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Abstract: The problem of ice loads acting on multiple vertical cylinders of circular cross-sections
frozen in an ice cover of infinite extent is studied. The loads are caused by a flexural-gravity wave
propagating in the ice cover towards the rigid bottom-mounted cylinders. This is a three-dimensional
linearized problem of hydroelasticity with finite water depth. The flow under the ice is potential
and incompressible. The problem is solved by the vertical mode method combined with an iterative
method. The velocity potential is written with respect to each cylinder and is expanded into the
Fourier series. The algorithm of the problem solving is reduced to calculations of the Fourier
coefficients of the velocity potential. Numerical results for the forces acting on four circular cylinders
are presented for different ice thicknesses, incident wave angles and cylinder spacing. The obtained
wave forces are compared with the results by others. Good agreement is reported.

Keywords: hydro-elastic waves; ice-structure interaction; multiple circular cylinders

1. Introduction

Many offshore structures have vertical cylindrical supporting columns of circular
cross-sections. It is of paramount importance to analyse the wave scattering by such
structures and hence calculate the wave loads acting on them. One of the earliest works
on this subject is by Twersky [1], who proposed an iterative procedure for the acoustic
wave diffraction problem in which the solution is expressed as the incident wave plus a
sum of various orders of scattering. There are also several direct methods of obtaining the
water wave forces on multiple cylinders by satisfying the slip boundary conditions on all
cylinders simultaneously [2–4]. The hydrodynamic interaction problem in the context of
water waves has been well-studied. There are many papers devoted to this subject; here,
we list only the most important ones. In addition to the direct and iterative methods, there
are several numerical methods that are used to investigate the wave–structure interaction in
the field of marine engineering. Some of these are the Boundary Element Method (e.g., [5]),
the Finite Element Method (e.g., [6]), the B-spline panel method (e.g., [7]), the Finite
Difference Method and the Volume of Fluid (VOF) method (e.g., [8]), and Computational
Fluid Dynamics (CFD) investigations (e.g., [9,10]). The methods within the hydrodynamic
interaction theory make use of Graff’s addition theorem for Bessel functions [11] to express
the diffracted waves from one cylinder as incident waves in the coordinate system of
another cylinder. Graff’s addition theorem, in a way, works as a coordinate transformation
between the coordinate systems of different cylinders.

The diffraction of hydro-elastic waves by bottom-mounted offshore structures in the
sea covered by an ice sheet is a relatively new subject. One of the early works on this
subject was undertaken by Fox and Squire [12]; they solved a two-dimensional problem
of ocean waves interacting with a floating ice sheet by the method of vertical modes. It
was concluded that the vertical modes are complete but not orthogonal with respect to a
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standard inner product. Wave scattering by a narrow crack in an ice sheet floating on water
of finite depth was studied by Evans and Porter [13] by the vertical mode method and by a
method based on a Green’s function technique. It was concluded that the vertical mode
method is easier to use than the Green’s function method and provides the same results.
Another relevant two-dimensional hydroelasticity problem deals with the interaction of
hydro-elastic waves with a vertical wall [14,15]. Brocklehurst et al. [16] used a Weber
transformation to tackle the three-dimensional diffraction problem of hydro-elastic waves
by a vertical cylinder. Recently, Korobkin et al. [17] and Korobkin et al. [18] solved the
problem of hydro-elastic wave scattering with a single cylinder of circular cross-section
in an infinite ice cover, implemented both by the vertical mode method and by the Weber
integral transform method. It was shown that the two solutions are identical for the
clamped edge conditions. Ren et al. [19] solved the hydro-elastic interaction problem,
which involves waves propagating in infinite ice cover and multiple circular cylinders.
Graff’s addition theorem was used for coordinate transformation between the cylinders,
as it is usually done in hydrodynamic interaction problems involving many cylinders.
Each local velocity potential was expanded into a series of eigenfunctions, and the Green’s
second identity was then used to impose boundary conditions on each cylinder surface and
at the contact lines between the cylinders and the ice sheet. It was stated that an advantage
of using Green’s second identity is that it makes application for the edge conditions easier.

In this paper, we propose a new iterative method in which the idea of Gauss-Seidel it-
eration method for systems of linear algebraic equations is used. This new iterative method
is combined with the vertical mode method by Korobkin et al. [18] to solve the diffraction
problem involving multiple circular cylinders and hydro-elastic waves. Comparisons be-
tween the wave force results of Ren et al. [19] and the present results show good agreement,
especially in an arrangement of four circular cylinders. It is shown that the new iteration
procedure has better convergence characteristics than the Twersky’s multiple scattering
technique [1]. The proposed method is straightforward, intuitive, and physically clear.

