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Abstract—This work focuses on checking the adequacy of the 

test cases generated using Decision-Table-augmented Event 

Sequence Graphs (ESG-DTs), which represents the 

specification of a system under test, by using mutation analysis. 

Test cases are represented in the Complete Event Sequence 

(CES) and Faulty CES (FCES) forms. We present a new set of 

mutation operators for mutation of contracts represented in 

Multi-Terminal Binary Decision Diagram (MTBDD) and 

introduce a new approach to mutation of the ESG-DT model by 

using the proposed mutation operators. The approach is 

evaluated on three cases. The results show the drawback of 

specific FCES test sequences and the relationship between the 

mutant detection by CES/FCES sequences and proposed 

mutation operators. 

Keywords— mutation analysis, event sequence graph, design 

by contract, contract mutation, decision tables, multi-terminal 

binary decision diagrams. 

I. INTRODUCTION  

The effectiveness of a test set can be checked by mutation 
analysis [1]. The steps involved in mutation analysis are: 1) 
insertion of the different kinds of faults in the original program 
by means of mutation operators; 2) generating mutant 
programs; 3) finding distinguished mutants against the 
provided test set; 4) assessing the adequacy of the provided 
test set by dividing the number of the distinguished mutants to 
the total number of mutants. In its origin the mutation analysis 
is intended to be a code-based technique [1]. Later, mutation 
analysis was adopted for specification- and model-based 
testing [2], [3]. As the specification of the system under test 
(SUT) can be provided in various forms, the mutated 
specifications permit to test different properties of the SUT.  

This paper is the continuation of the [4] and extends the 
ideas introduced in [5]. The research in this paper investigates 
the adequacy of the test set generated from the original 
specification model by applying it on the mutants generated 
from the original specification model. The specification model 
is represented as Decision-Table-Augmented Event Sequence 
Graph (ESG-DT) [4]. To perform a mutation, the contract 
given as a DT is transformed to a multi-terminal binary 
decision diagram (MTBDD), then the mutation operators 
defined on MTBDDs are applied to the MTBDD and finally 
the mutated MTBDD is transformed back to a DT, which 
becomes a mutated DT. This mutant model is tested by the test 
set. The test set is represented as test sequences in two forms: 
CES and FCES. The CESs and FCESs are generated from the 
original model. The CES represents the expected behavior, 
which the specification should correspond, whereas FCES 
represents the faulty behavior which the specification should 
not correspond to. The work proposes a new set of mutation 

operators for MTBDD mutation. The evaluation is performed 
on the ESG graph without the contract involvement. 

In this study, the quality of the CES and FCES test suites 
for ESG-DT model representation is assessed. Proposed 
mutation analysis approach is applied on the three cases. 
Considering the relation between the mutant detection 
properties of CES and FCES described in the discussion, one 
can say that the mutant will be detected if and only if (iff) there 
is a difference in the model behavior. According to the results, 
the impact of the mutation operators dealing directly with the 
terminal nodes of MTBDD is always noticeable by test 
sequences, because the mutated ESG-DT model will lose an 
edge or acquire a new one, i.e., difference in the model 
behavior. In case of MTBDD edge mutation, the impact is 
sometimes noticeable or non-noticeable at all. Another 
observation obtained from the results is the insensitivity of the 
certain FCESs to the mutants, of which reason is discussed in 
the Evaluation section. 

The paper is constructed in the following way. The study 
starts with the literature review in Section 2. The following 
Section 3 describes the theoretical background about ESG, 
ESG-DT, MTBDD, mutation analysis and mutation operators 
for ESGs and DTs. Following the review of the work 
foundation, Section 4 introduces new mutation operators for 
DT-augmented ESG mutation, and the algorithm used for 
implementation of mutation analysis. Section 5 evaluates the 
application of the proposed algorithm and outcome of the 
proposed operators on three cases, namely CD player, Cruise 
Control, Simple Automated Teller Machine. The instruments 
used for the generation of mutants and test generation are 
described on Section 6. The last section concludes the paper 
and provides further ways of improving and extending the 
research in this manuscript. 

