
978-1-6654-1070-0/21/$31.00 ©2021 IEEE

Mutation Analysis of Specification-Based Contracts
in Software Testing

Abbas Khalilov
Dept. of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

abbaskhalilov@iyte.edu.tr

Tugkan Tuglular
Dept. of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

tugkantuglular@iyte.edu.tr

Fevzi Belli
Dept. of Computer Science, Electrical

Engineering and Mathematics

University of Paderborn
Paderborn, Germany

belli@upb.de

Abstract—This work focuses on checking the adequacy of the

test cases generated using Decision-Table-augmented Event

Sequence Graphs (ESG-DTs), which represents the

specification of a system under test, by using mutation analysis.

Test cases are represented in the Complete Event Sequence

(CES) and Faulty CES (FCES) forms. We present a new set of

mutation operators for mutation of contracts represented in

Multi-Terminal Binary Decision Diagram (MTBDD) and

introduce a new approach to mutation of the ESG-DT model by

using the proposed mutation operators. The approach is

evaluated on three cases. The results show the drawback of

specific FCES test sequences and the relationship between the

mutant detection by CES/FCES sequences and proposed

mutation operators.

Keywords— mutation analysis, event sequence graph, design

by contract, contract mutation, decision tables, multi-terminal

binary decision diagrams.

I. INTRODUCTION

The effectiveness of a test set can be checked by mutation
analysis [1]. The steps involved in mutation analysis are: 1)
insertion of the different kinds of faults in the original program
by means of mutation operators; 2) generating mutant
programs; 3) finding distinguished mutants against the
provided test set; 4) assessing the adequacy of the provided
test set by dividing the number of the distinguished mutants to
the total number of mutants. In its origin the mutation analysis
is intended to be a code-based technique [1]. Later, mutation
analysis was adopted for specification- and model-based
testing [2], [3]. As the specification of the system under test
(SUT) can be provided in various forms, the mutated
specifications permit to test different properties of the SUT.

This paper is the continuation of the [4] and extends the
ideas introduced in [5]. The research in this paper investigates
the adequacy of the test set generated from the original
specification model by applying it on the mutants generated
from the original specification model. The specification model
is represented as Decision-Table-Augmented Event Sequence
Graph (ESG-DT) [4]. To perform a mutation, the contract
given as a DT is transformed to a multi-terminal binary
decision diagram (MTBDD), then the mutation operators
defined on MTBDDs are applied to the MTBDD and finally
the mutated MTBDD is transformed back to a DT, which
becomes a mutated DT. This mutant model is tested by the test
set. The test set is represented as test sequences in two forms:
CES and FCES. The CESs and FCESs are generated from the
original model. The CES represents the expected behavior,
which the specification should correspond, whereas FCES
represents the faulty behavior which the specification should
not correspond to. The work proposes a new set of mutation

operators for MTBDD mutation. The evaluation is performed
on the ESG graph without the contract involvement.

In this study, the quality of the CES and FCES test suites
for ESG-DT model representation is assessed. Proposed
mutation analysis approach is applied on the three cases.
Considering the relation between the mutant detection
properties of CES and FCES described in the discussion, one
can say that the mutant will be detected if and only if (iff) there
is a difference in the model behavior. According to the results,
the impact of the mutation operators dealing directly with the
terminal nodes of MTBDD is always noticeable by test
sequences, because the mutated ESG-DT model will lose an
edge or acquire a new one, i.e., difference in the model
behavior. In case of MTBDD edge mutation, the impact is
sometimes noticeable or non-noticeable at all. Another
observation obtained from the results is the insensitivity of the
certain FCESs to the mutants, of which reason is discussed in
the Evaluation section.

