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Abstract
In the presented study, the hyperbolic telegraph equation is taken as the focus point. To
solve such an equation, an accurate, reliable, and efficient method has been proposed. The
developed method is mainly based on the combination of a kind of mesh-free method and
an adaptive method. Multiquadric radial basis function mesh-free method is considered on
spatial domain and the adaptive fifth-order Runge–Kutta method is used on time domain.
The validity and the performance of the proposed method have been checked on several test
problems. The approximate solutions are compared with the exact solution, it is shown that
the proposed method has more preferable to the other methods in the literature.
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1 Introduction

Many considerable phenomena in aerodynamic flows, flows of fluids and contaminants
through porous media, atmospheric flows, signal-propagation, etc. are modeled by hyper-
bolic partial differential equations. Obtaining a solution for nonlinear hyperbolic partial
differential equations is getting attractive than those in elliptic and parabolic ones. Due to
the fact that any numerical solutions for linear systems can be adapted to the nonlinear ones,
any contribution done for linear systems is so crucial.

Oneof themost popular hyperbolic equations is the telegraphic equation.Many remarkable
studies have been done for obtaining stable methods for the numerical solution of the two-
dimensional telegraphic equations for decades. The authors in Mohanty and Jain (2001) have
presented an unconditionally stable method based on alternating direction implicit (ADI)
scheme. Mohanty has proposed the idea of operator splitting in Mohanty (2004) while an
implicit finite difference scheme combined by ADI strategy in Mohanty (2009) to obtain an
unconditionally stable scheme. An element-free method based on least square approximation
has been proposed in Cheng and Ge (2009). Compact finite difference method has been
combined with an implicit collocation method in Dehghan and Mohebbi (2009), a meshless
method using the radial basis functions combinedwith finite difference approximation in time
inDehghan andShokri (2009), comparativework onmeshless localweak–strongmethod, and
meshless local Petrov–Galerkin method in which both methods are combined with Crank–
Nicolson method in time in Dehghan and Ghesmati (2010). In Abbasbandy et al. (2014)
Abbasbandy et al. have used both two classes of mesh-free methods based on the RBF,
direct and indirect RBF collocation methods with their localized versions in space where
the θ -weighted method used for time variable. In addition to these studies, one can see the
applications of a differential quadrature method combined with RK4 in Jiwari et al. (2012),
modified cubic B-splines combined with SSP-RK43 in Mittal and Bhatia (2014), modified
extended B-splines combined with SSP-RK54 in Singh and Kumar (2018), and a spectral
collocation method in Hafez (2018). More recently, the use of mesh-free methods is getting
more attention among engineers and applied scientists for not only parabolic but also for
hyperbolic equations such as the telegraph equation. For instance, in Lin et al. (2019), Crank–
Nicolson scheme has been combined by the meshless method to solve the two-dimensional
telegraph equation, Houbolt method has been combined with the meshless method in Zhou
et al. (2020), a local differential quadrature method utilizing the radial basis functions has
been combined by an explicit time integrator in Ahmad et al. (2020a), direct meshlessmethod
based on the isotropic radial basis function has been applied by treating time variable regularly
during the whole solution process in Wang and Hou (2020), multi-wavelet Galerkin method
has been presented in Jebreen et al. (2021).

All of above-mentioned investigations are generally focused on the variety of the spatial
discretization. The novelty of the present study is essentially based on the time discretization
technique. Unlike the aforementioned studies, the current study presents a new uncondition-
ally stable algorithm based on the hybrid of meshless and adaptive Runge–Kutta method to
solve the telegraph equation.

The main focus of the study is second-order hyperbolic equation such that

∂2u

∂t2
+ 2α (x, y)

∂u

∂t
+ (γ (x, y))2 u = λ1 (x, y)

∂2u

∂x2
+ λ2 (x, y)

∂2u

∂ y2
(1)

+ f (x, y, t), x = (x, y) ∈ �, t > t0,
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subjects to the following conditions

u(x, t) = gD(., t), on ∂�, t > t0, (2)

u(x, t0) = ψ0 (x) , x ∈ �, (3)

∂u

∂t
|(x,t0) = ψ1 (x) , x ∈ �. (4)

The rest of the study has been organized as follows: in Sect. 2we give the reader the content
in terms of brief descriptions of the applied methods in both time and space. The theoretical
details are demonstrated in Sect. 3 by discussing the convergence of the numerical scheme.
Section 4 is dedicated to present several numerical examples to highlight the efficiency and
accuracy of the proposed numerical scheme by comparing to the existing methods in the
literature.

2 Numerical scheme

The main purpose of this section is to describe the proposed numerical scheme by briefly
touching upon the discretization techniques in both space and time variables. To this end,
Eq. (1) is rearranged as a system of equations form with the help of changing variables such
that

ut (x, y, t) = w,

wt (x, y, t) = λ1 (x, y)
∂2u

∂x2
+ λ2 (x, y)

∂2u

∂ y2
− 2α (x, y) w − (γ (x, y))2 u + f (x, y, t),

u (x, t0) = ψ0 (x) , x = (x, y) ∈ �,

w (x, t0) = ψ1 (x) , x = (x, y) ∈ �.