II. RELATED WORK 

An integral part of mutation analysis is the set of 
established mutation operators. Mutation operators inject 
faults into the testing system. The injected faults represent the 
specific fault domain, which the corresponding mutation 
operator represents. As mutation analysis’s origin is a code-
based testing technique the Yu-Seung Ma et al. [6] proposed 
a set of mutation operators for class and inter-class mutations 
in Java language. 

Negative testing helps to prevent failures by simply 
handling the erroneous states. Therefore, the demand in test 
cases supporting negative testing increases. Strug et al. 
provides a method for this purpose [7]. The method is 
procedural and systematic, and helps to identify unexpected 
situations. 
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Meyer introduced Design by Contract (DbC) approach [8], 
where the author also introduces the contract notion in 
software development. The contract represents a mutual 
responsibility between caller and called units, where both 
promise to fulfill their requirements. The DbC approach aims 
to detect and locate faults [9]. Traon et al. explores the 
efficiency of contract by adapting the mutation analysis [10]. 
The mutations are performed simply by injecting errors in the 
system. Afterwards, if contract is violated during the 
execution of a faulty system, this implies that the contract has 
detected an error [10]. Efficiency is measured by checking the 
contracts’ efficiency on the mutants that are distinguished at 
least by one test case. 

Compared to traditional mutation operators defined by 
Aichernig [11] and Jiang et al. [12], operators proposed [13] 
are high level contract mutation operators for testing 
components. Authors also propose a contract-based mutation, 
which should serve as a test adequacy criterion for component. 
The reason of creating high level operators is reducing the 
number of mutants. Indeed, the results given by proposed 
operators greatly reduce the mutant number in contrast to the 
traditional operators. Also, application of contract mutation 
operators in contract-based mutation provides the same ability 
as that of using traditional mutation operators.  

Fabri et al. perform the evaluation of mutation analysis 
criterion on Petri Nets-based specification [14]. As mutation 
analysis requires changes in original model, operators for Petri 
Nets mutations are presented. The mutant is considered as 
dead, if the mutant’s vector, which is the number of tokens in 
each place, was different than original model’s vector. To 
reduce testing expenses, authors examined the ideas of the 
constrained (a few types of mutants were examined) and 
randomly selected (10% of each mutant type) mutation 
criterions. As a result, alternate mutation criteria provide great 
cost reduction in terms of test sequences and the mutant 
numbers. 

Ammann et al. use mutation analysis in combination with 
model checker and test generation [15]. Test cases are defined 
as a set of inputs and expected results, and this is emphasized 
as complete test case. By making syntactic errors at the level 
of the model checker specification, mutation operators define 
a form of mutation analysis. As a result, the advantages of 
matching model checker with mutation analysis were 
automatic test case generation and as opposed to code-based 
mutation analysis, equivalent mutant identification became 
also automatic. 

Fabbri et al. proposes [16] the fundamental mechanism for 
validation of Statechart-based specifications by mutation 
testing. Considering specific features of Statechart-based 
specifications, the corresponding mutation operators set for 
statechart mutation is proposed. In that scope, mutation 
operators are considered as a fault model. Strategies based on 
mutation, incremental and hierarchical testing strategies are 
provided to explore statechart components separately from 
different Statechart features, which can cause inaccuracy in 
validation and testing stages. 

Belli et al. [17] introduced Decision-Table-augmented 
Event Sequence Graphs (ESG-DT). This work introduces first 
simple insertion and omission mutation operators for mutating 
ESGs and DTs for generating simple mutants which represent 
simple faults. Hence, complex mutants can be constructed by 
combining the simple operations.  

Belli et al. first presents [3] multiple simple mutation 
operators for mutation of model-based specifications. Models 
are represented as Directed Graphs (DG), ESG, Finite-State 
Machines (FSM), Statecharts (SC). All mutation operators are 
divided in insertion and omission categories for above listed 
graph-based models. The advantage these operators bring is in 
generation of first-order mutants which simulate simple faults. 
The main objective is to assess the fault detection ability of 
test cases generated from models mutated from proposed 
operators. Based on empirically obtained results, test sets 
generated by insertion operators are more effective in 
revealing faults than those generated by omission operators. 