The paper is constructed in the following way. The study
starts with the literature review in Section 2. The following
Section 3 describes the theoretical background about ESG,
ESG-DT, MTBDD, mutation analysis and mutation operators
for ESGs and DTs. Following the review of the work
foundation, Section 4 introduces new mutation operators for
DT-augmented ESG mutation, and the algorithm used for
implementation of mutation analysis. Section 5 evaluates the
application of the proposed algorithm and outcome of the
proposed operators on three cases, namely CD player, Cruise
Control, Simple Automated Teller Machine. The instruments
used for the generation of mutants and test generation are
described on Section 6. The last section concludes the paper
and provides further ways of improving and extending the
research in this manuscript.

II. RELATED WORK

An integral part of mutation analysis is the set of
established mutation operators. Mutation operators inject
faults into the testing system. The injected faults represent the
specific fault domain, which the corresponding mutation
operator represents. As mutation analysis’s origin is a code-
based testing technique the Yu-Seung Ma et al. [6] proposed
a set of mutation operators for class and inter-class mutations
in Java language.

Negative testing helps to prevent failures by simply
handling the erroneous states. Therefore, the demand in test
cases supporting negative testing increases. Strug et al.
provides a method for this purpose [7]. The method is
procedural and systematic, and helps to identify unexpected
situations.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

Meyer introduced Design by Contract (DbC) approach [8],
where the author also introduces the contract notion in
software development. The contract represents a mutual
responsibility between caller and called units, where both
promise to fulfill their requirements. The DbC approach aims
to detect and locate faults [9]. Traon et al. explores the
efficiency of contract by adapting the mutation analysis [10].
The mutations are performed simply by injecting errors in the
system. Afterwards, if contract is violated during the
execution of a faulty system, this implies that the contract has
detected an error [10]. Efficiency is measured by checking the
contracts’ efficiency on the mutants that are distinguished at
least by one test case.

Compared to traditional mutation operators defined by
Aichernig [11] and Jiang et al. [12], operators proposed [13]
are high level contract mutation operators for testing
components. Authors also propose a contract-based mutation,
which should serve as a test adequacy criterion for component.
The reason of creating high level operators is reducing the
number of mutants. Indeed, the results given by proposed
operators greatly reduce the mutant number in contrast to the
traditional operators. Also, application of contract mutation
operators in contract-based mutation provides the same ability
as that of using traditional mutation operators.

Fabri et al. perform the evaluation of mutation analysis
criterion on Petri Nets-based specification [14]. As mutation
analysis requires changes in original model, operators for Petri
Nets mutations are presented. The mutant is considered as
dead, if the mutant’s vector, which is the number of tokens in
each place, was different than original model’s vector. To
reduce testing expenses, authors examined the ideas of the
constrained (a few types of mutants were examined) and
randomly selected (10% of each mutant type) mutation
criterions. As a result, alternate mutation criteria provide great
cost reduction in terms of test sequences and the mutant
numbers.

Ammann et al. use mutation analysis in combination with
model checker and test generation [15]. Test cases are defined
as a set of inputs and expected results, and this is emphasized
as complete test case. By making syntactic errors at the level
of the model checker specification, mutation operators define
a form of mutation analysis. As a result, the advantages of
matching model checker with mutation analysis were
automatic test case generation and as opposed to code-based
mutation analysis, equivalent mutant identification became
also automatic.

Fabbri et al. proposes [16] the fundamental mechanism for
validation of Statechart-based specifications by mutation
testing. Considering specific features of Statechart-based
specifications, the corresponding mutation operators set for
statechart mutation is proposed. In that scope, mutation
operators are considered as a fault model. Strategies based on
mutation, incremental and hierarchical testing strategies are
provided to explore statechart components separately from
different Statechart features, which can cause inaccuracy in
validation and testing stages.

Belli et al. [17] introduced Decision-Table-augmented
Event Sequence Graphs (ESG-DT). This work introduces first
simple insertion and omission mutation operators for mutating
ESGs and DTs for generating simple mutants which represent
simple faults. Hence, complex mutants can be constructed by
combining the simple operations.

