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Yağız Oyun1, Özgür Çakır2, Sevilay Sevinçli1,∗
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Abstract.

Electromagnetically induced transparency (EIT) and absorption (EIA) are

quantum coherence phenomena which result from the interference of excitation

pathways and combining these with Rydberg atoms have opened up many possibilities

for various applications. We introduce a theoretical model to study Rydberg-EIT

and Rydberg-EIA effects in cold Cs and Rb atomic ensembles in a four-level ladder

type scheme taking into account van der Waals type interactions between the atoms.

Proposed many-body method for analysis of such systems involves a self-consistent

mean field approach and, it produces results which display a very good agreement with

recent experiments. Our calculations also successfully demonstrate experimentally

observed EIT-EIA cross-over in Rb case. Being able to simulate the interaction

effects in such systems has significant importance, especially for controlling the optical

response of these.

Keywords: Rydberg atoms, Electromagnetically Induced Transparency, Electromagnet-

ically Induced Absorption, Three-photon excitation
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1. Introduction

More than two decades after the experimental availability of cold gases, these systems

yielded many important results and have been used in the fields from quantum optics

to quantum information and from nonlinear optics to quantum simulation [1, 2].

Combining cold atom systems with electromagnetically induced transparency (EIT)

phenomenon that makes an opaque medium transparent under certain conditions via

dark-state formation [3] resulted in many exciting findings such as slow light [4] and light

storage in a medium [5, 6]. Being a complementary effect to EIT, electromagnetically

induced absorption (EIA) is the increase in absorption via atomic coherences and it is

referred to as the bright resonance[7, 8]. It has been proposed that EIA can be utilizable

for many applications such as optical switches, information storing and magnetometry

[8, 9]. Cold Rydberg gases, consisting of highly excited atoms have also attracted much

attention in the last two decades [2, 10]. Extraordinary properties of Rydberg atoms [11],

including strong interactions with each other and external fields and, Rydberg blockade

effect [12, 13] have provided a good platform for quantum information applications

[10, 14]. It has been shown by many experimental and theoretical studies that they

are also good candidates for nonlinear optics applications [15, 16]. Rydberg-EIT

systems have provided a significant increase in third-order susceptibility [15, 17, 18]

and therefore can be used to achieve strong photon-photon interactions. Combining

quantum coherence effects (EIT and EIA) with extraordinary properties of Rydberg

atoms, makes it possible to obtain higher order nonlinearities and gives rise to many

new opportunities [19, 20, 21, 22, 23, 24, 25]. It has been expected that these properties

would be very important for single photon sources and all optical switches and as a

result they might yield more exciting effects [26].
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Figure 1. (a) Three-photon excitation scheme. Excited state |4〉 is considered as

a Rydberg state.(b) Schematic representation of Rydberg-Rydberg interactions. Big

blue spheres are considered as Rydberg atoms while small purple ones are other atoms.

(c) Self-consistent mean-field algorithm.

Few years ago, it was proposed that these effects which are generally observed

via two-photon excitation, can also be realized with three-photon excitation scheme

[27]. Some recent studies investigated the dynamic dressing via three-photon excitation
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[28] and transient nonlinear response of four-level Rydberg-EIT [29]. Moreover, an

experiment conducted with a Rb vapour cell demonstrated Rydberg EIA/EIT cross-

over with this scheme [30]. These new systems may have important contributions to

applications such as coupling with optical fibers and more efficient and longer storage of

light without decoherence effects. However, a theoretical model that could explain the

experiments completely has yet to be developed. A realistic modeling of these systems

is needed to fully understand the physics behind the phenomenon. So far, several

theoretical models have been proposed to investigate three-level Rydberg-EIT systems

and successfully explained experimental findings [18, 20, 31, 32, 33, 34]. Addition of one

more atomic level into the system, significantly increases the dimension of Hilbert space

and therefore it becomes very problematic to investigate four-level systems with realistic

parameters in many-body picture with these methods. To overcome this difficulty,

we propose a self-consistent mean-field (MF) model to study four-level Rydberg atom

systems under EIT and EIA conditions and, investigate the effects of strong inter-

atomic interactions on quantum coherences and possible nonlinear optical effects. In

this manuscript, we consider a collection of cold Cs and Rb atoms for Rydberg-EIT and