Khalilov et al. extends [5] a mutation operator set for 
specification-based contracts. Apart from existing DT 
mutation operators [17], authors introduce a brand new simple 
mutation operators for Ordered Binary Decision Diagram 
(OBDD). As OBDDs are limited in the number of terminal 
nodes this work extends OBDD by using Multi-Terminal 
Binary Decision Diagram (MTBDD). 

In this work, a set of mutation operators for the contract 
mutation is proposed. By using these operators, mutated 
models are generated by mutating contracts in the original 
model. Test cases are generated from the original model are of 
two types. The generated faulty model is expected not to pass 
the test cases of the first type, called CES, to detect “(kill”) a 
mutant. Second type, called FCES, are expected to comply 
with the faulty model, to detect it, since both FCES and mutant 
are the faulty models. The mutants are tested at the level of 
ESG of the ESG-DT model. Therefore, considering the level 
of the model being tested and detection properties of the test 
cases, we can predict which mutants are detectable (“killed”) 
and which are living and equivalent ones. 

III. FUNDAMENTALS 

A. Event Sequence Graph 

Event sequence graphs (ESG) can be used to represent the 
behavior of a system under consideration (SUC) [18]. 
Modeling is performed simply by retrieving all possible legal 
and illegal actions, occurring during execution of the SUC 
from its specifications and establishing all possible sequences 
of actions. Actions in ESGs are represented by events which 
occur in system and connections between events are called 
sequences. An event in ESG is considered as input or stimulus 
the execution of which causes firing of another event. This 
phenomena helps to predict the next event and control the flow 
of model execution [18]. 

Definition 1: An event sequence graph ESG = (V, E, Ξ, 
Γ) is a directed graph where V ≠ Ø is a finite set of vertices 
(nodes), E ⊆ V x V is a finite set of arcs (edges), Ξ, Γ ⊆ V 
are finite sets of distinguished vertices with ξ ∈ Ξ, and γ ∈ Γ, 
called entry nodes and exit nodes, respectively, wherein ∀v ∈ 
V there is at least one sequence of vertices 〈ξ,v0, . . . ,vk〉 from 
each ξ ∈ Ξ to vk = v and one sequence of vertices 〈v0, . . . ,vk, 
γ〉 from v0 = v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0, . . . , 
k-1 and v ≠ ξ,γ [4]. 

Definition 2: Let V, E be defined as in Definition 3.1. 
Then any sequence of vertices 〈v0, . . . ,vk〉 is called an event 
sequence (ES) iff (vi, vi+1) ∈ E, for i=0, . . ., k-1 [4]. 
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TABLE I.  “STOP” DT. 

stop 
Rules 

R1 R2 R3 R4 R5 

C
o
n
d

it
io

n
s offButtonPressed T F F F F 

isClosed - F T T T 

CDpresent - - F T T 

lastTrackPlayed - - - F T 

A
ct

io
n

s 

play       X   

stop     X   X 

load   X       

off X         

 

Definition 3: In order to detect entry event and exit event 
of an ES α (initial) and ω (end) are used, i.e., α(ES) = v0, ω(ES) 
= vk. The successors set of ∀v ∈ V is denoted by N+(v) and the 
predecessor set of ∀v ∈ V is denoted by N-(v). The number of 
vertices of an ES is determined by the function l(length). If 
l(ES) = 1 then ES = < vi > is an ES of length (1). Each edge of 
ESG or an ES = <vi, vk> of length two (2) represent an event 
pair (EP). 

Definition 4: An ES is called a complete ES (CES), if  
α(ES) = ξ ∈ Ξ is the entry and ω(ES) = γ ∈ Γ is the exit [4]. 

Definition 5: Any event pair (vi,vj) ∉ E with vi,vj ∈V is a 
faulty event pair of an ESG [17]. 

Definition 6: Let ES = (v1, ..., vm) be an event sequence 
of length m of an ESG and FEP = (vm, vm+1) be a faulty event 
pair of the ESG [17]. The concatenation of the ES and the 
FEP gives a faulty event sequence FES = (v1, …, vm, vm+1) 
[17]. 

Definition 7: An FES is complete (or a faulty complete 
event sequence denoted as FCES) if α(FES) ∈ Ξ [17]. The 
ES as part of an FCES is called a starter [17]. 

