three different sets were examined as set A, set B, and set C. Each
set had different load conditions (i.e., electrical energy output requirement conditions).
The loads were calculated according to the general mass balance of the system. In Figure
2.2, set A shown with blue diamonds refers to the condition where load is changed
between 50 and 99% of the full load, set B shown with green circles refers to the condition
where load is changed between 48 and 100% of the full load conditions and set C shown
with orange triangles to the condition where load is changed between 57 and 93% of the
full load case. Here, set A and set B belong to fault free data while set C belongs to faulty

data. The deviation of each set from the regression line is also shown in the Figure 2.2.
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These sets deviate from the regression line at low load conditions since the power
plant was designed for load conditions that require mass flowrates above 1.5 million
Ibm/hr. The slope of the graph is equal to the ratio m,,/ms. When the slopes were
compared for each set, the slopes of set A and set B were equal and a 1% larger slope was

observed with set C. The authors interpreted this difference as the indication of leak.
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Figure 2.2. Comparison of mg and my
(Source: Panday et al., 2021)

Here, an optimal exponential moving average (EMA) method was proposed by

Panday et al. The EMA equation is given in Equation 10 below:
2k +1) = 2(k) + a(y(k) — 2(k)) Eqn 10.

where, y(k) is the present measurement, X(k)is the previously computed value,
x(k + 1) is the exponentially weighted mean between the y(k) and x(k), and « is the
smoothening constant (smaller a ignores recent data, and larger a ignores past data). In
general, a is set to a value ranging between 0.05 and 0.20 in the literature. Panday et al.
instead derived the optimal value of a by equating the derivative of mean squared error

with respect to a to zero. This equation then becomes the Kalman filter, which is suitable
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for minimizing the mean squared difference between the current value and the measured
value.

In this study, Kalman filter (optimal EMA) and simple EMA filter were compared
as shown in Figure 2.3. In the graph, the black line shows the Kalman based filter result,
the purple line shows the EMA result, the gray line shows the actual measurement values,
and the green dashed line represents the upper control limit (UCL) which was determined
by using the nominal plant conditions. When the results are examined, the authors
concluded that the optimal EMA (Kalman) filter responds quicker than simple EMA filter
(8 hours in advance of the simple EMA filter).

Timeseries
Kalman Based
— EMA Filter
== UCL

mt’}‘ms (')

60 120 180
Measurement (min) x 15

Figure 2.3. Result of proposed method and Kalman filter
(Source: Panday et al., 2021)

In another study, Guillen et al. created a model of fan coil units (FCU) in an
operational nuclear power plant. The FCU unit consists of a heat exchanger and a fan, as
shown in Figure 2.4. The nitrogen is cooled down by river water in the heat exchanger
and fan moves the cooled nitrogen. The nitrogen is then used to cool down various parts
of nuclear reactor. There were four FCUs in the nuclear power plant under investigation.
FCUs are known to cause problems due to equipment failures. To detect failures, a
thermal model of the FCU was created using Reactor Excursion and Leak Analysis

Program (RELAP) to predict the normal operating temperatures of the fluids in FCU. For
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RELAP to work, the inlet nitrogen temperatures collected by sensors were used.
However, these sensors fail frequently. For that reason, the authors suggested using a long
short-term memory (LSTM) method to predict inlet nitrogen temperatures using various
sensor tags in the nuclear power plant. LSTM is an artificial neural network technique
commonly used in machine learning applications. The anomaly in FCUs were determined
by comparing the actual nitrogen outlet temperatures with those predicted by RELAP
only (using measured inlet nitrogen temperature) and RELAP supported with LSTM

(Guillen et al., 2020).
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Figure 2.4. Representation of FCU (In energy balance, m, is mass flowrate
of coolant, ¢, is coolant specific heat, T,, ;¢ IS inlet temperature of
coolant, Ty, oye1e¢ 1S OUtlet temperature of coolant, and g ooian¢ IS the is the
heat removed by the river water from nitrogen.) (Source: Guillen et
al., 2020)

A novel contribution of the study was the implementation of the LSTM. The
LSTM method was fed with a dataset consisting of 33 different variables. Each variable
affects the FCU outlet temperatures that are being tried to predict. The data set was
divided into three groups as training, validation, and test set. In order to decide the epoch
number, the trend of the validation and training data sets and the loss function values
according to the epoch number were examined. The results are shown in Figure 2.5. As
the epoch number increases, the loss function decreases, and a good learning is achieved
with the LSTM method. Authors determined the epoch number as 100.
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Figure 2.5. Loss function of LSTM
(Source: Guillen et al., 2020)

Comparison of measured and predicted outlet nitrogen temperatures is shown in
Figure 2.6 for each FCUs. In the absence of any anomalies, the measured and predicted
values are quite similar, as seen in FCU B and FCU D. However, on May 11, an anomaly
occurred in FCU A and FCU C. As seen, both RELAP predictions whether using
measured inlet nitrogen temperature and LSTM predicted inlet nitrogen temperature can
identify the anomaly. Moreover, RELAP prediction with LSTM predicted inlet nitrogen
temperature is more closely matching the measured outlet temperature, thus enabling a

better representation of the actual operation and equipment failure detection.
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Figure 2.6. Comparison of measured and predicted outlet temperature values for each
FCU (Source: Guillen et al., 2020

In another study, a fuzzy logic model-based leak detection method was developed
for a pilot heat exchanger by Habbi et al. The authors discussed that first-principle based
models are very complex, difficult to drive and accurate values of heat transfer
coefficients are generally unknown. The pilot heat exchanger is a co-current gas-liquid
heat exchanger where the water is heated using hot air that shown in Figure 2.7. The
system includes electric heater E, air recycling valve Vi, and air evacuation valve Ve, and
variable speed pump SP. The leaks were simulated using a bypass valve. A Takegi-
Sugeno (TS) fuzzy model-based approach was used in leak detection algorithm. This
model aims to develop IF-THEN rules for description of the system behavior. The
relevant parameters are selected to be P, Vi, Ve, T16, and T34 (see Equation 11) for
definitions of variables) based on the recommendation and process knowledge of pilot
equipment operator. To develop the fuzzy model, Q and Q. were held constant, P, V and
Ve (assumed to be dependent on V;) were changed in a wide range and the resulting T34
were collected without any leaks introduced in the heat exchanger (i.e., leak-free
operation). A mean square error metric was considered to describe the discrepancies

between model and actual measurements. The obtained TS fuzzy model for a rule i is

23



conceptually shown in Equation 11 where ai and bi are the rule-consequent parameters.

IF P(k) is AY; and V,.(k) is A', and Ty4(k) is A'5 and Tz, (k) is Al
THEN T34_(k + 1) = bl + allp(k) + alz‘/r(k) + al3T16(k) + al4T34_(k)

air exit r}(:p(: waler

f

V and V,

Eqgn 11.

the heating power (k€W );

the air temperature, respectively, after the
heater and before the heat exchanger (°C);

the water temperature, respectively, at the inlet
and the outlet of the heat exchanger (“C);

the position of the air recycling valve and the air

evacuation valve, respectively (%);
Q. the air flow rate (m®/s);
Q the water flow rate (I/h).

Figure 2.7. Pilot heat exchanger
(Source: Habbi et al., 2009)

The developed fuzzy model was found to perform well to describe the system

behavior, as shown in Figure 2.8.
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Figure 2.8.Fuzzy model performance (red: process value, blue: fuzzy model)
(Source: Habbi et al., 2009)
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The leak detection was determined from the calculation of the residual of T34 as
given in Equation 12 as:

(k) = Ta4(k) — T34(k) Eqgn 12.

where T, is the estimated value, Ts, is the actual measured value and r is the
residual at data point k. Threshold values were used to identify residuals as leaks.

The developed fuzzy model was then tested using leaks with magnitude of 25%,
30% and 40%. The residuals between the actual process values and the estimated data
were examined, as shown in Figure 2.9. Figure 2.9 (a) shows the results for the fault-free
situation, while Figure 2.9 (b), Figure 2.9 (c) and Figure 2.9 (d) show the results obtained
in the presence of leaks with the magnitudes of 25, 30 40%, respectively. In the fault-free
condition, the residual values are almost zero. Deviations in residual values were
successfully captured by the fuzzy model for all leak values. The time delays for each
size of leakage were 40s, 12s and 0s for leakages with 25, 30 and 40% magnitude,

respectively. As the leak magnitude increased, detection became easier.
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2.3. Lessons Learned from the Literature

e There are only a few studies investigating data-based leak detection in heat
exchangers.

e There are various data analysis techniques to detect leaks in the literature sources.

e Data-based models are relatively easier to implement compared to physics-based
models.

e Consultations with operation engineers are very valuable and necessary during the
leak detection mechanism construction, and identification of relevant parameters
in the system.

e For evaluating the performance of leak detection mechanism, error metrics, such
as mean square error, should be used.

e Threshold values are useful to differentiate between leaks and random noises.

e Itis easier to detect large leaks compared to small or slowly developing leaks.
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CHAPTER 3

MATERIALS AND METHODS

3.1. Real Industry Case

3.1.1. Process Description

The leak case studied throughout the project is in the Integrated Unicracking
Processing Unit (IUPU) at izmit TUPRAS Refinery. The unit feed consists of a
combination of Coker Naphtha (CN), Heavy Coker Gas Oil (HCGO), Light Coker Gas
Oil (LCGO), Heavy Vacuum Gas Oil (HVGO), Light Vacuum Gas Oil (LVGO) supplied
from different units throughout the refinery. IUPU unit is used for producing kerosene
and diesel in accordance with certain specifications to meet the restrictions on the sulfur
content in fuel oil due to its environmental effects.

