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ABSTRACT. Backstepping based controller and observer models were designed
for higher order linear and nonlinear Schrédinger equations on a finite interval
in [3] where the controller was assumed to be acting from the left endpoint of
the medium. In this companion paper, we further the analysis by considering
boundary controller(s) acting at the right endpoint of the domain. It turns
out that the problem is more challenging in this scenario as the associated
boundary value problem for the backstepping kernel becomes overdetermined
and lacks a smooth solution. The latter is essential to switch back and forth
between the original plant and the so called target system. To overcome this
difficulty we rely on the strategy of using an imperfect kernel, namely one of
the boundary conditions in kernel PDE model is disregarded. The drawback
is that one loses rapid stabilization in comparison with the left endpoint con-
trollability. Nevertheless, the exponential decay of the L2?-norm with a certain
rate still holds. The observer design is associated with new challenges from the
point of view of wellposedness and one has to prove smoothing properties for
an associated initial boundary value problem with inhomogeneous boundary
data. This problem is solved by using Laplace transform in time. However, the
Bromwich integral that inverts the transformed solution is associated with cer-
tain analyticity issues which are treated through a subtle analysis. Numerical
algorithms and simulations verifying the theoretical results are given.

1. Introduction.

1.1. Statements of problems and main results. Backstepping based controller
and observer models were designed for higher order linear and nonlinear Schrodinger
equations on a finite interval in [3] where the controller was assumed to be acting
from the left endpoint of the medium. In this companion paper, we further the
analysis by considering boundary controller(s) acting at the right endpoint of the
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domain. We will consider only the linear higher order Schrédinger (HLS) equation
in this paper:

iug + 1BUgpy + QUzy + 10u, =0, x € (0,L),t € (0,T),
U(O,t) = O,U(L,t) = ho(t)7u$(L’t) = hl(t)v (1)
u(,0) = uo(z),

where 8 > 0, o,0 € R, ho(t) = ho(u(-,t)) and hy(t) = hi(u(-,t)) are feedbacks
acting at the right endpoint of the domain. The control design results of this paper
can be extended to associated higher-order nonlinear Schrédinger equations

iU + 1BUgzy + QUzy + 10Uy, + f(u) =0

as in Part I (see [3]) with additional assumptions on the coefficients, but this topic
is omitted here considering the volume of current text and postponed to a future
paper. In addition, it is also possible to consider other sets of boundary conditions
here as in Part I that involves second order traces such as

w(0,t) = 0, u, (L, t) = ho(t), uzs (L, t) = hq(t),

but this will also be discussed in another place.
The higher-order nonlinear Schrodinger equation was originally given by

1
gy + 5 Uaa + |ul*u + €i (ﬂlumz + Bo(Jul?u) + 63u|u\i) =0, (2)

which has been used to describe the evolution of femtosecond pulse propagation
in a nonlinear optical fiber [17, 18]. In this equation the first term represents the
evolution, second term is the group velocity dispersion, third term is self-phase mod-
ulation, fourth term is the higher order linear dispersive term, fifth term is related
to self-steepening and sixth term is related to self-frequency shift due to the stimu-
lated Raman scattering. In the absence of the last three terms, the model becomes
classical nonlinear Schrédinger equation (NLS) which describes slowly varying wave
envelopes in a dispersive medium. It has applications in several fields of physics
such as plasma physics, solid-state physics, nonlinear optics. It also describes the
propagation of picosecond optical pulse in a mono-mode fiber [34]. However, for
the pulses in the femtosecond regime, the NLS equation becomes inadequate and
higher order nonlinear and dispersive terms become crucial. See [1] for a detailed
discussion of the higher order effects upon the propagation of an optical pulse.

Higher order linear and nonlinear Schrodinger equations were studied from the
point of many different aspects. Regarding the wellposedness of solutions, we refer
the reader to [6, 7, 8, 16, 21, 30, 31]. A numerical study of this problem was given
in [9]. From the controllability and stabilization perspective, we refer the reader to
[10] for exact boundary controllability, [4] and [12] for internal feedback stabilization
and [3] for boundary feedback stabilization.

From a practical point of view, stabilization of solutions is necessary in order
to prevent the transmission of an undesirable pulse propagation. Our study offers
a practical solution to this issue because: (i) the stabilization is fast, i.e. the
absorption effect is exponential and (ii) the control acts only from the boundary
which is desirable when access to medium is limited.

In the absence of feedback controllers, L?—norm of the solution satisfies

d

@HU('J)H%%O,L) = —Blu (0,1)* <0. (3)
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This can be shown by taking L?—inner product of the main equation in (1) with u
and applying integration by parts. From the estimate (3), we infer that L?—norm of
the solution does not increase in time. Furthermore, it was shown that if a2 +385 >

0 and
k2 4kl +12
= _— 7+ 4
LeN {%,3,/ 355 a2 FlE } (4)

then the L2—norm of the solution does not necessarily decay to zero. Here A is the
set of critical lengths in the context of exact boundary controllability for the HLS
(see [10, 14] for the derivation of this set of critical lengths). For instance choosing
the coefficients 8 =1, a =2 and § = 8 with k = 1 and | = 2, we obtain L =7 € N.
Moreover, choosing the initial state as

ug(z) = 3 — e — 2e7%

we see that u(x,t) = wo(x) solves (1). Therefore, we find a time—independent
solution with a constant energy if no control acts on the system.

In this paper, we are interested in constructing suitable feedback controllers to
make sure that we can steer all solutions to zero with an exponential rate of decay
on domains of both critical and uncritical lengths. More precisely, we consider the
problem below:

Problem. Given L > 0, find A > 0 and feedback control laws ho(t) = ho(u(-,t)) and
hi(t) = hy(u(-,t)) such that the solution of (1) satisfies ||u(-,t)||12(0,1) = O(e™™)
for some t > 0.

In order to solve this problem, we use backstepping method (see [20] for a general
discussion on the backstepping method), which is a well studied method for the sec-
ond order evolutionary partial differential equations [19, 22, 27, 28, 29]. In recent
years, researchers studied backstepping stabilization of several higher order evolu-
tionary equations that include third order dispersion term [3, 11, 23, 24, 32, 33]. In
these studies on KdV type equations, a single boundary feedback control is located
at one endpoint and the number of boundary conditions located at the opposite
endpoint are two. In particular, Part I of this study [3] assumes a control input
acting from the left endpoint, and there are two homogeneous boundary conditions
that are imposed from the right endpoint. Conversely, if there are two boundary
controllers acting from the right endpoint and a single homogeneous boundary con-
dition imposed at the left endpoint, which is the subject of the present paper, the
situation becomes mathematically very different as we explain below.

To this end, we want to transform the original plant via the backstepping trans-
formation

w(z,t) = [(I — Tr)ul(x,t) = u(z,t) — /OI k(z,y)u(y, t)dy (5)

to a target system which already has the desired exponential stability. The classical
approach is to take the linearly damped version of the same type of pde with
homogeneous boundary conditions:

iw + ifWezy + QWey + 10w, +irw =0, x € (0,L),t€ (0,T),
w(0,t) = w(L,t) = w,(L,t) =0, (6)
w(x,0) = wo(z) = uo(x) — [y k(x,y)uo(y)dy.
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The key point here is to be able to show the existence of a sufficiently smooth kernel
and that the transformation I — YT, has a bounded inverse on a suitable space.
Then, the wellposedness and stability properties for the target model will also be
true for the original plant. Figure 1 below summarizes the standard algorithm of
the backstepping method.

w(x7t) = u(xat) - fow k(way)u(yvt)dy
\

Linear Plant Target
State variable u(z,t) State variable w(z,t)

Inverse transformation

FIGURE 1. Backstepping

To prove the existence of a kernel, we differentiate (5) and use the original plant
together with the target system to see what conditions k& must satisfy. After some
calculations (see Appendix A for details), we deduce that k must solve the following
boundary value problem

kx(ﬂf,x) = %v

where (z,y) belongs to the triangular region A, , = {(z,y) € R?|y € (0,z),z €
(0,L)}. To solve this problem, we change variables as s = z —y and t = y and write
G(s,t) = k(z,y). Then (7) transforms into

6(3Gsst — 3Gis + Gttt) + ia(Gtt - 2Gt5) + 606Gy +rG =0,

G0, ) = Gi(s,0) = G(s,0) = 0, (8)
Gs(ovt) = %7

where (s,t) belongs to As; = {(s,t) € R?|t € (0,L — s),s € (0,L)}. See Figure 2
for transformation of the triangular region under the above change of variables.

S

L L
Triangular region A, , Triangular region A, ;

F1GURE 2. Triangular regions



STABILIZATION OF HIGHER ORDER SCHRODINGER EQUATIONS 5

Observe that there is a mismatch between Gy(s,0) and G4(0,t) in the sense
that 0 = G45(0,0) # Gs(0,0) = 35. This implies that (8) cannot have a smooth
solution and the standard algorithm of backstepping method fails. This issue was
previously observed in Korteweg de-Vries equation [11] and later treated in the case
of uncritical domains in [13] and in the case of critical domains in [25, 2]. The
idea of the latter work was to drop one of the boundary conditions from the kernel
pde model and take r sufficiently small. Note that if r is small, then the mismatch
is also small and one can hope that the solution of the corrected pde model will
yield a kernel which is good enough for our purposes. Once we drop the boundary
condition G¢(s,0) = 0 from (8), the corrected version of the pde model (8) becomes

B(3Grst — 3G, + Giyy) +ia(Gyy — 2G3,) +6GE +1G* =0,  (s,1) € Agy,

G*(0,t) = G*(s,0) = 0, 9)
G3(0,t) = 43,

Setting k*(x,y) = G*(s,t), we deduce that k* is the sought after solution of

B(kypy + kyyy) — ik, —ky,) +0(ky + k) +7k* =0, (7,y) € Ay y,
E*(x,z) = k*(x,0) =0, (10)
k;(xvx) = %7
Existence of a smooth k* is given in Lemma 3.1.

Based on the above discussion, we now use the following backstepping transfor-
mation

w(et) = ule,t) = [ K@)ty ()
0
and corresponding target model for (1) becomes

wy + 1wy, + awl, + idw}

+irw* = ifk; (2, 0)w;(0,t), x € (0,L),te (0,T),
w*(0,t) = w*(L,t) = wi(L,t) =0,

w*(x,0) = w(x) = uo(x) — [§ k*(z,y)uo(y)dy.