B. Decision Table 

A Decision Table (DT) presents the rules, which relate 
condition combinations with actions [19]. Decision tables are 
a popular tool in information processing and widely used in 
software testing. DT is a combination of possible inputs and 
corresponding system responses. DT logically connects 
conditions (“if”) with actions (“then”). In scope of this work, 
we consider DT simple, i.e., conditions can accept only T 
(true) and F (false). 

 
     DT depicted on Table I is the simple DT. C = 
{offButtonPressed, isClosed, CDpresent, lastTrackPlayed} 
is condition set, A = {play, stop, load, off} is action set and R 
= {R1, R2, R3, R4, R5} is a rule set. 

C. Decision Table augmented Event Sequence Graph 

DTs are used to increase the expression power of ESGs. 
The Decision Table augmented Event Sequence Graphs (DT-
ESGs) contain data events (DEs) if a vertex is represented by 
a DT, which is a contract. In turn, contracts are combined with 
events of ESG. 

Fig. 1 clearly demonstrates how the “stop” DT (Table I) is 
represented by double circling the event “stop” of DT-ESG. 
Actions “play”, “stop”, “load” and “off” indicate the 
corresponding play, stop, load and off events. For instance, 
rule R4 says that if both offButtonPressed and lastTrackPlayed 
are resolved to false and both isClosed and CDpresent are 
resolved to true, then “play” action will be triggered and 
apparently the play will be executed, because it is one of the 
successors of the current event stop. 

D. Multi-Terminal Binary Decision Diagram 

Multi-Terminal Binary Decision Diagram (MTBDD), so 
called algebraic decision diagrams, can represent functions of 
an arbitrary range, while their domain is still a 
multidimensional Boolean space [20]. The definition of a 
multi terminal binary decision diagram (MTBDD) is given in 
[21]. 

Fig. 2 shows a multi-terminal BDD  (represents rules in 
Table I), where a root vertex is represented by 
‘offButtonPressed’, the rest of non-terminal nodes are 
‘isClosed’, ‘CDpresent’, ‘lastTrackPlayed’, and a set of 
terminal nodes TN = {‘play’, ‘stop’, ‘load’, ‘off’}. Generally, 
the ordering of the structure is: var(offButtonPressed) < 
var(isClosed) < var(CDpresent) < var(lastTrackPlayed) < 
var(TN), where TN is the set of the terminal nodes. 

E. Mutation Analysis 

DT-augmented ESG test cases are generated from the 
model itself. Therefore, we need to assess the efficiency of 
the generated test set. For this purpose, the Mutation Analysis 
is the key technique. 

DeMillo et. al. [22] first proposed the idea of mutation 
analysis and Budd et. al. gave an extensible explanation for it 
[1]. The aim of mutation analysis is a generation of program’s 
slight variations and killing them with test sets. By means of 
mutation analysis the effectiveness of a test set is assessed.  

 

Fig. 1. A simple CD Player modelled as as a DT-augmented ESG. 

 

Fig. 2. “stop” MTBDD 
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Consider P as an original program, L ≠ Ø as a set of 

mutation operators, U ≠ Ø as a set of mutants, T ≠ Ø as a 

set of test sets, a mutant generator function Ф(P, L), a testing 

function Q(U, t ∈ T). Then, the application of the mutation 
analysis requires the execution of the following steps: 

1. U = Ф (P, L). Generate mutant, by inserting slight 
deviations in P by means of mutation operator L.  

2. Q (U, t ∈ T). Fail all u ∈ U.  

If none of the t ∈T can distinguish a behavior of a u ∈ 
U from P, then that m is considered as a living mutant or in 
worst case as equivalent mutant. The equivalency phenomena 

of u ∈ U to the P, arouses when there is no such T the t ∈ T 
can detect faulty version of P. Such mutants are detected 
manually. 

