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ABSTRACT

QUALITATIVE PROPERTIES OF SOLUTIONS OF SOME KELLER -

SEGEL TYPE SYSTEMS

The main objective of this thesis is to summarize results related with solutions

of some Keller - Segel type systems, which model chemotaxis. This work surveys math-

ematical studies starting with the work that first presented these systems in 1970. This

study emphasizes the local and global existence of solutions of Keller - Segel type sys-

tems, in particular the boundedness and blow-up of solutions.

Keywords: Chemotaxis, Local Existence, Global Existence, Boundedness, Blow-

up, Keller - Segel Model
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ÖZET

KELLER - SEGEL TİPİNDEKİ BAZI SİSTEMLERİN

ÇÖZÜMLERİNİN KALİTATİF ÖZELLİKLERİ

Bu tezde temel amaç, kemotaksisi modelleyen bazı Keller - Segel tipi sistemlerin

çözümleri ile ilgili sonuçları özetlemektir. Bu çalışma, 1970 yılında bu sistemleri ilk kez

sunan çalışma ile başlayan matematiksel çalışmaları inceler. Bu çalışma, Keller - Segel

tipi sistemlerin çözümlerinin yerel ve global varlı ‘gını, özellikle çözümlerin sınırlılı ‘gını ve

patlamasını vurgular.

Anahtar Kelimeler: Kemotaksis, Yerel Varlık, Global Varlık, Sınırlılık, Patlama,

Keller - Segel Modeli
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CHAPTER 1

INTRODUCTION

One of the main characteristics of cells is their reaction to environmental varia-

tions. Cells externally detect changes and alter their behavior accordingly. In general, a

reaction to an external signal is called taxis, and cells exhibit a variety of tactical move-

ments. One of them, chemotaxis, is the directed movement of cells in response to external

signals. The movement of cells from low to high chemical signal intensity is called pos-

itive chemotaxis, and the reverse is called negative chemotaxis. Chemotaxis is prevalent

in many biological events and regulates biological processes such as wound healing or

neuron movement.

Mathematics provides insight for understanding biological processes. Chemotaxis

is one such biological model that has a precise mathematical description. Theoretical and

mathematical modeling of chemotaxis first appeared with the study of Patlak in the 1950s

(Patlak, 1953) and next appeared in the work of Keller and Segel (1970). Keller and Segel

offered the model of equations that characterize movements induced by a chemical matter.

The original Keller - Segel model to be detailed in the third chapter contains four

partial differential equations. It can be reduced to two partial differential equations under

suitable assumptions. This simplified model will form the main subject of this thesis.

The general structure of the model is as follows:

∂tu = ∇ · (D(u, v)∇u − S (u, v)∇v) + f (u, v),

∂tv = Δv + g(u, v),
(1.1)

where u denotes the cell density and v denotes the chemoattractant density on a given

domain Ω ⊂ Rn. D(u, v) describes the diffusivity of the cells, while S (u, v) is the chemo-

tactic sensitivity. Both of them may depend on u and v. f (u, v) describes cell growth and

death, while g(u, v) is a kinetic function that describes the production and degradation of

the chemical substance.
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Analysis of the mathematical modeling of chemotaxis provides valuable insight

into the underlying biological processes, and studies on this subject continue to increase

every year. These studies examine the local or global existence of solutions and also find

conditions under which solutions may blow up.

Following Keller Segel’s seminal work (1970), Nanjundiah examined the problem

of the nonlinear stability of the classical Keller Segel type system (1973). Next, Nanjun-

diah, Childdress and Percus, (1981) studied the asymptotic behavior of the solutions of

some types of the Keller Segel model. Herrero and Velazquez (1996) then found that

solutions form δ-singularity in finite time at the center of the R2 disk by using the asymp-

totic expansion method. This was an important contribution to the results on the blow-up

behavior of solutions. Soon after, Yagi (1997) demonstrated the local existence of some

Keller - Segel type systems of equations. Then Biler (1998) examined some Keller -

Segel models with different boundary conditions and proved their global existence for

some classes of solutions. In the same year, Gajewski and Zacharias (1998) showed the

global existence of solutions for some regular spaces using the Lyapunov functional. Os-

aki and Yagi (2001) proved the global existence of solutions for the classical model (4.1)

in dimension n = 1.

The review article by Horstmann (2003) can be considered a comprehensive intro-

duction to the mathematics of Keller - Segel type equations. The review surveys different

approaches for modeling chemotaxis and different perspectives on the model of chemo-

taxis in detail.

A survey by Hillen and Painter (2009) provides significant references to studies on

the variations of Keller - Segel models. They studied the system of equations biologically

and summarized important results regarding its properties.

An article by Bellomo et al. (2015) summarizes the qualitative characteristics of

solutions of some types of systems. The study aimed to contribute to new approaches to

research in this area.

The aim of this thesis is to examine the qualitative properties of the solutions

of Keller - Segel models consisting of parabolic equations in studies from 1970 to the

present. This thesis focuses on both the classical Keller - Segel model and related models.

The models examined in the thesis are listed below.
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The classical model:

∂u
∂t = Δu − ∇ · (u∇v),

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.2)

Signal density dependent sensitivity model:

∂u
∂t = Δu − ∇ · (uS (v)∇v) ,

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.3)

Cell density dependent sensitivity model:

∂u
∂t = Δu − ∇ · (uS (u)∇v),

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.4)

Nonlinear diffusion and cell density dependent sensitivity model:

∂u
∂t = ∇ · (D(u)∇u) − ∇ · (S (u)∇v),

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.5)

Quasilinear model:

∂u
∂t = ∇ · (D(u, v)∇u) − ∇ · (S (u, v)∇v),

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.6)
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The thesis is organized as follows.

In Chapter 2, we collect some important tools from partial differential equations,

functional analysis, and semi-group theory. In Chapter 3, we introduce the Keller - Segel

model for chemotaxis and analyze the mathematical formulation of the general move-

ment. In Chapter 4, we consider the qualitative characteristic of solutions of some Keller

- Segel type systems. In the conclusion, we mention some open questions relating with

these systems.
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CHAPTER 2

PRELIMINARIES

This chapter reviews some mathematical tools to make the main chapters easier to

read.

2.1. Lebesque and Hölder Spaces

We refer to (Kreyzing, 1991) for this section, which includes basic definitions and

theorems about Lebesque and Hölder spaces.

Definition 2.1 Let Ω be measure space. If u is a measurable function on Ω and

0 < p < ∞, we define

||u||Lp(Ω) =

(∫
Ω

|u|p
)1/p

and

Lp(Ω) = {u : Ω −→ R : u is Lebesgue measurable, ||u||Lp(Ω) < ∞}.

If we consider the limiting case p = ∞, the space L∞ will be defined as all functions that

are essentially bounded. If u is a measurable function on Ω, we define

||u||L∞(Ω) = in f {C ≥ 0 : |u(x)| ≤ C f ora.e.x}.

Definition 2.2 (Hölder space) The Hölder space Ck,γ(Ω) consists of all functions

u ∈ Ck(Ω) with the norm

||u||Ck,γ(Ω) :=
∑
|α≤k|
||Dαu||C(Ω) +

∑
|α=k|

[Dαu]C0,γ(Ω).

So, the space Ck,γ(Ω) consists of those functions u that are k-times continuously differen-

tiable and whose kth-partial derivatives are Hölder continuous with exponent γ.

5



Definition 2.3 Assume Ω ⊂ Rn is open and 0 < γ ≤ 1. A function u is said to be Hölder

continuous if it satisfies the following inequality

|u(x) − u(y)| ≤ C|x − y|γ

for some positive constant C.

Definition 2.4

(i) If Ω −→ R is bounded and continuous, we write

||u||C(Ω) := sup
x∈Ω
|u(x)|.

(ii) The γth-Hölder seminorm of u : Ω −→ R is

[u]C0,γ(Ω) := sup
x,y∈Ω,x�y

{ |u(x) − u(y)|
|x − y|γ

}

and γth-Hölder norm is

||u||C0,γ(Ω) := ||u||C(Ω) + [u]C0,γ(Ω).

2.2. Sobolev Spaces

We refer to (Evans, 2010) for this section, which includes basic definitions and

theorems about Sobolev spaces.

Definition 2.5 Let us suppose that u, v ∈ L1
loc(Ω) and α is a multiindex. We say that v is

the αth-weak derivative of u, written as

Dαu = v,

6



provided ∫
Ω

uDαφdx = (−1)|α|
∫
Ω

vφdx

for all test functions φ ∈ C∞c (Ω).

Definition 2.6 (Sobolev Space) The Sobolev space W p,k(Ω) consists of all locally summable

functions u : Ω −→ R such that for each multiindex α with |α| ≤ k, Dαu exists in the weak

sense and belogs to Lp(Ω).

If u ∈ W p,k(Ω), we define its norm as

‖u‖Wk,p(Ω) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(
∑
|α|≤k

∫
Ω
|Dαu|p)1/p, 1 ≤ p < ∞,

∑
|α|≤k esssupΩ|Dαu|, p = ∞.

Definition 2.7 Let {um}∞m=1, u ∈ W p,k(Ω). We say um converges to u in W p,k(Ω), written

um −→ u, in W p,k(Ω)

provided

lim
m→∞ ||um − u||W p,k(Ω) = 0.