See (188)-(192) in Appendix A for detailed calculations. Notice that (12) is a
modified version of (6) in the sense that there is a trace term at the right hand
side of the main equation. This trace term is due to disregarding the condition
ky(x,0) = 0 and using the relation u;(0,t) = w}(0,t). It is shown in Proposition
4 that the solution of (12) exponentially decays to zero for small r. Furhermore, it
is important that the transformation (11) has a bounded inverse (see Lemma 3.2).
Graphical illustration of the new scheme is shown in Figure 3.

(12)

w*(z,t) = u(z,t) — [ k*(z,y)u(y, t)dy

Ty

Linear Plant Modified target
with a trace term
State variable u(x,t) State variable w*(x,t)

\—/

Inverse transformation

FIGURE 3. Backstepping with an imperfect kernel
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Based on the above strategy feedback controllers take the following forms:

L L
mt) = [ K Lt mo = [ KL 03)
Let us introduce the space
X% =C([0,T]; H(0,L)) N L(0,T; H**1(0, L)), £ > 0.
Now, regarding plant (1), we prove the following theorem.

Theorem 1.1. Let T,3 > 0, o,§ € R, ug € L?(0,L). Assume that the right
endpoint feedback controllers ho(t), hi(t) are given by (13) and let k* be a smooth
backstepping kernel solving (10). Then, we have the following:

(i) (Wellposedness) (1) has a unique solution u € X% satisfying also

Moreover, if ug € H3(0, L) and wg = (I — YTi~)[uo] satisfies the compatibility
conditions, then u € X3.
(ii) (Decay) Suppose ug € L?(0,L). Then, there is r > 0 such that

Ex(-,0;1)||%.
A:5<r_ iy )13 (o,m> L

B 2
Moreover, the solution u of (1) with feedback controllers (13) satisfies

u(- )20,y < ch UOHLQ(O,L)(M, t>0,

where ci+ 1S a nonnegative constant which depends on k*.

Remark 1. It is shown in the proof of Proposition 4 that there exists > 0 which
guarantees the condition A > 0. See also Table 1 for different values of r, A\. Note
also from the same table that smallness of r is essential for A to be positive.

In the second part of the paper, we consider the case where the state of the
system is not fully measurable, in particular at time ¢ = 0. However, we assume
that the first order boundary trace y;(t) = u,(0,¢) and the second order boundary
trace y2(t) = u.,(0,t) are known, say detectable through boundary sensors. In
order to deal with the robustness of the state, we construct an observer, which uses
the given boundary measurements. To this end, we propose the following observer
model

ity + 18lgmy + Qlipy + 100, — p1(z)(y1 (¢) — 144(0,1))
—p2($)(y2(t) - azw(ovt)) =0, z¢€ (Oa L)vt € (OvT)v
4(0,t) = 0,4(L, t) = ho(t), Gy (L, t) = hq(t),
(x,0) = Go(x).
In the above model, the feedback controllers ho(t), h1(t) depend on the state of the
observer model. The same controllers will also be applied to the original plant (1).
p1, p2 are set to be observer gains and they will be constructed in such a way that

the so called error @ = u — @ must approach to zero as t gets larger. More precisely,
we want to solve the following problem:

(14)

Problem. Given L > 0, find observer gains p1, p2, and feedback laws ho(t) =
ho(a(-,t)), hi(t) = he(a(-,t)) such that there exists X\ > 0 for which the solution u
of (1) satisfies [[u(-, 1) 20,1y = O(e).
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Note that the error function u satisfies
1y + i flger + Qlige + 101,
+p1(2)Uy(0,t) + pa(2) Uy (0,8) =0, € (0,L),t € (0,T),
u(0,t) = a(L,t) = U, (L,t) =0,
(z,0) = Go(x).
In order to guarantee the decay of solutions of (15) at an exponential rate, we

treat p; and ps as control inputs and suitably construct them via the backstepping
technique. To this end, we transform (15) using the transformation

Mao=Maw—A%uwm@w@, (16)

to a target error model

(15)

iy + 1P Wygy + gy + 100, +irw =0, x € (0,L),t € (0,T),
w(0,t) = w(L,t) = w,(L,t) =0, (17)
w(z,0) = wo(x),
which has exponential decay property. Differentiating (16) and using (15) with (17),
one can see that p must satisfy the following boundary value problem

B(Pzza + Pyyy) — i0(paa — Pyy) + 6(Pz +py) — TP =0,
p(z,z) = p(L,y) = p=(L, y)O, (18)
pe(z,7) = 35(L — 2),
on A, (see Appendix B for detailed calculations). However, changing variables as
s=L—x,t=1x—y and defining H(s,t) = p(x,y), one can see that the resulting

boundary value problem is overdetermined in the sense that there is a mismatch

between the boundary conditions: 0 = Hy(0,0) # His(0,0) = 35. Therefore, there
cannot exist a smooth kernel satisfying all boundary conditions. Following a similar
approach as in the earlier part of the paper, we could consider disregarding one of
the boundary conditions, namely p,(L,y) = 0, and take r sufficiently small. Then,

the corrected version of the pde model (18) becomes
B(Druw T Pyyy) — ia(phy — Dyy) + 0(p5 +py) —1p* =0,
p*(z,x) = p*(L,y) =0, (19)
pi(z,2) = 553(L — ).

Now if we use the backstepping transformation

ie.t) = 0" (a,t) = [ 0o, 0)0" (0 ), (20)
0
where p* solves (19), then the corresponding target error model for (6) becomes
iy +ipwk,, + awk, +idwk +irw* =0, x€(0,L),te (0,T),
., - ~* L, .
w*(0,t) = @*(L,t) = 0,d;(L, t) = [y pi(L, y)d* (y, t)dy, (21)
w*(x,0) = 0 (x),
if the control gains are chosen such that pi(z) = i8p; (z,0) — ap*(x,0) and pa(z) =
—iBp*(x,0) (see Appendix B for details). Note that nonhomogeneous Neumann

type boundary condition in (21) is due to disregarding the condition p,(L,y) = 0.
Nevertheless, we still have the exponential decay of solutions of (21) assuming that
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r is sufficiently small. This is given in Proposition 7. Also, it is not difficult to see
that p* and k* are related via

p*(x,y) = k*(L - va — I _T)v

which immediately guarantees the existence of a smooth kernel p*. This yields the
exponential decay of the solution of the error model.

Next, we apply the backstepping method to the observer model. To this end, we
differentiate

w*(z,t) = d(x,t) — /0-76 E*(z,y)a(y, t)dy (22)

and use (14) to deduce that w* solves target observer model given by

W] + iy, + iy, + 0wy + irw* = ifk;(z,0)w;(0,t)

+[(I = Ti= )pa] () (0, )

+[(I - Tk* )p?](x)w.L.L(O7 t)a HAES (07 L)at € (Oa T)a (23)

w*(0,t) = w*(L,t) = w;(L,t) = 0,

W*(x,0) = w§(z) = do(x) — fow k*(z,y)a(y, t)dy.
Notice that we still use the solution of the corrected kernel pde model in the back-
stepping transformation given in (22). Therefore, as in the first part of this paper,
an extra trace term shows up in the main equation of (23). We prove in Proposition
8 that the solution of (23) exponentially decays to zero in time, again assuming that
r is sufficiently small.

Thanks to the bounded invertibility of the transformations (I — Yy+), (I — YT px),

stability estimates with same decay rates also hold for observer and error models.

We have the following theorem for the wellposedness and stabilization of the plant-
observer-error system (1)-(14)-(15):

Theorem 1.2. Let T,3 > 0, a,6 € R, and ug, o € H®(0,L). Assume that the
right endpoint feedback controllers are given by

L L
ho(t) = / K*(Loy: )iy, O)dy,  ha(t) = / K2 (Loyi )iy, t)dy,

where k* and p* are smooth solutions of (10) and (19), respectively. Then, we have
the following:

(i) (Wellposedness) Suppose that w§ = (I — Yi)[o] satisfies the compatibility
conditions and the pair (wg,v), where Wi = (I — Ype) i), 1 = (W) =
fOL pi(L,y)w(y,t)dy, satisfies the higher order compatibility conditions. Then
the plant-observer-error system (1)-(14)-(15) has a unique solution (u, i, ) €
X3 x X3 x X5.

(ii) (Decay) Moreover, for sufficiently small v > 0, there exists p > v > 0 such
that,

Ju(-, )l 220,y Serp ([0l 20,y + cplluo — tollmso,0)) €
+ Jluo — toll 20,y ™",
[a(, )l z20,2) Serp (1aoll 20,0y + [luo — tollmso,ry) €7
[(w—=a)(-, )|l L20,0) Scp

1w = @) ()l 20,0y Seplluo — tollmago,ye™"

luo — @ol|r2(0,r.ye ",
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fort > 0, where ci, cp, ¢y, crp are nonnegative constants depending on their
subindices.

1.2. Preliminaries. In this section, we state a few important inequalities and
notation which will be useful in our proofs.

1.2.1. Notation. LP(0,L), 1 < p < oo, is the usual Lebesgue space and given u €
LP(0, L), a Lebesgue measurable function, we will denote its LP—norm by ||u|,, i.e.

I 1
nwpi</'uwm).
0

If p = oo, then the corresponding norm is given by

Jealloo == ess suplul.
z€(0,L)

Given k > 0, we denote the L?—based Sobolev space by H*(0,L). In particular,
H}(0,L) is the space of functions which belong to H'(0,L) that vanish at the
endpoints in the sense of traces. If A is a linear and bounded operator on L2(0, L),
we will denote its operator norm on L%(0, L) by [|All2—2. We will write a < b to
denote an inequality a < ¢b where ¢ > 0 may only depend on fixed parameters of
the problem under consideration which are not of interest. Sometimes, to prove
the wellposedness of the models that we are interested in, we require compatibility
conditions between initial and boundary data. We define the notion of compatibility
in the following sense.

Definition 1.3 (Compatibility). Let T, L > 0.
(i) If ¢ € H3(0, L), v» € H'(0,T) are such that
$(0) =0, &(L)=0, ¢'(L)=1(0), (24)
then we say (¢, 1)) satisfies compatibility conditions.
(i) If ¢ € H(0,L), v € H?(0,T) and ¢ = B¢"" —iag” + §¢', then we say (¢, )

satisfies higher order compatibility conditions provided it satisfies compatibil-
ity conditions and

$(0) =0, ¢(L)=0, ¢'(L)=1v'(0). (25)
If ¢» = 0, then we only refer to ¢ regarding compatibility conditions.