Rydberg-EIA systems, respectively. Our simulations yield results that are consistent

with the experiments which were performed with vapour cells and EIT-EIA cross-over

is observed for Rb atoms by changing the system parameters. In other words, it is

possible to change an absorptive medium to one which is tranparent. This kind of

control on the system might be important for many nonlinear optics applications, since

one can change the optical properties of the system as needed.

2. System

The system under consideration consists of atoms in three-photon ladder scheme in

which atoms in the ground state are excited to a subsequent higher energy states via

three distinct light fields as shown in figure 1(a). The ground state is labeled as |1〉 and

the three following excited states are represented with |2〉, |3〉 and, |4〉 which corresponds

to the Rydberg state. Excitation to higher energy states are accomplished via fields

with respective Rabi frequencies, Ω1 (probe), Ω2 (dressing) and Ω3 and detunings, the

difference between transition frequency and the frequency of the light fields, are shown

with ∆1, ∆2 and ∆3. Spontaneous decay rates of the states are represented with Γ1,

Γ2 and Γ3, respectively and due to long lifetimes of Rydberg states Γ3 is ignored in the

simulations. We consider a cold Rydberg gas in frozen gas limit, in which atoms do

not move within relevant timescales. Rydberg gases are generally loaded into magneto-

optical or dipole traps after cooling, however traps are turned off before the excitation

scheme to avoid Stark shift. Therefore, we do not consider any effects due to trapping.

The equations of motion are obtained using the master equation

ρ̇(N) = − i
h̄

[Ĥ, ρ(N)] + L[ρ(N)] , (1)

where ρ(N) is the N−particle density matrix and the decay mechanisms are included in
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the Lindblad terms L[ρ(N)]. The total Hamiltonian consists of atomic and interaction

parts, Ĥ = ĤA + V̂ . Atomic Hamiltonian within rotating wave approximation is given

as

ĤA = h̄
N∑
i=1

[
Ω1

2
σ̂i12 +

Ω2

2
σ̂i23 +

Ω3

2
σ̂i34 −∆1σ̂

i
22

−(∆1 + ∆2)σ̂
i
33 − (∆1 + ∆2 + ∆3)σ̂

i
44 + h.c.

]
, (2)

where σ̂iαβ = |α〉〈β| is the atomic transition operator for the ith atom. The interaction

part, V̂ is given as

V̂ =
∑
i 6=j

Vijσ̂
i
44σ̂

j
44 . (3)

We consider inter-atomic interactions in the form of van der Waals (vdW) interactions,
Vij = − C6

|ri−rj |6
where C6 is the vdW coupling. One can obtain the equations of motion

for reduced density matrices straightforwardly,

d

dt
ρ
(i)
11 =

i

2
Ω
(i)
1

(
ρ
(i)
12 − ρ

(i)
21

)
+ Γ1ρ

(i)
22 , (4a)

d

dt
ρ
(i)
22 = − i

2
Ω
(i)
1

(
ρ
(i)
12 − ρ

(i)
21

)
+
i

2
Ω
(i)
2

(
ρ
(i)
23 − ρ

(i)
32

)
(4b)

+ Γ2ρ
(i)
33 − Γ1ρ

(i)
22 ,

d

dt
ρ
(i)
33 = − i

2
Ω
(i)
2

(
ρ
(i)
23 − ρ

(i)
32

)
+
i

2
Ω
(i)
3

(
ρ
(i)
34 − ρ

(i)
43

)
(4c)

+ Γ3ρ
(i)
44 − Γ2ρ

(i)
33 ,

d

dt
ρ
(i)
44 = − i

2
Ω
(i)
3

(
ρ
(i)
34 − ρ

(i)
43

)
− Γ3ρ

(i)
44 , (4d)

d

dt
ρ
(i)
12 =

i

2
Ω
(i)
1

(
ρ
(i)
11 − ρ

(i)
22

)
+
i

2
Ω
(i)
2 ρ

(i)
13 − i∆

(i)
1 ρ

(i)
12 (4e)