Definition 2.8 Let s = k + ε with k ≥ 0 being an integer and 0 < ε < 1. Then the

fractional Sobolev space is defined by

W s,p(Ω) =
{
u ∈ Wk,p :

|Dαu(x) − Dαu(y)|
||x − y||ε+ d

p

∈ Lp(Ω ×Ω),∀α : |α| = k
}

with the norm

||u||W s,p(Ω) =

⎛⎜⎜⎜⎜⎜⎜⎝||u||pWk,p(Ω)
+
∑
|α|=k

∫
Ω×Ω

|Dαu(x) − Dαu(y)|p
||x − y||εp+d dxdy

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

.

When p = 2, Hs(Ω) = W s,2(Ω).
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2.3. Semigroup Theory

We refer to (Pazy, 2012) and (Kesavan, 1994) for this section, which includes

basic definitions and theorems about semigroup theory.

Definition 2.9 Let X be a Banach space. A one parameter family T (t), 0 ≤ t ≤ ∞ of

bounded linear operators from X into X is called a semigroup of bounded linear operators

on X if

(i) T (0) = I, (I is the identity operator),

(ii) T (s + t) = T (s)T (t) for every t, s ≥ 0.

A linear operator A is the infinitesimal generator of semigroup T (t) if

Ax := lim
t→0

T (t)x − x
t

=
d+T (t)x

dt

∣∣∣∣∣
t=0

,

for every x ∈ D(A), where

D(A) :=

{
x ∈ X : lim

t→0

T (t)x − x
t

exists
}
.

A semigroup of the bounded linear operators T (t) is called uniformly continuous if

lim
t→0
||T (t) − I|| = 0.

Definition 2.10 A semigroup T (t), 0 ≤ t ≤ ∞ of bounded linear operators on X is a

strongly continuous semigroup of bounded linear operators if

lim
t→0

T (t)x = x

for every x ∈ X. A strongly continuous semigroup of bounded linear operators on X is

called a C0 semigroup.
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Definition 2.11 A semigroup T (t) will be called analytic if it is analytic in some sector

containing the nonnegative real axis.

On bounded domains, some Lp - Lq estimates have been proven for the Neumann

heat semigroup.

Lemma 2.1 (Cao, 2015)

Assume (etΔ) is the Neumann heat semigroup in Ω, and let λ1 be the first nonzero eigen-

value of −Δ inΩ under Neumann boundary conditions. Then there exist positive constants

c1, c2, c3 and c4 which depend only on domain and which have the following properties:

(i) If 1 ≤ q ≤ p ≤ ∞, then

||etΔw||Lp(Ω) ≤ c1(1 + t−
n
2 ( 1

q− 1
p ))e−λ1t||w||Lq(Ω),∀t ≥ 0

holds for all w ∈ Lq(Ω) with
∫
Ω

w = 0.

(ii) If 1 ≤ q ≤ p ≤ ∞, then

||∇etΔw||Lp(Ω) ≤ c2(1 + t−
1
2− n

2 ( 1
q− 1

p ))e−λ1t||w||Lq(Ω),∀t ≥ 0

holds for all w ∈ Lq(Ω).

(iii) If 2 ≤ q ≤ p < ∞, then

||∇etΔw||Lp(Ω) ≤ c3(1 + t−
n
2 ( 1

q− 1
p ))e−λ1t||∇w||Lq(Ω),∀t ≥ 0

holds for all w ∈ W1,p(Ω).

(iv) If 1 ≤ q ≤ p ≤ ∞, then

||etΔ∇.w||Lp(Ω) ≤ c4(1 + t−
1
2− n

2 ( 1
q− 1

p ))e−λ1t||∇w||Lq(Ω),∀t ≥ 0

holds for all w ∈ (W1,p(Ω))n.
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2.4. Definitions of Some Keller - Segel Model

We refer to (Horstmann, 2003) for this section, which includes definitions of the

solutions of some Keller - Segel type systems.

Definition 2.12 Let Tmax be the maximal existence time of the solution (u, v) of (4.1). A

point x0 ∈ Ω is said to be a blow-up point of u if there exist {tk}∞k=1 ⊂ (0,Tmax) and

{xk}∞k=1 ⊂ Ω satisfying

u(tk, xk)→ ∞, tk → Tmax, xk → x0 when k → ∞.

Definition 2.13 We say that the solution of (4.1) blows up provided there is a time Tmax ≤
∞ such that

lim sup
t→Tmax

||u(t, x)||L∞(Ω) = ∞
or

lim sup
t→Tmax

||v(t, x)||L∞(Ω) = ∞
If Tmax < ∞ we say that the solution of (4.1) blows up in finite time, and if Tmax =

∞ we say that the solution of (4.1) blows up in infinite time.

Definition 2.14 Let χ > 0 , u0 ∈ L1(Ω) , v0 ∈ L1(Ω) and T > 0. A weak solution of (4.6)

in (0,T ) ×Ω is a pair (u, v) of nonnegative functions

u ∈ L1
loc((0,T ) ×Ω), v ∈ L1

loc((0,T ) ×Ω)

with the properties
u
v
∇v ∈ L1

loc((0,T ) ×Ω),

−
∫ T

0

∫
Ω

uψt −
∫ T

0

∫
Ω

uΔψ − χ −
∫ T

0

∫
Ω

u
v
∇v · ∇ψ =

∫
Ω

u0ψ(0, ·),
and

−
∫ T

0

∫
Ω

vψt −
∫ T

0

∫
Ω

vΔψ +
∫ T

0

∫
Ω

vψ −
∫ T

0

∫
Ω

uψ =
∫
Ω

v0ψ(0, ·)

for all ψ ∈ C∞0 ([0,T ) ×Ω) with ∂ψ
∂v = 0 on (0,T ) × ∂Ω.
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Definition 2.15 (Stinner and Winkler, 2011)

Let p ∈ (0, 1) and (u0, v0) ∈ Lp(Ω) × Lp(Ω). Then the pair of non-negative functions (u, v)

is called a weak power-λ solution of (4.6) if u ∈ Lp
loc([0,T ) × Ω) and v ∈ Lp

loc([0,T ) × Ω)

with T > 0 such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(u + 1)p−2|∇u|2 ∈ Lp

loc([0,T ) ×Ω) and (v + 1)p−2|∇v|2 ∈ Lp
loc([0,T ) ×Ω)

upv−2|∇v|2 ∈ Lp
loc([0,T ) ×Ω) and u(v + 1)p−1 ∈ Lp

loc([0,T ) ×Ω)

(2.1)

that satisfy the identities

− 1
p

∫ T

0

∫
Ω

(u + 1)pψt + (p − 1)

∫ T

0

∫
Ω

(u + 1)p−2|∇u|2ψ +
∫ T

0

∫
Ω

(u + 1)p−1∇u · ∇ψ

−χ(p − 1)

∫ T

0

∫
Ω

(u + 1)p−2 u
v
∇u · ∇vψ − χ

∫ T

0

∫
Ω

(u + 1)p−1 u
v
∇v · ∇ψ

= 1
p

∫
Ω

(u0 + 1)pψ(·, 0)

and

− 1
p

∫ T

0

∫
Ω

(v + 1)pψt + (p − 1)

∫ T

0

∫
Ω

(v + 1)p−2|∇v|2ψ +
∫ T

0

∫
Ω

(v + 1)p−1∇v · ∇ψ

+

∫ T

0

∫
Ω

(v + 1)p−1vψ −
∫ T

0

∫
Ω

u(v + 1)p−1ψ =
1

p

∫
Ω

(v0 + 1)pψ(·, 0)

for all ψ ∈ C∞0 ([0,T ) ×Ω).
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CHAPTER 3

KELLER - SEGEL MODEL FOR CHEMOTAXIS

In this chapter, we introduce the well-known Keller - Segel models for chemo-

taxis. The first mathematical modeling of chemotaxis was by Keller and Segel (1970). In

their paper, they presented a mathematical formulation that analyzed the movement of the

amoeba and the chemical described by continuous functions. It should also be pointed

out that the model they obtained builds on previous studies by Patlak (1953).

3.1. Formulation of the model for chemotaxis

Keller and Segel (1970)’s model includes a system of four strongly coupled parabolic

partial differential equations. To describe chemotaxis, they assumed some of the events

that took place during chemotaxis. The hypotheses and their notations are as follows:

• External signal is produced at a rate c(v).

• There exists an enzyme that destroys the external signal. The concentration of the

enzyme is denoted by p. The enzyme is produced at a rate g.

• The enzyme and chemoattractant react and form products. The concentration is

given as η.

v + p� η→ p + product

Let Ω be the domain in the Rn in which the cells are located. Then by conservation of

mass,
∂

∂t

∫
Ω

udx =
∫
Ω

Q(u)dx −
∫
∂Ω

J(u) · nds (3.1)

where Q(u)(x, t) denotes the amoeba mass, J(u)(x, t) is the flux of amoeba mass and n is the

unit normal vector to the ∂Ω. Reproduction was ignored, so Q(u) ≡ 0. (3.1) implies

∂u
∂t
= −∇ · J(u) = −∇ · ( f2∇v − f1∇u).
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The flux terms are the following :

J(v) = −kv∇v, J(η) = −kη∇η, J(p) = −kp∇p

where kv , kη and kp are taken as constants. The following system was obtained:

∂u
∂t
= ∇ · ( f1(u, v)∇u) − ∇ · ( f2(u, v)∇v),

∂v
∂t
= kvΔv − w1vp + w−1η + uc(v),

∂p
∂t
= kpΔp − w1vp + (w−1 + r2)η + ug(v, p),

∂η

∂t
= kηΔη + w1vp − (w−1 + w2)η

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where u(t, x) indicates the amoebae density of the cells and v(t, x) indicates a chemoat-

tractant concentration. w−1, w1 and w2 are constants that show reaction rates.