Finally, starting from Section 2, we drop the superscript notation * that ex-
presses modified target models and modified backstepping kernels, and simply write
k,p,w,w,w, etc.

1.2.2. Some useful inequalities. We will use the Cauchy—Schwarz inequality, for
u,v € L?(0, L)

< lullzllvllz,

/OL u(z)v(z)de

and e—Young’s inequality

€
ool < Zlul” + T 1ol
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where € > 0, 1 < p < oo and %Jr % = 1. We will use Gagliardo—Nirenberg’s
interpolation inequality in our estimates: Let p > 2, o« = 1/2—1/pand u € H}(0, L).
Then,
lullp < ell’[15 a2~

We will also use its higher order version: Let u € H*(0, L)NHZ (0, L) fora = j/k < 1
where j,k € N. Then

a1l < ™5 a3~
Special case of the Gronwall’s inequality reads: given f : [0,¢] — R" and a, 3 > 0,
the inequality

f)<a+tp / f(s)ds

implies
f(t) < ael.

1.3. Outline. In Section 2, we prove smoothing properties for a nonhomogeneous
initial-boundary value problem with inhomogeneous boundary conditions. These
will be useful for the wellposedness analysis that will be carried out in Section
3 and Section 4. The tools we mainly use are semigroup theory, multipliers and
the Laplace transform. In Section 3, we first show the existence of an infinitely
differentiable smooth backstepping kernel in Lemma 3.1 and then state the invert-
ibility of the backstepping transformation with a bounded inverse in Lemma 3.2.
Then, we study the wellposedness and exponential decay properties of modified
target model (12). Finally, thanks to the bounded invertibility of the backstepping
transformation, we obtain the wellposedness and exponential decay for the original
plant. Section 4 is devoted to the observer design problem where we assume that
the state of the system is not known and only some partial boundary measurements
are available. We first make the wellposedness analysis for modified target error
model (21) and modified target observer model (23), respectively. Thanks to the
bounded invertibility of the backstepping transformations, we show the wellposed-
ness for error and observer, which imply the wellposedness of the original plant.
Next, we study the decay properties of the target error and target observer models.
Again, by using the invertibility of backstepping transformations, we obtain the
exponential stability of plant—observer—error system. In Section 5, we introduce a
numerical algorithm and then provide two numerical simulations for controller and
observer designs. Finally, in appendices, we give details of some calculations.

2. Auxiliary lemmas. In this section we prove some auxiliary lemmas which will
be useful in order to show wellposesness results in Section 3.2 and Section 4.1. Let
us start by considering the following model

y(x,0) = ().
We will denote the solution of (26) by y[, f, 11,12, ¥3]. Let A be the linear operator
defined by
Ay = —By" +iay” — 5y (27)
with domain

D(A) ={y € H*(0,L)|y(0) = y(L) = /(L) = 0}. (28)
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It is shown in [10] that A generates a strongly continuous semigroup of contractions,
S(t),t >0, on L?(0,L). Thus, by standard semigroup theory, (26) with f = 0 and
¥; =0, i = 1,2,3, admits a unique mild solution (see [26]) for ¢ € L?(0,L). In
the presence of nonhomogeneous boundary conditions ;, i = 1,2, 3, but with zero
forcing and zero initial state, i.e. ¢ = f = 0, analysis of solutions of (26) will be
carried out by obtaining a representation for the solution via the Laplace transform
in t. Also, in the following lemmas below we obtain regularity estimates for solutions
corresponding to initial, interior and boundary data in (26).

Lemma 2.1. Let f = ¢; =0, i = 1,2,3. Then, for T > 0 and ¢ € L?*(0,L),
y(-) = S(-)¢ = y[#,0,0,0,0] satisfies space-time estimates

(1) 1912 0.13:22 0,9y + Blly 0, ) Z2 0.1y = 113,

(i) 1Wl1Z2 0.7 0.0y S L+ T)913
and the time-space estimate

(i) sup ]Ilyx(x, Wezo.r) S (L +VT)|[¢]l2-

z€[0,L

Proof. We first assume that ¢ € D(A) and the solution is sufficiently smooth. The
general case then can be shown by using the classical density argument.

(i) We take L?—inner product of the main equation in (26) by 2y and get
L L L L
2%/ 1w ydr + 2%/ 18Ypazydr + 2%/ Y YdT + 2%/ 10y, gder = 0. (29)
0 0 0 0
The first term at the left hand side of (29) can be written as

L L d 9
23 [ ipda = 2R [ e = 5 ol 0). (30)
0 0 t

The second term can be integrated by parts in x, and using boundary condi-
tions we have

L L
23 [ iBasaide = -2 | Busstads = Bl 0.0 (31)
0 0
The third term, again via integration by parts in x, gives
L L
2%/ Yz fdr = —2%/ aly.|*dz = 0. (32)
0 0

The fourth term vanishes since
L
=0. (33)
0
Combining (30)-(33) and integrating with respect to ¢, we arrive at

Iy O3 + Bllys (0, )72 0,7y = 1013- (34)

Passing to supremum on both sides over [0, T] yields the desired result.
(i) Now we take L?—inner product of the main equation (26) by 22y and consider
the imaginary parts of both sides to get

L
2%/ i0uzudr = dlu(z,t)|?
0

L L
0 0

L L
+ 2%/ axyyydr + 2%/ idzy,yder = 0. (35)
0 0



12 T. OZSARI AND K. C. YILMAZ

The first term at the left hand side of (35) can be written as

L d [t
2%/ iryydr = —/ z|y|*d. (36)
0 dt Jo

The second term can be integrated by parts in  and due to the boundary
conditions we have

L L L
0 0 0
L L
1 d
f 2 T 2d.1: —_ = / Xr— T 2d$
5(/ e =5 [ ol .

1 L
=2p <|yw(a t)Hgdx + 5/ |yw2d$>
0

Third and fourth terms, again via integration by parts in x give us

L L L
23/ QxYzydr = 2 (—%/ Yo ydr — S/ x|ym|2dx> (38)
0 0 0

L L
23 / iSay,gde = 26 / e L y2de = —dlly( 1)[2. (39)
0 0 de'

Combining (36)-(39), we get

and

L

d Lo
7 zlyPdz + 38|yz (- t)II3 = 6lly(- ) |I3 +2a%/ Yoyd
0 0

which, by e—Young’s inequality applied to the second term at the right hand
side, is equivalent to

L

d
i/ alylPdz + (38 — €)llys (- O3 < caselly( )3

Integrating this result with respect to ¢ over [0,T] yields

L T L T
/ tlylPdz + (36 — ¢) / lya - )3t = / 2P + o g / ly (- 0)[[2dt.
0 0 0 0

Combining this result with (34), using Poincare inequality and choosing € > 0
sufficiently small, we obtain (ii).

(iii) Let us take an extension of ¢ in L?(R), denoted by ¢*, with the property that
0l L2y S N9l 22(0,2)- Consider the Cauchy problem

{ivt +iBVszy + QUL + 100, =0, xRt € (0,T), (40)

v(z,0) = ¢*(x).

Using the Fourier transform ¢(§) = ffooo e~ 8y (z)dx, the solution of the
above model can be represented as

o(a,t) = / T O (6,
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where w(§) = BE3 — af? — §¢. We pick a smooth cut-off function

1, a<€&<Db,
0(§) = {smooth, a—e<&<aorb<&<b+te,
0, E<a—cecoré>b+e,

where € > 0 is arbitrary, |#] < 1, and a and b will be chosen below in a suitable
manner. Now, we decompose v as

o) = [ T i Otg(e) g (€)de + / O 1 () (€)de "
= Ul(xat) +U2(Iat)'

Using Cauchy-Schwarz inequality on v;, Plancherel theorem and considering
that 0 is a compactly supported function, we get

D1 (2,1)| = ] | ieemse @i s

</+ |i§|2|9(§)2d§>é < /0; lé*(fwdgf

S etz -
Taking square of both sides and integrating over [0, 7] yields
|0z 1 (2, ')||2L2(0,T) S T||¢*||2L2(R)~ (42)
By similar arguments, we also have
101 (2, ) Z2 0.0y S TNO" 122wy (43)

for 5 = 0,1, where the constant of the inequality depends on j and 6. Inter-
polating, we get

1 (2, Mo,y S TIE 122 @) (44)

for any m € [0, 1], where the constant of the inequality depends on 6 and m.
In particular, for m = 1/3, we have

1 (2, 0,7y S VT 1672wy (45)

The last inequality is a smoothing property and will have a particular impor-
tance in our wellposedness analysis later. Next, consider the second term in
(41) and rewrite it as

ng/ +/ 'iU2_+U2+.
—00 b

Consider the change of variable given by

7= w_(§) = (&) : (~00,a] = (~o0,w(a)],

=Wy (€) = w(©) : [boo) = [w(b), ), (46)
where we define their inverses as
—w i)=& (r
E=w_ (1) =& (7), )

£=wi'(1) = 64 (7)
for each integral respectively. Indeed a suitable choice of the support of the
cut-off function ensures that the transformations given by (46) are 1 — 1,
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therefore their inverses exist. Moreover, same choices given below will provide
us that w’(€) stays away from zero in (49). Depending on the sign of o+ 334,
we have three different cases:

(a) Let o + 388 > 0. Then, any choice a < Y222 Vg;% and b > SV 950 ”g‘;%

provides that the mapping is 1 — 1 and w’(§) stays away from zero on
(=00, a] U [b, 00).

(b) Let a? + 335 = 0. Then the mapping is 1 — 1 for all choices of a < b. On
the other hand, choosing a < % < b will provide that w’'(&) stays away
from zero on (—o0, a] U [b, 00).

(c) Let a® + 338 < 0. Then the mapping is 1 — 1 and w’(§) stays away from
zero on (—oo, a] U [b, 00) for all choices of a < b .