2. Formulation of the Problem

A three-dimensional linearized problem of ice loads on N vertical cylinders of circular
cross-sections in an ice cover of infinite extent is studied. A hydro-elastic wave propagates
in the ice cover towards the rigid cylinders, which are fixed to the sea bottom in finite water
depth. The fluid domain, Ω, is the three-dimensional infinite region outside the cylinders,

Ω =
N
∩

i=1
Ωi, Ωi =

{
(x, y, z) : −H < z < 0,

√
(x− Xi)

2 + (y−Yi)
2 > bi

}
,

where H is the water depth, bi is the radius of cylinder i, and (Xi, Yi) is the centre of cylinder
i at the ice plate, z = 0 (see Figure 1). The ice sheet, IS, is the two-dimensional infinite
region outside the cross-section of the cylinders at z = 0,

IS =
N
∩

i=1
ISi, ISi =

{
(x, y, z) : z = 0,

√
(x− Xi)

2 + (y−Yi)
2 > bi

}
.

Similarly, the sea bottom, SB, is the two-dimensional infinite region outside the cross-
sections of the cylinders at z = −H,

SB =
N
∩

i=1
SBi, SBi =

{
(x, y, z) : z = −H,

√
(x− Xi)

2 + (y−Yi)
2 > bi

}
.

The lateral cylinder surfaces, CS, are the three-dimensional finite surfaces of the
cylinders between the planes z = 0 and z = −H,

CS =
N
∩

i=1
CSi, CSi =

{
(x, y, z) : −H < z < 0,

√
(x− Xi)

2 + (y−Yi)
2 = bi

}
.
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The contact lines between the ice cover and the surfaces of the cylinders are the circles
CLi with

CL =
N
∩

i=1
CLi, CLi =

{
(x, y, z) : z = 0,

√
(x− Xi)

2 + (y−Yi)
2 = bi

}
.

The scattering of an incident hydro-elastic wave by the N circular cylinders is formu-
lated using a velocity potential φ(x, y, z, t), which satisfies the Laplace equation in the fluid
domain,

∇2φ + φzz = 0, ∇2φ = φxx + φyy, in Ω, (1)

the boundary condition at the rigid bottom,

φz = 0, at SB, (2)

the body boundary condition at the surfaces of the cylinders,

∂φ

∂ri
= 0 on CSi, i = 1, . . . , N, (3)

where ri denotes the unit outward normal direction (radial direction) for cylinder i, and the
condition on the ice–water interface,

φz = wt(r, θ, t), on IS, (4)

where z = w(r, θ, t) describes the deflection of the ice cover and (r, θ, z) are the global
cylindrical coordinates, x = r cos θ, y = r sin θ. The deflection is governed by the Bernoulli-
Euler equation of a thin elastic plate,

mwtt + D∇4w = p(r, θ, 0, t), on IS, (5)

where m = ρihi is the mass of the ice cover per unit area, hi is the constant ice thickness, ρi
is the ice density, D = Eh3

i /[12(1− ν2)] is the rigidity coefficient of the ice plate, E is the
Young’s modulus of the ice, ν is the Poisson’s ratio, and p is the hydrodynamic pressure
given on the ice–water interface by the linearized Bernoulli equation,

p(r, θ, 0, t) = −ρφt(r, θ, 0, t)− ρgw(r, θ, t), (6)

where ρ is the water density and g is the gravitational acceleration.
The ice cover is clamped to the cylinders along the contact lines,

w = 0 and wr = 0, on CL. (7)

The deflection of an incident hydro-elastic wave is assumed as follows:

wI(x, t) = A cos[k(x cos β + y sin β)−ωt]
= ARe

{
eik(x cos β+y sin β)−iωt

}
,

(8)

where β is the incident wave angle (see Figure 1), A is the amplitude of the incident wave,
k is the wavenumber, ω is the wave frequency, and Re denotes the real part of a complex
number. Here, ω and k are related by the dispersion relation [12]

ω2
(

m +
ρ

ktanh(kH)

)
= ρg + Dk4, (9)

which can be written in the non-dimensional form,(
κ4 + δ

)
κtanh(κ)− q = 0, (10)
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where κ = kH is the non-dimensional wavenumber, q = (ω2H/g)(H/Lc)
4,

δ = (1−ω2/ω2
0)(H/Lc)

4, Lc = (D/ρg)1/4 is the characteristic length of the ice sheet and
ω0 = (ρg/m)1/2 is the frequency of broken ice [20]. The roots of the dispersion relation (10)
can be real, pure imaginary, or complex. The real positive root of (10) is denoted with
κ0 = k0H, where k0 = k. Other roots are complex and denoted by their indexes, κn = kn H.
The dispersion Equation (10) has two real roots ±κ0(κ0 > 0) corresponding to travelling
waves, four complex roots ±a0 ± ib0, where a0 > 0 and b0 > 0, corresponding to damped
travelling waves and infinite number of pure imaginary roots, κn = ±iβn, βn+1 > βn > 0
for n ≥ 1 corresponding to evanescent waves.
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The velocity potential of the incident hydro-elastic wave (8) in the global coordinate
system (x, y, z) reads