Keller and Segel (1970) devoted their main attention to the aggregation process.

They made Haldane’s assumption and assumed that the total concentration of the enzyme

is constant. Then they simplified the problem into two equations that involve only u and

v:

∂u
∂t
= ∇ · (k1(u, v)∇u) − ∇ · (k2(u, v)∇v), x ∈ Ω, t > 0,

∂v
∂t
= kvΔv − k3(v)v + u f (v), x ∈ Ω, t > 0,

(3.3)

Keller and Segel (1970) presented an instability condition given by

k2v0

k1u0

+
u0 f ′(v0)

k3

> 1.

where it is understood that k1 and k2 are evaluated at u = u0 , v = v0 and

k3 ≡ k3(v0) + v0k′(v0).
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To find this condition, they assumed that the right-hand sides of equations in (3.3) were

replaced by Taylor expansions in u and v around the equilibrium point (u0, v0) with small

perturbations.

Patlak (1953) considered the situation in which only the directions in which the

particle travels are correlated and there are only one-step correlations. He also assumed

that there are external forces and anisotropy of the surroundings. He derived the partial

differential equation of the random walk problem with the persistence of direction and

external bias.

Patlak (1953) assumed the following:

• The particles interact with each other, but this interaction can be neglected.

• Each time the particle begins its motion, the data on the previous c and τ is deleted,

where τ denotes a certain length of time and c denotes an average speed of particles.

• The time the particle spends while moving is insignificant.

• The number of particles and the values c and τ remain approximately the same per

unit time.

In its original form, this model consists of four coupled equations. These equa-

tions can be written as a model containing two unknowns u and v. Assumptions that do

not contradict biological facts can be made. The review of the models with only these

unknown functions will be the focus of this thesis.

The simplified model takes the following form:

∂u
∂t
= ∇(k1(u, v)∇u) − ∇(k2(u, v)u∇v) + k3(u, v),

∂v
∂t
= kcΔv + k4(u, v),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

where u denotes the cell density on a given domain Ω ⊂ Rn and v denotes the concen-

tration of the chemical signal. k1(u, v) describes the diffusivity of cells, while k2(u, v) is

the chemotactic sensitivity, and both functions may depend on u and v. k3(u, v) describes

cell growth and death while k4(u, v) is the kinetic function that describes degradation and

production of the chemical signal.
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CHAPTER 4

QUALITATIVE PROPERTIES OF SOLUTIONS OF SOME

KELLER - SEGEL TYPE SYSTEMS

Many researchers have studied mathematical properties of solutions of Keller -

Segel type systems and found conditions for existence of global or blow-up solutions.

This section will review qualitative properties of solutions of Keller - Segel type systems.

In Subsection 4.1, we give some results on local existence, global existence,

boundedness, and blow-up of solutions of the classical Keller - Segel model.

In Subsection 4.2, we give the results for the signal density-dependent Keller -

Segel model.

In Subsection 4.3, we summarize some results for the system with cell density-

dependent chemotactic sensitivity function.

In Subsection 4.4, we consider a more general type of classical model which in-

cludes nonlinear diffusion and cell density-dependent sensitivity functions.

In Subsection 4.5, we give the results for a general quasilinear Keller - Segel

system.

In Subsection 4.6, we give important results for a relatively more general form of

the Keller - Segel system.

4.1. Classical Keller - Segel Model

In this subsection we consider the classical Keller - Segel equations:

∂u
∂t
= Δu − ∇(u∇v),

∂v
∂t
= Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

where x ∈ Ω ⊂ Rn and t > 0. In this model, the function u(t, x) is the density

of the particle at time t and position x; the function v(t, x) describes the external signal
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density. Furthermore, the normal derivative of the density of particle and external signal

are assumed to be zero on ∂Ω. The initial datas are u0 and v0 when x ∈ Ω and t = 0.

A system of this type describes the evolution of cell populations and their move-

ment affected by the gradient of a chemical signal produced by the cells themselves. This

section is devoted to a review of classical Keller - Segel system. We will focus on local

and global existence, boundedness, and blow-up of solutions in finite time or infinite time.

For the classical Keller - Segel model (4.1), it is well-known that the qualitative

properties of solutions are related to the space dimension. Many researchers explored

whether solutions exist globally or blow up in finite time. One interesting problem is to

find ways to prevent the blowing-up of solutions, because assumptions should be sup-

ported by biological facts.

4.1.1. Existence of Solutions of Classical Keller - Segel Model

In this subsection, we recall the results on the local and global existence of so-

lutions of the classical Keller - Segel model. It is well known that (4.1) is well-posed,

meaning that for any smooth initial data we can find a unique classical solution to the

classical Keller - Segel type model (Bellomo et al., 2015). In addition, according to N.

Bellomo et al. (2015), the solution (u, v) of (4.1) in (0,Tmax)×Ω satisfies the mass identity

∫
Ω

u(t)dx =
∫
Ω

u0dx, f or all 0 < t < Tmax. (4.2)

In general, two main methods have been used to prove the existence of solutions.

One of them is to find a L∞ bound for the function −k2u∇v in (3.4). Finding a Lyapunov

function is another method (Hillen and Painter, 2009). One has the following lemma:

Lemma 4.1 (Hillen and Painter, 2009)

Let the components of the vector field ψ : (0,∞) × Ω −→ Rn be uniformly bounded and

let u0 ∈ L∞(Ω) ∩ L1(Ω) be nonnegative. Then the solution of the initial boundary value

problem

ut = ∇ · (∇u − uψ), u(0, x) = u0
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satisfying the zero-flux boundary condition on ∂Ω satisfies u ∈ L∞((0,∞) ×Ω) and

sup
t∈(0,∞)

||u||L∞(Ω) ≤ C(||u0||L1(Ω), ||u0||L∞(Ω), sup
t
||ψ||L∞(Ω), n)

for some positive constant C.

Finding a Lyapunov functional is important for studying qualitative properties of

solutions. The Lyapunov functional associated with Keller - Segel model is below:

F(u, v) :=
1

2

∫
Ω

|∇v|2 +
∫
Ω

v2 +

∫
Ω

u ln u −
∫
Ω

uv (4.3)

Bellomo et al. (2015) calls this Lyapunov functional the energy functional of the

Keller - Segel system, and they used it to study the qualitative properties of the model.

They argued that this functional plays a crucial role in deriving various results related with

global solutions or for solutions which cease to exist globally (Bellomo et al., 2015).

The local solutions of (4.1) have been studied by Yagi, (1997), who suggested

that the Keller - Segel system possesses a global solution in one dimension. The global

existence of solutions to (4.1) in a bounded domain in R was derived in (Osaki and Yagi,

2001). The authors supposed that the initial data u0 and v0 are non-negative functions for

model (4.1). They summarized these results in the following theorem :

Theorem 4.1 (Osaki and Yagi, 2001)

Let Ω be bounded in R. Assume u0 ∈ C0(Ω) and v0 ∈ ∪q>nW1,q(Ω) are non-negative in Ω.

Let Tmax be the maximal existence time for the classical solution of (4.1) and (u, v) denote

the corresponding maximally extended classical solution of (4.1) in (0,Tmax) × Ω. Then

(u, v) is global and bounded. This means that there exists K > 0 such that

||u(t, ·)||L∞(Ω) + ||v(t, ·)||L∞(Ω) ≤ K

for all t > 0.

Moreover, the solution converges to a stationary solution as t → ∞.
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Osaki and Yagi (2001) succeeded in proving global existence for (4.1) in the case

n = 1. They have studied the more general form of the Keller - Segel model (4.1). The

authors studied (1.1) with D(u, v) = constant, S (u, v) = uφ(v), g(u, v) = −βv + αu and

f ≡ 0. In order to prove existence of local solutions, Osaki and Yagi used the Galerkin

method. Then they obtained the existence of global solutions by constructing a priori

estimates for local solutions (Osaki and Yagi, 2001).

Now, we will give the results of the existence of solutions for the case n = 2. For

the case n = 2, the global existence of solutions is given depending on a threshold value of

L1 norm of initial data. If the initial data is below the threshold, then the global solutions

of the classical Keller - Segel model exist. If the initial data is above the threshold, then

the solutions of the system blow up in finite time or infinite time. Yagi (1997) suggested

that the Keller - Segel system possesses a global solution for any sufficiently small initial

data in two-dimensional spaces. His results can be summarized as follows :

Theorem 4.2 (Yagi, 1997)

Let Ω be a bounded smooth domain in R2. Assume u0, v0 ∈ H1+ε0(Ω) for some 0 < ε0 ≤ 1

and u0 and v0 are nonnegative inΩ. Let Tmax be the maximal existence time of the solution

(u, v) of (4.1).

(i) Then (4.1) has a nonnegative solution (u, v) satisfying

u, v ∈ C([0,Tmax); H1+ε1(Ω)) ∩C1((0,Tmax); L2(Ω)) ∩C((0,Tmax); H2(Ω))

for any positive ε1 < min{ε0, 1
2
}.

