
Lehmer’s conjecture via model theory

By Haydar GÖRAL
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Abstract: In this short note, we study Lehmer’s conjecture in terms of stability theory.

We state Bounded Lehmer’s conjecture, and we prove that if a certain formula is uniformly stable

in a class of structures, then Bounded Lehmer’s conjecture holds. Our proof is based on

Van der Waerden’s theorem from additive combinatorics.
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1. Introduction. For a non-zero polynomial

fðXÞ ¼ adðX � �1Þ � � � ðX � �dÞ 2 C½X �;

its Mahler measure is defined by the finite product

mðfÞ ¼ jadj
Yd
j¼1

maxf1; j�jjg:

By Jensen’s formula from complex analysis, we

have the following integral representation for the

Mahler measure of f

mðfÞ ¼ exp
1

2�

Z 2�

0

logðjfðei�ÞjÞd�
� �

;

which gives rise to a generalization of the Mahler

measure for polynomials in several variables. Let

Q be the field of algebraic numbers and � be an

element of Q. The Mahler measure of �, denoted

by mð�Þ, is defined to be mðfÞ, where f is the

irreducible polynomial of � lying in Z½X �. An open

question in diophantine geometry is Lehmer’s

conjecture, and it states that there exists an

absolute constant c > 1 such that if mð�Þ > 1 then

mð�Þ � c. In other words, Lehmer’s conjecture

states that 1 is not a limit point of the set

fmð�Þ : � 2 Qg:

Lehmer [8] asked this question around 1933. More-

over, he also claimed that the polynomial

pðXÞ ¼ X10 þX9 �X7 �X6 �X5

�X4 �X3 þX þ 1

has the smallest Mahler measure among polyno-

mials in Z½X �, which are not products of cyclotomic

polynomials. We also know that mðpÞ is approx-

imately 1.17628, and this is still the smallest known

Mahler measure of a polynomial in the set

ff 2 Z½X � : mðfÞ > 1g:

In terms of degrees of algebraic numbers,

Dobrowolski [3] obtained the best known quantita-

tive result:

mð�Þ > 1þ
1

1200

ðlog log dÞ3

log d
¼ 1þ uðdÞ;

where d ¼ degð�Þ � 2. However, when d tends to

infinity, the function uðdÞ tends to zero.

For a given positive integer n, let �ðnÞ be

the number of positive divisors of n. For in-

stance, �ðpÞ ¼ 2 for any prime number p. It is also

known that � is multiplicative. Moreover, if

p�1

1 � � � p
�k
k is the prime factorization of n, then it

follows that

�ðnÞ ¼ �ðp�1

1 � � � p
�k
k Þ ¼ ð�1 þ 1Þ � � � ð�k þ 1Þ:

The summatory function of �ðnÞ has been studied

broadly, and one has that [1, Chapter 3]X
n�x

�ðnÞ � x logx:

Using the multiplicative property of � , one can

show that for a given " > 0 there exist n0 ¼ n0ð"Þ �
1 and C" > 0 such that if n � n0 then �ðnÞ � C"n".
Estimating the error term in the asymptotic ex-

pansion of the summatory function of � is a

recurrent topic in number theory, and it is known

as the Dirichlet divisor problem [6].

For any positive integer B, define

AB ¼ f� 2 Q : �ðdegð�ÞÞ � Bg:
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To illustrate, A1 ¼ Q, and for any 1 � n < m, the

difference Am nAn is infinite. Now, we are ready to

state Bounded Lehmer’s conjecture.

Bounded Lehmer’s conjecture. For any

positive integer B, there is a constant cB > 1 such

that if � 2 AB and mð�Þ > 1, then mð�Þ � cB.

In other words, Bounded Lehmer’s conjecture

states that for any positive integer B, 1 is not a

limit point of the set fmð�Þ : � 2 ABg. Note that

Lehmer’s conjecture implies Bounded Lehmer’s

conjecture.

A real algebraic integer � > 1 is called a Salem

number if � and 1=� are Galois conjugate and all

other Galois conjugates of � are of absolute value 1.

Observe that if � is a Salem number, then mð�Þ ¼
�. Lehmer [8] gave the smallest known Salem

number as a root of the previously mentioned

polynomial

pðXÞ ¼ X10 þX9 �X7 �X6 �X5

�X4 �X3 þX þ 1:

A weaker version of Lehmer’s conjecture is

Lehmer’s conjecture for Salem numbers, and it

states that 1 is not a limit point of Salem numbers,

and this is still an open problem. An algebraic

number � is said to be reciprocal if it is Galois

conjugate to 1=�. For instance, a Salem number

is reciprocal. Smyth [11] proved that if � is not

reciprocal, then its Mahler measure is far away from

1, precisely

mð�Þ � mðX3 �X � 1Þ � 1:3247:

For a nice survey on Salem numbers, we refer the

reader to [10].