The unit is designed in an integrated manner to collect the products from
Hydrocracker (HCU), Naphtha Hydro-Treater (NHT) and Diesel Hydro-Treater (DHT)
reactor sections in a single fractionator column and separate them into final products. The
major parts of the unit consist of reactor and separator parts. Heat exchangers and furnace
play a role for the heating of the feed or intermediate products in the unit.

There are three reactors in reactor part, a diolefin reactor and two hydrotreating
reactors. Coker naphtha is fed into the diolefin reactor. The diolefin reactor is a single bed
reactor in which dienes are converted mainly to mono-olefins. The LVGO and LCGO
feeds and the heated recycle gas are combined with the naphtha which comes from the
diolefin reactor, and combined feed is sent to the hydrotreating reactor. In this reactor,
sulfur and nitrogen are removed from the feed. Since the reaction in the reactors is
exothermic, outlet stream temperature of reactor will be higher than that at the rector inlet.
Outlet stream is sent to a heat exchanger to reduce its temperature. Cooled stream is sent
to the hot separators to separate the by-products from the desired main product. The
distillate hot separator stream coming out of the separator is sent to the heat exchangers

to be cooled. Figure 3.1 is basic representation of small part of the process. The heat
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exchanger where the leakage occurs is the first heat exchanger to which the recycle gas
and light hydrocarbon (HC) mixture stream is sent. This heat exchanger is circled in
Figure 2.1. After the reactor effluent is cooled, it is sent to the separator where the heavy
hydrocarbons are separated from recycle gas and light hydrocarbons. The top output
stream of the separator (1) contains recycle gas and light hydrocarbons. It passes through
the tube sections of the heat exchanger (with leakage). Liquid hydrocarbon from distillate

flash drum passes through the shell part and is used to cool the flow in the tubes.
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Figure 3.1. The scheme of the unit where the heat exchanger with the leak is located

3.1.2. Problem Definition

As mentioned above, it is important to detect leaks in closed systems, such as a
refinery, because the leaks are generally difficult to detect and might cause high harm to
the environment and human health. At the beginning of the project, cooperation was made
with many units in the refinery such as process and field engineers from different units,
such as instrumentation and maintenance unit, and technical safety and environment unit
at the izmit TUPRAS Refinery. Upon these collaborations, it was noted that leaks on the
pipelines, valves, connection points and heat exchangers occurred frequently. Leaks were
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classified as visible and invisible leaks according to where it occurs, and as gas and liquid
leaks based on fluid type. Although the leakage size might be small, it is much easier to
detect visible leaks than invisible leaks. When liquid leaks occur, they can be observed
clearly, and actions can be taken in a short time. Gas leaks are difficult to detect and
therefore there are gas detectors in the field to detect leaks. If a leak in a heat exchanger
IS not noticed in time, it causes a sudden and dangerous shut down of the process unit.
Sudden interruption of the unit feed causes coking on the catalyst. At the same time, the
sudden increase in temperature during startup of the unit also causes approximately 3-4
month decrease in catalyst lifespan. When the long-term effect is examined, the catalyst
replacement means an extra 10-day downtime for the unit. Also, the downtime of a
particular process unit affects other process units in the refinery.

The heat exchanger where leakage occurs is one of the shell and tube heat
exchangers in the unit. While light hydrocarbon and recycle gas pass through the tube
part of the heat exchanger, liquid hydrocarbon passes through the shell part. The liquid
hydrocarbon passing through the shell contains H>S which is a corrosive chemical. H2S
potentially causes formation of holes on the surface of the tubes and leads to
contamination in the heat exchanger. Since the pressure of the fluid passing through the
tube is high, leakage occurs from the tube side to the shell side. The increase in the
pressure of separator (2) is generally accepted as a sign of leakage in the heat exchanger.
The valve opening values of the valve that controls the separator (2) pressure are shown
in Figure 3.2. The trend in normal operational interval and leakage is shown in the figure.
As a leak occurs from the tube to the shell, an increase is observed in the valve opening.
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Figure 3.2. VValve opening values for real case
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Numerical values are not real process values due to proprietary nature of the

refinery process, instead they are symbolized in a way that does not change the trend.
3.1.3. Data Preparation

As mentioned above, the presence of leakage was noticed by the pressure increase
in the separator (2). The valve opening (%) that controls the separator (2) pressure has
increased during this time. Because of the complexity of refinery processes, we
communicated with operation engineers throughout the study so that we could use the
relevant variables for this study. There are seven variables that we can use in this case
such as inlet and outlet temperatures for the tube and shell sides (°C), stripper column
pressure (kg/cm?), total flowrate of the unit (kg/h) and the valve opening (%) that controls
the pressure of separator (2) (for example, valve opening % is shown in Figure 3.2). These
variables have been decided upon by consultation with process engineers responsible for
the related units. In addition to variables above, logarithmic mean temperature difference
(LMTD) was also calculated as shown in Equation 13 (Utamura, Nikitin, and Kato 2008).

LMTD = [(Th‘TC()Tlh‘_(TTsl‘TC)ﬂ Eqn 13,
dio=ss

In Equation 13, T;, and T, represent temperature value of hot and cold stream,
respectively. Endpoints of heat exchanger are shown as Point 1 and 2.

There have been four different leakage cases on this heat exchanger in 3 years and
this is one of the reasons why we work on this heat exchanger. In the second year, there
were two different leakage cases with an interval of three months. A leakage case has
been experienced in each of the other years. The data preparation part differs according
to the applied methods. Since there is no model training process in applying the DWT
method, 1-year data on per minute basis is taken from the TUPRAS historian database.
While applying the AE and EWMA methods, the data set is divided into training and test
datasets. Since the training data set will be used to train the model, it was tried to choose
the date range when the unit normally operates. In this process of dataset selection, the

support of operation engineers was received. The test data set includes other dates include

30



anomaly in a year except the training set interval. For the application of AE and EWMA,
1-year data on per minute basis is taken from the TUPRAS historian database.

3.2. Applied Methods

3.14. PCA

Statistical methods are in the class of Statistical Process Control (SPC) which are
important for safe and reliable operation in industry (Ahsan, Mashuri, Kuswanto, and
Prastyo 2018). These methods can show the trend of the process and indicate an anomaly.
Principal Component Analysis (PCA) which is used to reduce dimensionality of data and
detect the anomalies and Exponentially Weighted Moving Average (EWMA) which is
used to detect the anomalies are examples of such statistical methods.

The PCA method is a statistical method applied for data classification and
compression. In some studies, PCA is also used as an anomaly detection method. Outlier
data (anomaly) can be determined by classification (Huang et al. 2007). In some studies
PCA is applied as a preprocessing method (Ahsan, Mashuri, Kuswanto, Prastyo, et al.
2018).

In this thesis study, the PCA method is used to create a small number of principal
components (PC) with high variation among all variables. The datasets which are used in
this study contain many variables. PCA is used to select the variables that have the most
impact on PCs.

In PCA, the first step is to calculate the mean value of the data. Given X is the
dataset, X1, Xo, ..., X are individual data samples and N is the number of data samples,

mean value of data samples is calculated in Equation 14 as:

X1+X2+"'+XN
N

X = Eqn 14.

The first and second principal component (Y1 and Y2) shown in Equation 15 &

Equation 16 is defined by combining variables X1, Xo.. and Xn linearly:

Yl == a11X1 + a21X2 + - aNIXN Eqn 15
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YZ = a12X1 + a22X2 + .- aN2XN Eqn 16

All principal components (PCs) are calculated in a similar manner. There are as

many PCs as the total number of variables. Therefore, the properties of the data are not

lost. Generally the conversion of original data to PC is shown below.

Y = AX Eqgn 17.

Here, A is the eigenvector matrix, X is the variable vector. Each row of the A

gives the aj; values which are loadings for PC in the Equation 17. These values explain
the effect of each variable on PCs. Each loading is calculated by using Equation 18.

a211 +a212+"'+a21N = 1 Eqn 18

Higher values mean stronger interaction. Finally, covariance matrix of the PC is
calculated by using Equation 19.

Cy = ACx AT Eqn 19.