(ii) If Tmax < ∞ , then

lim
t→Tmax

(||u(t, ·)||H1+ε0 (Ω) + ||v(t, ·)||H1+ε0 (Ω)) = ∞.

Nagai, Senba, and Yoshida (1997) proved that a global solution exists if the L1

norm of u0 is smaller than a certain positive number. Their results can be summarized as

the follows :
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Theorem 4.3 (Nagai and Senba and Yoshida, 1997)

Let Ω be bounded in R2 with smooth boundary. Assume u0 ∈ C0(Ω) and v0 ∈ ∪q>nW1,q(Ω)

are non-negative in Ω. Let Tmax be the maximal existence time of classical solution (u, v)

of (4.1) and (u, v) denote the corresponding maximally extended classical solution of (4.1)

in (0,Tmax) × Ω. . If
∫
Ω

u0 < 4π, then (u, v) exists globally in time, and its L∞ norm is

uniformly bounded for all times. That is, the solution fulfills

||u(t, ·)||L∞(Ω) + ||v(t, ·)||L∞(Ω) ≤ C.

If moreover Ω is a disk and (u0, v0) is radially symmetric, then the same result is obtained

under the assumption that
∫
Ω

u0 < 8π.

The summarized results were obtained by using semigroup theory. Nagai et al.

(1997) used the Lyapunov functional to find a bound to the function ∇v(t, ·) for all t ≥ 0

in the L∞ norm.

Winkler (2010) realized that there were no conclusions concerning the existence

of global solutions for the classical Keller - Segel model in higher space dimension. Win-

kler (2010) considered the classical Keller - Segel model (4.1) under Neumann boundary

conditions in Rn with n ≥ 3. His main result stated the following:

Theorem 4.4 (Winkler, 2010)

Let Ω be smooth bounded domain in Rn with n ≥ 3. Assume u0 ∈ C0(Ω) and v0 ∈
∪q>nW1,q(Ω) are non-negative in Ω. If p > n, q > n

2
and initial data satisfy

||u0||Lq(Ω) < ε and ||∇v0||Lp(Ω) < ε

for some sufficiently small positive ε, then the solution (u, v) of (4.1) is global in time and

is bounded.

Thanks to the properties of the Neumann heat semigroup, Winkler proved that

the global solution exists and is bounded. Furthermore, he described the behavior of

solutions in large time and showed that the solution (u, v) approaches the steady-state

(m,m) as t → ∞, where m is the total mass of the population. Cao (2015) extended this
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result in the corresponding critical case, that is, for q = n
2

and p = n. He proved the global

existence and boundedness under the assumption that initial data is small.

Theorem 4.5 (Cao, 2015)

Let n ≥ 2 and 0 < λ < λ1, where λ1 denote the first nonzero eigenvalue of −Δ in Ω under

Neumann boundary conditions. Let Ω be a bounded domain in Rn with smooth boundary.

Then there exists ε0 > 0 depending on λ1 andΩ with the following property: If u0 ∈ C0(Ω)

and v0 ∈ ∪q>nW1,q(Ω) with q > n are non-negative in Ω and satisfy

||u0||Ln/2(Ω) ≤ ε and ||∇v0||Ln(Ω) ≤ ε.

for some ε < ε0, then (4.1) possess a global solution (u, v) which is bounded and satisfies

||u(t, ·) − u0||L∞(Ω) ≤ C.e−λt and ||v(t, ·) − u0||L∞(Ω) ≤ C.e−min{λ,1}t f or all t > 0

where C > 0 depends on λ1 and Ω and u0 =
1
|Ω|
∫
Ω

u0.

His proof is based on a priori estimates of the total mass of cells and the chemical

gradient.

Hieber et al. (2021) addressed the classical Keller - Segel model (4.1) with convex

bounded domains of R3. However, they did not assume that the boundary of the domain

is smooth. The authors established the local and strong solutions of the classical Keller -

Segel model. This solution can be extended globally if initial data are small. This result

is one of the most recent results regarding the classical Keller - Segel model.

4.1.2. Blow-up of Solutions of Classical Keller - Segel Model

After the main article written by Keller and Segel (1970), Nanjundiah’s article

(1973) was a landmark in examining the qualitative characteristics of solutions of the

classical Keller - Segel model (Horstmann, 2003). His paper studied nonlinear stability

for the classical model of Keller - Segel equations in dimension n = 2. He predicted finite

time blow-up for some solutions. Furthermore, he revealed that the blow-up of solutions

20



can only be in the form of a δ function type.

Subsequently, two articles (Childress and Percus, 1981; Childress, 1983) devel-

oped conjectures for the asymptotic behavior of the solution of the Keller - Segel type

system (Horstmann, 2003). Childress and Percus (1981) focused on the relation between

the dimension of space and aggregation. They proved that the singular behavior of the

solution is dependent on the dimension of space. They also refer that aggregation leads

to the formation of δ function type in the cell density as chemotactic collapse. Studies of

the existence of such blow-up solutions increased in the 1990s.

The first result was given by Herrero and Velazquez (1997). The authors were able

to describe the blow-up profile of the system (4.1) using asymptotic expansion theory, and

they showed that there exist initial data such that the corresponding solution of the Keller

- Segel model blows up either in finite or in infinite time under the condition
∫
Ω

u0(x)dx >

8π (Herrero and Velazquez, 1997). Moreover, they constructed some radially symmetric

initial data such that the solution forms a singularity in finite time in the center of a disc

Ω.

Horstmann and Wang (2001) considered the nonradial case in R2 and showed that

there exist some unbounded solutions provided the domain Ω ⊂ R2 is simply-connected.

They proved that the corresponding solution of (4.1) blows up in the finite or infinite time.

Nagai, Senba and Suzuki (2000) showed the following results that gives informa-

tion about the general blow - up behavior of the classical Keller - Segel model (4.1) in

their article:

Theorem 4.6 (Nagai and Senba and Suzuki, 2000)

Assume that Ω ⊂ R2 is a bounded domain with smooth boundary. Let (u, v) be a classical

solution of (4.1) in (0,Tmax) ×Ω with Tmax ∈ (0,∞] satisfying ||u||L∞((0,Tmax)×Ω) = ∞. More-

over, let the set B denote all blow-up points in Ω and the set BI ⊂ B denote all isolated

blow-up points.

(i) If x0 ∈ BI , then we have R > 0 and the nonnegative function

f ∈ L1(B(x0,R) ∩Ω) ∩C(B(x0,R) ∩Ω \ {x0})

such that u(t, ·) converges to mδx0
+ f as t → Tmax in the sense of radon measures on
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B(x0,R) ∩Ω where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m ≥ 8π i f x0 ∈ Ω
m ≥ 4π i f x0 ∈ ∂Ω

and B(x0,R) := {x ∈ R2 : |x− x0| < R}.

(ii) If inf0≤t<Tmax F(u(t, ·), v(t, ·)) > 0 or limt→Tmax F(u(t, ·), v(t, ·)) = −∞, then BI = B.

(iii) If the solution of (4.1) is radially symmetric and Tmax < ∞ , then B = {0}.

Theorem 4.6 implies that if there is a solution that blows up in finite time, then

the blow-up must occur at the boundary of the domain. However, the results do not show

whether the blow-up time is finite or infinite.

Results on the blow-up of solutions of the classical Keller - Segel model are lim-

ited in the literature. Results of the classical Keller - Segel model depending on the

particular conditions associated with the blow-up of this model are summarized below.

Winkler (2010) showed that there exist unbounded solutions emanating from ini-

tial data (u0, v0) having total mass
∫
Ω

u0 = m in three or higher dimensional balls.

Theorem 4.7 (Winkler, 2010)

Assume that Ω ⊂ Rn is a ball with n ≥ 3. For each small mass, there is an initial data u0

and v0 such that the solution of (4.1) blows up either in finite or infinite time.

The above result obtained by Winkler does not answer the question of which so-

lutions blow up in finite time and which solutions blow up in infinite time.

The following blow-up result of the classical Keller - Segel model (4.1) for two

and higher dimensions was obtained by Bellomo et al. (Bellomo et al., 2015).

Theorem 4.8 (Bellomo et al., 2015)

Assume thatΩ ⊂ Rn is a ball with n ≥ 2. Let u0 > 0 and v0 > 0. Then there is T (u0, v0) > 0

and C(u0, v0) > 0 such that for any initial data (u0, v0) from the given set

S (u0, v0) :=
{
(u0, v0) ∈ C(Ω) ×W1,∞(Ω) : 0 < u0 and 0 < v0 are radially symmetric in Ω

with u0 =
∫
Ω

u0, v0 ≥ ||v0||W1,2(Ω) and F(u0, v0) ≤ −C
}

the corresponding solution (u, v) of (4.1) blows up before or at time T (u0, v0).
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Winkler (2020) considered (4.1) for dimensions n ≥ 3. He used a basic theory of

local existence and maximal extensibility of classical solutions. He proved the presence

of blow-up solution in finite time with large sets of radially symmetric initial data, and

also showed that blow-up occurs at the spatial origin.

Theorem 4.9 (Winkler, 2020)

Suppose n ≥ 3 and q > n. Let u0 ∈ BUC(Rn) ∩ L1(Rn) and

v0 ∈ W1,q(Rn) ∩W1,1(Rn) be nonnegative and u0 � 0.