Assume that we choose appropriate a and b values for each case of o + 336

described above. Following from (46)-(47), we have

1

K= 3B () —2atr () 0 “8)

Hence v, becomes
w(a) . . Dk T
o) = [ e (e (1) e S
P
85€3(7) — 2084 (1) — 3

Let us first consider vo_ and observe that the function

+ / 0 )

ei6=(2(1 - 0(6 (7)) et et T € (—o0,w(a)],

0, elsewhere,

is the Fourier transform of vo_ with respect to its second component. Thus,
2
[va—(2, )17, 3

<[Jva—(z,)|1? %

:/jo (1+ 7’2)§|172_(:17,7')\2d7'
w(a) [
_ 7_2 1 6i§,('r)z - T (rb (E— (T)) -
_/m ) (1 =66 >))3B§3(T)—2a57(7)—5 a
@ 1 |6 (6 (7))
S/_Oo 0+ a7 — 20 (7)o"

(
Changing variables back as 7 = w_(§), it follows from the above estimate that

Wl

H¥(0,1) —

o g gy < [ PO AT (3567 20 - )i (a0

. 3562 — 206~ o2

< [ arentg O wen [* pera

< 16" 112 @)-
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lvay (z, )2 4 < 6% (172 (=) can be shown similarly. Hence

H3(0,T)
12z, ) 3 .y S 19" 112 @)
Combining this with (42), we get
S U+ VD)[6") 22w

Differentiating in x and repeating the above arguments, it also follows that

10:0(x, 20,1y S L+ VT)[[6" || 12x)

We also have the continuity of the mappings z — Hv(w, Mer/s0,m) and x —
|0zv(x,-)||L2(0,r). To this end, one needs to show that, given {z,} C R
converging to x € R,

o Myt oz

[v(z, ) = v(@n, M 1730 — 0, asn— oo
and
|0zv(, ) — 0pv(Tn, )| L2(0,7) — 0, asn— o0
hold. These can be easily shown by using the dominated convergence theorem.
Now, we can represent the solution of (26) as

y[¢,0,0,0,0] = v|,y — ¥[0,0,v(0,-),v(L,-),vz(L, )],
where y[0,0,v(0,-),v(L,-),vz(L,-)] is the solution of (26) with f = ¢ =0,
y(0,t) = v(0,t) € H3(0,T), y(L,t)=v(L,t) e H/3(0,T),
Yo (L, t) = v, (L, t) € L*(0,T).
Hence, part (iii) follows by combining the boundary smoothing property
of v and the inhomogeneous boundary value problem given in Lemma 2.6

below.
O

Lemma 2.2. Let g =; =0,i=1,2,3, T >0, and f € L'(0,T;L?(0,L)). Then
the solution y = y0, f,0,0,0] of (26) satisfies space-time estimates

(i) ||yH2c( 0,7);22(0,0)) T Blly= (0, )HL2(0 T ~ S ”fHLl(o T;L2(0,L))

(1) 1yll72 0,71 0,2y S L+ DINFIZ2 070200,
and the time-space estimate

(iii) Sl[éPL]”yx( sz S (1+f)||f||L1(OTL2(OL))
xe|0,

Proof.
(i) Multiplying the main equation by 27, integrating over [0, 7] x [0, L] and using
(30)-(33), we get

T rL
Iy O3 + Bllys (0, )z 0,7y < 2/0 /O f (@, 0)[y(x, t)|dxdt. (50)

We apply Cauchy—Schwarz and e—Young’s inequalities to the right hand side
of (50) to obtain

y(-, )||2 + By (0, )”L2 (0,T) < Gtes[llp ly(, )||§ + Ce||f||2L1(0,T;L2(0,L))-

Right hand side is independent of ¢t. So passing to supremum on both sides
over [0,7T] and choosing € > 0 sufficiently small yield (i).
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(ii) Multiplying the main equation by 2zy, integrating over [0, 7] x [0, L] and using
the same arguments in (36)-(39), we get

L T T
| alvte0Ra+35 [ luoolae=s [ ool
0 0 0
T L T L
+ 205 / / v (@, )7 (@, £)dadt + 23 / / of (2, 7 (x, Odzdt.  (51)
0 0 0 0

Second term at the right hand side of (51) can be estimated via e—Young’s
inequality as

T L T T
209 [ [ watostgto ot < ¢ [0l +co [ o 0lBar (2
0 0 0 0

Using Cauchy—Schwarz inequality and e—Young’s inequality, and thanks to
(i), the third term at the right hand side of (51) can be estimated as

23 / / 2 (o, 05, dadt < sup [yCo D2+ L2 1 orenson
o Jo te[0,T] (53)

< CL||fHL1(o,T;L2(0,L))'

Using (52)-(53), it follows from (51) that

L T
/ ely(e t) e + (36 — ¢) / lya (- )2t
0 0

T
<eose | IO+ el Ml orazon (54)
<ca,s5,eT GSE%P ly(-,t)Il5 + CL||fH2L1(0,T;L2(0,L))

<crase(l+ T)||f||L1(0,T;L2(O,L))7
where we used (i) in the last line again. Finally, choosing € € (0,303), using
the Poincare inequality and dropping the first term at the left hand side, we

conclude with (ii).
(iii) Using Duhamel’s principle, the solution is of the form

y(o,1) = / S(t — )z, )dr

By differentiating with respect to z

[/ S(t—7)f m)dT]

/|a (t — ) f(x, 7)) dr

|02y (2, t)| = |O

S

0
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Taking L?— norm of both sides with respect to ¢ on [0, T'] and using the result
in Lemma 2.1-(iii)

T
/0 102 [S(- — 7)f (. 7)) dr

102y, L2001y <

L2(0,T)

T
< / 10, 1SC = 7)F @ )| s oy A7

S [ @ VDI nds
0

S A+ VD) fllzoriz20.0))-
Passing to supremum in x over [0, L] ends the proof of (iii).
O

Now let us turn our attention to the nonhomogeneous boundary value problem
with ¢ = f = 0 and let us first obtain an explicit representation for y[0, 0, 11, ¥2, 13]
in terms of the boundary data ,,, m = 1,2, 3, where we consider extension of ¥,,’s,
denoted by 1y, from (0,7) to R satisfying (|9} | g1/sm) S ¥ llai/s,m), 7 = 1,2
and [|¥3]|z2) S 1¥llz2(0,r)- We can further assume that ¢ (t) = 0 for ¢ < 0.
For simplicity, we denote the extended functions again by t,,. Our approach for
obtaining a representation for the solution is to apply the Laplace transformation
in time:

f(s) = / T et (.

This approach is motivated from [5] on the KdV equation. However, due to the
parameters [3,«,d and assuming that L may be critical, the situation gets more
complicated and the treatment of the problem is more subtle.

To this end, we apply the Laplace transformation and transform (26) to the
following infinite family of third—order boundary value problems

{isﬂ(m, s) —l—jb’gzm(x, s) + Ofgjm(x, s) + iégm(fv, s)=0,(z,s) € (0,L) x C,
37(0’ S) = ¢1(8>727(L» S) = Ql}Q(S)a gz(L’ S) = ¢3(5)7

where a suitable set for the complex valued independent variable s is specified below.
Using the Bromwich integral, y can be represented as

1 r+ioco
r,t) = — e*tg(x, s)ds 56
vt = g [ it (56)
where the vertical integration path (r — ico, r 4+400) in the complex plane is chosen
so that, all possible singularities of § lie at the left of it. Note that for sufficiently
large r the characteristic equation,

s+ BX2 —iaX? + 01 =0, (57)

for (55) has distinct roots. In fact, there exists only finitely many s for which (57)
has double or possibly triple roots. We can classify these cases depending on the
sign of the quantity a2 + 38d. To this end, let A, § = 1,2,3, denote the roots
of (57) and assume that Ao = A3 for some s € C. Then direct calculations (see
Appendix C for details) yield the following cases.

(55)

(i) If & + 385 > 0, then there exists only two possible values of s and these
values belong to the imaginary axis.
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(i) If a® 4+ 385 = 0, then we have one and only one possible value of s and this
value belongs to the imaginary axis. Note that for this value of s, we have
A1 = A2 = A3,
(iii) If a® + 380 < 0, then there exists only two possible values of s and these
values are symmetric with respect to the imaginary axis.
Consequently, for sufficiently large r (57) has distinct roots on the line R(s) = r
and solution of (55) is of the form

Gla,s) = cj(s)eM ", (58)
j=1

where the column vector (c;(s), ca(s),c3(s))? is the solution of the linear system

1 1 1 c1(s) 1#:1 (s)
er(s)L er2(s)L ers(s)L ca(s) | = | v2(s) | - (59)
Ai(s)eM L Ny (s5)er2(E \g(s5)ers ()L c3(s) U3 (s)

Applying Cramer’s rule, these coefficients can be obtained as ¢; = %, where A is
the determinant of the coefficient matrix and A;’s are determinants of the matrices
formed by replacing the j—th column of the coefficient matrix by the column vector
(1,102, 1h3)T. Thus y is of the form

3 r+io00
— 1 st A](S) Aj(s)x
y(x,t) = 5 ;:1 /Tiioo e Als) e ds. (60)

We can rewrite y[0, 0,1, 19, 13] as y = anzl Ym, Where y,,, solves the same prob-
lem with boundary data v; = 0if j # m, j = 1,2,3. Thus y,,’s can be expressed
as

3

ym(2,t) = 1 Z/?"-H'OO eStAJ"L(S)e)‘j(S)Iw~ (s)ds, m=1,2,3 (61)
m ) 27‘_1 ]:1 - A(S) m b ) ) M

—100
Here Aj ,’s, m = 1,2, 3, are obtained from A, where vy, is replaced by 1 and v;’s,
j # m, are replaced by 0 for each j.