− Γ1

2
ρ
(i)
12 ,

d

dt
ρ
(i)
13 =

i

2
Ω
(i)
3 ρ

(i)
14 +

i

2
Ω
(i)
2 ρ

(i)
12 −

i

2
Ω
(i)
1 ρ

(i)
23 (4f)

− i(∆(i)
1 + ∆

(i)
2 )ρ

(i)
13 −

Γ2

2
ρ
(i)
13 ,

d

dt
ρ
(i)
14 =

i

2
Ω
(i)
3 ρ

(i)
13 −

i

2
Ω
(i)
1 ρ

(i)
24 − i(∆

(i)
1 + ∆

(i)
2 + ∆

(i)
3 )ρ

(i)
14 (4g)

− Γ3

2
ρ
(i)
14 + i

∑
i 6=j

Vijρ
(i,j)
14,44,

d

dt
ρ
(i)
23 =

i

2
Ω
(i)
2

(
ρ
(i)
22 − ρ

(i)
33

)
− i

2
Ω
(i)
1 ρ

(i)
13 +

Ω
(i)
3

2
ρ
(i)
24 (4h)

− i∆(i)
2 ρ

(i)
23 −

(Γ1 + Γ2)

2
ρ
(i)
23 ,

d

dt
ρ
(i)
24 =

i

2
Ω
(i)
3 ρ

(i)
23 −

i

2
Ω
(i)
2 ρ

(i)
34 −

i

2
Ω
(i)
1 ρ

(i)
14 (4i)

− i(∆(i)
2 + ∆

(i)
3 )ρ

(i)
24 −

(Γ1 + Γ3)

2
ρ
(i)
24 + i

∑
i 6=j

Vijρ
(i,j)
24,44,
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d

dt
ρ
(i)
34 =

i

2
Ω
(i)
3

(
ρ
(i)
33 − ρ

(i)
44

)
− i

2
Ω
(i)
2 ρ

(i)
24 − i∆

(i)
3 ρ

(i)
34 (4j)

− (Γ2 + Γ3)

2
ρ
(i)
34 + i

∑
i 6=j

Vijρ
(i,j)
34,44.

To be able to solve these coupled differential equations, one needs two-body density

matrices ρ
(i,j)
α4,44. Evaluating two-body density matrices requires knowledge on three-

body density matrices and they, in turn involve four-body density matrices and it

goes on in the same hierarchy. Therefore, it is not possible to solve these equations

exactly for big systems and the problem requires a different approach. There have

been many theoretical proposals to deal with this problem for three-level scheme

[20, 18, 31, 32, 33, 34], and in this manuscript, we propose a self-consistent MF approach

to overcome the difficulties arising from computational power and numerical instability

problems due to increase in the size of Hilbert space.

2.1. Self-consistent MF approach

MF approximation, in which it is possible to reduce two-body terms into products of
single-body density matrices that we have knowledge of has been used widely. However,
it is shown that MF approximation underestimates the correlations between the Rydberg
atoms and therefore does not yield accurate results for all parameter regimes [31].
MF approach would also fail for very small atomic densities where fluctuations in the
fields experienced by atoms become pronounced. Thus, we propose a MF approach
that includes self-consistency to overcome this problem and develop an algorithm that
involves the correlations. Firstly, we reduce two-body density matrices to the product

of single-body density matrices by MF approximation as ρ
(i,j)
α4,44 = ρ

(i)
α4ρ

(j)
44 . Only off-

diagonal elements of the density matrix, i.e. coherences, (4g-4j) include interaction
terms, so modified equations become

d

dt
ρ
(i)
14 =

i

2
Ω3ρ

(i)
13 −

i

2
Ω1ρ

(i)
24 − i(∆1 + ∆2 + ∆3)ρ

(i)
14

− Γ3

2
ρ
(i)
14 + i

∑
i 6=j

Vijρ
(i)
14ρ

(j)
44 , (5a)

d

dt
ρ
(i)
24 =

i

2
Ω3ρ

(i)
23 −

i

2
Ω2ρ

(i)
34 −

i

2
Ω1ρ

(i)
14 − i(∆2 + ∆3)ρ

(i)
24

− (Γ1 + Γ3)