(i) Then there is Tmax ∈ [0,∞) and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C0([0,Tmax); BUC(Rn) ∩ L1(Rn)) ∩C1,2((0,Tmax) × Rn)

v ∈ C0([0,Tmax); W1,q(Rn) ∩W1,1(Rn)) ∩C1,2((0,Tmax) × Rn)

which solve (4.1) in the classical sense and such that if Tmax < ∞ then

lim sup
t→Tmax

||u(t, ·)||L∞(Rn) = ∞.

In addition, if initial data are radially symmetric with respect to x0, then solutions

u(t, ·) and v(t, ·) are also radially symmetric with respect to x = 0 for all 0 < t <

Tmax.

(ii) If initial data are radially symmetric, then for any choice of p ∈
(
1, 2n

n+2

)
there are

sequences (u0i) and (v0i) such that u0i and v0i are radially symmetric and positive

for all i ∈ N,

u0i → u0 and v0i → v0

when i→ ∞ and for all i ∈ N the classical solution of (4.1) from item(i)

blows up in finite time at the spatial origin.

A more recent study by Winkler (2020) showed that any classical radially sym-

metric solution which blows up in finite time has a unique blow-up profile. He derived

pointwise time-independent estimates for any radially symmetric solutions. Then these

estimates were used to claim that any radial classical solution which blows up in finite
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time has a unique blow-up profile. Moreover, these estimates were used to ensure global

extensibility for any such solution (Winkler, 2020). His results can be summarized as

follows:

Theorem 4.10 (Winkler, 2020)

Let Ω be a ball in Rn for some n ≥ 2 and assume u0 ∈ C0(Ω) and v0 ∈ W1,∞(Ω) are

nonnegative and radially symmetric initial data.

(i) Given any ε > 0 there exists C(ε) > 0 such that if Tmax ∈ (0,∞] then the solution of

the system (4.1) satisfies

u(t, x) ≤ C(ε) · |x|−n(n−1)−ε

|∇v(t, ·)| ≤ C(ε) · |x|−(n−1)−ε

for all x ∈ Ω and t ∈ (0,Tmax).

(ii) If the corresponding solution of the system (4.1) blows up in finite time, then there

is a nonnegative radially symmetric function u ∈ C2(Ω − {0}) such that

u(t, ·)→ u

in C2
loc(Ω − {0}) when t → Tmax and for all ε > 0 there exists C(ε) > 0 such that

u ≤ C(ε) · |x|−n(n−1)−ε

for all x ∈ Ω − {0}.
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4.2. Signal Dependent Sensitivity Keller - Segel Model

In this subsection we consider the following Keller - Segel equations:

∂u
∂t = Δu − ∇ (uS (v)∇v) , x ∈ Ω, t ∈ (0,T ),

∂v
∂t = Δv − v + u, x ∈ Ω, t ∈ (0,T ),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.4)

where S : (0,∞) → R. In this model, the function u(t, x) is the density of the particle

at time t and position x; the function v(t, x) describes the external signal density. Fur-

thermore, the normal derivative of the density of particle and external signal are zero on

∂Ω.

This section is devoted to study of the system of equations referred to as the signal

density dependent sensitivity Keller - Segel model, which focuses on local and global

existence, boundedness, and blow-up in finite time or infinite time of solutions.

There are two versions of the above model. The first one is

∂tu = Δu − ∇
(
χu1+β

v+β∇v
)
,

∂tv = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

where for β → ∞ one gets the classical Keller - Segel model and for β → 0 one gets a

model with singular sensitivity :

∂tu = Δu − ∇
(
χ u

v∇v
)
,

∂tv = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.6)

The second model is

∂u
∂t = Δu − ∇

(
χu 1

(1+βv)2∇v
)
,

∂v
∂t = Δv − v + u.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)

where for β→ 0 we obtain the classical Keller - Segel model.
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4.2.1. Existence of Solutions of Signal Dependent Sensitivity Keller -

Segel Model

In this subsection, we recall the results on local and global existence of solutions

of the signal-dependent Keller - Segel model and its existing variations.

The existence of local solutions of model (4.4) has been investigated by many

authors. The general existence theorem which will be given in section (4.6) was demon-

strated by Bellomo et al. (2015). However, this theorem does not hold for the model (4.6)

since the model contains a singular sensitivity function. Although we do not consider the

signal-dependent model with singular sensitivity (4.6) to be biologically relevant, it has

been studied by many mathematicians.

The method used by Osaki and Yagi (2001) can also be applied to (4.6). This gives

the global existence for the case n = 1. For all other dimensions in some special cases,

some results show the global existence of solutions. As an example of this, Nagai, Senba

and Yoshida (1997) considered a domain in R2 with smooth boundary ∂Ω. The following

theorem summarizes their results:

Theorem 4.11 (Nagai and Senba and Yoshida, 1997)

Assume that v0 is positive in Ω ⊂ R2.

(i) If χ < 1 , then the solution of (4.6) globally exists in time. Moreover, Tmax = ∞ and

there is a constant CT

supt∈(0,T )

(||u(t, ·)||L∞(Ω)) + ||v(t, ·)||L∞(Ω)

)
= CT < ∞

for T > 0.

(ii) Let Ω = {x ∈ R2 : ||x|| < L} be a disk and the initial data (u0, v0) be radial in x. If

χ < 5
2
, then the solution of (4.6) globally exists in time.

It was shown that the restriction χ < 1 is not critical for the boundedness of the

solutions. Lankeit (2015) introduced a new method to obtain the boundedness of solutions

of the model (4.6). He considered the energy functional in order to prove global existence
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and boundedness of solutions for 0 < χ < χ∗ for some χ∗ > 1 in convex, bounded and

smooth domain in the space dimension n = 2 . His theorem is given as follows:

Theorem 4.12 (Lankeit, 2015)

Let Ω be a subset of R2 and Ω be convex bounded domain with smooth boundary. Assume

that u0 ∈ C0(Ω) and v0 ∈ ∪q>2W1,q(Ω) are nonnegative functions. Then there is χ∗ > 1

such that for any 0 < χ < χ∗ the system (4.6) has a global classical solution which is

bounded.

In higher dimensions, Winkler (2011) considered the Neumann boundary value

problem for chemotaxis system (4.6) in a bounded domain Ω of Rn. He proved global

existence of classical solutions for reasonably smooth but arbitrarily large data under the

assumption χ <
√

2
n and he showed that global existence of weak solutions provided

χ <
√

n+2
3n−4

.

Theorem 4.13 (Winkler, 2011)

Consider the system (4.6).

(i) Suppose that χ <
√

2
n . Then for all u0 ∈ C0(Ω) and v0 ∈ W1,∞(Ω) satisfying u0 ≥ 0

and v0 > 0 in Ω, the system (4.6) has a global classical solution.

(ii) Suppose that n ≥ 2 and χ <
√

(n+2)

3n−4
. Then for all u0 ∈ C0(Ω) and v0 ∈ W1,∞(Ω)

satisfying u0 ≥ 0 and v0 > 0 inΩ, there is a global weak solution (u, v) of the system

(4.6).

However, the conclusions in his article did not give boundedness of solutions of

(4.6). Recently, the uniform-in-time lower estimate for v was established by Fujie (2015),

who showed global existence of classical solutions that are bounded solutions of (4.6)

satisfying 0 < χ <
√

2
n .

Theorem 4.14 (Fujie, 2015)

Let Ω be a subset of Rn with n ≥ 2. Suppose that 0 < χ <
√

2
n and the non-negative initial

data (u0, v0) ∈ C(Ω) × W1,∞(Ω). Then the solution of (4.6) is bounded and one can find

some positive constant C such that

||u(t, ·)||L∞(Ω) ≤ C
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for all t > 0.

Winkler and Stinner (2011) proved the global existence of weak power - λ solu-

tions to (4.6). The authors showed that generalized solutions can be achieved without any

restriction on the term χ. The main result is given in the following theorem :

Theorem 4.15 (Stinner and Winkler, 2011)

Let Ω = BR(0) ⊂ Rn with n ≥ 2 and u0 and v0 be radially symmetric nonnegative initial

data in Ω and χ > 0. Then there exists nonnegative (u, v) defined in (0,∞)×Ω so that the

pair (u, v) is a global solution of (4.6) that is weak power - λ.

Stinner and Winkler studied radially symmetric nonnegative solutions of (4.6) in

the case Ω ⊂ Rn is ball , n ≥ 2 and initial data u0 ∈ C0(Ω) and v0 ∈ W1,∞(Ω) are

radially symmetric. They proved existence of global weak solutions for any χ > 0. Also,

to overcome the difficulties associated with the singularity, they described weak power-

λ solutions. This result extends the previous result of Winkler for radially symmetric

solutions.

Furthermore, Winkler (2010) proved that the model (4.6) has the global classical

solution which is bounded in the case that

S (v) ≤ χ

(1 + av)k

with χ > 0, k > 1 and a > 0.

Fujie and Yokota (2014) established global existence and boundedness of classical

solutions to the model (4.4) with S (v) =
χ

vk for k > 1 and χ > 0.

Generally, it is not easy to demonstrate the global existence of bounded solutions

for any positive value of χ. More recently, Mizukami and Yokota obtained global ex-

istence and boundedness under proper conditions for S in (4.4). They assumed that S

satisfies

S ∈ C1+λ(0,∞) and 0 ≤ S (v) ≤ χ

(a + v)k (4.8)

with λ > 0, χ > 0, k ≥ 1 and a ≥ 0.
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Moreover, they assumed that the initial data u0 and v0 satisfy

0 ≤ u0 ∈ C(Ω) − {0} and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 < v0 ∈ W1,q(Ω) (∃q > n) (a = 0)

0 < v0 ∈ W1,q(Ω) − {0} (∃q > n) (a > 0).