Belli et al. first presents [3] multiple simple mutation
operators for mutation of model-based specifications. Models
are represented as Directed Graphs (DG), ESG, Finite-State
Machines (FSM), Statecharts (SC). All mutation operators are
divided in insertion and omission categories for above listed
graph-based models. The advantage these operators bring is in
generation of first-order mutants which simulate simple faults.
The main objective is to assess the fault detection ability of
test cases generated from models mutated from proposed
operators. Based on empirically obtained results, test sets
generated by insertion operators are more effective in
revealing faults than those generated by omission operators.

Khalilov et al. extends [5] a mutation operator set for
specification-based contracts. Apart from existing DT
mutation operators [17], authors introduce a brand new simple
mutation operators for Ordered Binary Decision Diagram
(OBDD). As OBDDs are limited in the number of terminal
nodes this work extends OBDD by using Multi-Terminal
Binary Decision Diagram (MTBDD).

In this work, a set of mutation operators for the contract
mutation is proposed. By using these operators, mutated
models are generated by mutating contracts in the original
model. Test cases are generated from the original model are of
two types. The generated faulty model is expected not to pass
the test cases of the first type, called CES, to detect “(kill”) a
mutant. Second type, called FCES, are expected to comply
with the faulty model, to detect it, since both FCES and mutant
are the faulty models. The mutants are tested at the level of
ESG of the ESG-DT model. Therefore, considering the level
of the model being tested and detection properties of the test
cases, we can predict which mutants are detectable (“killed”)
and which are living and equivalent ones.

III. FUNDAMENTALS

A. Event Sequence Graph

Event sequence graphs (ESG) can be used to represent the
behavior of a system under consideration (SUC) [18].
Modeling is performed simply by retrieving all possible legal
and illegal actions, occurring during execution of the SUC
from its specifications and establishing all possible sequences
of actions. Actions in ESGs are represented by events which
occur in system and connections between events are called
sequences. An event in ESG is considered as input or stimulus
the execution of which causes firing of another event. This
phenomena helps to predict the next event and control the flow
of model execution [18].

Definition 1: An event sequence graph ESG = (V, E, Ξ,
Γ) is a directed graph where V ≠ Ø is a finite set of vertices
(nodes), E ⊆ V x V is a finite set of arcs (edges), Ξ, Γ ⊆ V
are finite sets of distinguished vertices with ξ ∈ Ξ, and γ ∈ Γ,
called entry nodes and exit nodes, respectively, wherein ∀v ∈
V there is at least one sequence of vertices 〈ξ,v0, . . . ,vk〉 from
each ξ ∈ Ξ to vk = v and one sequence of vertices 〈v0, . . . ,vk,
γ〉 from v0 = v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0, . . . ,
k-1 and v ≠ ξ,γ [4].

Definition 2: Let V, E be defined as in Definition 3.1.
Then any sequence of vertices 〈v0, . . . ,vk〉 is called an event
sequence (ES) iff (vi, vi+1) ∈ E, for i=0, . . ., k-1 [4].

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I. “STOP” DT.

stop
Rules

R1 R2 R3 R4 R5

C
o
n
d

it
io

n
s offButtonPressed T F F F F

isClosed - F T T T

CDpresent - - F T T

lastTrackPlayed - - - F T

A
ct

io
n

s

play X

stop X X

load X

off X

Definition 3: In order to detect entry event and exit event
of an ES α (initial) and ω (end) are used, i.e., α(ES) = v0, ω(ES)
= vk. The successors set of ∀v ∈ V is denoted by N+(v) and the
predecessor set of ∀v ∈ V is denoted by N-(v). The number of
vertices of an ES is determined by the function l(length). If
l(ES) = 1 then ES = < vi > is an ES of length (1). Each edge of
ESG or an ES = <vi, vk> of length two (2) represent an event
pair (EP).

Definition 4: An ES is called a complete ES (CES), if
α(ES) = ξ ∈ Ξ is the entry and ω(ES) = γ ∈ Γ is the exit [4].

Definition 5: Any event pair (vi,vj) ∉ E with vi,vj ∈V is a
faulty event pair of an ESG [17].