IV. CONTRACT-BASED MUTATION OPERATORS FOR 

DECISION-TABLE-AUGMENTED EVENT SEQUENCE 

GRAPH 

A. Mutation Operators 

Khalilov et. al. introduced the mutation operators for 
Ordered Binary Decision Diagrams (OBDD) [5]. This work 
uses the mutation operators [5] for MTBDD mutation and 
proposes a set of new operators. The proposed operators are: 

1. tnI (nodeI [5]) terminal node insertion operator. 
Inserts a new terminal node in MTBDD by 
connecting it with a new edge [5]. 

2. tnO (nodeO [5]) terminal node omission operator. 
Omits an existing terminal node from MTBDD and 
subsequently all of its incoming edges [5]. 

3. tnC terminal node corruption operator. Replaces the 
existing terminal node with a new one, by preserving 
all incoming edges of the old node from the new 
node. This operation uses tnO and tnI. 

4. edgeI edge insertion operator. Inserts a new edge, by 
connecting an existing terminal node to the non-
terminal node.  

5. edgeO edge omission operator. Omits an existing 
incoming edge of a certain terminal node, may cause 
in total disconnection of a terminal node from 
MTBDD.  

6. edgeC edge corruption operator. Redirects an 
existing outgoing edge of a certain non-terminal 
node from one terminal node to another one. 
Application of this operator may also totally 
disconnect a terminal node from MTBDD. This 
operation involves the execution of edgeO and edgeI. 

7. edgeS edge switcher operator. Switches the outgoing 
edges of the existing non-terminal node, so that its 
descendants get the inverted valued edges. This 
operation involves the application of two edgeC. 

B. Algorithm for Mutant Analysis 

The aim of mutation analysis is measuring the ability of 
fault detection of the test cases. Considering ∆ as an 
MTBDD mutation operators set, where ∆ = {tnI, tnO, tnC, 

edgeI, edgeO, edgeC, edgeS}, ESG-DT as an original model 
M, MM as a mutated model set, which is MM = {MM1, 

MM2, …, MMk}, test sequences generated from M as T = 

{CES1, CES2, …, CESn} and FT = {FCES1, FCES2, …, 

FCESn}, the Algorithm 1 describes thoroughly a method of 
mutant generation and subsequently the test case 
generation. 

Algorithm 1:  
Input: M := DT augmented ESG. 
Output: The quality of the test sequences. 
 

1. BEGIN 
2.    Generate CESs and FCESs from M. 
3.    FOREACH DE in M 
4.       Convert DT in DE into MTBDD. 
5.       FOREACH operator from ∆ 

6.          MM = MM ∪∆MTBDD(M). 

7.    FOREACH mutant in MM 
8.       FOREACH test sequence in CESs set 
9.          If mutant fails test sequence 
10.           Test passed. 
11.     FOREACH test sequence in FCESs set 
12.        If mutant passes test sequence 
13.           Test passed. 
14.    Evaluate the quality of test sequences. 
15. END. 

V. EVALUATION 

 We apply Algorithm 1 on three cases, namely CD Player 
[23], Cruise Control [15] and Simple Automated Teller 
Machine (SATM).   

A. CD Player 

Fig. 1 depicts the ESG-DT model of a simplified CD 
Player. Where stop, load, play are DEs, events pause and off 
have not got contracts. Test sequences are obtained from the 
original model by using Test Suite Designer (TSD) [4], [24], 
with the length of ES equal to two. TSD provides four CESs 
consisting of 20 events and 12 FCESs consisting of 30 events. 
One example from each is given here: 

CES 1: [, play, play, pause, play, off, ] 
FCES 1: [, stop, pause, 

TABLE II.  THE NUMBER OF CD PLAYER MUTANTS. 

Mutants edgeC edgeI edgeO edgeS tnC tnI tnO 

play 2 NA 6 1 N NA 5 

stop 2 NA 5 1 4 NA 4 

load 2 NA 5 1 4 NA 4 

 
According to the Table II the total number of mutants 

generated by using the proposed mutation operators is 46. 
Mutants are not generated by edgeI and tnI since all non-
terminal nodes in the corresponding MTBDDs have both 
descendants. Therefore, the application of these operators is 
not possible. Table III shows the mutation score of each test 
sequence. Mutation score is calculated by the formula: 

 

����� =  
!"#$%& '( )*+,*-."*+/%) #",0-,+

1',02 -"#$%& '( #",0-,+
∗ 100         (1) 

TABLE III.  THE MUTATION SCORE FOR CD PLAYER TEST CASES. 