φI =
Aω

k
cosh[k(z + H)]

sinh(kH)
Re
{
−ieik(x cos β+y sin β)−iωt

}
. (11)

We introduce N local coordinate systems, (rj, θj, z), j = 1, . . . , N with their origins at
the centre of each cylinder. Then,

x = Xj + rj cos θj, y = Yj + rj sin θj,

where Xj and Yj are the x and y coordinates of the centre of cylinder j in the global
coordinate system (x, y, z), is applied to the potential (11). The exponential term in (11) is
written in the j-th local coordinates as

eik(x cos β+y sin β) = Ije
ikrj cos(θj−β) = Ij

∞

∑
m=−∞

im Jm(krj)e
im(θj−β), (12)

where
Ij = eik(Xj cos β+Yj sin β)

represents the “phase factor” associated with cylinder j, and Jm(krj) is the Bessel function

of the first kind and order m, (see [11], Formula 9.1.41). Let φ
j
I(rj, θj, z, t) and wj

I(rj, θj, t)
represent the incident wave potential and the deflection, respectively, expressed in the
coordinate system of j-th cylinder, j = 1, . . . , N,

φ
j
I =

Aω

k
cosh[k(z + H)]

sinh(kH)
Re
[
−ie−iωtΦj

I

]
, (13)
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wj
I = ARe

[
e−iωtΦj

I

]
, Φj

I = Ij

∞

∑
m=−∞

im Jm(krj)e
im(θj−β).

The condition at infinity is given as follows:

∂φ
j
D

∂rj
= ikφ

j
D as rj → ∞, (14)

which specifies that the diffracted waves are outgoing. The superscript j implies that the
function is expressed in the coordinate system of cylinder j, j = 1, . . . , N, and the subscript
D stands for “diffracted wave”.

3. Solution of the Problem (1)–(14) by the Iteration Method Combined with the
Vertical Mode Method

The scattering of hydro-elastic waves by a single circular cylinder is solved by Ko-
robkin et al. [18] using both the vertical mode method and the Weber integral transform in
cylindrical coordinates. The boundary value problem (1)–(14) is similar to the problem with
a single cylinder, but now the body boundary condition (3) is applied on the boundaries of
N cylinders, and the edge condition (7) is applied at the contact lines of N cylinders with
ice. In order to solve the boundary value problem (1)–(14), the new multiple scattering
technique is combined with the vertical mode method.

We assume that the total wave potential for cylinder j, j = 1, 2, . . . , N, is given by

φj = φj(1) + φj(2) + φj(3) + . . . + φj(s), (15)

where the first index denotes the cylinder number and the second index in brackets de-
notes the iteration number. At each iteration, p ≥ 1, the velocity potential for cylinder j,
j = 1, 2, . . . , N, is calculated by the vertical mode method. Following [18], the velocity
potential and the deflection are decomposed as

φj(p) = φ
j(p)
TI + φ

j(p)
D , φ

j(p)
D = φ

j(p)
0 + φ

j(p)
c , (16)

wj(p) = wj(p)
TI + wj(p)

D , wj(p)
D = wj(p)

0 + wj(p)
c , (17)

where the subscripts TI and D stand for “total incident wave” and “diffracted wave”,
respectively. The potential φ

j(p)
TI + φ

j(p)
0 and the deflection wj(p)

TI + wj(p)
0 are the solutions

of (1)–(14) if the condition wj(bj, θj, t) = 0 in (7) is dropped. The correction potential

φ
j(p)
c and the correction deflection wj(p)

c are added to the solution to satisfy the original
edge conditions.

At the first iteration, a cylinder (usually the frontmost cylinder, with respect to the
incident wave direction) is chosen and is numbered “cylinder 1”. We set φ

1(1)
TI = φ1

I , which
means that we do not account for the presence of other cylinders at the first step of the
iteration. Then, the hydro-elastic wave diffraction problem is solved for that “isolated”
cylinder 1 by using the vertical mode method, and the diffracted wave potential, φ

1(1)
D , is

calculated. Next, for cylinder 2, the “total incoming wave” is the incident wave and the
diffracted wave from cylinder 1. The “total incoming wave” is scattered by cylinder 2,
producing the diffracted wave potential φ

2(1)
D . Generalizing this idea for the first iteration,

the potential of the total incident wave for cylinder j, (j 6= 1) is

φ
j(1)
TI = φ

j
I +

j−1

∑
i=1

φ
i(1)
D , (18)

which is scattered by cylinder j, producing potential φ
j(1)
D .
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For the p-th step of iteration, p ≥ 2, the potential of total incoming wave for cylinder j
is made of scattered waves from all other cylinders, i = 1, . . . , N, (i 6= j),

φ
j(p)
TI =

j−1

∑
i=1

φ
i(p)
D +

N

∑
i=j+1

φ
i(p−1)
D . (19)

Equation (19) implies that there are contributions to the total incident wave from both
the present iteration and the previous iteration, depending on the cylinder numbering.
The iterative idea of (19) comes from the Gauss-Seidel iteration method, which is used for
solving linear systems of algebraic equations. Note that in this iterative scheme, cylinder
numbering is important. Our experience suggests that cylinders should be numbered
according to their relative position, with respect to the ambient incident wave direction:
the closer the cylinder to the waves, the lower the number. The cylinder numbering and
convergence issues are explained in detail in section “Wave Forces and Numerical Results”.
In the next section, details of the algorithm are given.