(5)

For the sake of simplicity of expressions define the variable Y = [u, w]T , we have

Y t (x, t) =
[

0 1
λ1 (x) ∂2x + λ2 (x) ∂2y 0

]
Y (x, t)

+
[

0 0
− (γ (x))2 −2α (x)

]
Y (x, t) + F (x, t) , (6)

Y (x, t0) = Y0 (x) , (7)

where Y0 (x) = [ψ0 (x) , ψ1 (x)]T , F (x, t) = [0, f (x, t)] and ∂2x and ∂2y denote the partial
derivatives with respect to x and y, respectively. Due to the nature of numerical process,
by employing the discretization for the spatial domain the Eq. (6) reduces to initial value
problemwhich will be solved by an efficient, reliable and compatible method. The upcoming
subsections are given to describe those methods, respectively.

2.1 MQ-RBF spatial discretization

The key point of the current study emphasizes the application of the adaptive Runge–Kutta
method. However, to solve the system, the spatial discretization is required, as well. For this
purpose, we use the meshless method with radial basis functions (RBFs) first introduced by
Kansa (1990). RBFs are more preferable to many other discretizations due to its advantages.
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For several applications of the meshless methods, the authors refer the interested reader to
more recent studies such as (Siraj-ul-Islam 2015; Aziz et al. 2018; Siraj-ul-Islam and Haider
2018; Ahmad et al. 2020b; Seydaoğlu 2022).

Let φ : R
2 → R be a univariate function which has infinity support. Due to the choice of

multiquadric (MQ) which is one of the commonly-used RBFs, φ(r) = (r2 + c2)β/2 where
β is an odd integer and c is the shape parameter. Here, r stands for the Euclidean norm in
R
2. The choice of shape parameters has a crucial role on the solution. Therefore, the shape

parameter, c can vary whereas the constant β is fixed to 1 throughout the study. For the sake
of integrity, let U (x, t) and W (x, t) denote the approximate solution of u(x, t) and w(x, t)
such that

u(x, t) ≈ U (x, t) =
Np∑
i

ζi j (t)φi (r j ),

w(x, t) ≈ W (x, t) =
Np∑
i

ηi j (t)φi (r j ),

(8)

where Np represents the number of collocation points. Notice that r j = (∥∥x − x j
∥∥) where

x j = [ j
x, j
y]T such that
x = b−a
Nx

, and
y = d−c
Ny

for� = [a, b]×[c, d].Equation (8)
can be expressed simply as follows:

U (x, t) = �T (r)ζ (t) ∇U (x, t) = (∇�(r))T ζ (t) ∇2U (x, t) = (∇2�(r)
)T

ζ (t),

W (x, t) = �T (r)η(t) ∇W (x, t) = (∇�(r))T η(t) ∇2W (x, t) = (∇2�(r)
)T

η(t).
(9)

where

�(x) =

⎛
⎜⎜⎜⎜⎝

φ1(r1) φ1(r2) . . . φ1(rNp )

φ2(r1) φ2(r2) . . . φ2(rNp )

· · · ·
· · · ·

φNp (r1) φNp (r2) . . . φNp (rNp )

⎞
⎟⎟⎟⎟⎠

In Eq. (9) ∇ stands for the gradient operator. Notice that at a fixed time, t = tn , ζ (t) =
ζ (tn) = ζ n, and η(t) = η(tn) = ηn which can be computed such that

ζ n =
(
�T (x)

)−1
U (x, tn), ηn =

(
�T (x)

)−1
W (x, tn).

Using the notation ∇k
x to denote the kth gradient of the function for k = 0, 1, 2 with the

property ∇0 = I where I denotes the identity matrix, one can be expressed

∇k
xU (x, tn) =

(
∇k
x�(x)

)T (
�T (x)

)−1

︸ ︷︷ ︸
Dk (x)

U (x, tn),

∇k
xW (x, tn) =

(
∇k
x�(x)

)T (
�T (x)

)−1

︸ ︷︷ ︸
Dk (x)

W (x, tn). (10)
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It is crucial to emphasize that the size of Dk(x) for k = 0, 1, 2 is Nx Ny × Nx Ny due to
x = (x, y) ∈ R

2. This section is finalized by rewriting Eq. (6) as follows:

Y t (x, t) =
[

0 I
D2(x) 0

]
Y (x, t)

+
[

0 0
−diag

(
(γ (x))2

) −diag (2α (x))

]
Y (x, t) + F (x, t) , (11)

Y (x, t0) = Y0 (x) , (12)

where D2(x) = λ1 (x) ∂2D
∂x2

(x) + λ2 (x) ∂2D
∂ y2

(x). Notice that 0 denotes the zero matrix.