Definition 6: Let ES = (v1, ..., vm) be an event sequence
of length m of an ESG and FEP = (vm, vm+1) be a faulty event
pair of the ESG [17]. The concatenation of the ES and the
FEP gives a faulty event sequence FES = (v1, …, vm, vm+1)
[17].

Definition 7: An FES is complete (or a faulty complete
event sequence denoted as FCES) if α(FES) ∈ Ξ [17]. The
ES as part of an FCES is called a starter [17].

B. Decision Table

A Decision Table (DT) presents the rules, which relate
condition combinations with actions [19]. Decision tables are
a popular tool in information processing and widely used in
software testing. DT is a combination of possible inputs and
corresponding system responses. DT logically connects
conditions (“if”) with actions (“then”). In scope of this work,
we consider DT simple, i.e., conditions can accept only T
(true) and F (false).

 DT depicted on Table I is the simple DT. C =
{offButtonPressed, isClosed, CDpresent, lastTrackPlayed}
is condition set, A = {play, stop, load, off} is action set and R
= {R1, R2, R3, R4, R5} is a rule set.

C. Decision Table augmented Event Sequence Graph

DTs are used to increase the expression power of ESGs.
The Decision Table augmented Event Sequence Graphs (DT-
ESGs) contain data events (DEs) if a vertex is represented by
a DT, which is a contract. In turn, contracts are combined with
events of ESG.

Fig. 1 clearly demonstrates how the “stop” DT (Table I) is
represented by double circling the event “stop” of DT-ESG.
Actions “play”, “stop”, “load” and “off” indicate the
corresponding play, stop, load and off events. For instance,
rule R4 says that if both offButtonPressed and lastTrackPlayed
are resolved to false and both isClosed and CDpresent are
resolved to true, then “play” action will be triggered and
apparently the play will be executed, because it is one of the
successors of the current event stop.

D. Multi-Terminal Binary Decision Diagram

Multi-Terminal Binary Decision Diagram (MTBDD), so
called algebraic decision diagrams, can represent functions of
an arbitrary range, while their domain is still a
multidimensional Boolean space [20]. The definition of a
multi terminal binary decision diagram (MTBDD) is given in
[21].

Fig. 2 shows a multi-terminal BDD (represents rules in
Table I), where a root vertex is represented by
‘offButtonPressed’, the rest of non-terminal nodes are
‘isClosed’, ‘CDpresent’, ‘lastTrackPlayed’, and a set of
terminal nodes TN = {‘play’, ‘stop’, ‘load’, ‘off’}. Generally,
the ordering of the structure is: var(offButtonPressed) <
var(isClosed) < var(CDpresent) < var(lastTrackPlayed) <
var(TN), where TN is the set of the terminal nodes.

E. Mutation Analysis

DT-augmented ESG test cases are generated from the
model itself. Therefore, we need to assess the efficiency of
the generated test set. For this purpose, the Mutation Analysis
is the key technique.

DeMillo et. al. [22] first proposed the idea of mutation
analysis and Budd et. al. gave an extensible explanation for it
[1]. The aim of mutation analysis is a generation of program’s
slight variations and killing them with test sets. By means of
mutation analysis the effectiveness of a test set is assessed.

Fig. 1. A simple CD Player modelled as as a DT-augmented ESG.

Fig. 2. “stop” MTBDD

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

Consider P as an original program, L ≠ Ø as a set of

mutation operators, U ≠ Ø as a set of mutants, T ≠ Ø as a

set of test sets, a mutant generator function Ф(P, L), a testing

function Q(U, t ∈ T). Then, the application of the mutation
analysis requires the execution of the following steps:

1. U = Ф (P, L). Generate mutant, by inserting slight
deviations in P by means of mutation operator L.

2. Q (U, t ∈ T). Fail all u ∈ U.

If none of the t ∈T can distinguish a behavior of a u ∈
U from P, then that m is considered as a living mutant or in
worst case as equivalent mutant. The equivalency phenomena

of u ∈ U to the P, arouses when there is no such T the t ∈ T
can detect faulty version of P. Such mutants are detected
manually.