4. “General Incident Wave Scattering” by Each Cylinder

The diffraction of the “total incident wave”, which consists of diffracted waves from all
other cylinders i, (i 6= j) by cylinder j, is studied in this section. This diffraction procedure
will be referred to as “general incident wave scattering” as opposed to “ambient incident
wave scattering”.

As explained in Section 3, at the first iteration, there is no interaction, only ambient
incident wave scattering for cylinder 1. The hydro-elastic wave diffraction problem is
solved for a single cylinder (cylinder 1) with an incoming ambient incident wave by using
the vertical mode method [18]. The total incident wave potential, φ

1(1)
TI , is the ambient

incident wave potential given in (13),

φ
1(1)
TI =

Aω

k
cosh[k(z + H)]

sinh(kH)
Re

[
−ie−iωt

∞

∑
m=−∞

im I1 Jm(kr1)eim(θ1−β)

]
. (20)

The function φ
1(1)
0 in (16) is easily obtained using the diffraction problem of water

waves [21],

φ
1(1)
0 =

Aω

k
cosh[k(z + H)]

sinh(kH)
Re

[
−ie−iωt

∞

∑
m=−∞

imB(1)
1m Hm(kr1)eim(θ1−β)

]
, (21)

B(1)
1m = − Jm

′(kb1)

Hm ′(kb1)
I1, (22)

where Hm(krj) is the Hankel function of the first kind corresponding to the outgoing
cylindrical waves. Following [18], the correction function is obtained in the form

φ
1(1)
c =

Aω

k
Re

[
−ie−iωt

∞

∑
n=−2

cosh[kn(z + H)]

sinh(kn H)

∞

∑
m=−∞

im B̃(1)
1mnHm(knr1)eim(θ1−β)

]
, (23)

where
B̃(1)

1mn =
Hg1m

κ2
n Hm ′(kb1)Hm ′(knb1)

2
iπb1Qn

I1, (24)

Qn =
1

2κ2
nq2

[
κ2

n

(
κ4

n + δ
)2

+ q
(

5κ4
n + δ− q

)]
,

gjm =

(
∞

∑
n=−2

Hm(knbj)

κnQnHm ′(knbj)

)−1

, j = 1, . . . , N.
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The upper index in the coefficients of the velocity potentials B(p)
jm and B̃(p)

jmn denotes the
iteration number. The sub-index j counts the cylinder number, m counts the Fourier modes,
and n counts the vertical modes.

For convenience, the diffracted wave potential for cylinder 1 at the first iteration,
φ

1(1)
D = φ

1(1)
0 + φ

1(1)
c , is rewritten in combined form as

φ
1(1)
D (r1, θ1, z, t) =

Aω

k
Re

[
−ie−iωt

∞

∑
n=−2

cosh[kn(z + H)]

sinh(kn H)

∞

∑
m=−∞

imD(1)
1mn Hm(knr1)eim(θ1−β)

]
, (25)

where

D(1)
1mn =

{
B̃(1)

1mn, if n 6= 0,
B(1)

1m + B̃(1)
1mn, if n = 0.

Note that the total velocity potential for cylinder 1 at the first iteration,
φ1(1) = φ

1(1)
TI + φ

1(1)
D , given by (20) and (25), takes into account the position of cylin-

der 1 through the phase factor for cylinder 1, I1 = eik(X1 cos β+Y1 sin β). The corresponding ice
deflection w1(1)(r1, θ1, t) is calculated using the kinematic condition (4) on the ice–water
interface.

Now, starting from cylinder 2, the wave interaction with the cylinders is incorporated
into the iteration process. In addition to the ambient incident wave, the diffracted waves
from cylinder 1 are treated as incident waves for cylinder 2. Graff’s addition theorem for
Bessel functions [11] is used for this aim. Generally, in order to express the scattered wave
potential from cylinder i in the local coordinate of cylinder j, a coordinate transformation is
needed. Graff’s addition theorem serves this purpose

Hm(knri)eimθi =
∞

∑
l=−∞

Hm−l(knRij)e
iαij(m−l) Jl(knrj)e

ilθj , (26)

which is valid only where ri < Rji (see Figure 1).
Applying the addition theorem to the product of the Hankel function and the expo-

nential term in (25), the diffracted wave potential for cylinder 1 at the first iteration, φ
1(1)
D ,

is expressed in the local coordinates of cylinder 2,

φ
1(1)
D (r2, θ2, z, t) =

Aω

k
Re

[
−ie−iωt

∞

∑
n=−2

cosh[kn(z + H)]

sinh(knH)