Cy in Equation 19 is calculated by the Equation 20 below:
cx=ﬁ(x—)?)(x—)?)T Eqn 20.
Here, Cy is the covariance matrix of the original data, X" is the transpose of the
X, Cy is the covariance matrix that gives an information about variances and covariance
of the PCs. Results are given visually using a scree plot where percentage of variance (%)

is plotted against PC number (Jollife and Cadima 2016). In this thesis study, these

calculations were carried out by usin R programming language.
3.1.5. Discrete Wavelet Transform

Discrete wavelet transform (DWT) is a signal processing method. It is generally

preferred to detect small changes in dataset and to reduce noise in the data (Jiang and Liu
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2011), (Xu and Huang 2008). The signal is decomposed into levels. Each level consists
of a series of coefficients that describe the time evolution of the signal. These coefficients
correspond to a certain frequency band. In this method, a mother wavelet known as basis
function is used for decomposition of signal into different frequency bands known as
multi-level analysis. This method is used to clearly observe the sudden changes in the
signal. It provides information in both the time domain and the frequency level.

The method for which the mathematical representation is given below is actually
a linear transformation created by shifting and scaling the mother wavelet. It is important
to choose the mother wavelet so that it most closely resembles the data signal being
studied. Common mother wavelet types are shown in Figure 3.3 (Faust et al. 2015).

{a) db Wavelet (b) Morlet Wavelet

-

(c) Biorthogonal Wavelet (d) Spline Wavelet
e) Mexican Hat Wavelet (f) Haar Wavelet
(g) Gaussian Wavelet (h) Coiflet Wavelet

Figure 3.3. Mother wavelet types
(Source: Faust et al., 2015)
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Various metrics have been used in the literature for mother wavelet selection.
These are peak signal to noise ratio (PSNR) in Equation 21, mean square error (MSE) in
Equation 22, mean absolute error (MAE) in Equation 23 and cross correlation (Galya
Georgieva-Tsaneva 2014). The high PSNR value indicates the suitability of the selected
wavelet and ensures a well reconstructed signal. It is also expected that the MSE and
MAE values will be low for a suitable mother wavelet (Kricha, Kricha, and Sakly 2018).

255

MSE =~ 3N=4(s(n) — () Eqn 22.
MAE = ~3N_|s(n) — 5(n)| Eqn 23.

In these equations, s(n) represents the original signal, 5(n) represents the denoised
signal and N represents the number of data samples.

DWT is applied in this study to separate the signal into different frequency levels
in order to see the information contained in the signal clearly. For a multi resolution
analysis, the signal is passed through high and low pass filters. These filters can be
thought of as a means to process the signals. Calculation of DWT is carried out with
Mallat-tree decomposition which is shown in Figure 3.4 for a 3-level decomposition
(Laaksonen 2013). The g and h represent high pass and low pass filters, respectively. The
time and frequency resolution of the signal changes at each level. di[n], d2[n], d3[n] are
called detail coefficients and ai1[n], az[n], as[n] are called approximation coefficients.
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Figure 3.4. Three-level decomposition tree
(Source: Baghbidi, 2011)

Frequency band with respect to level shown in Figure 3.5. In figure, fs is the
sampled frequency (Amolins, Zhang, and Dare 2007). It can be seen that increase of level

decreases the frequency.

Level 3 Level 2 high
low high frequency Level 1 high frequency
fs/8 fs/a fs/2 fs
frequency

Figure 3.5. Frequency band based on each level
(Source: Amolins et al., 2007)

In Equation 24 and Equation 25, g and h represent high pass filter and low pass
filter, respectively, as mentioned above. In the filters, detail and approximation
coefficients are calculated by down sampling by two “2 and down arrow” in Figure 3.4
represents this “downsampling by 2” operation. Down sampling means reducing the
sampling rate or removing some samples from the signal (such as dropping the middle
sample between among three samples). With down sampling, the scale of the signal is

changed. Low pass filter cleans the high frequency components from the signal and the
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output of the low pass filter give an approximation of the original signal. High pass filter
cleans the low frequency component from signal, and it gives detail information about

the signal. The high and low pass filter equations are given in equations as:
a[n] = yiowlnl = Lnx(k) g[2n — k] Eqn 24.
d[n] = ynignlnl = Xnx(k) h[2n — k] Eqn 25.

where n is the number of samples, x(k) is the original signal, k is sampled digit
which is in the range of 0< k < n/2-1 or n/2< k <n-1, yp;4y is output of the high pass
filter and y,,,, is output of low pass filter (Orea-flores, Gallegos-funes, and Arellano-
reynoso 2019).

The digital representation of DWT is shown in Equation 26 below. Here, a is the
scaling factor, b is the translation factor, k refers to the number of samples in the signal
g (k) refers to mother wavelet. m and n are the integer parameters of a (a = a,™ ) and
b (b = nbya,™). Mother wavelet is scaled and shifted along the signal (Barros, Diego,
and De Apraiz 2012).

1 . (k=b
DWT(m’k) = \/—EZnX(Tl)g (T) Eqgn 26.

Original signal can be reconstructed with the summation of all detailed
coefficients (di[n], dz[n], ds[n]) and last level approximated coefficient (as[n]) (Souza,
Cruz, and Pereira 2000). This process is called as inverse DWT (Emmanuel 2012).

Wavelet toolbox used for this method in MATLAB2021a. The procedure of DWT

Is presented given below as:

e Data is taken from TUPRAS Historian Database.
e The mother wavelet is selected which is suitable for the data set we use.
o For this, data is denoised using different mother wavelets and evaluation
metrics are calculated (Equation 21, Equation 22 and Equation 23).
e Then, the data is decomposed, and the detail and approximation coefficients are

calculated. Reconstructed data is obtained with the sum of these coefficients.
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3.1.6. Auto Encoder

Auto encoder (AE) is an artificial neural network technique that is used to reduce
dimensionality of dataset (Sakurada and Yairi 2014). It is an unsupervised technique
which uses unlabeled input and output data meaning that there is no labeling that give
information about what the anomaly is (Tutkan, Ganiz, and Akyokus 2016). As this
technique is used for size reduction, it can be used to extract features, denoise and
recognize images (Sakurada and Yairi 2014). The neural network of AE is shown in
Figure 3.6. AE has five hyperparameters in total, which are bottleneck (code layer),
encoder, decoder, loss function and epoch number. First, input is sent to encoder and
compressed here (Sublime and Kalinicheva 2019). The compressed data is stored in the
bottleneck. Decoder reconstructs the data comes from bottleneck (Mirsky et al. 2018).
Bottleneck is the important part of the AE, compressed data is taken place here. Each part
includes hidden layers, and each layer consists of nodes. These nodes represent features
and are connected with other nodes. Epoch number represents how many times the
algorithm will run. When deciding on the epoch number, a graph of MSE with respect to

epoch number is plotted. This graph is called the learning curve (Elbattah et al. 2021).

Encoder Decoder

Bott!eney

o0

OUTPUT :
Reconstructed
input

INPUT

Compressed \

data

99006066

o

Figure 3.6. Architecture of AE
(Source: Sublime & Kalinicheva, 2019)
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Mathematical representation of data compression is given in equations below. In
the Equation 27, X is the input, W is the weight matrix, b and b’ are bias vectors, z is the
bottleneck dimension, o and ¢’ are the activation functions , and x’ is the output (Sagheer
and Kotb 2019). Equation 27 represents the encoding network. Equation 28 belong to

decoding network of AE. This calculation is repeated in each node.

z=0c(Wx +b) Eqgn 27.

X' =0 W'z+b") Eqn 28.

AE layers are created considering the structure used in a study in the literature
(Tavakoli et al. 2020). The encoding part consists of 3 layers and the layers are ordered
according to the decreasing number of nodes. These layers are created by decreasing node
number as 100, 50, 20 in accordance with the purpose of AE and can compress the data
while preserving the important features. The code layer can contain as many nodes as our
variable number. In order to decide on the number of nodes, training accuracy values are
examined, and the results are given in the Figure 3.7. Maximum accuracy is achieved
with 6 nodes. Decoder network is a mirror image of encoder part, and layers are
incrementally built up to 20, 50, and 100 nodes. The input and output layers also consist

of an equal number of nodes and are equal to the number of variables.

Training Accuracy (%)
= [ w = wul [=}] =l [2.2] [Ne]
[==] (=] [==] (=] [==] (=] [=] (=] [==]

=]

0 2 - 6 8 10

Number of Nodes in Code Layer

Figure 3.7. Training Performance based on number of nodes in code layer
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Another important part is the activation function selection. The activation function
Is responsible for transmitting the sum of the weights calculated in the node to the other

node. Basic representation for one node is shown in Figure 3.8.

Inputs
Weights
X Activation
function
Wy
X2 Z=ZW-){-+b f(z) a
W, - Output
W3

Node

Figure 3.8. The role of activation function
(Source: Theodoridis, 2020)

Non-linear functions are generally preferred for AE networks because
nonlinearity overcomes backpropagation problem. The meaning of backpropagation is
adjusting of weights repeatedly in order to minimize the loss function. Because of that
linear activation functions are not preferred for AE. Two kinds of non-linear activation
functions are generally used for AE. One of them is Rectified Linear Unit (ReLU) and
the other is sigmoid. ReL U is usually selected as a default function (Kumaresan et al.
2021). Sigmoid function has a disappearing gradient problem, The meaning of this
problem that loss function closes to zero. It causes reducing the training performance of
network. ReLU can overcome this problem and provides easy learning. In this study,
ReLU is used as an activation function (Theodoridis 2020).