IV. CONTRACT-BASED MUTATION OPERATORS FOR

DECISION-TABLE-AUGMENTED EVENT SEQUENCE

GRAPH

A. Mutation Operators

Khalilov et. al. introduced the mutation operators for
Ordered Binary Decision Diagrams (OBDD) [5]. This work
uses the mutation operators [5] for MTBDD mutation and
proposes a set of new operators. The proposed operators are:

1. tnI (nodeI [5]) terminal node insertion operator.
Inserts a new terminal node in MTBDD by
connecting it with a new edge [5].

2. tnO (nodeO [5]) terminal node omission operator.
Omits an existing terminal node from MTBDD and
subsequently all of its incoming edges [5].

3. tnC terminal node corruption operator. Replaces the
existing terminal node with a new one, by preserving
all incoming edges of the old node from the new
node. This operation uses tnO and tnI.

4. edgeI edge insertion operator. Inserts a new edge, by
connecting an existing terminal node to the non-
terminal node.

5. edgeO edge omission operator. Omits an existing
incoming edge of a certain terminal node, may cause
in total disconnection of a terminal node from
MTBDD.

6. edgeC edge corruption operator. Redirects an
existing outgoing edge of a certain non-terminal
node from one terminal node to another one.
Application of this operator may also totally
disconnect a terminal node from MTBDD. This
operation involves the execution of edgeO and edgeI.

7. edgeS edge switcher operator. Switches the outgoing
edges of the existing non-terminal node, so that its
descendants get the inverted valued edges. This
operation involves the application of two edgeC.

B. Algorithm for Mutant Analysis

The aim of mutation analysis is measuring the ability of
fault detection of the test cases. Considering ∆ as an
MTBDD mutation operators set, where ∆ = {tnI, tnO, tnC,

edgeI, edgeO, edgeC, edgeS}, ESG-DT as an original model
M, MM as a mutated model set, which is MM = {MM1,

MM2, …, MMk}, test sequences generated from M as T =

{CES1, CES2, …, CESn} and FT = {FCES1, FCES2, …,

FCESn}, the Algorithm 1 describes thoroughly a method of
mutant generation and subsequently the test case
generation.

Algorithm 1:
Input: M := DT augmented ESG.
Output: The quality of the test sequences.

1. BEGIN
2. Generate CESs and FCESs from M.
3. FOREACH DE in M
4. Convert DT in DE into MTBDD.
5. FOREACH operator from ∆

6. MM = MM ∪∆MTBDD(M).

7. FOREACH mutant in MM
8. FOREACH test sequence in CESs set
9. If mutant fails test sequence
10. Test passed.
11. FOREACH test sequence in FCESs set
12. If mutant passes test sequence
13. Test passed.
14. Evaluate the quality of test sequences.
15. END.

V. EVALUATION

 We apply Algorithm 1 on three cases, namely CD Player
[23], Cruise Control [15] and Simple Automated Teller
Machine (SATM).

A. CD Player

Fig. 1 depicts the ESG-DT model of a simplified CD
Player. Where stop, load, play are DEs, events pause and off
have not got contracts. Test sequences are obtained from the
original model by using Test Suite Designer (TSD) [4], [24],
with the length of ES equal to two. TSD provides four CESs
consisting of 20 events and 12 FCESs consisting of 30 events.
One example from each is given here:

CES 1: [, play, play, pause, play, off,]
FCES 1: [, stop, pause,

TABLE II. THE NUMBER OF CD PLAYER MUTANTS.

Mutants edgeC edgeI edgeO edgeS tnC tnI tnO

play 2 NA 6 1 N NA 5

stop 2 NA 5 1 4 NA 4

load 2 NA 5 1 4 NA 4

According to the Table II the total number of mutants

generated by using the proposed mutation operators is 46.
Mutants are not generated by edgeI and tnI since all non-
terminal nodes in the corresponding MTBDDs have both
descendants. Therefore, the application of these operators is
not possible. Table III shows the mutation score of each test
sequence. Mutation score is calculated by the formula:

����� =
!"#$%& '()*+,*-."*+/%) #",0-,+

1',02 -"#$%& '(#",0-,+
∗ 100 (1)

TABLE III. THE MUTATION SCORE FOR CD PLAYER TEST CASES.