∞

∑
l=−∞

ilC(1)
12ln Jl(knr2)eil(θ2−β)

]
, (27)

where

C(1)
12ln =

∞

∑
m=−∞

im−l D(1)
1mne−iβ(m−l)Hm−l(knR12)eiα12(m−l). (28)

The total incident wave potential for cylinder 2 at the first iteration, is the sum of the
ambient incident wave potential and the potential of diffracted waves from cylinder 1,

φ
2(1)
TI (r2, θ2, z, t) = φ2

I (r2, θ2, z, t) + φ
1(1)
D (r2, θ2, z, t)

= Aω
k Re

[
−ie−iωt

∞
∑

ñ=−2

cosh[kñ(z+H)]
sinh(kñ H)

∞
∑

l=−∞
il A(1)

2lñ Jl(kñr2)eil(θ2−β)

]
,

(29)

where

A(1)
2lñ =

{
C(1)

12lñ, if ñ 6= 0,
I2 + C(1)

12lñ, if ñ = 0.
(30)

Note that, at the first iteration for cylinder 1, there is only one incident wave cor-
responding to the real wavenumber k0 = k. However, for cylinder 2, the total inci-
dent wave potential, φ

2(1)
TI , includes many waves corresponding to the wavenumbers
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kñ, ñ = −2,−1, 0, 1, . . . due to the correction potential φ
1(1)
c . Each wave in (29) correspond-

ing to the wave number kñ, ñ = −2,−1, 0, 1, . . . will be diffracted by cylinder 2. It is
necessary to sum up the waves of the same wavenumber, otherwise calculations would be
unmanageable as the number of iterations increases,

φ
2(1)
D (r2, θ2, z) =

Aω

k
Re

[
−ie−iωt

∞

∑
n=−2

cosh[kn(z + H)]

sinh(knH)

∞

∑
m=−∞

im

(
∞

∑
ñ=−2

D(1)
2mnñ

)
Hm(knr2)eim(θ2−β)

]
, (31)

where

D(1)
2mnñ =

{
B̃(1)

2mnñ, if n 6= ñ,
B(1)

2mñ + B̃(1)
2mnñ, if n = ñ,

ñ = −2,−1, 0, 1, 2, . . . (32)

B(1)
2mñ = − Jm

′(kñb2)

Hm ′(kñb2)
A(1)

2mñ, ñ = −2,−1, 0, 1, 2, . . . (33)

B̃(1)
2mnñ =

Hg2m

κ2
nHm ′(kñb2)Hm ′(knb2)

2
iπb2Qn

A(1)
2mñ, ñ = −2,−1, 0, 1, 2, . . . (34)

Here, B(1)
2mñ and B̃(1)

2mnñ are the coefficients of the velocity potentials φ
2(1)
0 and φ

2(1)
c ,

respectively.
For the subsequent iterations, the formulations of the incident and diffracted wave

potentials and their coefficients are similar to (29)–(34). After the first iteration, the ambient
incident wave coefficient, Ij,j = 1, . . . , N, will be absent in the coefficient of the total incident
wave potential (30).

With the combined method described above, different edge conditions, other than the
clamped edge considered here, can be handled easily. As it is stated in [18], the vertical
mode method can be used to solve the hydro-elastic wave diffraction problem for a circular
cylinder with different edge conditions on the contact line between the ice plate and
the surface of the cylinder. Therefore, the problem (1)–(14) with a change in the edge
conditions (7) can be solved by the present method, with the only difference being the
change in the coefficients of the correction potentials (24), (34) and in the coefficients at the
higher order iterations.

5. Wave Forces and Numerical Results

The wave force acting on cylinder j, Fj =
(
Re
{

Fx,je−iωt}, Re
{

Fy,je−iωt}), j = 1, . . . , N,
is calculated by integrating the hydrodynamic pressure over the wetted surface of the
cylinder, CSj,

Fj = −
x

CSj

pjnjdS,

where, nj = (cos θj, sin θj) is the unit normal on the lateral surface of the cylinder pointing
into the fluid, and

pj = −ρ
∂φj

∂t
(bj, θj, z, t),

is the hydrodynamic pressure presented through the total velocity potential, with respect
to cylinder j. At the p-th iteration, wave exciting forces in x and y directions for cylinder j,
are given in terms of the coefficients of the total incident and diffracted wave potentials,

A(p)
jmn and

(
∞
∑

ñ=−2
D(p)

jmnñ

)
, respectively,

F(p)
x,j = πbj

Aρω2

k

∞
∑

n=−2

H1(knbj)

kn
i

[{
A(p)

j1n +

(
∞
∑

ñ=−2
D(p)

j1nñ

)}
e−iβ +

{
A(p)

j,−1,n +

(
∞
∑

ñ=−2
D(p)

j,−1,n,ñ

)}
eiβ

]
,
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F(p)
y,j = πbj

Aρω2

k

∞
∑

n=−2

H1(knbj)

kn

[
−
{

A(p)
j1n +

(
∞
∑

ñ=−2
D(p)

j1nñ

)}
e−iβ +

{
A(p)

j,−1,n +

(
∞
∑

ñ=−2
D(p)

j,−1,n,ñ

)}
eiβ

]
.