(4.9)

Their main result is as follows :

Theorem 4.16 (Mizukami and Yokota, 2017)

Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with smooth boundary. Suppose that the

function S satisfies the condition in (4.8) and also χ < k(a + η)k−1

√
2
n where

η = supτ>0(min{e−2τminx∈Ω v0(x), c0m(1 − e−τ)}). Then for any u0, v0 under the condition

(4.9), there exists a unique pair (u, v) of functions

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C([0,Tmax) ×Ω) ∩C1,2((0,Tmax) ×Ω)

v ∈ C([0,Tmax) ×Ω) ∩C1,2((0,Tmax) ×Ω)

which solves (4.4). Moreover, the solution (u, v) is bounded, which means there exists a

constant M > 0 such that

||u(t, ·)||L∞(Ω) + ||v(t, ·)||W1,∞(Ω) ≤ M ∀t ≥ 0.

Black et al. (2020) noted that one should reconsider the above proof of bounded-

ness as more quantitative information becomes necessary. Their main result is as follows:

Theorem 4.17 (Black et al., 2020)

Let n ≥ 2 and Ω ⊂ Rn be a bounded domain with a smooth boundary. Let M :=
∫
Ω

u0 > 0,

v∗ := minv0 > 0 , k > 1 and a ≥ 0. Then there exists δ = δ(M, v∗, k, a) such that for all

functions

S ∈ C1+λ(0,∞) and 0 ≤ S (v) ≤ 1

(a + v)k
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for some 0 < λ < 1, all initial data

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ≤ u0 ∈ C(Ω) − {0}
0 ≤ v0 ∈ W1,∞(Ω) − {0}

and for all χ < δ, the system (4.4) has a global classical solution. Moreover, positive

constants θ and L can be found such that

||u(t, ·) − M
|Ω| ||L∞(Ω) + ||v(t, ·) − M

|Ω| ||L∞(Ω) ≤ Le−θt

for all t > 0.

4.3. Cell Dependent Sensitivity Keller - Segel Model

In this subsection we consider the following Keller - Segel system :

∂u
∂t = Δu − ∇(uS (u)∇v), x ∈ Ω, t ∈ (0,T ),

∂v
∂t = Δv − v + u, x ∈ Ω, t ∈ (0,T ),

∂u
∂N = ∂v

∂N = 0, x ∈ ∂Ω, t > 0,

u|t=0 = u0, v|t=0 = v0, x ∈ Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

where S : (0,∞)→ R.

In this model, the function u(t, x) is the density of the particle at time t and posi-

tion x; the function v(t, x) describes the external signal density. This section is devoted to

the study of the system of equations above referred to as the cell density dependent sen-

sitivity Keller - Segel type equations. This section focuses on local and global existence,

boundedness, and blow up in finite time or infinite time of solutions.

Two versions of the above model have been studied.
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The first one is

∂u
∂t = Δu − ∇(u(1 − u

β
)∇v), x ∈ Ω, t ∈ (0,T ),

∂v
∂t = Δv − v + u, x ∈ Ω, t ∈ (0,T ),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.11)

where for β→ ∞, the classical Keller - Segel model is obtained. The second one is

∂u
∂t = Δu − ∇(u( 1

1+βu )∇v), x ∈ Ω, t ∈ (0,T ),

∂v
∂t = Δv − v + u, x ∈ Ω, t ∈ (0,T ),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.12)

where for β→ 0, the classical Keller - Segel model is obtained.

Horstmann and Winkler (2005) explained the motivation for studying (4.10) in

their article as follows :

". . . , to our knowledge it has never been analyzed whether the solution of system

(4.10) might become unbounded if uS (u) equals other powers of u, i.e. uS (u) = uα

with some α > 0. Of course, this question is more motivated from the mathematical

point of view than from the biological one, but it will help to get more insights into the

understanding of the blow-up mechanism of the problem. . . . "

4.3.1. Existence of Solutions of Cell Dependent Sensitivity Keller -

Segel Model

Theorem 4.18 (Horstmann and Winkler, 2005)

Suppose q > n and that u0 ∈ C0(Ω) and v0 ∈ W1,q(Ω) are nonnegative in Ω. Then there

exists Tmax ≤ ∞ (depending on ||u0||L∞(Ω) and ||v0||W1,q(Ω) only) and a unique nonnegative

function pair (u, v) fulfilling

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C0([0,Tmax); C0(Ω)) ∩C1,2((0,Tmax) ×Ω)

v ∈ C0([0,Tmax); C0(Ω)) ∩ L∞loc([0,Tmax); W1,q(Ω)) ∩C1,2((0,Tmax) ×Ω)
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that solves (4.10) in the classical sense. If Tmax < ∞ then

lim
t→Tmax

(||u(t)||L∞(Ω) + ||v(t)||W1,q(Ω)) = ∞.

Moreover, the solution (u, v) satisfies the mass identities

∫
Ω

u(t)dx =
∫
Ω

u0dx

and ∫
Ω

v(t)dx =
∫
Ω

u0dx +
(∫
Ω

v0dx −
∫
Ω

u0dx
)

e−t

for all t ∈ (0,Tmax).

The local existence of the solution in the above theorem has been achieved by us-

ing Banach’s fixed point theorem and semigroup theory. Yagi (1997) also proved similar

local existence results for more general forms of the system (4.10), but he did not consider

the chemotactic sensitivity function that depends on the power of u.

Another important result is the boundedness of all solutions of (4.10). The fol-

lowing theorem gives this result :

Theorem 4.19 (Horstmann and Winkler, 2005)

(i) If n ≥ 1 and uS (u) ≤ c0uα for all u ≥ 1 some c0 > 0 and some 0 < α < 2
n , then all

solutions of (4.10) are global in time and uniformly bounded.

Moreover, given κ := max{||u0||L1(Ω), ||v0||L1(Ω)} > 0 and ζ ∈ (0, 1) there exist

c(κ, ζ) > 0 ,m > 0 and v > 0 such that

||u0||L1(Ω) ≤ κ and ||v0||L1(Ω) ≤ κ

implies

||u(t)||L∞(Ω) + ||v(t)||L∞(Ω) ≤ c(κ, ζ)(1 + K̄m(ζ)e−vt)

for all t ≥ ζ where K̄(ζ) := maxt∈ ζ4 ,ζ(||u(t)||L∞(Ω) + ||∇v(t)||L2(Ω))
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(ii) If n ≥ 2 and there exists c0 > 0 such that uS (u) ≥ c0uα for all u ≥ 1 and some

0 < α < 2
n then there does not exist a priori estimate in the sense of (4.19)-(i).

This result of boundedness is obtained step by step starting from the L1(Ω) bounds

for u and v. Both equations in (4.10) are used to establish estimates in higher Lp spaces.

This method is based on an iterative procedure.

4.3.2. Blow-up of Solutions of Cell Dependent Sensitivity Keller -

Segel Model

Horstmann and Winkler (2005) studied blow-up of solutions of (4.10) and proved

the existence of solutions that become unbounded in finite or infinite time.

Theorem 4.20 (Horstmann and Winkler, 2005)

(i) Suppose Ω = BR is a ball in Rn, n ≥ 2 and uS (u) ≥ c0uα for all u ≥ 1 with some c0

and α > 2. Then for any λ > 0 there are radially symmetric solutions (u, v) of the

system (4.10) which blow up and have mass
∫
Ω

u(t) ≡ λ.

(ii) Suppose that Ω = BR is a ball in Rn, where n = 2 or n = 3 and

c0uα ≤ uS (u) ≤ c1uα+ for all u ≥ 1 and

α ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, 2] i f n = 2

(1, 2) i f n = 3

α+ ∈
[
α, 1

2−α
]
. Then for any λ > 0 there are radially symmetric solutions (u, v) of

the system (4.10) which blow up and have mass
∫
Ω

u(t) ≡ λ.

To prove the existence of unbounded solutions of (4.10), Horstmann and Winkler

(2005) used an indirect method. At first, they found some initial data, for which the

corresponding solution of (4.10) does not remain bounded, which means the solution will

have to blow up either in finite time or in infinite time. They explained in their article the

reasons for reaching these results: "To become more concrete, the existence of Lyapunov

33



functional encourages us to suspect a connection between the ω-limit set of a supposedly

bounded solution of (4.10) and some kind of steady-state solutions of (4.10) . . . "

Their results explained :

(i) for the space dimension n = 1, why there is no blow-up,

(ii) for the space dimension n = 2, if the initial data has sufficiently large mass, there is

the possibility of unbounded solutions, where the mass is the L1 norm of the initial

data,

(iii) for the space dimension n ≥ 3, why solutions blow up even though there are no

constraints for the initial data.

4.4. Nonlinear Diffusion and Cell Dependent Sensitivity Keller -Segel

Model

In this subsection we consider the following Keller - Segel system :

∂u
∂t = ∇(D(u)∇u) − ∇(S (u)∇v), x ∈ Ω, t > 0,

∂v
∂t = Δv − v + u, x ∈ Ω, t > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.13)

where D, S : (0,∞) → R. In this model, the function u(t, x) is the density of the particle

at time t and position x; the function v(t, x) describes the external signal density. Fur-

thermore, the normal derivative of the density of particle and external signal are zero on

∂Ω.