2.2 Fifth-order adaptive Runge–Kutta time integrator

Once the meshless method implemented successfully on the spatial domain, the system of
partial differential equations given in Eq. (6) is converted into a systemof ordinary differential
equations (ODEs) as in Eq. (11). The main purpose of the present section is to describe a
fifth-order adaptive Runge–Kutta formula which is also known as DOPRI5, (Dormand and
Prince 1980). Due to the advantages of DOPRI5, a reliable, accurate, and efficient solution
has been proposed to solve such hyperbolic equations, approximately. Equation (11) can be
rewritten clearly as follows:

Y t (x, t) = G(x, t,Y), (13)

Y (x, t0) = Y0 (x) , (14)

where

G(x, t,Y)=
[

0 I
D2(x) 0

]
Y (x, t)+

[
0 0

−diag ((γ (x))2
) −diag (2α (x))

]
︸ ︷︷ ︸

A

Y (x, t) + F (x, t) .

Consider Eq. (13), the approximated solution via the DOPRI5 can be obtained as follows:

k1 = G(x, tn, Yn)

ks = G

(
x, tn + ωs
tn, Yn + 
tn

s−1∑
l=1

ϕs,l kl

)
, s = 2, 3, . . . , 7,

Yn+1 = Yn + 
tn

7∑
s=1

χsks, (15)

where n and s denote the time and stage indexes, respectively. Moreover, ks stands for the
approximated slope matrix, 
tn is the adapted time step at t = tn . Furthermore, the Butcher
table, (Butcher 1964), can be seen in Table 1 which introduces the required coefficients
ωs, ϕs,l , and χs .

DOPRI5 is a kind of adaptive methods. The adaptivity of the method comes from control-
ling the error of the method with a tolerance at each time step. For the sake of intelligibility,
the pseudocode is given in Algorithm 1.

As in Bahar and Gurarslan (2020), the ratio 
tn+1

tn

has been limited to [0.1, 10] and

the tolerance has been accepted as 10−6. Before ending this section, the advantages of the
DOPRI5 can be summarized as follows:
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Table 1 Butcher table for
DOPRI5

ω ϕ

0 0
1
5

1
5 0

3
10

3
40

9
40 0

4
5

44
45 − 56

15
32
9 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

χT 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

χ̂T 5179
57600 0 7571

166954
393
640 − 92097

339200
187
2100

1
40

Algorithm 1 Pseudocode for the DOPRI5
procedure DOPRI5(Y , tolerance, t0, tfinal)

Define ωs , ϕs,l , and χs ,
x = (x, y) grid points, t = t0,
Initialize n = 0,
t0
while t < tfinal, do

Calculate ks , for s = 1, 2, . . . , 7, � in Eq. (15)
Compute Y = Y + 
tp

∑7
s=1 χsks

Define en+1 =
∥∥∥
tn

∑7
s=1

(
χs − χ̂s

)∥∥∥∞
if en+1 > tolerance then

Define 
tn+1 = 0.9
tn
(
tolerance

en+1

)1/5
, en+1 ≤ tolerance

else
Store Yn+1 := Y and n := n + 1

end if
end while
Assign u = Y (1, :)

end procedure

• the method is unconditionally stable since error propagation is always controlled by a
user-defined tolerance,

• being a member of the family of Runge–Kutta method makes the DOPRI5 more reliable,
• DOPRI5 is an explicit scheme which makes the method easily adaptable for both linear

and nonlinear equations,
• the coefficients of theDOPRI5 obtained byminimizing the error of the fifth-order solution

which leads to the higher order of accuracy.

On the other hand, the DOPRI5 has theoretically seven stages which can be considered a
disadvantage. However, the fact that the use of the last stage is evaluated at the same point
as the first stage. This helps to reduce the stages to six per step, computationally.

3 Convergence results

The proposed method introduced in Sect. 2 undoubtedly gives an approximate solution.
However, any numerical method will be analyzed by the concepts of consistency and stability
to guarantee the method will approximate to the exact solution, eventually. The main focus
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of the current section is to give these theoretical results of the proposed method. To do this,
the following required auxiliary theorems are given.

Theorem 1 (Schaback andWendland 2006; Li and Chen 2008) Let [β] stand for the smallest
integer greater than or equal to β. The multiquadrics, φ(r) = (

r2 + c2
)β/2

, β > 0 where

β is an odd number, are conditionally positive definite of order m ≤
[

β
2

]
on R

Theorem 2 (Li andChen2008,Theorem10.1)Assume thatφ is conditionally positive definite
of order m on � ⊂ R

d , and that the set of points Z = {z1, . . . , zN } ∈ � is
∏

m−1

(
R
d
)

unisolvent, i.e., the zero polynomial is the only polynomial from
∏

m−1

(
R
d
)
that vanishes

on Z = {z1, . . . , zN }. Then for any f ∈ C (�), there is exactly one function such that

I f ,X (z) =
N∑
j=1

α jφ
(‖z − z j‖

)+ p(z)

where a polynomial p(z) ∈∏m−1

(
R
d
)
provided that

I f ,X (zi ) = f (zi ) ,

and
N∑
j=1

α j q
(‖z − z j‖

) = 0, 1 ≤ i ≤ N , ∀q ∈
∏
m−1

(
R
d
)

.

Here,
∏

m−1

(
R
d
)
denotes the d-variable polynomial of degree at most m.