Finally, reconstruction error is calculated as a loss function which is used as the
outlier score. Mathematical representation of reconstruction error is shown in Equation
29. (Anetal., 2015).
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Y Ce—x')?

n

Reconstruction Error = Eqgn 29.

where n refers to number of samples, x; is the original data sample and x’; is the
reconstructed data sample.

The procedure of AE is given below as:

. Data is taken from TUPRAS Historian Database.
. LMTD values are calculated by using temperature values.
. The data is split as training and test dataset (training set: normally operated

time period; test set: the dataset which has a probability of including

anomalies).
. Model hyperparameters are determined and the model is trained.
. Test data set is fed to the model as an input.
. Reconstruction error is calculated using x and Xx'.

When another dataset containing anomaly is given to the model, the difference
between the input and the reconstructed data will be high, since the trend of the data will
be different from the training dataset. While this error is small for normal data samples,

it is expected to be high for data with anomaly.

3.1.7. Exponentially Weighted Moving Average

EWMA is a statistical anomaly detection method. EWMA analyzes historical data
to determine any deviation in data. This method uses three control limits, namely upper
control limit (UCL), center line (CL) and lower control limit (LCL). UCL and LCL play
an important role to determine the control region. EWMA method detects the anomalies

based on these limits. EWMA can be given as in Equation 30:

Zi = /’le + (1 — A)Zi—l Eqn 30.

where Zj is the EWMA at time i, A is the weighting factor (0 <A < 1) and X; is the
residual of the variable to be predicted at time i. Residuals are differences between the
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predicted and measured values. In order to predict desired variable and to consider effect
of other variables, Multiple Linear Regression (MLR) method is used and it is shown in
Equation 31 (Zhao, Wang, and Xiao 2013).

Yi = Bo+ Pixy + o+ Bpxpi t € Eqn 31.

Here, p is the number of independent variables, xy;, x5;, ..., x,; are independent
variables, By, f1, ..., Bp are the regression coefficients, ¢ is the random error (residual)

term, and y; is the predicted variable. Residuals of the model was used to detect small
changes in dataset (Zhou and Tang 2016).

A is important to consider for detecting anomalies in time series information. A can
be calculated with the equation of A=1-0. The 0 is the coefficient of the Autoregressive
Integrated Moving Average (ARIMA) model. ARIMA is a model used for time series
forecasting (Ye, Borror, and Zhang 2002). The general notation of ARIMA is ARIMA
(p,q,d). The p,q,d are parameters of ARIMA where p is the number of autoregressive, d
is the degree of differencing, and q is the order of the moving average. ARIMA (0,1,1) is
proposed in the literature for detecting small shifting in dataset (Kandananond 2014).
Also, selection of weighting factor depends on user. A A value of 1 indicates that the
weights of the last measurements are more dominant. Conversely, a A value close to zero
means that the old data has a weight (Zhou and Tang 2016).

Referring back to UCL and LCL, the control limits are defined in Equation 32,
Equation 33, and Equation 34 as:

2 ;
LCL; = po — LU\/(Z_A) [1-(1-D%] Eqn 32.
CL = p, Egn 33.
UCL; = puo + LG\/(zfz) [1—(1-2)%] Eqn 34.

where ¢ is the standard deviation of data, u, is the target value and L is the number
of standard deviations from the CL.

The procedure of EWMA is presented below as:
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Data is taken from TUPRAS Historian Database

The data set is divided into two groups as training and test set.
UCL, CL and LCL values are determined using the training set.
MLR is applied to predict variables.

Residual values are calculated.

ARIMA coefficient 6 and weighting factor A are determined.
The EWMA control chart is created.

The area between both UCL and LCL is defined as the control limits.

Values outside these two lines are defined as anomaly.

R programming language was used to implement this method.
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CHAPTER 4

BENCHMARKING OF THE METHODS USING TEP

4.1. General Overview of Benchmarking Studies

In this chapter, the methods were applied on the Tennessee Eastman Process
(TEP) benchmark data series given in the literature in order to check the applicability of
the three methods explained in Chapter 3, namely DWT, AE and EWMA. Data is divided
into two groups as training and test datasets. In Section 4.2, the flow diagram of the
chemical process and the variables are explained. For the system with 73 process
variables, the PCA method is applied to determine the variables that may be related to the
fault. The results of the applied DWT, AE and EWMA methods are given in Chapter 3.

4.2. Benchmark Dataset

Tennessee Eastman Process (TEP) benchmark dataset is an important data source
for the field of fault detection and diagnosis, alarm management or control loops. It has
been published by Down and VVogel in 1993 (Ricker 1996). The basic process diagram of
TEP is shown in the Figure 4.1 below. As it can be seen in Figure 4.1, this proses consists
of 5 main units, namely, a reactor, a condenser, a stripper, a separator, and a compressor.
There are 73 process variables (PVs) such as volumetric flowrate (F), pressure (P),
temperature (T), level (L) and concentration (A). In addition to PVs, 12 manipulated
variables (MVs) are given. Description of PVs and MVs are shown in Table 4.1 & Table
4.2, respectively (Gianluca Manca, n.d.), (Reinartz, Kulahci, and Ravn 2021), (Kiss,
Genge, and Haller 2015). The data set of TEP is shared as open source. This data set
consists of faulty free and faulty data set.
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Figure 4.1. TEP model
(Source: Kiss et al., 2015)
CWS: Condenser water supply, CWR: condenser water return

Table 4.1. Description of Process Variables
(Source: Reinarts et al., 2021)

Variable Description unit Variable | Description | unit
XMEAS(1) | A Feed (stream 1) | kscmh | XMEAS(12) Product %
Separator
Level
XMEAS(2) | D Feed (stream 2) | kg/hr | XMEAS(13) Product kPa
Separator gauge
Pressure
XMEAS(3) | E Feed (stream 3) | kg/hr | XMEAS(14) Product m3/hr
Separator
Underflow
(stream 10)
XMEAS(4) A and C Feed kscmh | XMEAS(15) Stripper %
(stream 4) Level

(cont. on the next page)
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Table 4.1 (cont.)

Variable Description unit Variable | Description | unit
XMEAS(5) Recycle Flow kscmh | XMEAS(16) Stripper kPa
(stream 8) Pressure gauge
XMEAS(6) Reactor Feed kscmh | XMEAS(17) Stripper m3/hr
Rate (stream 6) Underflow
(stream 11)
XMEAS(7) | Reactor Pressure kPa | XMEAS(18) Stripper deg C
gauge Temperature
XMEAS(8) Reactor Level % XMEAS(19) Stripper kg/hr
Steam Flow
XMEAS(9) Reactor deg C | XMEAS(20) | Compressor | kW
Temperature Work
XMEAS(10) Purge Rate kscmh | XMEAS(21) Reactor deg C
(stream 9) Cooling
Water
Outlet
Temperature
XMEAS(11) Product Sep deg C | XMEAS(22) | Separator | degC
Temp Cooling
Water
Qutlet
Temperature

(kscmbh: kilo standard cubic meter per hour)

45



Table 4.2. Description of Manipulated Variables
(Source: Reinarts et al., 2021)

Variable Description Variable Description
XMV(1) | D Feed Flowrate (stream 2) XMV(7) Separator Pot Liquid
Flow (stream 10)
XMV(2) | E Feed Flowrate (stream 3) XMV(8) Stripper Liquid Product
Flow (stream 11)
XMV(3) | A Feed Flowrate (stream 1) XMV(9) | Stripper Steam Valve (%)
XMV(4) | A & C Feed Flowrate (stream | XMV(10) | Reactor Cooling Water

4) Flowrate
XMV(5) | Compressor Recycle Valve | XMV(11) Condenser Cooling

(%) Water Flowrate
XMV(6) Purge Valve (stream 9) XMV(12) Agitator Speed

In this simulated process, A, C, D, & E components (in gas phase) are called as
feed for the system. Recycle stream of the system and A, D, E are fed to the reactor and
liquid G and H are obtained. The reactions taking place in the reactor are shown below
(Park et al. 2019). The reactions are exothermic, irreversible reactions with first order

reaction kinetics with respect to concentration of reactants.

Agy + Cig) + Dgy = Guigy, Product 1 Eqgn 35.
Ay + Cigy + Egy = Hyig), Product 2 Eqgn 36.
Ay + Egy 2 Fuiq)y Byproduct Eqn 37.
3D(g) = 2Fuiq), Byproduct Eqgn 38.

After the reactions occur, liquid product stream composed of G, H and F is fed to
the condenser to cool down and then fed to a vapor-liquid separator. While condensed

products are fed to the stripper column, uncondensed product is fed back to the reactor.
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Product mixture of G and H is separated from each other in the stripper. The inert (B)
and byproduct (F) are removed from the process (Park et al. 2019).

In the simulation, various disturbances are created in order to study the faulty
characteristics of TEP. Created disturbance types are shown in Table 4.3. The
disturbances are numbered and listed based on the type of disturbance as step, random
variation, slow step and sticking. Sticking fault is encountered on sticking valves. This

type of fault is noticed on the sudden change in the values of sticking of valves (Reinartz,

Kulahci, and Ravn 2021).