To change the integration path in (61) by a more convenient one, one needs to
investigate possible zeros of A(s) in the complex plane. These points occur not
only due to the double or possibly triple roots of (57) but may also occur due to
the eigenvalues of the operator A defined in (27) with domain D(A) defined in (28).
Note that A is a dissipative operator:

L ! 2
Ridp,o) = [ (~80" +iag — b ) wppa)ae = ~2ZOL <
0
Thus, in particular, all eigenvalues of A lie on the left complex half plane or possibly
on the imaginary axis. The latter situation occurs only if the problem

—B¢" +iap" —d¢p" = Ap, in (0, L),
¢(0) = (L) = ¢'(0) = ¢'(L),

has nontrivial solutions. Using the corresponding characteristic equation

(62)

—Bm? +iam? — dm = A
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for the main equation of (62) together with the boundary conditions, one can obtain
that the roots m;, j = 1,2, 3, must be distinct, i.e. p(z) = Z?:l d1€™i*. Together
with the boundary conditions, this implies that m;’s must satisfy

emlL — emzL — em;;L

(see [15, Proposition 2] for similar calculations). Therefore, we have

B 2kmi
mo —Mmp = I3 9
B 2lmi
ms—mz—T;

where without loss of generality, upon relabeling m;’s we can assume that k,1 € Z+.
Using mq + mo + mg = %, we get

i 2(=2k —l)mi

™mEggt T3
i, 2(k i
m, — L 2Rz Ym
2738 3L
i  2(k+20)mi
Mms=sat TR

Substituting these into mimse + mims + mams = %7 after some calculations, we
obtain

L oi+ 4r2(k? + kl + %)

g 3p2 3L2

or equivalently
42 8% (k2 + kl +12)
72
Consequently, depending on the sign of o? + 336 and the interval length L, it
is possible to obtain a nontrivial solution of (62), therefore there can be some
eigenvalues on the imaginary axis.
(i) Let a® 4+ 386 > 0. Then, choosing L from the set of critical lengths given in
(4) imply the existence of some eigenvalues that are located on the imaginary

o’ + 386 = : (63)

axis. Now from the equation mimomsz = f% and using L = 273 k;;r_fé;?,
one obtains after some calculations that
A= 27252 o — 3a(a? + 385) + 2(a? + 380)*/2H (k, l)} (64)
where
—2k—=0)(k—1)(k+2l
Hk 1) = ¢ Jk Dk +21) (65)

2(k2 + kl +12)2
It is not difficult to see that —1 < H(k,l) < 1 for k,l € Z*. Thus, from (64),
we deduce that S(\) € (Is3, sy, where

+ - .
=

s {oﬁ —3a(a® +386) +2(a® + 356)3/2}

_t
272

and

53 = 2722 [0 = 3a(a +388) — 2(a” + 366)"?] .

See Figure 4 for the graph of H(k,1).
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I
50
40

50

FIGURE 4. H(k,l):[1,00) X [1,00) = (—=1,1)

On the other hand s and sj are the points where (55) assumes double
root (see Appendix C for detailed calculations), hence zeros of A(s). This
fact together with the location of the possible pure imaginary eigenvalues
imply that all possible singular points of (60) belonging to the imaginary axis
lie in the closed interval [3(s),3(sf)]. Thus, we can deform the vertical
integration path of (60) by shifting the parts {s|3(s) > I(sf) + p} and
{s1S(s) < S(s3) — p} to Cf = (sf + ip,icc) and Cf = (—ico,s5 — ip)
respectively, p > 0 is fixed, whereas we shift the rest of the integration path
up to p units from the imaginary axis, and avoid the points sj, s by a
quarter-circular arcs to the upper-right and lower-right respectively, denoted
by C5 . See Figure 5 below.

FIGURE 5. Integration path for the case o + 385 > 0.
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Thus we can express (61) as

est ]7 /\ (s)x
Ym (@, QMZ/C+ Y (5)ds
st J m )\ (s)x
2m§j/c+ () (66)

mz/(ﬁ MO (5)ds

Now we change the variable in the first and the third integral as s = iw(§) =
i(BE3 — ak? —5€). For a? +3B3 > 0, the function w(€) has one local maximum
and one local minimum. After some calculations one can find that the most
right inverse image of s{ and the most left inverse image of s are given by

o+ 2+/a? + 366 §+;a—2 a? + 3836

36 o 36
respectively (see Figure 6). Thus inverse images of the paths C;” and C3
under the transformation s = iw(&) become (& +n;, 00) and (—o00, &5 — 1)
respectively for 7)1 ,n2 > 0. Consequently, (66) becomes

&=

w(§)
S(s7)
S(s3)
& &

FIGURE 6. Plot of transformation J(s) = w(¢) when a2 +338 > 0.

Ym (1)

LS [ i@ 20O e g 5,2 -

- etw —JmAs) A (€ _ _ m d
=5 E /ﬁ*m A (3687 — 206 — 8)hm ™ (§)dS

2mz/c+ et ) LA () (67)

G e B (©)
ew (&)t 1 A (@) _
QMZ /. R O35 — 206 — D) (€)de

:ym,l(x7 t) + ym,2($7 t) + ym,S(xﬂ t),
where the superscript * stands for the transformed functions under the change
of variable given above. Note also that, with respect to the new variable, we
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have the following explicit representation for the roots of the characteristic
equation (57):

A1 (§) = i¢,

e —H(BE — @) — /38282 — 2Bal — a2 — 4B65
—i(BE — 33262 — 2Baf — a2 — 486

a(e) = —HE a)+¢62§6 Bog —o? — 455

Let a2 + 336 = 0. Then we see that (63) does not hold for any k,1 € ZT, thus
the eigenvalue problem (62) has only trivial solution. But this contradicts
with the fact that ¢ is an eigenvalue. Thus R(Ayp, ¢) < 0 and the real parts of
the all eigenvalues of the operator A are strictly negative. On the other hand

03
0 . fo

5T o7
is the point where (57) assumes triple root (see Appendix C for details). Thus
the integrand of (61) is continuous for all » > 0 and we can shift the contour
of integration onto the imaginary axis, provided that we avoid s° by a half-
circular arc to the right with a radius p > 0 denoted by C3. Defining also
CY = (s +ip,ioco) and C§ = (—ioco, s” —ip) (see Figure 7 below)

FIGURE 7. Integration path for the case o + 386 = 0.

we can express (61) as
1

ym(z,t) E— Z/ 6stAjvT("()S)e)\j(8)xw~m(s)ds

T = Joy A(s
3
1 stAjﬂn(S) Aj(s)x,
+ s Z/Coe Als) e Ym(s)ds (69)
j=1 2
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Now let us consider changing variables as s = iw(£) = (83 —ag? —6€) for the
first and the third integrals. For o+ 336 = 0, note that w(&) is nondecreasing
and (£°,3(sY)) is the inflection point of w(€), where after some calculations,
€9 can be obtained as

0. @
& =3 5
See Figure 8 for a graphical illustration. Hence we can find the unique inverse

w ()

FIGURE 8. Plot of transformation 3(s) = w(§) when a? 4334 = 0.

images of C? and CF as (£ +7?, 00) and (—o0, &% —n9) respectively for some
n{,n3 > 0. Thus (69) becomes
3

o0 AW . ~
e =553 [ <€>tMS)e% ©%(39¢" — 20€ — D) (E)de

211 =1 0+711

27m Z/C+ e Jm e (S)xw (s)ds
O

o m(©)

(€)t7 Aj Oz 3862 _ 9ne — §Vab *(€)d.

QMZ/ e O(38E7 20 = 8)4h," (€)de

:ym,l(x’ t) + ym,Q(xv t) + ym,3(x7 t)’
where \}’s are given as in (68).

(iii) Let a®?+3833 < 0. Then (63) does not hold for any k,l € ZT and all eigenvalues
lie on the left half complex plane. On the other hand, there exits two values
of s for which (57) assumes double root. These values, say s; and s, with
R(s7) > 0 > R(s3 ) which are symmetric with respect to the imaginary axis
(see Appendix C), are also the branch points of the square root function

Vs —s0)(s - 57),

where we choose the branch cut as {s € C|S(s) = S(s7), R(s5) < R(s) <
R(s7 )} Indeed changing variables as s = i¥(s; ) + r and than performing
some calculations, roots of the characteristic equation (57) can be expressed

) 30 = g5 (- me),

(70)

36
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where

1
3
N 1 — /r2 + 4((12+3ﬁ5)
27;1] 729,34 J — 1’ 2’ 3

Aj(r) = —3B3¢ :
2
Note that £(s7 ) and R(s; ) are the zeros of the square root above.

In conclusion, what distinguishes this case from the previous cases is that,
we have now a zero of A(s) that lies on the right half complex plane which is
at the endpoint of the branch cut. Therefore, to deform the integration path,
we first shift the vertical integration line to the left until we meet s;. Then
we deform a part of the path near s; by a half-circular arc to the right with
a radius p > 0. Next we deform the rest of the integration path as, first by
horizontal line segments to the left starting from the end points of the arc
through the imaginary axis and second continuing from the imaginary axis in
the vertical direction towards +ioco and —ioco respectively. See Figure 9 for
the path deformation described here.

3(s)

FIGURE 9. Integration path for the case a® + 384 < 0.

Consequently, we can write (61) as

3
_ 1 st Djm(s) X;(s)z, |~
Ym(z, 1) =5 ;/1— e As) e UV (8)ds
3
1 / 1 85m(8) A (s)e 7
T et Bl sy ()as (m
27”; CyUC; UC, A(s) ()

3
1 stAjam(s) Aj(8)x,
E M FR O

Now let us apply change of variable s = iw(£) = (&3 — a? — §¢) for the
first and third integrals. Note that for a? + 336 < 0, this mapping is strictly
increasing and the inverse image of $(s; ) under the transformation w(§) is
the point
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Then C] and Cj are mapped to (§~ + 1y ,00) and (—o0,& — 7, ) for some
Ny ,My > 0. See Figure 10. Thus (71) becomes

w(§)

FIGURE 10. Plot of transformation 3(s) = w(£) when a? + 336 <

0.
Ym (2, 1)
L g /6 °°+7h_ ew@)tweﬁ (©2(36%€ — 2a¢ — 5)in(€)de
. i / e o 2] 05, 5 (72)

211

3. &y * .
+ L Z/ K eiw(&)tAAJa:l(éﬁ)ek;(&)z(362£2 _ 20[5 _ 5)wm*(§)d§
j=177"%°

iy;l,l(m’ t) + y;m,2<$’ t) + y;l73(x, t)’
where A\7’s are given by (68).

In the following three lemmas we provide estimates for y,, for each m. Note that
for each solution representation (67), (70) and (72) corresponding to the different
cases of a? + 3438, second integrals are bounded on the corresponding integration
paths. However, these paths lie on the right half complex plane. Therefore, for a
given T' > 0, we can find ¢ > 0 such that the norm estimates that we will obtain
below for the first and third integrals also hold for the second integrals but with a

constant eT. On the other hand, for each case of a?+ 339, we need norm estimates
for the following form of integrals

3 oo "
Lo, t) = == / e 20m&) 505562 g0e sy, t(ede (13)

271 = A*(&)
and
5o A . -
Infat) = 5 3 [ e S O (3562 —oa - (e, (1)
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where v1 € {& + 01, €+ 00, & +n7 Y and e € {&F +05,€° + 19,6 +ny }. Thus,
it is enough to study (73) and (74) in order to obtain desired norm estimates for
each y.,,, m =1,2,3.