Theorem 3 (Schaback 1999) The error bound of interpolation for the choice of multiquadric
radial basis functions is defined by∥∥I f ,X − f

∥∥
L2(�)

≤ Ce−δ/h, δ > 0, (16)

for some constant C where h = supx∈� minz∈Z ‖x − z‖2
Assumption 1 Let ∇2

x ≈ (∇2
x�(x)

)T (
�T (x)

)−1
. Due to the variability of the shape param-

eter we can write ∥∥∥∥(∇2
x�(x)

)T (
�T (x)

)−1
∥∥∥∥ ≤ K1(c),

where K1 is a function of the shape parameter.

Our main references on the meshless methods and their analysis are Li and Chen (2008),
Sarra and Kansa (2009) and references therein. The theorems stated above help to put the
convergence result of approximation in the spatial domain. We, further, need to prove the
convergence result of the proposed method considering the time integrator. To do so, we first
give the required hypothesis.

Hypothesis 1 Let F(x, t) ∈ C (�) ∩ C2 ([0, tfinal]) such that∥∥∥∥∂ i F
∂t i

(x, tn) − ∂ i F
∂t i

(x, tn−1)

∥∥∥∥ ≤ Qi , i = 0, 1, and 
tn−1, n = 1, 2, . . . , Nt .

With the help of Remark 1, G(x, t,Y) satisfies the Lipschitz property such that

‖G(x, t,Y) − G(x, t, Z)‖ ≤ K1(c) ‖Y − Z‖ + Q0
tn−1, (17)

123
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and ∥∥∥∥∂G

∂t
(x, t,Y) − ∂G

∂t
(x, t, Z)

∥∥∥∥ ≤ K1(c) ‖Y − Z‖ + Q1
tn−1, (18)

for some constants Q0 and Q1.

Under the lights of all mentioned theorems, remark, and hypothesis, Theorem 4 states the
local error bound of the proposed method. For the sake of clarity of the analysis, Eq. (1) is
considered for homogeneous case, that is F(x, t) ≡ 0. In this case, throughout the analysis,
the values of Q0 and Q1 are accepted as 0.

Theorem 4 Suppose that Hypothesis 1 fulfilled. The local error bound of the DOPRI5 for the
homogeneous case of Eq. (1) is

‖Yn+1 − Yn‖ ≤ ‖Yn − Yn−1‖ + O
(

t s−1

n−1

)
.

Proof Let 
tp = σp
t, σp ∈ (0, 1), where tp = tp−1 + σp
t for p = 1, 2, . . . , Nmax,

where Nmax is themaximum iterationwhen the toleranceholds. LetYn denote the approximate
solution of Eq. (13)–(14) at t = tn . The local error bound is obtained via the standard
procedure, that is, ‖Yn+1 − Yn‖ where

Yn+1 = Yn + 
tn

7∑
s=1

χs k
n
s , (19)

Yn = Yn−1 + 
tn−1

7∑
s=1

χs k
n−1
s . (20)

Bymeans of triangle inequality after subtracting Eq. (20) from Eq. (19) and taking the norms,
one can obtain

‖Yn+1 − Yn‖ ≤ ‖Yn − Yn−1‖ +
∥∥∥∥∥
tn

7∑
s=1

χs k
n
s − 
tn−1

7∑
s=1

χs k
n−1
s

∥∥∥∥∥ .

Using the relation of 
tn

tn−1

= ρ where ρ ∈ [0.1, 10] one can be said that 
tn = ρ
tn−1

which leads to

‖Yn+1 − Yn‖ ≤ ‖Yn − Yn−1‖ +
∥∥∥∥∥ρ
tn−1

7∑
s=1

χs k
n
s − 
tn−1

7∑
s=1

χs k
n−1
s

∥∥∥∥∥ . (21)

By choosing a constant C1 depending on the values of max{1, ρ} and the upper bound of∑7
s=1 χs Eq. (21) can be reduced to Eq. (22)

‖Yn+1 − Yn‖ ≤ ‖Yn − Yn−1‖ + C1
tn−1
∥∥kns − kn−1

s

∥∥︸ ︷︷ ︸
I©

. (22)

Notice that I© needs to describe. By virtue of Taylor expansion, kns and kn−1
s for s =

2, 3, . . . , 7 can be written as follows:

kns = G (x, tn,Yn) + ∂G

∂t
(x, tn,Yn) ωs
tn + ∂G

∂Y
(x, tn,Yn)
tn

s−1∑
j1=1

ϕs, j1k j1 ,

123
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kn−1
s = G (x, tn−1,Yn−1) + ∂G

∂t
(x, tn−1,Yn−1) ωs
tn−1

+ ∂G

∂Y
(x, tn−1,Yn−1) 
tn−1

s−1∑
j1=1

ϕs, j1k j1 . (23)

For the sake of understandability of notations, we use Gp,Gp
t , and Gp

Y to represent
G
(
x, tp,Y p

)
, ∂G

∂t

(
x, tp,Y p

)
, and ∂G

∂Y

(
x, tp,Y p

)
, respectively. Moreover, we define �

n
s

to denote Gn + Gn
t ωs
tn . Substituting k j1 , j1 = 1, . . . , s − 1 leads to nested summations.