Table 4.3. Process Disturbances in TEP
(Source: Park et al., 2019)

Variable Description Type Variable | Description Type
IDV(1) A/C Feed Step IDV(11) Reactor Random
Ratio, B Cooling Variation
Composition Water Inlet
Constant Temperature
(stream 4)
IDV(2) B Step IDV(12) | Condenser Random
Composition, Cooling Variation
AJ/C Ratio Water Inlet
Constant Temperature
(stream 4)
IDV(3) D Feed Step IDV(13) Reaction | Slow Drift
Temperature Kinetics
(stream 2)
IDV(4) Reactor Step IDV(14) Reactor Sticking
Cooling Water Cooling
Inlet Water Valve
Temperature
IDV(5) Condenser Step IDV(15) | Condenser Sticking
Cooling Water Cooling
Temperature Water Valve

(cont. on the next page)




Table 4.3. (cont.)
Variable Description Type Variable | Description Type

IDV(6) A Feed Loss Step IDV(16) Unknown | Unknown
(Stream 1)
IDV(7) C Header IDV(17) Unknown | Unknown
Pressure Loss -

Reduced Step

Availability
(Stream 4)
IDV(8) A, B,CFeed | Random | IDV(18) Unknown | Unknown

Composition | Variation

(stream 4)
IDV(9) D Feed Random | IDV(19) Unknown | Unknown
Temperature | Variation
(Stream 2)
IDV(10) C Feed Random | IDV/(20) Unknown | Unknown
Temperature | Variation
(Stream 4)

As shown in Table 4.3, 20 different disturbances had described by manipulated
variables in simulation. Among these disturbances, to continuously see the effect of the
disturbance on process variables, random variation type disturbance has been chosen. At
the same time, IDV (12) was chosen as the variation in cooling water temperature among
the 20 disturbances in order to be parallel to the case studied at TUPRAS. The data set in
the selected disturbance was obtained by creating sudden changes in the cooling water
temperature. In our study, measured process values and manipulated variables are taken
into account in the PCA method. The PCA method is applied to determine the variables
most affected by the disturbance. Composition values (XMEAS 23 to XMEAS_41)
related to the measured product composition are considered as laboratory values (they are
not continuous process measurements) and are not taken into account in PCA
calculations. PCA method is implemented using the process variables such as XMEAS _1
to XMEAS_22 and manipulated variables such as XMV _1 to XMV _11. R programming
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language is used for the application of PCA. The obtained results are shown in Figure

4.2. The dots denoted by dark navy blue and orange colors show the high positively and

negatively correlated variables with each other, respectively.
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Figure 4.2. Correlation matrix for variables

In addition, percentages of variation for each principal component (PC) are shown

in Figure 4.3. As seen, the PC1 and PC2 are the principal components with the two highest

percentage variances with PC1 being the PC showing the highest variance, as expected.
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Figure 4.3. PCA cumulative variance plot

Table 4.4 contains the standard deviation and proportion of variance values of
PC1 and PC2. A total of 58% variation was observed with both components. Selection
of PC has high variance is important because PCs with high variance can represent the
pattern of data (Cureton and D’ Agostino 2019).

Table 4.4. Standard deviation and proportion of variance of PC1 and PC2

Principle Component 1 Principle Component 2
(PC1) (PC2)
Standard Deviation 4.698 2.907
Proportion of variance 0.42 0.16

Figure 4.4 and Figure 4.5 show the most effective variables on PC1 and PC2 that
have high variation. XMEAS_6 to XMEAS 11 (Reactor Feed Rate (stream 6), Reactor
Pressure, Reactor Level, Reactor Temperature, Purge Rate (stream 9), Product Separator
Temperature, respectively), XMEAS_13 (Product Separator Pressure), XMEAS 15
(Stripper Level), XMEAS _16 (Stripper Pressure), XMEAS_18 (Stripper Temperature),
XMEAS_19 (Stripper Steam Flow), XMEAS_21 (Reactor Cooling Water Outlet
Temperature) & XMEAS 22 (Separator Cooling Water Outlet Temperature), and
XMV _1 to XMV_6 (D Feed Flow (stream 2), E Feed Flow (stream 3), A Feed Flow
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(stream 1) , A and C Feed Flow, Compressor Recycle Valve, Purge Valve (stream 9),
respectively ) were chosen as variables with high impact.
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Figure 4.5. Weight/loading for PC2

A dataset consisting of 82,500 data samples was created by taking the 30,000 data
samples from the training data set and 52,500 data samples from the test data set. The
graphs for XMV_6 (purge valve), XMEAS 6 (reactor feed rate), XMEAS 7 (reactor
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pressure) and XMEAS_22 (separator cooling water outlet temperature) variables are as
shown in the Figure 4.6. In each plot, x axis shows the number of samples and y axis
shows the value of process variables. The anomaly caused an increase in the data
amplitude TEP benchmark is the data set which is known to consist of faulty data. As

mentioned above, a faulty data set was created with 20 different disturbance types.
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Figure 4.6. Process Variables (Blue: XMV _6, red: XMEAS _6, yellow: XMEAS 7,
black: XMEAS_22)

In this study, the sudden changes in the sensor read values due to the disturbance
in the cooling water temperature that cools the separator are called anomalies. The
applicability of the methods was checked in the data set with known anomalies. Three
different anomaly detection methods were applied on this data set. These are DWT, AE
and EWMA methods. In the DWT method, the data sets without and with anomaly were
combined. While applying the AE and EWMA method, the data set was grouped as
training and test data sets, and the models were trained with the training set. Detailed

explanations and the obtained results are given in the following sections.
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4.2.1. DWT

The DWT method is preferred in most studies to reduce the noise in the signals
and thus to obtain clearer information from the data. An important point in DWT is the
selection of the appropriate wavelet for the dataset. These wavelets are haar, sym 4-12,
Db 4-12 as mentioned above (section 3.3.2). Selected wavelets are determined as
wavelets with good reconstruction feature in the literature (Emmanuel 2012). This
wavelet selection is evaluated according to the PSNR, MSE, MAE and cross correlation
metrics. Results of the PSNR, MAE and MSE values with respect to wavelet type are
shown in Table 4.5 While applying the AE and EWMA method, the data set was grouped
as training and test data sets, and the models were trained with the training set. Detailed
explanations and the obtained results are given in the following sections (Horé and Ziou
2010).

Table 4.5. Performance metrics for wavelet type

Wavelet Type MSE MAE PSNR | Cross correlation
Haar 2.988 1.359 30.620 0.948
Symé 2.310 1.209 31.734 0.959
Sym6 2.274 1.201 31.808 0.960
Sym8 2.264 1.198 31.825 0.960
Db4 2.280 1.202 31.795 0.960
Db8 2.269 1.195 31.816 0.960
Db12 2.264 1.194 31.825 0.960

When the values in the table are examined and the studies in the literature are
taken into consideration, we can say that the most suitable wavelet type for the TEP
benchmark data set is Db 12 with the highest PSNR and lowest MSE & MAE (Payan and
Antonini 2006), (Kricha, Kricha, and Sakly 2018), (Galya Georgieva-Tsaneva 2014).

In order to decide the number of levels, the same metrics (PSNR, MAE, MSE)

were calculated for each level as shown in the Table 4.6. These metrics are used for the
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comparison of the reconstruction performance of the DWT. The level selection was done
by considering the high PSNR and low error values, which corresponds to the fifth level.

Table 4.6. Performance metrics for each level

Number of Level | MSE MAE PSNR | Cross correlation
Level 1 2.264 1.193 31.825 0.960
Level 2 1.878 1.086 32.637 0.967
Level 3 1.517 0.975 33.565 0.973
Level 4 1.009 0.795 35.334 0.982
Level 5 0.356 0.465 39.861 0.993
Level 6 0.356 0.521 39.755 0.990

Figure 4.7 shows the spectra of data with respect to level number. Here, x axis
represents the number of samples and y axis represent the level number of DWT. The
first 30,000 samples contain anomaly free data. The next 52,500 data samples belong to
faulty data. There is a decreasing frequency from level 1 to level 5 (from bottom to top).
It can be seen that it is easier to understand information from time series data on the low
frequency layer. Wan et al. also carried out anomaly detection studies using the DWT
method (Wang et al. 2018). Visually, it can be observed in the Figure 4.7 that level 5
gives clearer information about the presence of anomaly. As the number of levels
increased, the presence of faulty data becomes more obvious. This also supports the
performance metrics of level 5 in Table 4.6. It can be also said that with the increasing
decomposition level (from level 1 to level 5), frequency resolution increase, a situation

in agreement with uncertainty principle (Vosvrda and Schiirrer 2015).
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Figure 4.7. Spectra of data based on level number

After the selection of level and wavelet type, multilevel decomposition was
performed. The multilevel decomposition results are shown in Figure 4.8. In Figure 4.8,
di, da, ... dn are the detail coefficients and an is the approximation coefficient in the
highest level. (Souza, Cruz, and Pereira 2000). As seen in Figure 4.7, we can say that the

peaks occurring from anomalies are visually observed clearly at the fifth level.