CES ID Score FCES ID Score 

1 ≈10,87 % 1 ≈ 9.52 % 

2 ≈21,74 % 5 ≈ 9.52 % 

3 ≈13,04 % - - 

4 ≈28,26 % - - 
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TABLE IV.  THE NUMBER OF CRUISE CONTROL MUTANTS. 

Mutants edgeC edgeI edgeO edgeS tnC tnI tnO 

off NA NA 2 1 2 NA 2 

inactive 1 1 2 1 4 2 2 

cruise 3 3 3 NA 3 1 3 

override 3 1 3 1 3 1 3 

B. Cruise Control 

Fig. 3 shows the original model of Cruise Control 
system. Each mode is represented by events in ESG-DT and 
all inputs are used in corresponding DE in DTs. In total 
Cruise Control ESG-DT consists of four events off, inactive, 
cruise, override. TSD tool obtained one CES consisting of 18 
events and nine FCES consisting of 22 events. 

According to the Table IV the total number of mutants 
generated by using the proposed mutation operators is 51. 
Mutants are not generated by edgeS operator for cruise 
MTBDD and tnI operator for off MTBDD. Table V 
demonstrates the mutation score of CES and all FCESs 

obtained from the original model. 

C. Simple Automated Teller Maschine 

Fig. 4 shows the original model of SATM. The model 
used in work consists of eight events Insert Card, Account, 
Deposit, Withdrawal, Insert Envelope, Cancel, Proceed, 
Withdraw Card, where only two events Insert Card, 
Withdrawal hold DTs. TSD generates two CESs with 14 
events and 61 FCESs consisting of 242 events.  

Table VI shows that 42 mutants are generated by the 
proposed mutation operators for the SATM original model. 
The application of edgeC, edgeI and tnI on insert card 
MTBDD is infeasible. Same situation applies for withdrawal 
MTBDD with edgeS operator. Table VII shows the mutation 
score of those test sequences, which could distinguish at least 
one mutated model from the original one. 

 

D. Discussion 

Based on the impact of presented MTBDD operators on 
ESG-DT, omission, or redirection of the only incoming edge 
of the terminal node, omission, or replacement of the terminal 
node in MTBDD will generate mutant ESG-DT, which will 
be 100% distinguishable by the CES. This is achieved by 
edgeO, edgeC and tnO operators. On the other hand, 
replacement, or insertion of the terminal node in MTBDD 
will create 100% distinguishable by FCES mutant ESG-DT. 

 

TABLE V.  THE MUTATION SCORE FOR CRUISE CONTROL TEST CASES. 

CES ID Score FCES ID Score 

1 ≈ 76,47 % 1 ≈ 1.96 % 

- - 2 ≈ 1.96 % 

- - 3 ≈ 5.88 % 

- - 4 ≈ 5.88 % 

- - 5 ≈ 7.84 % 

- - 6 ≈ 7.84 % 

TABLE VI.  THE NUMBER OF SATM MUTANTS. 

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO 

insert card NA NA 1 1 12 NA 2 

withdrawal 2 2 2 NA 12 6 2 

 
Hence, only tnI and tnC operators can generate such 

mutants. The remaining edgeI and edgeS operators will 
always generate the living mutants, as the resulting ESG 
graph layers of ESG-DT mutants are not distinguishable by 
both CES and FCES. 

A FCES is constructed by adding a non-existing edge, 
or complement edge, of the ESG to the end of a valid ES. 
Therefore, a FCES can distinguish a mutant if it detects this 
non-existing edge of the ESG that is introduced in the 
generation of a mutant. 

It can be concluded that initial pseudo-event cannot be 
used for mutation using presented approach, since the 
corresponding MTBDD for it cannot be obtained, because the 
respective DT does not exist! Hence, FCES with second event 
which is not the starting event in ESG-DT will never 
distinguish a model-mutant from original model. 

TABLE VII.  THE MUTATION SCORE FOR SATM TEST CASES. 