More precisely,

kns = �
n
s + Gn

Y
tn

s−1∑
j1=1

ϕs, j1(�
n
j1 + Gn

Y
tn

j1−1∑
j2=1

ϕ j1, j2

(
�
n
j2

+ · · · + Gn
Y
tn

j4−1∑
j5=1

ϕ j4, j5

(
�
n
s−1 + Gn

Y
tnϕ1,1k1
) )

. . .

)
. (24)

It is noted that kn−1
s can be obtained by writing n − 1 instead of n in Eq. (24). The bound of∥∥�ns − �

n−1
s

∥∥ is defined by
∥∥�ns − �

n−1
s

∥∥ ≤ M1 ‖Yn − Yn−1‖ , (25)

where M1 can be obtained by the values of K1(c),
tn−1 and max1≤s≤7 ωs . After doing
some tedious calculations through Eq. (25), I© can be obtained as follows:

I© = ∥∥kns − kn−1
s

∥∥ ≤ M1 ‖Yn − Yn−1‖ + O
(

t s−1

n−1

)
.

Substituting I© in Eq. (22) one can be obtained that

‖Yn+1 − Yn‖ ≤ (1 + 
tn−1M1) ‖Yn − Yn−1‖ + O
(

t s−1

n−1

)
, (26)

which concludes the proof. ��
Theorem 4 guaranteed that there is no error propagation of the proposedmethod over time.

In addition to this conclusion, the stability of the proposed method required for convergence
is discussed in Theorem 5.

Theorem 5 Let Yn denote the approximate solution obtained by the proposed method at
t = tn, n = 1, 2, . . . , Nt where Nt stands for the final time step. For an appropriate choice
of the shape parameter satisfying K1(c)
tn < 1, the proposed method remains stable with
the bound

‖Yn‖ ≤ κ ‖Y0‖ (27)

where the constant κ depends on K1(c) and 
tn

Proof Before starting the proof, it is important to note the essential requirement bound playing
a crucial role on completing the current proof. Thus, we first describe, briefly, the upper bound
of kns defined generally in Eq. (24) such that

∥∥kns ∥∥ ≤ W1K1(c)
s−1∑
j=1

(
tnK1(c))
j ‖Yn‖ + W2K1(c)

s−1∑
j=1

O
(

t j+1

n

)
. (28)

123
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Here both W1 and W2 are some constants. Then, due to use of the induction technique to
discuss the stability of the proposed method, we start with giving the bound of one-step
solution as follows:

‖Y1‖ ≤ ‖Y0‖ + 
tn

7∑
s=1

χs
∥∥k0s ∥∥ ,

≤ W1K1(c)
s−1∑
j=1

(
tnK1(c))
j ‖Y0‖ + W2K1(c)

s−1∑
j=1

O
(

t j+1

n

)
, (29)

where Y0 is the prescribed initial condition. One can be seen in Eq. (29) the possibility
of instability can arise just from the amplification factor of the proposed method which is
W1K1(c)

∑s−1
j=1 (
tnK1(c)) j . This means that the second summation of Eq. (29) can be

negligible as 
tn → 0. As the process progresses inductively, we obtain

‖Yn‖ ≤
⎛
⎝W1K1(c)

s−1∑
j=1

(
tnK1(c))
j

⎞
⎠

n

‖Y0‖ ,

≤ 1

1 − K1(c)
tn−1︸ ︷︷ ︸
κ

‖Y0‖ , (30)

provided that ‖K1(c)
tn−1‖ < 1. ��
Both Theorems 3 and 5 highlights the vital role of the shape parameter of the approximate

solution. Even though the unconditional stability property of the DOPRI5, Theorem 5 has
stated that the proposedmethod is stablewhen the correct choice of shape parameter satisfying
K1(c)
tn < 1 is chosen. However, it is important to emphasize that under an appropriate
choice of c, the proposed method has a long-time behavior and an accurate solution.

4 Computational results

The current section is dedicated to testing the performance and accuracy of the proposed
method for several benchmark problems. The considered numerical examples cover various
cases, such as constant coefficient and variable coefficient hyperbolic telegraph equation in
both homogeneous and inhomogeneous ones. Throughout the section, the errors aremeasured
in both relative error (RE) and root mean square error (RMSE) sense as follows:

RE =

√√√√√
∑Nx

i=1

∑Ny

j=1

∥∥u (xi , y j , tfinal)−U
(
xi , y j , tfinal

)∥∥ .2

∑Nx
i=1

∑Ny
j=1

∥∥u (xi , y j , tfinal)∥∥2 ,

RMSE =

√√√√√
∑Nx

i=1

∑Ny

j=1

∥∥u (xi , y j , tfinal)−U
(
xi , y j , tfinal

)∥∥2
Nx Ny

,

where u(x, y, t) and U (x, y, t) stand for the exact solution and numerical solution, respec-
tively. Throughout this section, α(x, y), γ (x, y), λ1(x, y), and λ2(x, y) are denoted by
α, γ, λ1, and λ2, respectively, in case of constant values selections. All computations have
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Table 2 Comparison of root mean square errors for Example 1

tfinal Proposed method GA (Dehghan and
Salehi 2012)