The problem of diffraction of an incident hydro-elastic wave by multiple circular
cylinders has been solved by Ren et al. [19] using eigenfunction expansion and Green’s
second identity. They calculated the wave forces acting on four, nine, and eighteen cylinders
for the clamped and free-edge conditions. The method of the present paper, which is a
combination of the vertical mode method [18] and the new iteration method, is verified by
comparing our wave forces acting on four circular cylinders with the forces by Ren et al. [19].
The configuration considered is the four identical cylinders of radius bj = b = 10 m,
j = 1, 2, 3, 4, with centres (−

√
2d, 0), (0,

√
2d), (

√
2d, 0), and (0,−

√
2d), respectively. The

distance between the centres of adjacent cylinders is 2d (see Figure 2). The parameters
E = 5× 109 Pa, ν = 0.3, ρi = 922.5 kg/m3, g = 9.8 m/s2 are adopted for comparison
purposes.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 


 


= −


( , , , ),
j

j j j
p b z t

t
  

is the hydrodynamic pressure presented through the total velocity potential, with respect 

to cylinder .j  At the p -th iteration, wave exciting forces in x and y directions for cylinder 

,j  are given in terms of the coefficients of the total incident and diffracted wave potentials, 

( )p

jmn
A  and 



=−

 
 
 


( )

2

,p

jmnn
n

D  respectively, 

 


  
−

− −

=− =− =−

          
= + + +       

           
  

2
1( ) ( ) ( ) ( ) ( )

, 1 1 , 1, , 1, ,
2 2 2

( )
,

         

n jp p p p pi i

x j j j n j nn j n j n n
n n nn

H k bA
F b i A D e A D e

k k   

 


  
−

− −

=− =− =−

          
= − + + +       

           
  

2
1( ) ( ) ( ) ( ) ( )

, 1 1 , 1, , 1, ,
2 2 2

( )

        

.

 

n jp p p p pi i

y j j j n j nn j n j n n
n n nn

H k bA
F b A D e A D e

k k   

The problem of diffraction of an incident hydro-elastic wave by multiple circular cyl-

inders has been solved by Ren et al. [19] using eigenfunction expansion and Green’s sec-

ond identity. They calculated the wave forces acting on four, nine, and eighteen cylinders 

for the clamped and free-edge conditions. The method of the present paper, which is a 

combination of the vertical mode method ([18]) and the new iteration method, is verified 

by comparing our wave forces acting on four circular cylinders with the forces by Ren et 

al. [19]. The configuration considered is the four identical cylinders of radius 

= = 10m,
j

b b = 1, 2, 3, 4,j  with centres −( 2 ,0),d  (0, 2 ),d  ( 2 ,0)d , and −(0, 2 )d , re-

spectively. The distance between the centres of adjacent cylinders is 2d  (see Figure 2). 

The parameters = 
95 10E Pa,  = 0.3,   =

3922.5 kg/m ,
i  =

29.8 m/sg  are adopted for 

comparison purposes. 

 

Figure 2. Configuration of the cylinders. 

The relation between the incident wave amplitude A  in (11) and the incident wave 

amplitude A  in [19] is given by 


=
2

tanh[ ]
Agk

A kH . The x - and y -components of the 

wave forces are non-dimensionalized by   =
2 2 2 / tanh( )
j j

gb A A b k kH  for comparison 

purposes with Ren et al. [19]. The non-dimensional forces are denoted by tilde, 
,x j

F  and 

,
.

y j
F  In the subsequent Figures, the modulus of the non-dimensional force components 

,x j
F  and 

,y j
F  are presented for the cylinders given in Figure 2. The ratio =/ 2,d b  in-

cident wave direction  = 0 ,  water depth = 100mH , and ice thickness = 1m
i

h  are 

Figure 2. Configuration of the cylinders.

The relation between the incident wave amplitude A in (11) and the incident wave

amplitude A in [19] is given by A = Agk
ω2 tanh[kH]. The x- and y-components of the wave

forces are non-dimensionalized by ρgb2
j A = Aω2ρb2

j /ktanh(kH) for comparison purposes

with Ren et al. [19]. The non-dimensional forces are denoted by tilde, F̃x,j and F̃y,j. In the