Let M be an L-structure and ’ð�x; �yÞ be an

L-formula. The formula ’ð�x; �yÞ has the k-order

property in M if there are �ai; �bi in M for 1 � i � k
such that ’ð �ai; �bjÞ holds if and only if i � j. If ’ð�x; �yÞ
does not have the k-order property in M, then

’ð�x; �yÞ is said to be k-stable in M. Let T be a

complete theory in the language L. A formula

’ð�x; �yÞ is called stable for T if it is k-stable for any

model M of T for some positive integer k. The

theory T is said to be stable if any L-formula ’ð�x; �yÞ
is stable for T . In stable theories, there is a notion

of independence, which is called the forking inde-

pendence. For instance, the theory of algebraically

closed fields is stable and the forking independence

coincides with the algebraic independence. A theory

is said to be simple, if the forking independence

is symmetric. To add, stable theories are simple,

see [13].

Using a result of Mann [9], Zilber [14] showed

that the pair ðC; �Þ 	 ðQ; �Þ is !-stable (so stable)

where � is the group of complex roots of unity.

Later on, van den Dries and Günayd�n [4] general-

ized Zilber’s result to algebraically closed fields

with a multiplicative subgroup satisfying the Mann

property. Kronecker’s theorem [2, 1.5.9] states that

if � 2 Q is a non-zero algebraic number, then

mð�Þ ¼ 1 if and only if � is a root of unity.

Assembling Zilber’s result [14] with Kronecker’s

theorem, one can conclude that the pair

ðQ; fa 2 Q : mðaÞ ¼ 1gÞ

is !-stable.

Throughout this note, the language Lm will

denote the language f1; �g where the binary oper-

ation � is the usual multiplication. Let S be the set

of all Salem numbers. We put

Pb ¼ fa 2 Q



: mðaÞ � bg and Sb ¼ Pb \ S

where b � 1. By Kronecker’s theorem, note that

P1 ¼ �. Lehmer’s conjecture and its version for

Salem numbers state that there exists b > 1 such

that Pb ¼ P1 ¼ � and Sb ¼ S1 ¼ ; respectively. The

pairs ðQ; PbÞ and ðQ;SbÞ can be seen as LmðUÞ ¼
Lm [ fUg structures where U is a unary relation

symbol whose interpretations are Pb and Sb respec-

tively. In [5], the author showed that Lehmer’s

conjecture for Salem numbers holds if and only if

the pair ðQ;SbÞ is simple in LmðUÞ for some b > 1.

Here, we link Bounded Lehmer’s conjecture and

the stability of the pair ðQ; PbÞ. We prove that if

a certain formula is uniformly stable in ðQ; PbÞ for

every sufficiently small b > 1, then Bounded

Lehmer’s conjecture holds.

Main Theorem. Let Mb be the pair ðQ; PbÞ
in the language LmðUÞ ¼ Lm [ fUg. Set

’ðx; y; zÞ : U
zx

y

� �
:

(a) If Lehmer’s conjecture holds, then there exists

a positive integer k such that for any suffi-

ciently small b > 1, the formula ’ðx; y; zÞ is

k-stable in Mb.

(b) Suppose that there exists a positive integer k

such that for any sufficiently small b > 1, the

formula ’ðx; y; zÞ is k-stable in Mb. Then,

Bounded Lehmer’s conjecture is true.
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2. Height function and arithmetic pro-

gressions.

2.1. Height function. In this subsection, we

introduce the height function and list some of its

properties. For more on the height function and its

place in diophantine geometry, we direct the reader

to [2,7]. For an algebraic number � with irreducible

polynomial fðxÞ 2 Z½X�, the height of � is defined

by

Hð�Þ ¼ mð�Þ1=d

where d ¼ deg f ¼ degð�Þ.
The height function satisfies the following

properties:

. Hð0Þ ¼ Hð1Þ ¼ 1.

. For a non-zero rational number a=b where a

and b are coprime integers,

Hða=bÞ ¼ maxfjaj; jbjg:

. For all � in Q and n 2 N, we have

Hð�nÞ ¼ Hð�Þn.

. For all � and � in Q, we have

Hð��Þ � Hð�ÞHð�Þ.
. For all non-zero � in Q, we have

Hð1=�Þ ¼ Hð�Þ.
. For all � and � in Q, we have

Hð�þ �Þ � 2Hð�ÞHð�Þ.
2.2. Arithmetic progressions. The sequence

of numbers h1; . . . ; hk is called a k-term arithmetic

progression (k-AP) if there exists d such that hi ¼
h1 þ ði� 1Þd for i ¼ 1; . . . ; k. For instance, a1 <

a2 < a3 form a 3-term AP if a2 is the arithmetic

mean of a1 and a3, that is a2 ¼ a1þa3

2 .