CES ID Score FCES ID Score 

1 ≈ 0 % 1 ≈ 4.76 % 

2 ≈ 54,76 % 2 ≈4.76 % 

- - 3 ≈4.76 % 

- - 4 ≈4.76 % 

- - 5 ≈4.76 % 

- - 6 ≈4.76 % 

- - 13 ≈ 7,14 % 

- - 14 ≈ 7,14 % 

- - 15 ≈ 7,14 % 

- - 16 ≈ 7,14 % 

- - 17 ≈ 7,14 % 

- - 18 ≈ 7,14 % 

 

VI. CONCLUSION AND FUTURE WORK 

This work proposes mutation analysis for the 
specifications modeled using the ESG-DTs. For the 
generation of mutants from this model representation, we 
propose mutation operators for the contracts represented in 
MTBDD form, obtained by translating the DT inside the 
event. The presented mutation operators are: edgeI, edgeO, 
edgeC, edgeS, tnI, tnO, and tnC. The test cases are generated 
from the original ESG-DT graph and called test sequences. 
Test sequences are presented as CES and FCES. The 
proposed operators mutate MTBDD, thereby change the 
resulting DT.  

The evaluation performed on the three cases shows that 
the ESG-DT mutants obtained after tnC application are 
always detected by both CES and FCES test sequences. The 
tnO and tnI operators return ESG-DT mutants detectable only 

 

Fig. 4. SATM ESG-DT. 

 

Fig. 3. Cruise Control ESG-DT. 
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by CES and FCES, respectively. On the contrary, mutants 
generated after the usage of edgeI and edgeS operators are 
never distinguishable by both CES and FCES test sets. The 
reason behind is that test sequences can reveal a mutant only 
at the ESG level of the ESG-DT. Depending on the number 
of the incoming edges of MTBDD terminal node, the edgeO 
and edgeC operators produce both distinguishable (only by 
CES) and indistinguishable by both CESs and FCESs. To 
sum up, the detection of mutated model depends on the 
existence of the terminal node. That is why, tnI, tnO and tnC 
generated faulty models are always distinguished. 

As future work, we propose an enhanced test sequence 
for detecting faults considered at the contract level of ESG-
DT, as the existing test sequences are insufficient for this 
purpose. Another future work is to improve the existing test 
sequence generation tool. Since we considered only the ES of 
length two for test case generation, future work should also 
consider the ES length of three and four and compare the 
mutation scores with the ones presented in this paper. 

REFERENCES 

[1] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, “Mutation 
Analysis.,” Yale University, Apr. 1979. Accessed: Nov. 04, 2020. 
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA068118 

[2] T. Murnane and K. Reed, “On the effectiveness of mutation analysis as 
a black box testing technique,” in Proceedings 2001 Australian Software 

Engineering Conference, Aug. 2001, pp. 12–20. doi: 
10.1109/ASWEC.2001.948492. 

[3] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong, 
“Model-based mutation testing—Approach and case studies,” Sci. 
Comput. Program., vol. 120, pp. 25–48, May 2016, doi: 
10.1016/j.scico.2016.01.003. 

[4] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of 
Graphical User Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 
02, pp. 183–215, Mar. 2016, doi: 10.1142/S0218194016500091. 

[5] A. Khalilov, T. Tuglular, and F. Belli, “Mutation Operators for Decision 
Table-Based Contracts Used in Software Testing,” in 2020 Turkish 

National Software Engineering Symposium (UYMS), Oct. 2020, pp. 1–
6. doi: 10.1109/UYMS50627.2020.9247061. 

[6] Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt, “Inter-class mutation 
operators for Java,” in 13th International Symposium on Software 

Reliability Engineering, 2002. Proceedings., Nov. 2002, pp. 352–363. 
doi: 10.1109/ISSRE.2002.1173287. 

[7] “Mutation Testing Approach to Negative Testing.” 
https://www.hindawi.com/journals/je/2016/6589140/ (accessed Nov. 
04, 2020). 

[8] B. Meyer, “Applying ‘design by contract,’” Computer, vol. 25, no. 10, 
pp. 40–51, Oct. 1992, doi: 10.1109/2.161279. 

[9] J.-M. Jezequel, D. Deveaux, and Y. L. Traon, “Reliable Objects: a 
Lightweight Approach Applied to Java,” in N O 4, July/August 2001, 
2001, pp. 76–83. 