2
ρ
(i)
24 + i

∑
i 6=j

Vijρ
(i)
24ρ

(j)
44 , (5b)

d

dt
ρ
(i)
34 =

i

2
Ω3

(
ρ
(i)
33 − ρ

(i)
44

)
− i

2
Ω2ρ

(i)
24 − i∆3ρ

(i)
34

− (Γ2 + Γ3)

2
ρ
(i)
34 + i

∑
i 6=j

Vijρ
(i)
34ρ

(j)
44 . (5c)

Since all interaction terms in 5a-5c have Rydberg state population, ρ44 as a common

term, one can write it for ith atom as

i
∑
i 6=j

Vijρ
(i)
α4ρ

(j)
44 = −iρ(i)α4δ(i), (6)
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where δ(i) =
∑
j 6=i

Vijρ
(j)
44 represents the sum of interactions with all other Rydberg atoms.

Figure 1(b) shows the schematic representation of how total interaction for the ith

Rydberg atom is calculated. Following that, we start with an initial guess for ρ44, e.g.

population for the non-interacting case, and calculate pairwise interactions for randomly

distributed atoms using Monte-Carlo sampling for atomic positions. By introducing

interactions to the system, we solve the system of linearly coupled equations for ρ44 self-

consistently and obtain the steady-state solutions. The self-consistent MF algorithm is

shown in figure 1(c).

3. Results and Discussion

3.1. Rydberg-EIT

For the system composed of cold Cs atoms, we choose the state configuration as:

6S1/2 → 6P3/2 → 7S1/2 → nP and the parameters as: (Ω1,Ω2,Ω3)/(2π) = (0.1, 8, 1)

MHz, (Γ1,Γ2,Γ3)/(2π) = (5.39, 3.31, 0) MHz and, (∆2,∆3)/(2π) = (0,−4) MHz in

accordance with the experiment [27] . Simulations are completed for 50 atoms and

averaged over 1000 realizations of atomic positions in a given atomic density % = 109

cm−3 with periodic boundary conditions. Since the interaction strength between the

Rydberg atoms scales with principal quantum number as C6 ∝ n11, figures are plotted

for n = 50, 60, 70, 80, 90, 100 to visualize the interaction effects.

Figure 2 shows the ground state (left) and Rydberg state (right) populations for

different interaction strengths, scanned across probe field detuning ∆1. Inset shows

the region zoomed around ∆1/(2π) = −4 MHz. Since the probe field is weak,

most of the population in the system is at ground state. At three-photon resonance

(∆1 + ∆2 + ∆3 = 0), ground state population has the lowest value because excitation

to Rydberg state is most effectively achieved with this condition. But, as the principal

quantum number n increases, probability of exciting the atoms decreases, effectively

trapping the atoms at the ground state. As the interaction increases, Rydberg blockade

radius gets larger and more atoms are left inside the blockaded region, therefore reducing

the number of atoms in a Rydberg state at the same time. This excitation suppression,

traps atoms in the ground state, crippling the dark state formation, thus EIT and

dispersive feature lose their prominence as it can be seen from the following figures.

Figure 3(a) shows the occurence of transparency due to the strong dressing around

three-photon resonance. Two absorption peaks at ∆1/(2π) = −4 and 4 MHz correspond

to the absorption of the dressed states. But due to the dark state formation at three-

photon resonance, absorption minima is observed instead of a peak. Figure 3(b) shows

the dispersive feature introduced by EIT mechanism at three-photon resonance. In

the non-interacting case, steep dispersion curve is observed, but as the van der Waals

interaction gets stronger, slope of the dispersion curve gets smoother and at n = 100 as

can be seen from the inset, steep curvature is completely lost.