This model involves a nonlinear diffusion function and signal density chemotactic

sensitivity function. This section is devoted to study of the system of equations referred to

as the cell density dependent Keller - Segel type equations. We focus on local and global

existence, boundedness, and blow-up in finite time or infinite time of solutions.

Winkler et al. (2012) indicated that (4.13) was first examined by Hillen and Painter

(2002). Hillen and Painter considered approaches in which such equations could arise

based on a biological mechanism. One of the approaches is the existence of the volume-

filling effect. They stated that cell overcrowding is not biologically realistic due to the

34



ignorance of the finite size of cells. The volume-filling effect includes the finite size of

individual cells. They explained that what is expected from this approach is that the cells

are collected until they reach maximum capacity, after which cells cannot move.

The mass conservation of cells holds in (4.13).

Lemma 4.2 (Tao and Winkler, 2012)

The first component u of the solution of (4.13) satisfies the mass conservation property

||u(t)||L1(Ω) = ||u0||L1(Ω),∀t ∈ (0,Tmax).

4.4.1. Existence of Solutions of Nonlinear Diffusion and Cell Density

Dependent Sensitivity Keller - Segel Model

In this section, we review some results on the local and global existence of solu-

tions of nonlinear diffusion and the signal-dependent sensitivity Keller - Segel model.

Hillen and Painter (2001) studied the particular choices for diffusion and cross-

diffusion functions. They assumed that chemotactic movement stops at high cell density.

They demonstrated the global existence of solutions in any space dimension for (4.13).

Thus these assumptions avoid overcrowding.

Cieslak (2008) considered the case of absence of value at which chemotactic

movement is terminated. His purpose was to find sufficient conditions on the functions

D(u) and S (u) for (4.13) to have global solutions. He studied the problem with the fol-

lowing assumptions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D ∈ C2([0,∞))

S ∈ C2([0,∞))

(4.14)

are bounded and positive functions.

Cieslak’s theorems give conditions on D(u) and S (u) for which (4.13) has a unique

global solution. These conditions are dimension dependent. His results can be summa-

rized as follows:
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Theorem 4.21 (Cieslak, 2008)

(i) Suppose n = 1. Assume that (u0, v0) ∈ W1,p(Ω) ×W1,p(Ω) for p > 2, nonnegative,

the assumption (4.14) holds and the ratio

S (u)

D(u)
≤ Ku

is satisfied for some K > 0. Then there exists a unique global classical solution that

is uniformly bounded in time.

(ii) Suppose n = 2, 3. Assume that (u0, v0) ∈ W1,p(Ω)×W1,p(Ω) for p > n, nonnegative,

the assumption (4.14) holds and

S (u)

D(u)
≤ Kuα

is satisfied for some K > 0 and α < 2
n for every u > 0. Then there exists a unique

global classical solution that is uniformly bounded in time.

In the above theorem, (i) means that the solution of (4.13) will not blow up when

n = 1 under given assumptions. (ii) specifies the blow-up preventing conditions for the

system (4.13) in space dimensions 2 and 3. Cieslak (2008) extended the results obtained

by Horstmann and Winkler (2005).

Global existence and boundedness of solutions of model (4.13) were studied by

Tao and Winkler (2012). They explored this system of equations in more detail and al-

lowed fairly general choices for functions D and S . They considered the nonlinear diffu-

sion and signal-dependent sensitivity Keller - Segel model in a bounded, smooth, convex

domain Ω in the space dimension n ≥ 1. They assumed that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D ∈ C2([0,∞)2)

S ∈ C2([0,∞)2) satis f ies such that S (0) = 0,

(4.15)
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and
S (u)

D(u)
≤ C1(u + 1)α1 ∀u ≥ 0 (4.16)

with some C1 > 0 and α1 > 0. They also assumed that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D(u) ≥ C2(u + 1)α2−1 ∀u ≥ 0

D(u) ≤ C3(u + 1)α3−1 ∀u ≥ 0

(4.17)

are satisfied for some α2 ∈ R, α3 ∈ R, C2 > 0 and C3 > 0.

Theorem 4.22 (Tao and Winkler, 2012)

Let Ω be a convex, bounded subset of Rn, n ≥ 1 with smooth boundary. Suppose that the

functions D(u) and S (u) satisfy the conditions (4.15), (4.16) and (4.17) and α1 <
2
n . For

each nonnegative (u0, v0) ∈ C(Ω) × C1(Ω) there is a nonnegative pair (u, v) ∈ C([0,∞) ×
Ω) ∩C1,2((0,∞) ×Ω) that is a classical solution of (4.13).

The global existence and boundedness of solutions of (4.13) were studied in bounded

non-convex domain by Ishida et al. (2014) and the convexity assumption was removed.

Bellomo et al. (2015) stated that the most complete picture for this model (4.13)

would be obtained if the following functions were selected

D(u) = (u + ε)−γ and uS (u) = (u + ε)−β

for u ≥ 0 with some γ, β ∈ R and ε ≥ 0 and gave the following theorem:

Theorem 4.23 (Bellomo et al., 2015)

Let n ≥ 1 andΩ ⊂ Rn be a bounded domain with smooth boundary and let u0 ∈ C0(Ω) and

v0 ∈ C1(Ω) be nonnegative initial data. Suppose that D and S satisfy above conditions

and γ + β < 2
n .

(i) If ε > 0 then the (4.13) has a global classical solution

(u, v) ∈ (C0([0,∞) ×Ω) ∩C1,2((0,∞) ×Ω))2
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that is also bounded

||u(t, ·)||L∞(Ω) + ||v(t, ·)||L∞(Ω) ≤ L ∀t > 0

with some L > 0.

(ii) If ε = 0 and besides γ ≥ 0 then the system (4.13) has a global bounded weak

solution

(u, v) ∈ L∞((0,∞) ×Ω) × L∞((0,∞); W1,∞(Ω)).

Ding and Winkler (2021) considered the system (4.13) and showed that the system

admits a bounded and global classical solution. They needed to assume that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D ∈ C2([0,R]) and D > 0 in [0,R]

S ∈ C2([0,R]) and S (0) = 0

(4.18)

with some R > 0. Their main theorem is the following:

Theorem 4.24 (Ding and Winkler, 2021)

Let Ω ⊂ Rn , n ≥ 1 , be a bounded domain with smooth boundary. Suppose also that D

and S satisfy (4.18). Then for any ε > 0 one can find δ = δ(ε) ∈ (0,R), and whenever

0 ≤ u0 ∈ W1,∞(Ω) and 0 ≤ v0 ∈ W1,∞(Ω) with

||v0||W1,∞(Ω) ≤ ε and ||u0||W1,∞(Ω) ≤ δ

there exist functions

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C([0,∞) ×Ω) ∩C1,2((0,∞) ×Ω)

v ∈ ∩q>nC([0,∞); W1,q(Ω)) ∩ L∞((0,∞); W1,∞(Ω)) ∩C1,2((0,∞) ×Ω)

such that v ≥ 0 in [0,∞) × Ω and 0 ≤ u ≤ R and that (u, v) solves (4.13) in the classical

sense.
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Winkler (2017) studied the system (4.13) in bounded domain of Rn, with smooth

boundary. In his article, the self-diffusivity function D was allowed to decay exponen-

tially. His work develops an alternative approach to obtain global existence of classical

solutions for all reasonably regular initial data. His main result suggests a global and

classical solution for (4.13) provided the ratio S (u)

D(u)
≤ Keαu with K > 0 and α ∈ R.

4.4.2. Blow-up of Solutions of Nonlinear Diffusion and Cell Density

Dependent Sensitivity Keller - Segel Model

(4.13) has solutions where the cell density u becomes unbounded in finite or in-

finite time. For the qualitative properties of solutions of (4.13), the behavior of the ratio

S (u)

D(u)
at large value of cell density is very important.

The blow-up of solutions of (4.13) in finite or infinite time was studied in (Win-

kler, 2010). He stated that for sufficiently large u, S (u) is identically zero, and he explored

the extent to which solutions could prevent a blow-up. The main result is as follows:

Theorem 4.25 (Winkler, 2010)

Let Ω ⊂ Rn be a ball with n ≥ 2. Suppose

S (u)

D(u)

grows faster than u
2
n as u→ ∞. Then the system (4.13) possesses unbounded solutions.

In the above theorem, it has been proved that if there exists ε > 0 and C > 0 such

that S (u)

D(u)
≥ Cu

2
n+ε for all u ≥ 1 then there is a smooth solution of (4.13) that blows up in

finite or infinite time.
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4.5. Quasilinear Keller - Segel Model

In this subsection we consider the following Keller - Segel equations:

∂u
∂t = ∇(D(u, v)∇u) − ∇(S (u, v)∇v), x ∈ Ω, t > 0,

∂v
∂t = Δv − v + u, x ∈ Ω, t > 0,

∂u
∂N = ∂v

∂N = 0, x ∈ ∂Ω, t > 0,

u|t=0 = u0, v|t=0 = v0, x ∈ Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)

where D is a nonnegative cell diffusion function and S is a nonnegative chemotactic sen-

sitivity function.

In this model, the function u(t, x) is the density of the particle at time t and po-

sition x; the function v(t, x) describes the external signal density. This model involves

a nonlinear diffusion function and signal density chemotactic sensitivity function. Here,

the model, which includes nonlinear cell diffusion and chemotactic sensitivity function

depending on the density of cells and density of a chemical substance, known as the

quasilinear chemotaxis problem. This section reviews this system from the points of local

and global existence, boundedness, and blow up in finite time or infinite time of solutions.