Dx atlevel5:s=a5+d5+d4 +d3 +d2+d1

Figure 4.8. Five level decomposition with MATLAB
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4.2.2 AE

The next implemented method is AE. For this method, the data set was handled
as two distinct sets: a training set without any anomaly and a test set containing anomalies,
and the steps are explained in Section 3.2.3 are followed.

Learning curve for the TEP dataset is shown in Figure 4.9. Here, x axis refers to
epoch number and y axis refers to MSE value. Best training performance with the lowest

MSE values is obtained for epoch number 500.

Best Training Performance is 0.83231 at epoch 500

100 L

Mean Squared Error

1 1 1 1 1 1 1 1
] 50 100 150 200 250 300 350 400 450 500
500 Epochs

Figure 4.9. Learning curve for TEP dataset

For this method, 20,000 data samples from TEP are used as a training dataset to
train the model. Faulty dataset contains 52,500 data samples from TEP. Here, it is
worthwhile to mention that we use historical data set while working on TUPRAS case for
which the data can be obtained continuously. On the other hand, in TEP benchmark, the
data set is shared separately as fault-free and faulty dataset. Because of that, the TEP data
set is turned in to a continuous data set by combining the fault-free and faulty data sets.

The purpose of this combination is also to see the difference between the data set with
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and without anomalies. With this dataset created for the purpose of anomaly detection,
our aim is to detect an anomaly whose existence is known and to control the workability
of the model.

Result of the AE is shown in Figure 4.10. Red line splits the training data from
test data. Top plot shows the predicted and measured process values, and bottom plot
shows the reconstruction error due to the difference between measured and predicted
values. With the occurrence of anomaly, reconstructed MSE values started to increase.

This indicates that AE method can be used to detect the anomalies in the dataset.
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Figure 4.10. Measured and predicted process value (top), Reconstruction error (bottom)
for TEP benchmark

4.2.3 EWMA

EWMA is a statistical method, unlike DWT and AE. EWMA method is generally
used to detect small changes in the process (Ye, Borror, and Zhang 2002). Data is
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separated as training and test datasets similar to AE. Residuals were obtained by using
MLR.

The variables which had the largest impact on the IDV 12 disturbance are selected
using PCA. At the same time, as mentioned above (Section 3.1.7), the value of valve
opening is predicted with MLR by taking the effect of other variables into account, in
order to create a similar point for the TUPRAS case. From the data that is separated as
training and test data set, the training set is used for MLR modeling, and the test data is
used to calculate residual of the model. Upper and lower control limits are calculated. The
data set outside the control limits was defined as anomaly. UCL, UCL and LCL are
calculated based on the training dataset as 3.5, -3.5 and 0, respectively. Firstly, 0 was
calculated with ARIMA and A is calculated as 0.96. EWMA of the residuals are shown in
Figure 4.11. Control limits and center line are shown with colored lines. The red dots over
the UCL and LCL lines are defined as anomaly. As seen, EWMA can detect the anomalies
in TEP benchmark data set.

wmber of sample

Figure 4.11. EWMA of the residual for TEP benchmark (UCL=3.5, LCL=-3.5, A =0.96)
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CHAPTER S

RESULTS AND DISCUSSION

5.1. General Overview of Results and Discussion Section

In this thesis, detection of leaks in the heat exchanger is studied using data-based
methods. This chapter includes the studies on the heat exchanger in TUPRAS Izmit
Refinery, where more than one case was experienced. Three different data-based methods
are applied, namely, DWT, AE, and EWMA. Data is taken in per minute basis from the
TUPRAS Historian Database. For DWT, the data is not divided into separate training and
test data sets and is used in a continuous manner. Data is divided into training and test
data sets to apply AE and EWMA methods. To determine the relevant variables in the
process, technical support is received from operation engineers. The relationship between
the variables provided by the operation engineers is understood and presented in section
5.2. In Section 5.3, the results of the DWT, AE and EWMA methods applied for the first
leak case are given. In Section 5.4, the results of two different leakage cases experienced
in the same year are provided. In Section 5.5, the results of the last case are represented.

In summary, in Section 5.6, all the results of each case are interpreted.

5.2. PCA

First, PCA is carried out in order to examine the correlation between the variables.
PCA is applied to the four-year data set containing all the leak cases. As stated in the
method section 3.2.2, the variables that may be relevant are determined by the operation
engineers. In addition, the presence of leak in each case was understood by increase in
the percentage of valve opening. PCA method is applied to understand the relation of
valve opening with other variables. VValve opening can be accepted as an indicator for the
leak because the response of the leak on the valve opening is higher than LMTD as can

be seen from the Figure 5.1.
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Figure 5.1. Comparison leakage response on LMTD and valve opening

Correlation matrix was formed by following the steps described in section 3.3.1.
The obtained correlation matrix is shown in Figure 5.2. In the correlation matrix, the
legend shows the strength of the correlation, i.e., the darker the color, the stronger the
correlation. While strong correlation is observed between LMTD and tube inlet
temperature, high correlation is observed between tube and shell outlet temperatures,
LMTD and shell inlet temperature, valve opening and LMTD, and valve opening and
shell inlet temperature. In addition, a negative correlation is observed between the shell
outlet temperature and the valve opening. This is expected since the leak occurs from the
tube to the shell, and in case of leakage, the temperature of the shell fluid will decrease
because the temperature of the tube fluid is lower compared to that of shell fluid. Based
on the PCA analysis and consultation with operation engineers, the input for the fault
analysis using DWT is selected as the valve opening, and the inputs for the fault analysis
using AE and EWMA are selected as LMTD along with all other variables listed in Figure
5.2. Compared to TEP benchmark dataset, real industry case data is more complex which
makes it more difficult to determine any anomaly. For that reason, the DWT, AE and
EWMA methods are applied for each of the leak cases studied. In the following sections,

the obtained results are presented.
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53.CASE 1

5.3.1. DWT

Data was taken from TUPRAS historian database. First, mother wavelet selection
was done using metrics such as PSNR, MAE, and MSE values shown in Table 5.1. Db4
was selected suitable wavelet type with the highest PSNR, and lowest MSE and MAE

values.

Table 5.1. Performance metrics for wavelet selection (TUPRAS Case 1)

Wavelet Type MSE MAE PSNR | Cross correlation
Haar 1.783 0.879 37.49 0.993
Sym4 1.105 0.736 33.908 0.995
Db4 0.129 0.282 48.903 0.999

(cont. on the next page)
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Table 5.1 (cont.)

Wavelet Type MSE MAE PSNR | Cross correlation
Db8 1.935 0.929 31.474 0.993
Db12 2.036 0.952 36.912 0.993

Similar comparisons were done for the level selection as shown in Table 5.2. As
in TEP benchmark case, level 5 was selected as the level for anomaly detection because
this level has higher PSNR value with lower MAE and MSE.

Table 5.2. Performance selection for level selection (TUPRAS Case 1)

Number of Level | MSE MAE PSNR | Cross correlation
Level 1 1.779 0.948 37.498 0.993
Level 2 1.517 0.856 38.190 0.994
Level 3 1.168 0.755 39.325 0.996
Level 4 0.626 0.532 42.034 0.998
Level 5 0.294 0.349 45.312 0.999
Level 6 0.468 0.450 43.985 0.998
Level 7 0.493 0.586 42.025 0.996

These results are also visually supported by the spectra shown in Figure 5.3. In
this figure, the horizontal axis represents the number of data samples, and the vertical axis
represents the level (i.e., frequency band; the lower the level, the wider the frequency
band and vice versa). The X and Y points indicated in the figure represent the operational
change and leakage in the unit, respectively. Operational changes can generally be
flowrate changes, and equipment (i.e. valve, pump) replacements. Leakage can be due to
corrosion in the tubes of the heat exchanger under investigation, as explained in section
3.1.2. There has also been a flowrate change in the areas marked with green, which can
only be observed at level 5 As seen, the method successfully captured operational changes
as well as leakage. Color bar below the figure represents the frequency scale. In cases

where there is an anomaly, the color gets the corresponding color of the highest value on
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the frequency scale. These results obtained here are similar to the results of change point
detection in study by Lima et al (de Lima, 2020). They observed the point where the
change occurred in the time dependent data set in the highest level which corresponds to

lowest frequency band.

Details Coefficients

i | | | e | | i
@ 0 @f‘ ]
i | | | L | 1

Scale of colors from MIN to MAX

Level number

- N e s Yo o~

Figure 5.3. Spectra of data based on level number

In Figure 5.3, Level 5 belongs to lowest frequency band. These results can be
understood based on the uncertainty principle that given in Equation 39. Here, t is time
and w is the angular frequency (w = 2rmf). With the increasing of level, frequency
decreases and in turn Aw decreases. This in turn increases the At in Equation 39. The
meaning of large At is bad time resolution and good frequency resolution (Vosvrda and
Schiirrer 2015).

[EN

Athw > = Eqn 39.