In figures 3(c) and (d) imaginary and real parts of probe coherence for different
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Figure 2. Ground-state (left) and Rydberg state (right) populations as a function of

probe detuning for different interaction strengths. Inset zooms around ∆1/(2π) = −4

MHz.

Figure 3. Imaginary and real parts of the probe coherence for different interaction

strengths (a, b) and different coupling detunings (c,d). Insets in (a) and (b) zoom

around the three-photon resonance.

dressing field detunings with respect to probe field detuning are shown, respectively

while van der Waals interaction is kept constant with n = 60. We expected to observe

EIT behavior at three-photon resonance and it can be seen that EIT and steep change

in refractive index, shift towards three-photon resonance with changing ∆2. It is clear

that three-photon resonance is required for formation of dark-state and transparency

window to occur.

As it can be seen from figure 4, strong dressing field Ω2 together with a weak probe

field Ω1 in ladder configuration results in avoided crossings and dark-state formation

at three-photon resonance which permits a transparency window to be opened. Figure

4 shows the eigenvalues of the Hamiltonian (top, bottom) without interactions as a

function of probe detuning together with the imaginary part of the probe coherence
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2

3

4

2

3

4

Figure 4. Hamiltonian eigenvalues λ2, λ3, λ4 (top, bottom) and the imaginary part

of the probe coherence (middle). λ1 is not shown here since it is zero. Vertical grey

lines are the maximum absorption points around the three-photon resonance. Bottom

panel zooms in around three-photon resonance.

(middle). There are avoided crossings at the points shown with grey vertical lines where

absorption is maximum. System evolves into a dark state between these points and EIT

window appears around three-photon resonance in accordance with the reference[28].

The inclusion of atomic interactions makes it clear that EIT is prone to be disturbed.

It might be helpful to study the energy eigenvalues and probe coherence as a function

of probe detuning for a deeper understanding of the underlying mechanism.

3.2. Rydberg-EIA

To investigate Rydberg-EIA system, we now consider a cold Rb gas cloud and treat the

system with self-consistent MF approach to obtain steady-state solutions for different

interaction strengths. The excitation scheme under examination is 5S1/2 → 5P3/2 →
5D5/2 → nF and the parameters used in the simulations are (Ω1,Ω2,Ω3)/(2π) =

(10, 25, 18) MHz, (Γ1,Γ2,Γ3)/(2π) = (6, 0.66, 0) MHz which are consistent with the

experiment [30]. In the experiment, Rb vapour cell was used and the Rydberg state is

coupled with another one with a microwave (MW) field for the non-interacting system.

However here, we consider a cold interacting gas instead, to investigate the interaction

effects. Simulations are completed for the detunings ∆1 = 0, ∆2/(2π) = (−20, 0, 20)

MHz and atomic density % = 109 cm−3.

Figure 5 shows the ground state (top) and Rydberg state (bottom) populations

for different interaction strengths with ∆2/(2π) = (−20, 0, 20) MHz (left, center, right).

Since we consider a weak probe field, the population mostly stays on the ground state

and Rydberg state excitation happens at the three-photon resonance as in the case of

Rydberg-EIT system. Interaction reduces the Rydberg population as expected and the
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Figure 5. Ground-state (top) and Rydberg state (bottom) populations as a function

of dressing detuning for different interaction strengths. Each column is for different

coupling detuning; ∆2/(2π) = (−20, 0, 20) MHz (left, center, right).

population is trapped in the ground-state as the interaction increases. Blockade effect

[12, 13, 14] can be seen from the figure very clearly for all ∆2 values as well as importance

of the three-photon resonance.

Figure 6. Imaginary (left) and real (right) parts of the probe coherence as a function

of dressing detuning for different interaction strengths.