subsequent Figures, the modulus of the non-dimensional force components
∥∥∥F̃x,j

∥∥∥ and∥∥∥F̃y,j

∥∥∥ are presented for the cylinders given in Figure 2. The ratio d/b = 2, incident wave
direction β = 0◦, water depth H = 100 m, and ice thickness hi = 1 m are adopted. Due to
the position of the cylinders and the angle of wave incidence β = 0◦, x- and y-component
of wave forces on cylinders 2 and 4 are the same, and the y-component of the wave force
acting on the cylinders 1 and 3 are zero due to the symmetry of the cylinder configuration.
In Figure 3, the present wave force results are compared with those by Ren et al. [19], and
the effect of the number of vertical modes retained is investigated. First, it is seen that the
present results match quite well with those by Ren et al. [19]. Second, it can be observed
from Figure 3 that, for the geometry considered here, it is sufficient to consider the vertical
modes in (29) and (31) from n = −2 to 5 (taking only five evanescent modes). Increasing
the number of evanescent modes to 10 does not make any difference, except for a small
deviation in the high-frequency range. In the subsequent figures, the Fourier modes m in
the series of the incident and diffracted wave potentials (20), (25), (29), and (31) are taken
from −5 to 5. It is observed that increasing the number of Fourier modes does not change
the numerical results.
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Figure 3. Non-dimensional wave forces (a)
∥∥∥F̃x,1

∥∥∥, (b)
∥∥∥F̃x,2

∥∥∥, (c)
∥∥∥F̃x,3

∥∥∥, (d)
∥∥∥F̃y,4

∥∥∥ acting on the
cylinders in Figure 2 with d/b = 2, β = 0◦ and hi = 1 m. Present solution with n = −2, . . . , 10 (red
dots), with n = −2, . . . , 5 (blue dots), Ren et al. [19] (black line).

In Figure 4, the effect of different incident wave angles, β = 30◦ and 45◦ on the wave
forces is investigated for cylinder spacing d/b = 2. The non-dimensional total wave forces

F̃j =

√
(F̃x,j)

2
+ (F̃y,j)

2
,

are compared with the results of Ren et al. [19] for the cylinders given in Figure 2. Wave
forces are shown in red and black, corresponding to the incident wave angle β = 30◦

and 45◦, respectively. The solution by Ren et al. [19] is shown by solid lines, and the
present solution with five and ten evanescent modes is shown by empty and filled circles,
respectively. It is seen from Figure 4 that the difference between the filled and empty circles
is nearly invisible, except for a very small deviation in the high-frequency range. As a
result, five evanescent modes are determined to be sufficient to calculate the wave forces
for non-zero incident wave angles, just as they are for zero incident wave angles. Total
wave forces acting on cylinders 1, 4 and 2, 3 are the same for incident wave angle β = 45◦

due to the symmetry of the cylinder configuration (see Figure 2). It is seen that present
force results show similar behavior to the results of Ren et al. [19].
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Figure 4. Non-dimensional total wave forces (a)
∥∥∥F̃1

∥∥∥, (b)
∥∥∥F̃2

∥∥∥, (c)
∥∥∥F̃3

∥∥∥, (d)
∥∥∥F̃4

∥∥∥ acting on the
cylinders in Figure 2 with d/b = 2, hi = 1 m are shown in red (β = 30◦) and black (β = 45◦).
Ren et al. [19] (solid line), present solution with five (empty circle) and ten (filled circle) vertical
modes, respectively.

In Figure 5, cylinder spacing is changed to d/b = 4, and the other parameters are kept
the same as in Figure 3. The effect of cylinder numbering in the present iteration method is
investigated. For example, the cylinder numbering 1-2-3-4 is shown in Figure 2. We start
numbering the cylinders from the left-hand side and continue in the clockwise direction.
Four different cases are investigated: cylinder numbering as 1-2-3-4 (red dots), 1-2-4-3
(green dots), 1-4-3-2 (orange dots), and 2-3-4-1 (blue dots). It is seen from Figure 5 that
cylinder numbering as 1-2-3-4 (red dots), 1-2-4-3 (green dots), and 1-4-3-2 (orange dots),
where the iteration starts from the closest cylinder (cylinder 1) to the incident wave, gives
closer wave force results to Ren et al. [19] compared to the other case. The case where the
iteration does not start from the closest cylinder to the incident wave–for example, the wave
forces calculated by the cylinder numbering as 2-3-4-1 (blue dots)–shows similar behavior
to the other cases but converges to different results than Ren et al. [19]. This shows that
for the configuration of the cylinders given in Figure 2, the left-most cylinder should be
numbered as cylinder 1. Choosing cylinder 1 as the closest cylinder to the incident wave
and then numbering other cylinders arbitrarily for this configuration produces similar
wave force results (see Figure 5). However, if the cylinders are positioned in a single array,
they should be numbered according to their relative position, with respect to the ambient
incident wave direction: the closer the cylinder to the waves, the lower the number. Note
that, in Figure 5, wave forces for the cylinders are shown in the numbering system 1-2-3-4.
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Figure 5. Non-dimensional wave forces (a)
∥∥∥F̃x,1

∥∥∥, (b)
∥∥∥F̃x,2

∥∥∥, (c)
∥∥∥F̃x,3

∥∥∥, (d)
∥∥∥F̃y,4

∥∥∥ acting on the
cylinders with d/b = 4, β = 0◦ and hi = 1 m. Numbering of cylinders 1-2-3-4 (red dots), 1-2-4-3
(green dots), 1-4-3-2 (orange dots), 2-3-4-1 (blue dots), Ren et al. [19] (black line).