IMQ (Dehghan
and Salehi 2012)

PDQM (Jiwari
et al. 2012)
Nx = Ny = 20

PRBF (Rostamy
et al. 2017)
Nx = Ny = 20

0.5 1.8803e−05 1.68748e−05 5.08565e−05 9.26110e−05 4.468e−06

1 9.1985e−06 1.37797e−05 6.16056e−06 8.03601e−05 1.358e−05

2 1.2709e−05 1.23889e−05 2.84682e−06 9.05079e−05 3.375e−05

3 1.7571e−05 1.04864e−05 6.68808e−06 8.89250e−05 5.305e−05

5 4.3141e−05 – – 9.00659e−05 9.318e−05

10 9.4235e−05 – – 8.98311e−05 –

20 2.2277e−04 – – – –

been executed on Intel Core i7-6700HQ 2.60Ghz and 16GB of RAM and implemented via
the MATLAB-2018b programming language.

Example 1 Firstly, the two-dimensional telegraph equation given in Eq. (1) over the square
domain � = [0, 1] × [0, 1] where α = γ = 1 and λ1 = λ2 = 1. The exact solution of the
equation is

u(x, y, t) = x2 + y2 + t .

The initial conditions are as

u(x, y, 0) = x2 + y2, ut (x, y, 0) = 1

where the boundary conditions are taken from the exact solution. One can be obtained by the
use of chosen parameters that f (x, y, t) = x2 + y2 + t − 2.

For obtaining the tables of Example 1, the spatial domain has discretized into 400 grid
points by taking Nx = Ny = 20 and the shape parameter, c = 0.38. Table 2 presents a com-
parison of the root mean square errors for the proposedmethod to both boundary knot method
combined with analog equation method using Gaussian (GA), inverse multiquadric (IMQ)
RBFs in Dehghan and Salehi (2012), polynomial differential quadrature method (PDQM)
in Jiwari et al. (2012), and pseudospectral radial basis functions (PRBF) in Rostamy et al.
(2017).

It can be seen from Table 2 that the proposed method may record better results than not
only those given in Table 2 but also the references therein. Nevertheless, it is noted that our
errors are not as good enough as IMQ in Dehghan and Salehi (2012). This does not mean
that the proposed method is not preferable. Table 3 emphasizes the efficiency of the proposed
method. In this context, the CPU times of the proposed method are compared to the values
existing in the literature.

Table 3 is evidence that the proposed method returns a fast solution compared to those in
the literature. This property makes the proposed method more attractive. Moreover, Table 4
emphasizes the efficiency of the proposed method for both less and more collocation points.
The listed values of Table 4 are obtained for tfinal = 1 with the shape parameter as c = 0.3
for various number of collocation points.

Furthermore, the physical compatibility of the proposed method is illustrated in Fig. 1 for
a finer mesh where Nx = Ny = 25 and the shape parameter c = 0.3 by comparing with the
exact solution at t = tfinal = 3 for α = β = 1.
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Table 3 Comparison of CPU times in second for Example 1

tfinal Proposed method GA (Dehghan and
Salehi 2012)

IMQ (Dehghan
and Salehi 2012)

PDQM (Jiwari
et al. 2012)
Nx = Ny = 20

PRBF (Rostamy
et al. 2017)
Nx = Ny = 20

0.5 0.1 7.7 57.9 5 1.7

1 0.13 8.1 59.8 9 3.4

2 0.21 8.7 60.2 18 6.7

3 0.33 9.1 62.8 27 9.9

5 0.54 – – 45 15.5

10 1.27 – – 90 –

20 2.49 – – – –

Table 4 Accuracy of Example 1
for fixed shape parameter c = 0.3
at tfinal = 1

Nx = Ny RMSE RE

10 7.6789e−04 5.8831e−04

20 3.7866e−05 2.9178e−05

25 7.9944e−06 6.1668e−06

Fig. 1 Numerical and exact solutions of Example 1 at tfinal = 3

Example 2 As the second problem, Eq. (1) is studied on (x, y) ∈ � = [0, 1]2 by taking
λ1 = λ2 = 1 for the various choices of α and γ values. The initial and boundary conditions
are chosen form the exact solution which defined by

u(x, y, t) = e−t sinh(x) sinh(y)
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Fig. 2 Numerical and exact solution of Example 2 with α = β = 1 at tfinal = 1, 2, 3

The choices of different parameters can vary the f (x, y, t). Throughout this example, the
following cases have occurred:

f (x, y, t) =
⎧⎨
⎩
4e−t sinh(x) sinh(y) α(x, y) = 10, γ (x, y) = 5;
−21e−t sinh(x) sinh(y), α(x, y) = 10, γ (x, y) = 0;
2e−t sinh(x) sinh(y), α(x, y) = γ (x, y) = 1.