A system of this type emerges in the diverse complex chemotaxis aggregation

behavior of cells. Most studies focus on detecting or excluding the occurrence of unlim-

ited cell densities (Winkler, 2019). For example, the details of the classical Keller-Segel

model obtained by choosing the diffusion function D(u, v) = 1 and the chemotactic sensi-

tivity function S (u, v) = u were given in section 4.1.

The importance of nonlinear chemosensitivity is emphasized in (Hillen and Painter,

2002). In this article, the authors examined two different systems of chemotaxis arising

from biological facts. One of them, called the volume filling chemotaxis model, in terms

of the structure of the equations, has the same structure as the system presented by Keller

and Segel (1970). The volume filling chemotaxis model includes a finite size of individual

cells. In this model, the probability of cells bouncing depends on the area where they are

able to move. Another model is called the quorum sensing chemotaxis model. However,
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this model is not the main subject of this thesis since it possesses a different structure than

the Keller - Segel model.

4.5.1. Existence of Solutions of Quasilinear Keller - Segel Model

The local existence result and extensibility are based on the use of Schauder fixed

point theorem along with standard parabolic regularity theory (Winkler, 2019). Winkler

assumed in (4.19) that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D ∈ C2([0,∞)2) satis f ies D > 0 in [0,∞)2

S ∈ C2([0,∞)2) satis f ies S ≥ 0 and such that S (0, v) = 0 f or all v ≥ 0.

(4.20)

Regarding initial data, he assumed that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u0 ∈ W1,∞(Ω) with u0 > 0 in Ω

v0 ∈ W1,∞(Ω) with u0 > 0 in Ω.
(4.21)

Theorem 4.26 (Winkler, 2019)

Assume that D and S satisfy (4.20) and that u0 and v0 comply with (4.21). Then there

exists Tmax ∈ (0,∞] and at least one pair (u, v) of functions

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C0([0,Tmax) ×Ω) ∩C1,2([0,Tmax) ×Ω)

v ∈ ∩q>nC0([0,Tmax); W1,q(Ω)) ∩C1,2([0,Tmax) ×Ω)

such that both u and v are positive in (0,∞) × Ω that (u, v) solves (4.19) classically in

(0,Tmax) × Ω and that if Tmax < ∞ then lim supt→Tmax
||u(t, ·)||L∞(Ω) + ||v(t, ·)||W1,q(Ω) = ∞ for

all q > n.

In the above theorem, (u, v) denotes the corresponding local solution of (4.19).

Now we will give the result for its maximal existence time Tmax. To this end, we assume

D(u, v) ≥ kD(v)(u + 1)m−1 (4.22)
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for all u ≥ 0 and v ≥ 0, where kD is some nonincreasing positive function on [0,∞) and

some m ∈ R and

S (u, v) ≤ kS (4.23)

for all u ≥ 0 and v ≥ 0 with number kS > 0 and

∂S (u, v)

∂v
≥ −ksu−λ(v + 1)−μ (4.24)

for all u ≥ 0 and v ≥ 0 with constants ks > 0 and μ ≥ 0.

Theorem 4.27 (Winkler, 2019)

Assume n ≥ 2 and Ω ⊂ Rn is a bounded domain with smooth boundary and suppose that

D and S satisfy (4.20) as well as (4.22), (4.23) and (4.24) with

λ >
n − 2

n
(1 − μ)+.

Then for any choice of u0 and v0 satisfying (4.21), the initial boundary value problem

(4.19) possesses a global classical solution (u, v) such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C0([0,Tmax) ×Ω) ∩C1,2([0,Tmax) ×Ω)

v ∈ ∩q>nC0([0,Tmax); W1,q(Ω)) ∩C1,2([0,Tmax) ×Ω)

(4.25)

and both u and v are positive in (0,∞) ×Ω.

In the case S ≡ S (u) is independent of v (4.24) is fulfilled. On the basis of this

theorem, if the positive smooth function D decays at most algebraically concerning u

then for any smooth nonnegative and bounded S , the system possesses a globally defined

classical solution.
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4.6. General Form of Keller - Segel Model

The general form of Keller - Segel type system is the following :

∂u
∂t = Δu − ∇(k1(u, v)u∇v) + k2(u, v), x ∈ Ω, t > 0,

∂v
∂t = Δv − v + h(u, v), x ∈ Ω, t > 0,

∂u
∂N = ∂v

∂N = 0, x ∈ ∂Ω, t > 0,

u|t=0 = u0, v|t=0 = v0, x ∈ Ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.26)

Here, we assume that for some α ∈ (0, 1), we have k1 ∈ C1+α
loc (R2),

k2 ∈ C1−(R2) and h ∈ C1−
loc(R

2). Moreover k2(0, v) ≥ 0 for all v ∈ [0,∞) and h(u, 0) ≥ 0 for

all u ∈ [0,∞).

For all quite regular initial data, a local in time classical solution exists.

Theorem 4.28 (Bellomo et al., 2015)

Let n ≥ 1 and Ω ⊂ Rn be a bounded domain with smooth boundary and let q > n. Then

for all nonnegative u0 ∈ C0(Ω) and v0 ∈ W1,q(Ω) there exists Tmax ∈ [0,∞) and a uniquely

determined pair of nonnegative functions

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u ∈ C0([0,Tmax) ×Ω) ∩C1,2((0,Tmax) ×Ω)

v ∈ C0([0,Tmax) ×Ω) ∩C1,2((0,Tmax) ×Ω) ∩ L∞loc([0,Tmax); W1,q(Ω))

(4.27)

such that (u, v) solves (4.26) classically in (0,Tmax) ×Ω and such that

i f Tmax < ∞ then ||u(t, ·)||L∞(Ω) + ||v(t, ·)||W1,q(Ω) → ∞ as t → Tmax. (4.28)

Most literature on the global existence of the chemotaxis of the system focused on

proving estimates as in (4.28). The following theorem offers an approach to a significant
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quantitative relationship of criterion (4.28). In order to do this, let us assume that k1, k2

and h satisfy the followings

|k1(u, v)| ≤ c1(u + 1)α f or all (u, v) ∈ (0,∞) × (0,∞) (4.29)

and

|k2(u, v)| ≤ c2 f or all (u, v) ∈ (0,∞) × (0,∞) (4.30)

and

|h(u, v)| ≤ c3(u + 1)β f or all (u, v) ∈ (0,∞) × (0,∞) (4.31)

where c1 , c2 and c3 are positive constants , α ∈ R and β ∈ [0, 1].

The following theorem shows global existence of solutions of the system (4.26).

Theorem 4.29 (Bellomo et al., 2015)

Let n ≥ 1 and Ω ⊂ Rn be a bounded domain with smooth boundary, and assume that k1,

k2 and h satisfy (4.29), (4.30) and (4.31). Suppose also that for some q > n there is a

nonnegative classical solution (u, v) of (4.26) in (0,T ) × Ω with initial data u0 ∈ C0(Ω)

and v0 ∈ W1,q(Ω). If there exists M > 0 and p ≥ 1 with

p > max
{

n(α + β)

2
,

nqα
q − n

}

such that

||u(t, ·)||Lp(Ω) ≤ M f or all t ∈ (0,T )

then one can find c > 0

||u(t, ·)||L∞(Ω) + ||v(t, ·)||W1,q(Ω) ≤ c f or all t ∈ (0,T ).
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CHAPTER 5

NOTES ON REFERENCES

For a completely remarkable well-written account of the formulation and per-

spective of the Keller - Segel type system we refer to (Keller and Segel, 1970). See also

(Hillen and Painter, 2009) for derivation of chemotaxis.

Good sources for the concepts in Chapter 2 are (Evans, 2010), (Folland, 1999)

and (Pazy, 2012). The definitions of the solutions of the Keller - Segel type system can

be found in (Stinner and Winkler, 2011) and (Arumugam and Tyagi , 2021). See also

(Kreyzing, 1991) and (Kesavan, 1994) for functional analysis tools.

Earlier reviews of the Keller Segel type system can be found in (Horstmann, 2003)

and (Arumugam and Tyagi , 2021). See also the survey (Bellomo et al., 2015).
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CHAPTER 6

CONCLUSIONS

This thesis aimed to collect the qualitative results of some Keller - Segel type

systems. This thesis focused on systems of the parabolic-parabolic type Keller - Segel

model. After introducing the model, we gave a survey and qualitative analysis of the

classical Keller - Segel type system and its variations of this model to derive from the

classical model.

We focused on the qualitative properties of solutions of some Keller - Segel mod-

els which describe the interplay between cells and external signals produced by cells

themselves. However, changing the environment can have an important effect on the

movement of cells. Recent studies have addressed the interaction between the move-

ment of cell populations and the environment according to two different external signaling

mechanisms.

According to our research so far, open problems related to Keller - Segel type

systems and their variations are as follows.

(1) Although the threshold for blow-up and global existence of solutions exists for the

classical Keller - Segel model, the threshold analysis for nonclassical models has

not been done.

(2) Boundedness of solutions for model (4.13) is an open problem when the function

D(u) decays at exponential rates and S (u) grows slowly with respect to D(u).

(3) For the classical Keller - Segel model (4.1) the extensibility of the non-radial solu-

tions beyond the blow-up time is an open problem.
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