All calculations in this paper are carried out with twenty iterations, for which the
convergence of the present iterative scheme is obtained. The problem (1)–(14) is also
solved by using the iteration method of Twersky [1]. In that iteration method, the wave
potentials are calculated separately for each cylinder by using the data obtained in the
previous iteration. The new iteration method developed in this paper uses the idea of the
Gauss-Seidel iteration method for linear systems. The data obtained for a cylinder at the
p-th iteration is used for the next cylinder at the same iteration. Thus, it is predicted that
the present iterative method is faster than Twersky’s method. For example, for d/b = 4,
with Twersky’s iteration method, 90 iterations are needed for convergency of the wave
force acting on cylinder 1 in Figure 2, but 20 iterations are enough with the present iteration
method. For the configuration of the cylinders given in Figure 2, the time needed to obtain
the convergence with the present iterative method is six times less than that when using the
Twersky’s method. In Twersky’s method, the cylinder numbering is not important, but that
method converges more slowly than the present iterative method. For the convergency of
the iteration method, we mean that the maximum relative error between two consecutive
iterations for the wave force is small,

max
kb ∈ I

∣∣∣∣∣∣
∥∥∥F̃(p)

x,j

∥∥∥− ∥∥∥F̃(p−1)
x,j

∥∥∥∥∥∥F̃(p)
x,j

∥∥∥
∣∣∣∣∣∣ < δj,

for each cylinder j, j = 1, . . . , N, where δj is a small number, p counts the number of
iterations and I is the interval for the non-dimensional wave number kb. Maximum relative
error is smaller than 10−2 for the wave forces given in Figure 5. There is no visible difference
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for the wave force results in Figure 5 with 20 iterations and 40 iterations by the present
iterative method.

In Figure 6, non-dimensional wave forces acting on the cylinders in Figure 2 are
presented for different ice thicknesses, hi = 0.5 m (black line), 0.75 m (green line) and 1 m
(red line). Here, the cylinder spacing is chosen as d/b = 1.25. For small wave numbers
the higher ice thickness results in smaller wave forces in the x-direction, but for large
wavenumbers the higher ice thickness results in higher wave forces in the x-direction.
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Figure 6. Non-dimensional wave forces (a)
∥∥∥F̃x,1

∥∥∥, (b)
∥∥∥F̃x,2

∥∥∥, (c)
∥∥∥F̃x,3

∥∥∥, (d)
∥∥∥F̃y,4

∥∥∥ acting on the
cylinders in Figure 2 with d/b = 1.25, β = 0◦ and hi = 0.5 m (black line), hi = 0.75 m (green line),
hi = 1 m (red line).

6. Conclusions

A new iteration method combined with the vertical mode method has been proposed
and applied to the problem of hydro-elastic wave interaction with multiple vertical circular
cylinders. The algorithm of the problem solving has been described and explained. Numer-
ical calculations of the wave forces are reduced to operations with the Fourier coefficients of
the velocity potential. Wave forces acting on four circular cylinders in a square arrangement
have been calculated for different cylinder spacings, incident wave angles, and ice thick-
nesses. Good agreement is achieved with the results by Ren et al. [19]. The present iteration
method converges much faster than Twersky’s method [1]. For the geometry considered in
this paper, five evanescent modes are found to be sufficient to obtain good convergence.

The cylinders are rigid in the present analysis. In terms of marine structures frozen in
ice, the structural flexibility, and the dynamic fluid–structure interaction are of practical
interest. Such dynamic interactions have been studied for water waves, see [22–25], but
not yet for hydro-elastic waves. For columns frozen in ice, their ability to deform is limited
compared to the same columns in open water. The columns are supported (clamped) not
only at the bottom but also along the contact line between the ice and the column. It is
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possible to model the column support at the contact line as an elastic support. Then, one
needs to account for compression in ice cover, which makes the Bernoulli-Euler equation of
a thin elastic plate (5) more complicated. The authors are unaware of any research in this
field. The compression forces at the contact line could be large, leading to crushing the ice
near the surface of the column.

Other conditions on the contact line can be considered. The free–free contact conditions
were studied in [18] for a single circular cylinder. Crushing of ice at the contact line was
studied [18], but the possibility of crushing was not allowed. There are also complicated but
practically interesting problems, where a part of the contact line is clamped to the cylinder
and another part is free of stresses and shear forces. The difficulty of such formulation is
that the location of these parts is unknown in advance; they should be determined as part
of the solution.

As a future work, the problem investigated in this paper is planned to be solved for
free-edge conditions. In addition to that, the problem of many vertical cylinders with
non-circular cross-sections is planned to be solved by the present method and by the direct
matrix method.
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