CES ID Score FCES ID Score

1 ≈10,87 % 1 ≈ 9.52 %

2 ≈21,74 % 5 ≈ 9.52 %

3 ≈13,04 % - -

4 ≈28,26 % - -

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. THE NUMBER OF CRUISE CONTROL MUTANTS.

Mutants edgeC edgeI edgeO edgeS tnC tnI tnO

off NA NA 2 1 2 NA 2

inactive 1 1 2 1 4 2 2

cruise 3 3 3 NA 3 1 3

override 3 1 3 1 3 1 3

B. Cruise Control

Fig. 3 shows the original model of Cruise Control
system. Each mode is represented by events in ESG-DT and
all inputs are used in corresponding DE in DTs. In total
Cruise Control ESG-DT consists of four events off, inactive,
cruise, override. TSD tool obtained one CES consisting of 18
events and nine FCES consisting of 22 events.

According to the Table IV the total number of mutants
generated by using the proposed mutation operators is 51.
Mutants are not generated by edgeS operator for cruise
MTBDD and tnI operator for off MTBDD. Table V
demonstrates the mutation score of CES and all FCESs

obtained from the original model.

C. Simple Automated Teller Maschine

Fig. 4 shows the original model of SATM. The model
used in work consists of eight events Insert Card, Account,
Deposit, Withdrawal, Insert Envelope, Cancel, Proceed,
Withdraw Card, where only two events Insert Card,
Withdrawal hold DTs. TSD generates two CESs with 14
events and 61 FCESs consisting of 242 events.

Table VI shows that 42 mutants are generated by the
proposed mutation operators for the SATM original model.
The application of edgeC, edgeI and tnI on insert card
MTBDD is infeasible. Same situation applies for withdrawal
MTBDD with edgeS operator. Table VII shows the mutation
score of those test sequences, which could distinguish at least
one mutated model from the original one.

D. Discussion

Based on the impact of presented MTBDD operators on
ESG-DT, omission, or redirection of the only incoming edge
of the terminal node, omission, or replacement of the terminal
node in MTBDD will generate mutant ESG-DT, which will
be 100% distinguishable by the CES. This is achieved by
edgeO, edgeC and tnO operators. On the other hand,
replacement, or insertion of the terminal node in MTBDD
will create 100% distinguishable by FCES mutant ESG-DT.

TABLE V. THE MUTATION SCORE FOR CRUISE CONTROL TEST CASES.

CES ID Score FCES ID Score

1 ≈ 76,47 % 1 ≈ 1.96 %

- - 2 ≈ 1.96 %

- - 3 ≈ 5.88 %

- - 4 ≈ 5.88 %

- - 5 ≈ 7.84 %

- - 6 ≈ 7.84 %

TABLE VI. THE NUMBER OF SATM MUTANTS.

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO

insert card NA NA 1 1 12 NA 2

withdrawal 2 2 2 NA 12 6 2

Hence, only tnI and tnC operators can generate such

mutants. The remaining edgeI and edgeS operators will
always generate the living mutants, as the resulting ESG
graph layers of ESG-DT mutants are not distinguishable by
both CES and FCES.

A FCES is constructed by adding a non-existing edge,
or complement edge, of the ESG to the end of a valid ES.
Therefore, a FCES can distinguish a mutant if it detects this
non-existing edge of the ESG that is introduced in the
generation of a mutant.

It can be concluded that initial pseudo-event cannot be
used for mutation using presented approach, since the
corresponding MTBDD for it cannot be obtained, because the
respective DT does not exist! Hence, FCES with second event
which is not the starting event in ESG-DT will never
distinguish a model-mutant from original model.