N

The data sampling rate from TUPRAS Historian Database was one sample per
minute which corresponds to a sampling frequency of 0.017 samples/sec. Table 5.3 shows

the frequency bands of each level. Frequency bands belongs to each level in Figure 5.3.
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Table 5.3. Frequency band which corresponds to each level

Number of Level

Frequency Band

First detail level

0.0085-0.017 Hz

Second detail level

0.00425-0.0085 Hz

Third detail level

0.00213-0.00425 Hz

Fourth detail level

0.0011-0.00213 Hz

Fifth detail level

0.0005-0.0011 Hz

The 5-level multiple decomposition results are shown in Figure 5.4. Here, s is the
original signal, as is the approximation coefficient of the last level and d; is the detail
coefficient at level i (i=1,2,3,4,5). Changes in the nominal values of the process were
investigated at different levels. Level 5 corresponds to the low frequency band. At this

level, sharp peaks showing operational changes and leakage are successfully observed.
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Figure 5.4. 5 level DWT decomposition for Casel
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Figure 5.5 gives the original signal and the reconstructed signal comparison. Here,
red line represents the original signal and black line represents the reconstructed signal.
By comparing the two signals, it can be said that obtained DWT coefficients (detail and

approximation) can successfully reconstruct the data.
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Figure 5.5. Comparison of original and reconstruction signal for Case 1
5.3.2. AE

The leak case is also studied using AE method. It is noted that it is more difficult
to determine the training and test datasets in the real case, unlike the TEP benchmark
dataset. The data in first two months of a year on minute basis is determined as the training
set for the leak that took place in the fourth month of the year. For determining the data
set, operation engineers are consulted. While the first two-month data is determined as
the training set, the data until the shutdown is determined as the test set.

First, behavior of the MSE with respect to epoch number is obtained as shown in

Figure 5.6. The optimum epoch number was determined as 37 based on the MSE value
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of 3.76e-06 with MATLAB. After a satisfactory level of error is obtained, MATLAB
automatically stops the iteration in order to prevent overfitting.

Best Training Performance is 3.7615e-06 at epoch 37

Train

oo Best

Mean Squared Error

10° . . .
0 5 10 15 20 25 30 35
37 Epochs

Figure 5.6. Learning curve of AE for Case 1

Then, the test set is fed to the model as an input. The obtained model results are
compared to the model values, as shown in Figure 5.7. The estimated value according to
the trained data set and the measured process data is given in the top graph, and RMSE
values calculated using predicted and measured values are given in the bottom graph. The
sudden changes observed in the top graph marked with red circles show the flowrate
change and pump replacement. The operation engineers noticed the leak at the time
indicated by the red star on the top graph and an immediate shutdown was done. In fact,
it is observed that the actual process values deviate from the model predictions and RMSE
values increases even before the operation engineers noticed the anomaly. Based on this
analysis, it is possible to state that the leak started with a small amount approximately 6
days ago and grew afterwards until the anomaly is noticed by the operation.
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Figure 5.7. Measured and predicted process value (top), Reconstruction error (bottom)
for Case 1

5.3.3. EWMA

Next, EWMA method is implemented for the leak case. For the implementation,
a two-month data training set is selected, and the model is trained. Residual calculation
was made using MLR method. UCL, LCL and CL values are calculated by using Equation
32, Equation 33 and Equation 34 in method section 3.3.4 as 9, -9, 2 according to the
training set. A is calculated as 0.97. A is close to 1 as expected because weights of last
measurement are dominant. The obtained residual versus time graph is shown in Figure
5.8. The region between the UCL and LCL is the control region. Data which is out of the
control region give us the information about existence of the anomaly in the system. The
moment when the leak is first noticed by operation engineers is shown on the figure with
a blue star. The leak probably started earlier than the operation engineers noticed it as the
purple rectangle in Figure 5.8 shows deviation out of the control region. It is seen that
EWMA can successfully indicate the leak in the system. In fact, with this method, a leak-

related early warning mechanism can be possible to implement.
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Figure 5.8. EWMA of the residual for Case 1(UCL=9, LCL=-9, CL=2, A =0.97)

5.4.CASE 2 & CASE 3

Case 2 and Case 3 are two different leak cases that took place in the same year.
There is a 3-month timeframe between the two leak cases. Therefore, leaks are tried to be
detected using the same training dataset and results are shared in a single graph. As in
Case 1, the valve opening is used as the input for DWT, and LTMD along with all other
inputs are used as inputs for AE and EWMA. Like other leak cases, the leaks in Case 2
and Case 3 are noticed by the increase in the pressure of the separator (2) and thereby the
increased opening of the valve that controls the pressure, as outlined in section 3.2.1. As
in Case 1, DWT, AE and EWMA methods are implemented for the Case 2 and 3.
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5.4.1. DWT

For the Case 2 and Case 3, evaluation metrics are calculated and shown on Table

5.4. Sym 4 is selected as a mother wavelet with respect to PSNR, MAE and MSE values.

Table 5.4. Performance metrics for wavelet selection (TUPRAS Case 2 & Case 3)

Wavelet Type MSE MAE PSNR | Cross correlation
Haar 1.102 0.644 39.576 0.997
Sym4 0.921 0.701 40.142 0.999
Db4 1.296 0.707 38.874 0.997
Db8 1.515 0.750 38.196 0.997
Sym8 1.324 0.723 38.779 0.997
Sym3 1.217 0.692 39.147 0.998
Sym2 1.159 0.668 39.359 0.997

The 5-level DWT graph obtained with sym4 mother wavelet is shown in Figure
5.9. The x-axis represents the sample number, while the y-axis represents the detail
coefficients, the approximation coefficient at the highest level, and the reconstructed
signal (from bottom to top). Pattern changes such as unit current changes, downtimes for
short-term maintenance, and leaks are more prominently observed at level 5, as in the
DWT result for Case 1. It is seen that the DWT method successfully detects the anomalies

of both Case 2 and Case 3 in a single run.
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Figure 5.9. 5-level DWT decomposition for Case 2 and 3

54.2. AE

It was difficult to choose a training data set, as there were too many shutdowns
and flowrate changes during the year. The normal operation values of the unit are decided
upon consultation with the operation engineers and the model was trained accordingly.
The MSE value with respect to the epoch number is shown in Figure 5.10 below. The
most suitable epoch number for training this model was determined as 500 with the MSE
value of 0.0012. This value is quite high compared to Case 1 due to using a dataset with

the shorter time interval to train the model for both Case 2 and Case 3.
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Best Training Performance is 0.0012282 at epoch 500
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Figure 5.10. Learning curve for Case 2 &3

It was observed that the variables changed a lot because of the operational changes
during the year in which the Case 2 and Case 3 took place. This situation is discussed in
detail with the operation engineers. While determining the training dataset, we try to
focus on more stable time periods where the change in data is small. The AE results are
as shown in Figure 5.11. Although the change in the variables is very high during the
year, these changes are not as much as the variation in the signal before the leak. As seen

in Figure 5.11, it is possible to detect the leaks in both Case 2 and Case 3 in a single run

using AE.

71



Case2

H
10 T T T T T T I I
Measured
Predicted
E
% 5F L
g
(=¥
;
Case3
O | L | 1 |
0 2 < 6 8 10 12 14 16 18
x10*
I I I I Error
40 + -
5
5 301 =
E:
E 201 .
3 10 I
0 e
0 2 < 6 8 10 12 14 16 18
Number of Sample %1 04

Figure 5.11. Measured and predicted process value (top), Reconstruction error (bottom)
for Case 2 & 3

5.4.3. EWMA

Finally, the EWMA method is applied. The model is trained with the selected
training set and the results are shown in the Figure 5.12 below. UCL, CL and LCL values
were calculated as 7.23, 0 and -7.23, respectively. A value was determined as 0.968. This
value is close to 1 and indicates that the last measurements are dominant. This behavior
is similar to Case 1. Accordingly, the dataset we train the model with belongs to the days
just before the test dataset. A control region was determined with UCL and LCL lines,
and points outside this area are accepted as anomalies or shutdown. It is seen that the
leaks in both Case 2 and Case 3 are easily detected using EWMA in a single run.
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Figure 5.12. EWMA of the residual for case 2&3 (UCL=7.23, LCL=-7.23, CL=0,
1=0.968)

While applying all these methods, datasets corresponding to shutdown dates could
be filtered; however, filtering was not done in this study. The valve opening can increase
and reach 100% levels both in leakage and shutdown situations. Operation engineers and
operators will be able to make the distinction between shutdown and leak cases easily

because they already have control over the shutdown.

5.5.CASE 4

Finally, a different leakage case occurred in the same heat exchanger. This leakage
was also noticed by the increase in the valve opening that controls the pressure of
separator (2), as outlined in section 3.2.1. DWT, AE and EWMA methods that are applied
on the above cases are also applied for this case. As in the other cases analyzed so far, the
valve opening is used as the input for DWT, and LMTD along with all other inputs are
used as inputs for AE and EWMA.
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5.5.1. DWT

The DWT results for Case 4 are shown in Figure 5.13 A 5-level decomposition is

applied and sym 3 mother wavelet is used. Evaluation metrics are calculated and shown

in Table 5.5.