All computational results of Example 2 are recorded for Nx = Ny = 25 where the shape
parameter is chosen as c = 0.3. Comparative work is presented in Table 5. The results
obtained by the proposed method are compared to local meshless differential quadrature
method (LMM) in Ahmad et al. (2020a), “isotropic” space-time radial basis function method
(DMM1) in Wang and Hou (2020), (PRBF) in Rostamy et al. (2017), PDQM in Jiwari et al.
(2012), and the modified B-spline differential quadrature method (MBDQ) in Mittal and
Bhatia (2014).

It is crucial to emphasize that the LMM method in Ahmad et al. (2020a) also uses mul-
tiquadric RBF, whereas its errors are not as good enough as the proposed method. Besides,
Tables 5 and 6 present the RMSE comparison for the proposed method to GA an IMQ in
Dehghan and Salehi (2012).

Tables 5 and 6 declare that the proposed method is more accurate than the other numerical
methods in the literature. The listed errors evidence how well the proposed method fits the
exact values over time. Furthermore, the efficiency of the methods is demonstrated in Table 7.
For this purpose, the CPU time of the algorithm has been compared to those available values
in the literature.

It is important to underline that the reported run time for MBDQ in Mittal and Bhatia
(2014) is chosen for the similar Nx and Ny choices to do a reliable comparison. It can
be concluded from Table 5, 6 and 7 that the proposed method records better results in both
accuracy and efficiency. All these results also highlight that the proposedmethod is preferable
to the other numerical methods in the literature.

Before ending Example 2, Fig. 2 is illustrated to visualize that the proposed method is in
good agreement with the exact solution at α = γ = 1 for various choices of tfinal.
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Table 6 Comparison of root mean square errors for Example 2 for α = γ = 1 at various tfinal

tfinal Proposed method GA (Dehghan and Salehi 2012) IMQ (Dehghan and Salehi 2012)

0.5 1.1530e−05 3.38485e−05 1.76044e−05

1 5.7258e−06 6.67377e−06 6.96266e−06

2 1.8546e−06 3.17489e−05 3.05566e−05

3 1.3345e−06 4.32162e−05 4.63057e−05

Example 3 As another benchmark problem, Eq. (1) is studied on (x, y) ∈ � = [0, 1]2 by the
choice of α = β = 1, and λ1 = λ2 = 1. The exact solution of Eq. (1) is given by

u(x, y, t) = ln(1 + x + y + t),

where f (x, y, t) = 2
1+x+y+t + ln (1 + x + y + t) + 1

(1+x+y+t)2
.

For a more reliable comparison, 100 grid points are chosen by taking Nx = Ny = 10 as
it is done in the other studies. It is observed that the shape parameter can vary for various
values of tfinal in Example 3. In Table 8, the attained errors are compared with the results
of DMM1 in Wang and Hou (2020), PQDM in Jiwari et al. (2012), the MBDQ in Mittal
and Bhatia (2014), the meshless local weak–strong method via moving least square method
(MLWS-MLS), and the meshless local Petrov–Galerkin via moving least square method
(MLPG-MLS) in Dehghan and Ghesmati (2010).

As mentioned above, the obtained errors are recorded for c = 1.2, 1.2, 1.1, 1.1, 0.9, 0.85,
and 0.8 where tfinal = 0.5, 1, 2, 3, 5, 10, and 20, respectively. Table 8 declares that the
proposed method achieves the best errors compared to other methods. In addition to Table 8,
the reported available data for the maximum elapsed times to return the numerical result are
listed in Table 9 in seconds.

Similar to the previous test problems, the recorded results in Table 9 promote the prefer-
ability of the proposed method. Besides all tables for Example 3, Fig. 3 indicates that the
physical shape of the proposed method for finer mesh also fits well with the exact solution.

Example 4 All the above discussing examples are inhomogeneous. As another test problem,
Eq. (1) is discussed by considering λ1 = λ2 = 1 for different α and γ values which lead to
homogeneous and inhomogeneous cases. Initial conditions are given as follows:

u(x, y, 0) = sin(πx) sin(π y), ut (x, y, 0) = − sin(πx) sin(π y)

where

f (x, y, t) =
{
2π2e−t sin πx sin π y α = γ = 1;
0, α = π2 + 1, γ = 1.

For both choices the exact solution of Example 4 is defined as

u(x, y, t) = e−t sin(πx) sin(π y)

To see the validity of the proposed method on the determined case, the errors are controlled
in RE and RMSE sense. All the attained results for α = γ = 1 are compared by the methods
available in the literature and are presented inTable 10. The computational results are obtained
for the choice of Nx = Ny = 25 where the shape parameter is chosen as c = 0.25.