TABLE VII. THE MUTATION SCORE FOR SATM TEST CASES.

CES ID Score FCES ID Score

1 ≈ 0 % 1 ≈ 4.76 %

2 ≈ 54,76 % 2 ≈4.76 %

- - 3 ≈4.76 %

- - 4 ≈4.76 %

- - 5 ≈4.76 %

- - 6 ≈4.76 %

- - 13 ≈ 7,14 %

- - 14 ≈ 7,14 %

- - 15 ≈ 7,14 %

- - 16 ≈ 7,14 %

- - 17 ≈ 7,14 %

- - 18 ≈ 7,14 %

VI. CONCLUSION AND FUTURE WORK

This work proposes mutation analysis for the
specifications modeled using the ESG-DTs. For the
generation of mutants from this model representation, we
propose mutation operators for the contracts represented in
MTBDD form, obtained by translating the DT inside the
event. The presented mutation operators are: edgeI, edgeO,
edgeC, edgeS, tnI, tnO, and tnC. The test cases are generated
from the original ESG-DT graph and called test sequences.
Test sequences are presented as CES and FCES. The
proposed operators mutate MTBDD, thereby change the
resulting DT.

The evaluation performed on the three cases shows that
the ESG-DT mutants obtained after tnC application are
always detected by both CES and FCES test sequences. The
tnO and tnI operators return ESG-DT mutants detectable only

Fig. 4. SATM ESG-DT.

Fig. 3. Cruise Control ESG-DT.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

by CES and FCES, respectively. On the contrary, mutants
generated after the usage of edgeI and edgeS operators are
never distinguishable by both CES and FCES test sets. The
reason behind is that test sequences can reveal a mutant only
at the ESG level of the ESG-DT. Depending on the number
of the incoming edges of MTBDD terminal node, the edgeO
and edgeC operators produce both distinguishable (only by
CES) and indistinguishable by both CESs and FCESs. To
sum up, the detection of mutated model depends on the
existence of the terminal node. That is why, tnI, tnO and tnC
generated faulty models are always distinguished.

As future work, we propose an enhanced test sequence
for detecting faults considered at the contract level of ESG-
DT, as the existing test sequences are insufficient for this
purpose. Another future work is to improve the existing test
sequence generation tool. Since we considered only the ES of
length two for test case generation, future work should also
consider the ES length of three and four and compare the
mutation scores with the ones presented in this paper.

REFERENCES

[1] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, “Mutation
Analysis.,” Yale University, Apr. 1979. Accessed: Nov. 04, 2020.
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA068118

[2] T. Murnane and K. Reed, “On the effectiveness of mutation analysis as
a black box testing technique,” in Proceedings 2001 Australian Software

Engineering Conference, Aug. 2001, pp. 12–20. doi:
10.1109/ASWEC.2001.948492.

[3] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong,
“Model-based mutation testing—Approach and case studies,” Sci.
Comput. Program., vol. 120, pp. 25–48, May 2016, doi:
10.1016/j.scico.2016.01.003.

[4] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of
Graphical User Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no.
02, pp. 183–215, Mar. 2016, doi: 10.1142/S0218194016500091.

[5] A. Khalilov, T. Tuglular, and F. Belli, “Mutation Operators for Decision
Table-Based Contracts Used in Software Testing,” in 2020 Turkish

National Software Engineering Symposium (UYMS), Oct. 2020, pp. 1–
6. doi: 10.1109/UYMS50627.2020.9247061.

[6] Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt, “Inter-class mutation
operators for Java,” in 13th International Symposium on Software

Reliability Engineering, 2002. Proceedings., Nov. 2002, pp. 352–363.
doi: 10.1109/ISSRE.2002.1173287.

[7] “Mutation Testing Approach to Negative Testing.”
https://www.hindawi.com/journals/je/2016/6589140/ (accessed Nov.
04, 2020).