Figure 6 shows the imaginary (left) and real (right) parts of the probe coherence

as a function of ∆3 for different interaction strengths. The absorption peak is observed

at ∆3 = 2π × 0 MHz and as the interaction and therefore the blockade radius increase,

there is a reduction in absorption and system is expected to behave like an effective-

three level system for high principal quantum numbers. The real part determines the

dispersive behavior and the slope of it plays an important role for slow-light applications.

Interaction strongly affects the slope, so it might be possible to change the refractive
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index significantly.

3.3. EIT-EIA cross-over

Our simulations also demonstrate that it is possible to have EIA-EIT cross-over by

changing the dressing detuning as it was observed in experiment [30]. Figure 7 shows the

imaginary (top) and real (bottom) parts of the probe coherence for different coupling

detunings for n = 55 state. In the case of ∆2/(2π) = 0 (center) there is an EIA

signal whereas for the cases ∆2/(2π) = (−20, 20) MHz (left,right) there appears an EIT

window instead. It is obvious that only by changing the detuning, one can observe

EIT-EIA cross-over and therefore it is quite easy to manipulate the system. It is clearly

seen that if all fields are coupled resonantly, i.e. when all detunings are zero, system

exhibits EIA whereas off-resonant coupling of probe and coupling fields, results in EIT.

This kind of control on the system might provide a very useful platform for many

applications, since it is possible to change the optical properties of the system as needed.

The refractive index of the system exhibits a drastic change as it can be seen from the

figure. The three-photon resonance is still significantly important and we consider non-

interacting case to avoid screening effects of it on EIT-EIA cross-over. In the case of

EIT, real part of the probe coherence shows a very different dispersive effect compared

to the Cs case (figure 3(b)). It might be interesting to study this behavior further in

the future.

Figure 7. EIT-EIA crossing for different coupling detunings; ∆2/(2π) = (−20, 0, 20)

MHz (left, center, right). Top panels show the imaginary part of the coherence whereas

bottom ones show the real part.

Finally, the susceptibility, χ12 = χR12 +χI12 = 2%2ρ12/(h̄ε0Ω1) for atomic density % =

109 cm−3, is shown in figure 8 as a function of interaction strengths for different regimes

which also shows that optical properties of these systems can be easily manipulated

by changing the parameters. As the coupling detuning varies, optical behavior changes

completely and there is a high loss with a steep slope on the real part at three-photon

resonance in the case of EIA. However, for both EIT cases, it is possible to reduce the
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Figure 8. Imaginary (left) and real (right) parts of the susceptibility as a function of

n for EIT (∆2/(2π) = −20, 20) and EIA (∆2/(2π) = 0) regimes.

group velocity without high loss. The difference between EIA and EIT is more clearly

seen here and the interaction has drastic effects on the susceptibility as expected. As

the interaction increases, loss is reduced and saturated in the case of EIA, whereas in

the EIT cases, loss is increased with it. Saturation is observed more clearly on the real

part (right). More in depth simulations are required to investigate nonlinear effects but

even with these basic susceptibility calculations, it is obvious that such systems can

easily be manipulated on demand.

4. Conclusion

We investigated the interaction effects on three-photon Rydberg-EIT and Rydberg-EIA

phenomena by using the self-consistent MF approach. Many-body simulation results

agree with experimental findings quantitatively and, show that it is easy to manipulate

these systems with system parameters such as field detunings and principal quantum

number for different optical modification purposes. EIT-EIA cross-over that was

observed experimentally before [30] is also studied for Rb systems. Four-level excitation

scheme would provide a potential platform for applications such as THz sensing and

imaging and, Rydberg spectroscopy because of the control on the optical response of

atomic media. Three-photon excitation scheme might be experimentally more feasible

when compared to systems using two-photon excitation, due to the availability of

infrared diode lasers. It is also possible to achieve higher Rabi frequencies using low

laser power. Although subject of Rydberg-EIT is studied for more than a decade,

comprehensive work on four-level Rydberg-EIT systems are rare. Thus, our method

provides a practical tool to deeply understand these quantum coherence phenomena and

further investigation on susceptibilities for nonlinear effects might provide an insight for

applications.
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