[10] Y. L. Traon, B. Baudry, and J.- Jezequel, “Design by Contract to 
Improve Software Vigilance,” IEEE Trans. Softw. Eng., vol. 32, no. 8, 
pp. 571–586, Aug. 2006, doi: 10.1109/TSE.2006.79. 

[11] B. K. Aichernig, “Mutation Testing in the Refinement Calculus,” Form. 

Asp. Comput., vol. 15, no. 2–3, pp. 280–295, Nov. 2003, doi: 
10.1007/s00165-003-0011-8. 

[12] Y. Jiang, G.-M. Xin, J.-H. Shan, L. Zhang, B. Xie, and F.-Q. Yang, 
“Method of automated test data generation for web service,” vol. 28, pp. 
568–577, Apr. 2005. 

[13] Ying Jiang, Shan-Shan Hou, Jin-Hui Shan, Lu Zhang, and Bing Xie, 
“Contract-based mutation for testing components,” in 21st IEEE 
International Conference on Software Maintenance (ICSM’05), Sep. 
2005, pp. 483–492. doi: 10.1109/ICSM.2005.36. 

[14] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and 
E. Wong, “Mutation testing applied to validate specifications based on 
Petri Nets,” in Formal Description Techniques VIII, G. v. Bochmann, R. 
Dssouli, and O. Rafiq, Eds. Boston, MA: Springer US, 1996, pp. 329–
337. doi: 10.1007/978-0-387-34945-9_24. 

[15] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking 
to generate tests from specifications,” in Proceedings Second 
International Conference on Formal Engineering Methods 

(Cat.No.98EX241), Brisbane, Qld., Australia, 1998, pp. 46–54. doi: 
10.1109/ICFEM.1998.730569. 

[16] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero, 
“Mutation testing applied to validate specifications based on 
statecharts,” in Proceedings 10th International Symposium on Software 
Reliability Engineering (Cat. No.PR00443), Boca Raton, FL, USA, 
1999, pp. 210–219. doi: 10.1109/ISSRE.1999.809326. 

[17] F. Belli, A. Hollmann, and W. E. Wong, “Towards Scalable Robustness 
Testing,” in 2010 Fourth International Conference on Secure Software 

Integration and Reliability Improvement, Singapore, Singapore, 2010, 
pp. 208–216. doi: 10.1109/SSIRI.2010.14. 

[18] F. Belli, N. Nissanke, C. J. Budnik, and A. Mathur, “Test Generation 
Using Event Sequence Graphs,” Softw. Eng., p. 52, 2005. 

[19] T. Tuglular, F. Belli, and M. Linschulte, “Input Contract Testing of 
Graphical User Interfaces,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 
02, pp. 183–215, Mar. 2016, doi: 10.1142/S0218194016500091. 

[20] H. Hermanns, J. Meyer-Kayser, and M. Siegle, Multi Terminal Binary 

Decision Diagrams to Represent and Analyse Continuous Time Markov 

Chains. 1999. 
[21] T. Tuglular, A. Muftuoglu, F. Belli, and M. Linschulte, “Model-Based 

Contract Testing of Graphical User Interfaces,” IEICE Trans. Inf. Syst., 
vol. E98-D, no. 7, pp. 1297–1305, Jul. 2015. 

[22] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data 
Selection: Help for the Practicing Programmer,” Computer, vol. 11, no. 
4, pp. 34–41, Apr. 1978, doi: 10.1109/C-M.1978.218136. 

[23] “Behaviour and State Change Models II.” 
https://personal.cis.strath.ac.uk/sotirios.terzis/classes/52.234_old/Beha
viour and State Change Models_B.htm (accessed Apr. 06, 2021). 

[24] On the role of test sequence length, model refinement, and test coverage 

for reliability. 2013. Accessed: May 13, 2021. [Online]. Available: 
http://digital.ub.uni-paderborn.de/hsx/776518 

 

 

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on August 19,2022 at 06:52:26 UTC from IEEE Xplore.  Restrictions apply. 


		2021-12-31T14:40:50-0500
	Certified PDF 2 Signature