[8] B. Meyer, “Applying ‘design by contract,’” Computer, vol. 25, no. 10,
pp. 40–51, Oct. 1992, doi: 10.1109/2.161279.

[9] J.-M. Jezequel, D. Deveaux, and Y. L. Traon, “Reliable Objects: a
Lightweight Approach Applied to Java,” in N O 4, July/August 2001,
2001, pp. 76–83.

[10] Y. L. Traon, B. Baudry, and J.- Jezequel, “Design by Contract to
Improve Software Vigilance,” IEEE Trans. Softw. Eng., vol. 32, no. 8,
pp. 571–586, Aug. 2006, doi: 10.1109/TSE.2006.79.

[11] B. K. Aichernig, “Mutation Testing in the Refinement Calculus,” Form.

Asp. Comput., vol. 15, no. 2–3, pp. 280–295, Nov. 2003, doi:
10.1007/s00165-003-0011-8.

[12] Y. Jiang, G.-M. Xin, J.-H. Shan, L. Zhang, B. Xie, and F.-Q. Yang,
“Method of automated test data generation for web service,” vol. 28, pp.
568–577, Apr. 2005.

[13] Ying Jiang, Shan-Shan Hou, Jin-Hui Shan, Lu Zhang, and Bing Xie,
“Contract-based mutation for testing components,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05), Sep.
2005, pp. 483–492. doi: 10.1109/ICSM.2005.36.

[14] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and
E. Wong, “Mutation testing applied to validate specifications based on
Petri Nets,” in Formal Description Techniques VIII, G. v. Bochmann, R.
Dssouli, and O. Rafiq, Eds. Boston, MA: Springer US, 1996, pp. 329–
337. doi: 10.1007/978-0-387-34945-9_24.

[15] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking
to generate tests from specifications,” in Proceedings Second
International Conference on Formal Engineering Methods

(Cat.No.98EX241), Brisbane, Qld., Australia, 1998, pp. 46–54. doi:
10.1109/ICFEM.1998.730569.

[16] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero,
“Mutation testing applied to validate specifications based on
statecharts,” in Proceedings 10th International Symposium on Software
Reliability Engineering (Cat. No.PR00443), Boca Raton, FL, USA,
1999, pp. 210–219. doi: 10.1109/ISSRE.1999.809326.

[17] F. Belli, A. Hollmann, and W. E. Wong, “Towards Scalable Robustness
Testing,” in 2010 Fourth International Conference on Secure Software

Integration and Reliability Improvement, Singapore, Singapore, 2010,
pp. 208–216. doi: 10.1109/SSIRI.2010.14.

[18] F. Belli, N. Nissanke, C. J. Budnik, and A. Mathur, “Test Generation
Using Event Sequence Graphs,” Softw. Eng., p. 52, 2005.

[19] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of
Graphical User Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no.
02, pp. 183–215, Mar. 2016, doi: 10.1142/S0218194016500091.

[20] H. Hermanns, J. Meyer-Kayser, and M. Siegle, Multi Terminal Binary

Decision Diagrams to Represent and Analyse Continuous Time Markov

Chains. 1999.
[21] T. Tuglular, A. Muftuoglu, F. Belli, and M. Linschulte, “Model-Based

Contract Testing of Graphical User Interfaces,” IEICE Trans. Inf. Syst.,
vol. E98-D, no. 7, pp. 1297–1305, Jul. 2015.

[22] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, vol. 11, no.
4, pp. 34–41, Apr. 1978, doi: 10.1109/C-M.1978.218136.

[23] “Behaviour and State Change Models II.”
https://personal.cis.strath.ac.uk/sotirios.terzis/classes/52.234_old/Beha
viour and State Change Models_B.htm (accessed Apr. 06, 2021).

[24] On the role of test sequence length, model refinement, and test coverage

for reliability. 2013. Accessed: May 13, 2021. [Online]. Available:
http://digital.ub.uni-paderborn.de/hsx/776518

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore. Restrictions apply.

		2021-12-31T14:40:50-0500
	Certified PDF 2 Signature