Even though the computed errors are similar to those in the literature, comparing the
elapsed times to return the results one can be seen in Table 10 that the proposed method is
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Table 9 Comparison of CPU times of several methods for α = 1, γ = 1 for Example 3 at different times

tfinal Proposed method MBDQ (Mittal
and Bhatia
2014) Nx =
Ny = 20

PQDM (Jiwari
et al. 2012)
Nx = Ny =
20

MLWS-MLS
(Dehghan
and
Ghesmati
2010) Nx =
Ny = 20

MLPG-MLS
(Dehghan
and
Ghesmati
2010) Nx =
Ny = 20

0.5 0.03 0.5 6 9.2 21.0

1 0.04 1.1 11 12.9 36.2

2 0.04 2.0 22 25.7 49.1

3 0.05 2.8 32 38.1 66.8

5 0.07 7.0 54 49.8 82.0

10 0.1 9.6 108 62.0 97.3

20 0.17 – – – –

Fig. 3 Numerical and exact solutions of Example 3 at tfinal = 3

more preferable to the methods existing in the literature. Moreover, Eq. (1) is also solved for
the choice of parameters α = π2+1 and γ = 1,which leads to a homogeneous equation. To
the best of the authors’ knowledge, there are no existing results for the homogeneous ones
in the literature. Therefore, the performance of the proposed method is checked by the exact
solution by taking Nx = Ny = 25 and the shape parameter c = 0.32. Table 11 presents the
CPU time in addition to errors described in both RE and RMSE sense (Fig. 4).
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Table 11 Error and CPU-time of
Example 4 for
α = π2 + 1, γ = 1 at different
times

tfinal RE RMSE CPU-time

0.5 2.8729e−05 3.6838e−05 0.27

1 4.4575e−05 3.4667e−05 0.47

2 7.2881e−05 2.0852e−05 0.84

3 9.4424e−05 9.9385e−06 1.1

5 1.2350e−04 1.7593e−06 1.62

Fig. 4 Numerical and exact solutions of Example 4 at tfinal = 1

Moreover, the physical behavior of the proposed method is also compared to the exact
solution which is exhibited in Fig. 5 at various final times.

Example 5 As our last example, the variable coefficient telegraph equation is considered. To
do so, in Eq. (1) α (x, y) = ex+y, γ (x, y) = sin x + y. Moreover, λ1(x, y) and λ2(x, y) are
taken as

(
1 + x2

)
and

(
1 + y2

)
, respectively. That is, we have

utt+2ex+yut+sin2(x + y)u=(1+x2
)
uxx + (1 + y2

)
uyy + f (x, y, t) , 0 < x, y < 1.

(31)

whose exact solution is defined by

u(x, y, t) = e−t sinh(x) sinh(y)

Equation (31) is solved on (x, y) ∈ � = [0, 1]2 by discretizing the domain 100 grid points,
that is Nx = Ny = 10. The obtained results are compared to those computed by operator
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Fig. 5 Numerical and exact solutions of Example 4 at tfinal = 3

Table 12 The RMSE of several methods and their CPU times for α = 1, γ = 1 in Example 5 at different
times

tfinal Proposed method MSRBF (Dehghan and
Shokri 2009) dx = dy =
0.1 dt = 0.001

OS (Mohanty 2004)
dx = dy = 1/64

RMSE CPU-time RMSE CPU-time RMSE CPU-time

0.5 2.0237e−06 0.05 1.2136e−05 1 – –

1 1.6833e−06 0.05 4.1208e−06 1 0.6791e−04 –

2 2.0001e−06 0.06 1.5090e−06 2 0.2206e−04 –

3 1.4813e−06 0.07 5.5563e−07 3 – –

5 2.3913e−05 0.09 2.0448e−07 3 – –

splittingmethod combinedwith an unconditionally stable difference scheme (OS) inMohanty
(2004) and the meshless method with the help of thin plate spline radial basis functions
(MSRBF) in Dehghan and Shokri (2009). All errors are listed in Table 12 with the CPU
times of the methods.

The values of the proposed method in Table 12 are computed by taking the varied shape
parameter as c = 1.2, 1.2, 1, 0.85, 0.75 for tfinal = 0.5, 1, 2, 3, 5, respectively. One can be
inferred from Table 12 that the proposed method can be preferable to the other methods
for some values of tfinal by taking into account both efficiency and accuracy of the solution.
Figure 6 furthermore depicts the physical behavior of the proposed method agrees with the
exact solution at final time, tfinal = 3.

123



225 Page 22 of 24 N. İ. Karabaş et al.

Fig. 6 Numerical and exact solutions of Example 5 for Nx = Ny = 25 with shape parameter c = 0.25 at
tfinal = 3

5 Conclusion

In this study, a reliable, accurate, and efficient method has been proposed for solving the
hyperbolic telegraph equation. The equation solved by the proposed method is constructed
by a combination of mesh-free RBF method and DOPRI5, one of the unconditionally stable
methods. After introducing the proposed method, detailed convergence results have been
studied with the concepts of consistency and stability. It has been shown theoretically that
the shape parameter has a vital role in the approximate solutions. The study has been enriched
by considering several benchmark problems. From a computational point of view, the crucial
role of the shape parameter has been also emphasized upon various examples. It is reported
that the shape parameter can be varied for not only different examples but also various values
of tfinal on the same example. All recorded results have been compared to those available
in the literature. Furthermore, as mentioned in the theoretical part, the long-time behavior
of the proposed method has also been confirmed. In a conclusion, all presented tables and
figures support the preferability of the proposed method not only because of its accuracy but
also because of its efficiency.
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