Now, we state Van der Waerden’s theorem [12],

and it will play an important role in the proof of our

result.

Theorem 2.1. [12] For any given positive

integers r and k, there exists N such that if the set

f1; 2; . . . ; Ng is colored using r different colors, then

f1; 2; . . . ; Ng contains a k-AP whose members are of

the same color.

The least such N in the previous theorem is

called the Van der Waerden’s number W ðr; kÞ.
Finding a good upper bound for W ðr; kÞ is a very

difficult problem. In some cases, it is possible to

find the exact values of these numbers. For in-

stance, W ð2; 3Þ ¼ 9 and W ð3; 3Þ ¼ 27, but not many

of them are known.

3. Proof of the Main Theorem. (a) First,

suppose that Lehmer’s conjecture is true. This

yields that for every sufficiently small b > 1, one has

Pb ¼ � and Mb ¼ ðQ; PbÞ ¼ ðQ; �Þ. By Zilber’s re-

sult [14], we know that the pair ðQ; �Þ is !-stable in

LmðUÞ. Thus, the formula

’ðx; y; zÞ : U
zx

y

� �

is k-stable in Mb for some positive integer k for

every sufficiently small b > 1.

(b) Suppose that there exists a positive integer

k such that for any sufficiently small b > 1, the

formula ’ðx; y; zÞ is k-stable in Mb. Assume on the

contrary that Bounded Lehmer’s conjecture is false.

So, there exists a positive integer B such that 1 is a

limit point of the set

fmð�Þ : � 2 ABg

where

AB ¼ f� 2 Q : �ðdegð�ÞÞ � Bg:

Let � > 1 be any real number. By Van der

Waerden’s theorem [12], if the set

f1; . . . ;W ðB; 2kþ 1Þg

is colored with B-many colors, then there is a

monochromatic arithmetic progression of length

2kþ 1. By the assumption, there exists an algebraic

number � 2 AB such that

1 < mð�Þ < �1=W ðB;2kþ1Þ:ð1Þ

First, we observe that for any n, the inequality

mð�nÞ � mð�Þn holds. Let d ¼ degð�Þ and dn ¼
degð�nÞ. Since Qð�nÞ is a subfield of Qð�Þ, the

integer dn is a divisor of d. As

mð�Þ ¼ Hð�Þd;

by the properties of the height function, one has

that

mð�nÞ ¼ Hð�nÞdn ¼ Hð�Þndn � Hð�Þnd ¼ mð�Þn:

The previous observation together with (1)

yield that for any n �W ðB; 2kþ 1Þ, we have that

mð�nÞ � �:

Recall that dn ¼ degð�nÞ j d ¼ degð�Þ and

�ðdegð�ÞÞ � B. Without loss of generality, we may

assume that �ðdegð�ÞÞ ¼ B and e1 < � � � < eB are

all divisors of d. Now, consider the coloring
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C : f1; . . . ;W ðB; 2kþ 1Þg ! f1; . . . ; Bg
where

CðnÞ ¼ r with dn ¼ er:

By Van der Waerden’s theorem, there is a mono-

chromatic arithmetic progression of length 2kþ 1

in f1; . . . ;W ðB; 2kþ 1Þg. In other words, there exist

positive integers a and ‘ such that

aþ 2k‘ �W ðB; 2kþ 1Þ

and

degð�aþj‘Þ ¼ e

for some divisor e of d, and j ¼ 0; . . . ; 2k. Let

b ¼ mð�aþk‘Þ:

Note that 1 < b < �: Moreover, for any j ¼ 0; . . . ; 2k

and by the properties of the height function, we

see that

mð�aþj‘Þ ¼ Hð�Þeðaþj‘Þ:

Thus, we have the following inequalities

mð�aÞ < mð�aþ‘Þ < � � �ð2Þ
< mð�aþk‘Þ|fflfflfflfflffl{zfflfflfflfflffl}

b

< � � � < mð�aþ2k‘Þ:

Next, we show that the formula ’ðx; y; zÞ is not

k-stable in the pair Mb ¼ ðQ; PbÞ. Let aj ¼ �aþj‘ and

bj ¼ ð�aþj‘; �aþk‘Þ where j ¼ 1; . . . ; k. Then, ’ðai; bjÞ
holds in Mb if and only if �aþðkþi�jÞ‘ is in Pb, in other

words,

mð�aþðkþi�jÞ‘Þ � mð�aþk‘Þ:

By (2), the previous inequality holds if and only if

i � j. Thus, we proved that ’ðai; bjÞ holds in Mb if

and only if i � j. Hence, the formula ’ðx; y; zÞ is not

k-stable in the pair Mb ¼ ðQ; PbÞ. This is a contra-

diction as b > 1 is sufficiently small, and the proof is

now complete.
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