Table 5.5. Performance metrics for wavelet selection (TUPRAS Case 4)

Wavelet Type MSE MAE PSNR | Cross correlation
Haar 1.147 0.716 39.406 0.996
Symé 1.223 0.735 39.127 0.996
Db4 1.241 0.734 39.061 0.995
Db8 1.402 0.761 38.531 0.995
Sym8 1.246 0.738 39.043 0.996
Sym3 1.210 0.731 39.423 0.997
Sym2 1.071 0.79 39.924 0.998

Changes in the variables occurred frequently this year. At the same time, the
shutdown that occurs in different units also affect the variables in this unit because the

unit feed consists of a combination of products from several units. We can detect the leak

in Case 4 with the DWT method.
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Figure 5.13. 5 level DWT decomposition for Case 4
5.5.2. AE

Due to the complexity of the unit, the training set selection for this case is made
together with the operation engineers. The MSE values are shown in the Figure 5.14
below and the epoch number is set to 500 with the MSE value of 0.0045. The AE method
has been applied and the resulting plots are shown in the Figure 5.15. The predicted values
and the actual measurements are shown in the top, and the reconstruction error graph
based on the method result is shown at the bottom. The region on the right marked in red
belongs to the leak case. There is no indication of leakage before the leak is noticed and
the unit is shutdown by operation engineers. The reason for this behavior might be the
volume of leakage being large. Although it may seem difficult to distinguish between
leakage and flowrate changes here, it will not be a problem since the flowrate change is

already known and controlled by engineers and operators.
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Best Training Performance is 0.0044772 at epoch 500
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Figure 5.14. Learning curve for Case 4
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5.5.3. EWMA

In order to reach a decision using a single method is not generally acceptable. It
should be interpreted with the results of other methods. For that reason, EWMA is also
implemented on the Case 4. UCL, CL and LCL values are determined as 4.72, 0 and -
4.72, respectively. 1 is calculated as 0.96. Points outside the control area are designated
as anomalies and these are identified as leaks or operational changes and are shown in the
Figure 5.16. It is seen that EWMA detects the leak successfully in Case 4.
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Figure 5.16. EWMA of the residual for Case 4 (UCL=4.72, LCL=-4.72, CL=0, A =0.96)

5.6. Summary of Results

The methods to be used on the real process data from TUPRAS Historian database
are tested on a TEP benchmark dataset known to contain anomalies. Training and test

data sets are shared separately on the web for TEP. Two data sets are combined at the
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beginning of the study in order to clearly see the difference when there is an anomaly.
Since there are too many variables in the TEP benchmark dataset, PCA method is applied
to select the variables that are highly associated with the selected anomaly type. DWT,
AE and EWMA methods are applied. In the DWT method, the transition between normal
and anomaly data sets are observed sharply. The 5th-level is the level where leak is the
most obvious. In the AE method, the selection of the training dataset to be used in model
training is easy, as the studied TEP dataset had already separate training and test datasets.
As expected, the difference between the input data and the reconstructed data started to
increase with the onset of the anomaly. Likewise, the EWMA method also indicated the
anomaly clearly. Overall, anomaly could be detected with each method applied in TEP
benchmark dataset.

The same methods are applied for the leakage cases in TUPRAS. There are four
different leakage cases in total. All leaks were noticed by the increase in the valve opening
that controls the pressure of the separator (2) located after the heat exchanger and the
operation is stopped, as outlined in section 3.1.1. The operator, process and operation
engineers who are responsible for the unit do not have information about the start time-
date of the leak. Since the unit under investigation is large and complex, the variables
that might be related to leakage are decided by the operation engineers and the data
regarding for those variables is obtained from TUPRAS Historian database. The PCA
method is applied to understand the relationships between the variables suggested by
operation engineers. It was seen that there is an opposite relation between valve opening
and the shell outlet temperature and positive relation between the valve opening and other
variables.

First, Case 1 is studied. For DWT method, evaluation metrics as MAE, MSE and
PSNR are considered for selection of mother wavelet. Db4 is selected as the mother
wavelet with the highest PSNR and lowest MSE and MAE values. The meaning of high
PSNR is a good frequency resolution. Similar to the results obtained with the TEP
benchmark, the 5th-level is the level where the anomaly is clearly observed. The changes
that can be observed on variables such as leak detection, flowrate change, and equipment
replacement can also be detected by the method. In AE, the training dataset is selected in
the normal operating range of the unit. The difference between the test data and
reconstructed data is examined. An increase in error values is observed with the presence
of the anomaly. In the EWMA method, data is predicted using the MLR method and the

residual is calculated by taking the difference between the test and prediction data.
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Control limits are determined using the training data set, and the points out of these limits
are indicated as anomalies. All three methods are found to be able to detect anomalies.
Case 2 and Case 3 are observed in the same year. Therefore, the results are shown
on the same graphs. With the DWT method, operational changes and leaks can be
detected, but there was no indication of the presence of the leak a few days ago before the
leak as opposed to Case 1. While applying the AE and EWMA methods, it is difficult to
select the training dataset because lots of flowrate change, shutdown and equipment
replacement situations are encountered during the year. Two different leakage cases
occurred, and downtimes were experienced due to them. The normal leak-free operating
time of the unit is limited. With the AE method, an increase in error values was observed
before the moment when both Case 2 and Case 3 leaks are noticed by the operation
engineers. In the EWMA method, the detection of the leak can not be noticed beforehand.
For Case 4, first the DWT method is applied. Similar results are obtained in for
Case 4 as in other cases. It is difficult to determine the training data set for AE in Case 4
as in Case 2 and Case 3, since there are operational changes in the timeframe of the
dataset. Therefore, no leak indications are observed a few days before the leak using the
AE and EWMA methods. The reason for these is interpreted as the leakage started with
high volume and is immediately noticed by operation engineers and unit is shutdown.
Engineers would prefer to receive alerts when data exceeds a certain threshold.
Among these methods implemented in this study, we can say that EWMA and AE
methods are more suitable for their requirements. Operational changes in TUPRAS cases
are also observed as anomalies in method results. Since these changes are already known
and controlled by the operator and operation engineers, they will not be considered as an

anomaly.
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CHAPTER 6

CONCLUSION

In this thesis, it has been investigated whether data-based methods can detect leaks
in heat exchangers. First, the methods used for leak detection in heat exchangers were
searched for in the literature. The use of hardware-based methods is common in the
literature, and they are usually offline detection systems. The aim of this thesis is to create
a data-based online leak detection mechanism with real process data. For this purpose,
data-based anomaly detection methods were investigated and DWT, AE and EWMA
methods are applied. Before working with real data, methods were validated on the TEP
benchmark dataset to detect anomalies. Then, the validated methods are applied on the

real process data. Obtained results are shared below.

e Leakage is one of the most common anomalies or faults in the refinery.

e While the leaks occurring on the pipelines can be easily noticed, it is very difficult
to detect the leaks on the equipment.

¢ Inthe literature, data-based studies for the detection of leaks in heat exchanger are
very limited.

e DWT, EWMA and AE methods were able to detect leak both in TEP data and real
process data.

e The choice of mother wavelet and level are important when applying the DWT
method.

e The selection of training datasets is important when training the model for EWMA
and AE methods.

e EWMA and AE methods take into account the values of other variables
determined in the unit.

e Working with real data increases complexity. The results obtained with the TEP
benchmark dataset are clearer.

e Since the real case is complex, it is safer and more conclusive to implement

several different methods simultaneously.

The recommendations for further studies can be listed as follows:
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Different data-based methods can be used.

The methods can be merged with each other.

Cross validation can be applied to determine training and test datasets.

Results can be supported with different heat exchanger data to test a wider window

of applicability and accuracy of the methods.
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EPA
vocC
FFT
SPC
PCA
RCV

NPW
PPA
PCA
PC

CL
UCL
LCL
IUPU
CN
HCGO
LCGO
HVGO
LVGO
HCU
HC
NHT
DHT
LMTD
PSNR
MAE
MSE
TEP

ABBREVIATIONS

Environmental Protection Agency
Volatile Organic Compound
Fast Fourier Transform
Statistical Process Control
Principal Component Analysis
Remote Control Vehicles
Infrared Thermography
Negative Pressure Wave
Pressure Point Analysis
Principle Component Analysis
Principle Component

Control Limit

Upper Control Limit

Lower Control Limit

Integrated Unicracking Processing Unit

Coker Naphtha

Heavy Coker Gas Oil
Light Coker Gas Qil
Heavy Vacuum Gas Oil
Light Vacuum Gas Oil
Hydrocracker Unit
Hydrocarbon

Naphtha Hydro-Treater
Diesel Hydro-Treater

Log Mean Temperature Difference
Peak Signal to Noise Ratio
Mean Absolute Error
Mean Square Error

Tennessee Eastman Process
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PV

MV
IDV
EWMA
Db

Sym
ReLU
EMA
FCU
RELAP
MLR

Process Variable

Manipulated Variable

Disturbance Variable

Exponentially Weighted Moving Average
Daubechies

Symlet

Rectified Linear Unit

Exponential Moving Average

Fan Coil Units

Reactor Excursion and Leak Analysis Program

Multiple Linear Regression
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