Lemma 2.3. Let T, >0, ,6 € R and+p; € HY/3(0,T). Theny; = y[0,0,11,0,0]
belongs to the space C ([0, T]; L*(0, L))NL*(0,T; H(0, L)) and it also satisfies O,y1 €
C([0, L); L*(0,T)). Moreover, there exists a constant ¢ > 0 such that

lvilleqomczo,ny) + I llLzomaio,ny) S € llvallmsom (75)
and
sup ||0zy1(z, )||L2 0 T) ”1/}1||H1/3(0 ) (76)
z€[0,L]

If a® + 3835 < 0, then ¢ > R(s]) > 0 where sy is the value for which (57) assumes
double root.

Proof. Let us first obtain the asymptotic behaviours of the ratios ’ AA-’;l((;)) ‘ for large

values of €. Using the relation A} + A5 + A5 = [3 , we have

N B Gl CHOREH )

e NOLOG(E) = A (©) + e N OEO3(€) - M(©))  (77)

and
A (6) = e T e MO (A5(6) — A3(6)), (78)
A5 (6) = T e OL (A1 (e) — A3(6)), (79)
A% (6) = e T e MO (A5(€) — Aj(6)). (80)
(

Using the roots of the characteristic equation (68) in the variable £, we obtain the
following large £ asymptotics

eFE =1

A11(8) SR

A*(€) ~93L Jj=2 (81)
e"V3L =3,

Let us start by taking L?—norm of I; with respect to its first component and apply
[5, Lemma 2.5] to get

L 2| A5.(9) ] 2| = w2
(-, )12 / © 11 ‘ L ‘ 3862 —20f — & ’m*(g)’ de.
o3 [ (e [GE) |
Using the asymptotic behaviours (81), we have

7\/55[1 . 1

* 2 € ) ,7 -

(BLER()\;(Q) N 1)2 ‘Aj,l(f) 1, - (82)
A (6) 6_\/§£L, J — 3,

as £ — oo. Thus, we can write

InCOI S [ 3¢t — 206 = o [0 ae.
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Changing variables as u = &3 — ag? — ¢, we get
/ e~ H Ty (r)dr
0

Passing to supremum over ¢ € [0, T], we obtain

2

TASLE s/ (1+u2)} i

w(71)

< N1lFrsso,m)-

11 lleo,myz20,0)) S 1l vso,r)- (83)

Next, we differentiate I; with respect to its first component, take L?—norm on
(0,T) and change variables as u = 3£ — a&? — §¢ to get

10211 (2, )72 0,7)

2
3
IS L [T w©nys gy @ 208 g pn
-1 X% L N (N (O LS (30€7 — 20 — 8)" (€)de )
L2(0,T)
: oo A3 0(1) - 2
5 1,U.t)\* )\1(0(#))1]717¢ * 0 d )
Z%K@n (1)e A (Ou) 1(w»Mme

where (1) is the real solution of p = B&3 — a? — 6¢ for 1 < € < co. Observe that
the function

{/\}f(f)(u))ekﬂ*‘(‘g( iz S BUD G 0()), € (W), o),

0, elsewhere,

is the Fourier transform of the function given by the integral. So, thanks to the
Plancherel’s theorem, we can write

3 0
CRACRI DS / A5 00k
j=1 w(’yl)

for all z € [0, L]. It follows that

2

(g(ﬂ))IA, (0(n)) - i (85)

A )

6 J

e IlHL?(OLm(o ) < Sl[lp 10211 (2, )||L2(0 T)

3 * 2
Z/ A7 (€ )12 sup <e2§R(/\;(§))z) ‘AAj;l((;))’ (6)

z€[0,L]

. 2
x (3867 — 206 = 8) [U"(¢)| de.
Using (68) and (81), one can obtain the following asymptoic behaviours in &

e VL j=1,

£, j=2, (87)
526_‘/§5L, j=3.

2

: Az1(8)
N2 sup (2RO E)z ‘ 4,1
A5 ()] J;E[OI,)L]( ) A*(¢)
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Using (87) in (86), and then changing variables back as u = 3£3 — a&? — 6¢, we get

||8x11||2L2(0,L;L2(0,T)) < sup [|0z11(z, ')H%2(0,T)
z€[0,L]
S [ 2688 - 208 - Dl (O de
71
(oo} (oo} .
s[ e[ e
w(71) 0
§||¢1||§11/3(07T)-
Changing the integration order on ||0, 11 ||%2(07 L:L2(0,T)) and using Poincare inequal-
ity, we conclude that (75) and (76) holds for I.

To show that the mapping = € [0,L] — [|0.11(x,-)||z2(0,r) is continuous, let
{Zn}nen C [0, L] be such that 2, — x as n — oo and let us write

2
dp

ol

8ZI1(x,t) - 8 Il(xn,t)

= * o) A5 (O) -
2‘*’(5) * )‘j &z _ )‘j (&)zn 1 *
27”]2 / X5 (e (0 ) g Ui (89

Applying the arguments above in (84)-(88), one can obtain that

10211 (2, ) = Ou L1 (. )3 201
3

o0
<
Nz/wm

Jj=1

x50 (400 — o eman) D1 g,

Sl e,
for all n € N. Hence, by the dominated convergence theorem, we see that
Jim [0, 11 (2, -) = OxLi (2 )| L2(0,7) = 0-
Applying a similar procedure yields the same results for J;. O

Lemma 2.4. Let T, >0, o, 6 € R and 1y € H'/3(0,T). Theny, = y[0,0,0, s, 0]
belongs to the space C([0,T]); L?(0,L))NL?(0,T; H'(0, L)) and also satisfies O,y €
C([0, L]; L*(0,T)). Moreover, there erxists a constant ¢ > 0 such that

||y2||C([07T];L2(O,L)) =+ ||y2HL2(O,T;H1(07L)) S GCTH'L/)2||H1/3(O,T) (90)
and
sup ||0zy2(, )||L2 01) S ||¢2||H1/3(0 T)- (91)
z€[0,L]

If a® + 3835 < 0, then ¢ > R(s]) > 0 where sy is the value for which (57) assumes
double root.

Proof. We start by obtaining large ¢ asymptotics for AA;;?(S) ’ Let us write
12(6) = X5(6)eM O — A3(£)eh @, (92)
A3 5(6) = N5(§)eMOF — A1 (£)eM @, (93)

A} 5(8) = N (©eM©OF — x5 (g)e O, (94)
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and then, use A* given in (77) and characteristic roots given in (68) to obtain

3 J=1
A7 5(€) ‘
3,2 ;
~ <1, j=2, 95
‘ A*(§) _vEeL (%)
e 2, =
The rest of the proof is as in the proof of previous lemma. O

Lemma 2.5. Let T,3 > 0, a,d € R and 13 € L*(0,T). Then y3 = y[0,0,3,0,0]
belongs to the space C([0,T]); L?(0,L))NL?(0,T; H'(0, L)) and also satisfies O,ys €
C([0, L]; L*(0,T)). Moreover, there exists a constant ¢ > 0 such that

lysllcqo.rzzo,0)) + ysllzzo,rm0,0) S € I1sllLzo,m) (96)
and
sup Haxys(% ')||L2(07T) N €CT||¢3||L2(0,T)- (97)
z€[0,L]

If o® + 365 <0, then ¢ > R(s7 ) > 0 where s7 is the value for which (57) assumes
double root.

Proof. As in the previous proofs, let us obtain large £ asymptotics of the ratios

’ Ajf’((;)) ’ To this end, we write

A7 5(8) = e OL — A OF, (98)
Aj 5(8) = ML — A OL, (99)
A% 5(6) = M2 OL _ AL (100)
and then use A* given in (77) and characteristic roots given in (68) to obtain
* 6_17 .7 = 1>
Aj3(E) 1 .
A*(E) L1 vEEL
e~ 2 , j=3.
Proceeding as in the proof of Lemma 2.3, we can obtain the desired result. O

Combining Lemma 2.3, Lemma 2.4 and Lemma 2.5, we obtain the following
result for 9[0,071/}171#271#3}'

Lemma 2.6. Let ¢ = f = 0. For T > 0 and (Y1,9,%3) € HY/3(0,T) x
H'Y3(0,T) x L*(0,T), (26) admits a unique solution which belongs to the space
C([0,T]; L3(0, L))NL?(0,T; H(0, L)) with y, € C([0, L]; L?(0,T)). Moreover there
exists a constant ¢ > 0 such that

lyslleqo,ryezo,0)) + y3ll20,m;m1 (0,0)) S GCTHwSHL?(O,T) (102)
and
sup [|0.ys(z, ')||L2(0,T) S 6CT|W}3”L2(O,T)~ (103)
z€[0,L]

If o® + 3838 < 0, then ¢ > R(s]) > 0 where sy is the value for which (57) assumes
double root.
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Now for the sake of our study, let us consider the problem

Z‘yt + Zﬁyzzz + AYro + Zaym = 07 HANS (Oa L)at € (OaT)7
y(0,t) = 0,y(L,t) = 0,y.(L,t) = 1(t), (104)
y(x,0) = ¢(x).

From Lemma 2.1 and Lemma 2.5, we know that solution y of (104) belongs to the
space X% and satisfies

1yl xo < Illz + eTllelL2 o).

Let v = y;. Then v solves the linear model below

i + 18Vz0 + Uz + 900, =0, x € (0,L),t € (0,T),
v(0,t) = 0,v(L,t) = 0,v,(L,t) = ' (t), (105)
v(x,0) = (),

where ¢ = —B¢"" + ia¢” — 6¢'. Assume that ¢ € L%(0,L). From Lemma 2.1 and
Lemma, 2.5, v satisfies

ollxg < 1012 + e l1¢'ll 22 (0,m-

Set y(z,t) = ¢(x) —I—fot v(x,7)dr. Then due to compatibility conditions and ¢'(L) =
1 (0), y satisfies the initial and boundary conditions

y(x,0) = o(x),

y(0,8) = 6(0) + / 0(0,7)dr = $(0) + y(0,1) — (0,0) = 0,
y(L.t) = &(L) + / o(Lo7)dr = (L) + y(L, 1) — y(L,0) =0,

yo(L,t) = ¢'(L) +/0 v (L, 7)dT = ¢' (L) + yo (L, t) — y2(L,0) = ().
Moreover,

¢
=ijv(z,t) + / (iBVzze + Ve + 100, ) (2, T)dT + i8¢ (2) + g (z) + 6’ (z)
0

t ¢
=i ,0 vy (x, T)dT BV zx 10V, ,T)dT
iv(z )—l—/ow(a: ) +/0(ZBU + QU + 0V, (z, T)

+i8¢" (z) + ag”(x) + id¢' (z)

t
=iv(z,0) +/ (—1fVspe — QUze — 10V, (x, T)dT
0

¢
+ / (1BVpzz + QU + 100, ) (2, 7)dT + iB38" () + ag” (z) + id¢' ()
0
=0.
Thus, y solves (104). Now, from the main equation of (104), we have

Bllyzae (5 )l < (5 Dll2 + allyas (5 )2 + 0llya (-, D)2 (106)
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Applying Gagliardo—Nirenberg interpolation inequality and then e—Young’s in-
equality to the second term at the right hand side of (106), we get

2 2 3 3
« |‘yzx(7t)H2 < Ca”yﬂczz('ﬂt)llg ||y(7t)H§

) X (107)
< €llyaaa (- D)2 + caelly (- D)]]2-
Similarly, for the third term at the right hand side of (106), we have
2 4
52 m'at 2< TTT '7t 3 '7t 3
Iy ()15 < eollae DI I )1 (10s)

< €llyaaa (3 + eselly(- )13
Using (107)-(108) on (106), we obtain
(8 = 26)[Ywwa (5 D)3 < N[0 )13 + casellyC )13
Therefore, for sufficiently small € > 0, we get
[Yzaa ()3 S NoC 0I5 + Ty G013 (109)

Passing to supremum over t € [0,7] and using the fact that the right hand side
belongs to C([0,T], L?(0, L)), we have y € C([0,T]; H3(0, L)). Next, differentiating
the main equation of (104) with respect to z and taking L?—norms of each term,
we get

B”yzzzm(v t)HQ < ||'U:1:('7 t)”? + aHya::r;z('v t)||2 + 5“%{:3&(7 t)”Q' (110)
Thanks to Gagliardo—Nirenberg’s interpolation inequality, e—Young’s inequality
and Poincare inequality, the second term at the right hand side of (110) can be
estimated as

02 Yz (5 D113 < Callyaas ()15 Iy 013
< ellywoze (O3 + caellyC )3 (111)
< el (I3 + corellye ()2
Using the same inequalities, the third term in (110) is estimated as
81y (5 13 < 5l Yaman (-5 Oll2lly (-5 1)l
< €llyaaaa (5 )13 + caelly( )13 (112)
< ellywozs (OIS + co.ellye ()3
Using (111)-(112) on (110) and choosing e > 0 sufficiently small, we obtain
[Yawza (O3 S e (03 + lya (- )13 (113)
Right hand side belongs to L?(0,T), so the left hand side does too. This implies

y € L?(0,T; H*(0, L)). Combining this result with the previous one, we proved the
following lemma.

Lemma 2.7. Let T > 0, (¢,%) € H3(0,L) x H'(0,T) satisfy the compatibility
conditions. Then (104) has a unique solution y € X3 with y; € X3 and it satisfies
the following estimate

Iyllxs + lvellxo S 19llmso.zy + e ¥l mio.1)-
Now letting z = v, one can see that z solves the following model
izt + 182p00 + Q2Zpe + 102, =0, xz € (0,L),t € (0,T),
2(0,t) =0,2(L,t) = 0,z (L, t) = " (1), (114)

2(2,0) = o(x),
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where ¢ = — 88" + iad" — 6§'. Let 4" (t) € L2(0,T) and ¢ € L2(0, L). Then from
Lemma 2.1 and Lemma 2.5, z satisfies

12l xg. < I9ll2 + €119 | 2 0,7)- (115)
Define v(z,t) x)+ fo x,7)dr. If (qu ') satisfies the compatibility conditions,
one can show that v satisfies the following initial-boundary conditions:
v(z,0) = ¢(=)

and

”U(O,t) =0, U(Lat) =0, Um(Lat) = ¢,(t)'
Then one can also show that v solves (105). Now defining v = y; and repeating the
same analysis as we did through (105)-(113), one concludes the following lemma.

Lemma 2.8. Let T > 0, (¢,%) € HS(0,L) x H2(0,T) satisfy the higher order
compatibility conditions. Then (104) has a unique solution in X$ with yy € X9
and it satisfies the following estimate,

1yl xs + lyeellxs < Nllaso,z) + e N9 llm20,m)-
3. Controller design. In this section, first we prove the existence of a smooth
backstepping kernel. Then we state the result of the invertibility of the backstepping

transformation with a bounded inverse. Next, we prove the global wellposedness
and exponential stability results.

3.1. Backstepping kernel. Let us express the main equation in (9) as

1 .

Gsst = DG = % [ﬁ(thts — Gttt) — ZOZ(Gtt — 2Gt5) — (SGt — TG] .
Integrating the above expression in the first variable and using G(0,t) = % we
obtain

th S t / DG ga

Integrating once again in the first variable and using G(0,t) = 0 we get

Gy(s,t —s+//Dthdgdw

Finally, integrating in the second variable and using G(s,0) = 0 we obtain that G
solves

Gls,t —st—k/ / / [DG](E, n)dedwdn. (116)

So the solution of the boundary value problem (9) can be constructed by applying
a successive approximation method to the integral equation (116).

Lemma 3.1. There exists a C*™°—function G such that G solves the integral equa-
tion (116).

Proof. Let P be defined by

(PF)(s.1) = / / ) / "D (e ) deduodn. (117)
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Then we express (116) as

G(s,t) = %st + PG(s,1). (118)
Define G° = 0, G'(s,t) = —ést, and G"*t1 = G + PG™, n > 1. Then we have
Gt -Gt =P(G"-G"Y), n>1 (119)

To prove the existence of a solution of (118), it is enough to show that the sequence
(G™) and its partial derivatives are Cauchy with respect to the supremum norm
| - lo- To this end, define H(s,t) = st, H" = %(G”Jrl — G"™). Then by (119),
H"t! = PH™ and for j > 1,

j—1 j—1
J _ i: n+l _ :L n
G -G ;(G G") %;H . (120)

We see from (120) that the sequence (G™) (and its partial derivatives) is Cauchy
with respect to the norm | - ||co, which implies that (G™) is convergent and its
limit solves (116) if and only if the sequence (H™) (and its partial derivatives) is
absolutely summable sequence with respect to the same norm.
To show that H™’s are absolutely summable, let us express P as sum of six
operators
P=P _1+P 2+ P 1+Po+Po+ P,

where
t s w
Pt = [ [ [ st miedadn,
o Jo Jo
1 t s w
Pecaf =5 [ [ [ fulemagauan,
o Jo Jo
) i t S w
Pocaf =35 [ [ [ fate.micavan,
38 Jo Jo Jo
C 2 [P
Pl,Of = oa fts(f»’?)dgdeﬁ»
38 Jo Jo Jo
5 t S w
Peof = =55 [ [ [ e mddoan,
38 Jo Jo Jo
) r t s w
Paf == [ [ [ femdeavan
38.Jo Jo Jo
Then
H"=P'H° = (P, _1+ Py _o+Ps_1+Pio+ Pag+ Py1)"st
6" 121
= Z R, pst, (12)
r=1
where
RT»” = Pir,'rnj'r,nPimnflyj'r‘,n—l e Pi7',17j'r,17 i"';q € {1’ 2}’ j"'7q € {_2’ _170’ 1}’

for 1 < g < n. Observe that for positive integers m and nonnegative integers k,

myk __ m—+1,k—1 _ 0’ k S 0’
P17_18 t = C1,-1S t s Cl,—1 = (122)

_k_
) else,
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0, k<1,
P27,28mtk = 627,28m+2tk72, C2,—2 = k(k—1) ] (123)
T 3(m+1)(m+2)° else,
0, k<0,
P27_1Smtk = 627_1Sm+2tk71, C2 1= ik | (124)
T 3B(mA)(m2) O5G
m m i
Pios™t" = c108™ MY, e = 3B+ 1)’ (125)
1)
Paos™t" = ca 08", cap = C38(m+1)(m+2)’ (126)
P271$mtk = 02718m+2tk+1, C21 = " (127)

" 38(m+1)(m+2)(k+1)
Let o = o(r) = >0_ jrg- Then from (122)-(127), for eeach n and r,

0 ifo< -1
R, st = ’ - ’ 128
= {G o e (129

where n+1 <y <2n+1 and C,,, is a constant which only depends on r and n.
Let M = max{l, %, %, %} We claim that for each r and n,

M’n
(n+Dl(c+ 1)
Taking m = 1, k = 1 in (122)-(127) we see that (129) holds for n = 1. Suppose
it holds for n = £ — 1 and for all » € {1,2,...,67'}. Then for n = ¢ and r* €
{1,2,...,6}, using (122) and (128), we get

Rr*,gst = H,eryg_lst = Crl_lpi)js’yttﬂrl = Cr)g_lci’js’y*tg*Jrl

for some i € {1,2}, j € {~2,-1,0,1} and r € {1,2,..,6°7'}, where v* is either
v+ 1orvy+2, 0* =0+ j. By the induction assumption (129),

|Crnl < (129)

-1
Crp1 < —r——.
P o+ 1)
Moreover using (122)-(127) and the fact that v > ¢ we see that |¢; ;| < M% for
J=-1,-2, |cio| < %, and |¢; 1| < %. Hence for each ¢ € {1,2} and
j€{-2,-1,0,1} we obtain
M* M*

* = . < =
Crel = 1Creneesl < Gy w7710 — @ Do + 1)1

which proves that the claim holds for n = ¢ as well.

Using (121), (128), (129) and the fact that 0 < s,¢ < L in the triangle A, ; we
obtain
6" M™ L3n+2
(n+1)!
This shows H™ is absolutely summable. On the other hand since H™ is a linear
combination of 6™ monomials of the form s7t°*! with v < 2n + 1 and o < n, any
partial derivative 920° H™ of H™ will be absolutely less than
(2?’7, + 1)a(n + 1)b6nMnL3n+27a7b
(n+1)! ’

which is a summable sequence. O

[H"||oo < (130)

(131)
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See Figure 11 for a graph and a contour plot of the backstepping kernel and for
the corresponding control gains for L =7, =1, a =2, § = 8 and r = 0.05.
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FIGURE 11. Up: Plots of k(z,y) on A, ,. Down: Controller gains
for Dirichlet and Neumann boundary conditions. L = 7, § = 1,
a=2,6=38andr = 0.05.

Next let n = n(z,y) be a C>°—function defined on A, , and Y, : H'(0,L) —
H'(0,L), 1 >0 be an integral operator defined by

(Mola) = [ ooty
Then, we have the following lemma for the operator I —T,,.

Lemma 3.2. [ -, is invertible with a bounded inverse from H'(0,L) — H'(0, L)
(1 >0). Moreover, (I—",)~" can be written as [+®, where ® is a bounded operator
from L%(0,L) into H'(0,L) for I = 0,1,2 and from H'=2(0,L) into H'(0,L) for
I>2.

We omit the proof since it can be done as in [22, 25].
3.2. Wellposedness. We first investigate the local and global wellposedness of the
target model. Then, using Lemma 3.1 and Lemma 3.2, we deduce the wellposedness
of the original plant (1). To this end, let us consider the modified target model
Wy + 18Wege + QWay + 10w,
+irw = ifky(z,0)w,(0,t), x € (0,L),te (0,T),
w(0,t) = w(L,t) = wy(L,t) =0,
w(,0) = wo(x) = ug(x) — [§ k(x, y)uly,t)dy.

(132)
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Consider the operator A defined in (27) with domain D(A) defined in (28). Let us
express (132) in the abstract operator theoretic form as

y=Ay+Fy,

y(0) = yo,

where Fo = —irp + iBa(-)[{p and T} is the first order trace operator at the left
end point. Operator A generates strongly continuous semigroup of contractions,
{S(t)}+>0, in L%(0,L) [10]. Define the operator

w = [Vz](t) = S(t)wo +/0 S(t— s)Fz(s)ds (133)

and the space
Yr = {z€ X>| 2z, € C([0,L]; L*(0,T))} (134)
endowed with the norm

[

I2llyr = (”'Z”%J([O,T];LZ(O,L)) + 1202207110,y + ||Zx||%1([o,L};L2(o,T))) . (135)
We prove the following result.

Proposition 1 (Local wellposedness). Let T' > 0 and wo € L?(0,L). Then, there
exists T € (0,T") which is independent of size of wy such that (132) possesses a
unique local solution w € Y.

Proof. We first show that ¥, defined by (133) maps Yr into itself. To see this, first
of all, we obtain from (133) that

lollye = 192lye < [1SEwollys + H | st

Yr
By using Lemma 2.1, the first term at the right hand side of the above inequality
can be estimated as

1S@)wollvz S V1 +Tllwollz. (136)
Using Lemma 2.2 and then applying Cauchy—Schwarz inequality, the second term
can be estimated as

’ /Ot S(t— 8)Fx(s)ds
(137)

Combining (136) and (137), we see that ¥ maps Yr into itself. To see that U is
contraction on Yrp, let 21,20 € Yp and w; = Wzy, wo = Wze. Using the similar
arguments as above, we get

< CV1+ T” —rz+ Bky(,O)ZI(O, ')HLl(O,T;Lz(O,L))
Yr

< cprVT(L+T)(1+ [[ky (5 0)l[2) |2l vz

|we — willyy = W22 — Y21y,
< e VT +T)(1+ [[k(-,0)[[2)[[22 — 21y

In order for the map ¥ to be a contraction, we choose T' € (0,7”) such that 0 <
VT +T) < (cp,r(1+ ||k(-,0)]|2)) " which is independent of the size of the initial
datum. This guarantees the existence of a unique local solution w € Yr. O

This proposition shows the existence of a maximal time, Ty,., of the existence
of the solution w € Y7 for all T' < Tax. To prove that w is global, it is enough to
show that limg - [[wlly; < oco.
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Proposition 2 (Global wellposedness). Let wg € L?(0,L). Then w extends as a
global solution in Y.

Proof. Taking L?—inner product of the main equation of (132) by 2w, taking the
imaginary parts of both sides and applying several integration by parts together
with imposing the boundary conditions, we derive

d L
TGO 15+B8lwa (0,1)*+2r lw(-, )l = 25%/ koy (2, 0)we (0, t)w(z, t)dz. (138)
0
By using e—Young’s inequality, right hand side of (138) can be estimated as
me/ Joy (2, 0) o (0, £)75 () / (2, 0)2|w(z, )2z + 26BL ws(0, )2

Choosing € = (138) becomes

i
B
@HW('J)H% + §|wx(0,t)\2 < 2(BLIlky (-, 0)[13 — m)[[w (- 1)]3.
Now integrating the above inequality over (0,t) yields

t
2wl 13+ 8 | fua(0.7)dr
< 2||woll3 + 4(BL ky (-, 0)]12, — / [w(-,7)|3dr.  (139)
Define E(t) = 2||w(-,t)[|3 + 5fg |w, (0, 7)|?>d7. Then, from (139)
t
B(t) < 2|jwoll3 + 4 |BL|ky (-, 0)[13 — 7| /0 E(r)dr
Thanks to Gronwall’s inequality,

t
. 2_7=
E(t) = 2|w(-, )3 + 8 / jw (0, 7)[2dr < 2w |3 P HIFCON=rle  (140)

for all ¢t € [0, T]. Passing to supremum on [0,7] and then letting T — T, we get
- L < 2|BLIIK G012 —r|Tmax . 141
P Alwlleomyszao.n) < llwollze < o0 (141)
Using
1
Oiup [w(-t)]|5 = T||7~UH%2(0,T;L2(0,L)) (142)
and then letting ' — T ,.., we also get
: / SO1Z, =7 | Timax
hII£ ||wHL2(O,T;L2(O,L)) < TmawaO”ZeQ'ﬁLHk( 015 |T ] (143)

—Lmax

Next, we multiply the main equation of (132) by 22w, integrate over (0,¢) x (0, L),
consider the imaginary parts and apply several integration by parts to get

L t oL L
/ x\w(m,t)|2da:+36/ / |w$(x,7')|2da:d7'+2r/ z|w(zx,t)|*ds
0 0

=/ x|wo(z 2d:v+5/ / (z,7)|*dxdr (144)

—|—2ﬁ/0/0 xky(x,0)wy (0, 7)w(x, T)dxdr.
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Thanks to Cauchy—Schwarz inequality, the last term at the right hand side of (144)
can be estimated as

t oL
25/ / xky(z,0)(z)w, (0, 7)y(x, 7)dxdr
<2ﬂL/ / (z,0)||wg (0, 7)||w(z, 7)|dxdr
<BL?||ky (-, 0)]1% / |w, (0, 7)] dT—l—ﬁL/ / (z,7)|*dzdr.

Dropping the first and third terms at the left hand side of (144), and using the
above estimate, it follows that

wa”m 0,t;L2(0,L))

L+ LQk 2
<l + 2 // w(z,7)Pdsdr + L1l Ollee /|ym07|2d7

L 2 5L+5 L2k (02 [
S?)BHUJQHQ-F( 68 + J36 )/0 E(T)dT.

Using (140) we get,

. L
T_lg{lm lwzllz2(0,7;L2(0,1)) < ﬁﬂwdlz

BL+0  Llk(,0)]lo0 2|BL|ky (-,0) |2, —r|T,
r V2T max yR max (145
< 68 V33 ol (145)

Combining (143) and (145), we deduce that

) L BL+46  Llky(-,0)|c0
lin 2 .7l < —_ 1 LANY
T_QT;M lwllz2(0,7;81 (0,1)) < \/ 35||w0|\2 + ( + \/ 63 + L

% /2Tmax||w0H262|BLH’€y(',O)Hic*'“|Tmax<oo, (146)

From Proposition 1, w is the fixed point of (132), so it satisfies

w = S(t)wo +/0 S(t — 7)[Fw](r)dr

for some t € (0,7”). From Lemma 2.1-(iii) and Lemma 2.2-(iii), we know that

xiEpL]Haw[S(t) wol (@) z20,7) S (L + V) ol (147)
and
e [ s niraoa] e,

< (1+VT) / |Fw)(,6)ladt (148)
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holds. Using the definition of Fw, right hand side of (148) can be estimated as
T
A+ V) [Pl Dl o nyde
0
T T
<(1+ \/T)T‘/ [[w(-,t)[|2dt + (1 + \FT)ﬁHk(',O)Hz/ |wg (0, 2)|dt
0 0
1+ \/T r (T
< [ VB@dt+ VI VB 0) B
<+ VT (L VIR Ol) VBl
Finally using (147)-(149)
im  [lwzlleqo,z)iz20,1)) S (1 4+ v/ Tmax)[[woll2 + (1 + v/ Tiax)
_> max
(T VT I Ol ) VBl O < o

This completes the proof. O

(149)

Choosing wo € H3(0, L) that satisfies compatibility conditions, the global solu-
tion enjoys higher order regularity given by the following proposition.

Proposition 3 (Regularity). Let wy € H?(0, L) satisfy the compatibility conditions.
Then w € Y3.

Proof. Let v = w; and consider the following problem
iVt 4+ 1BVzaz + AUy + 10V, + irv = ifky(x,0)v,(0,t), 2z € (0,L),t € (0,T),
v(0,t) = v(L,t) = v, (L,t) =0,
v(,0) = vo(x),

where vo(z) = —pwj'(z) + iaw((z) — dwy(z) — rwo(x) + Bky(z,0)wy(0). For a
given vo € L?(0,L), we know from Proposition 1 that v € Y. Set w(z,t) =

) + fo x,7)dr. Under the compatibility conditions, one can show that w
solves (132). From the main equation of (132), we have

1BWeze(2,1) = (=10 — QWgy — 10wy — irw)(z,t) + ifky(x, 0)w,(0,1).

Observe that w;(0,t) = — fOL Wy (2, t)dz. Using this in the above expression and
then taking L?—norms of both sides with respect to z, we get

B llwawa (-, )13 < [l )13
+ (2 + B2lky (- 0)113) lwaa ()13 + 0% lws (-, )13 + 72w -, I3
Similar work as we did on (108)-(109) yields
[wawa (013 < NoC, O3 + w83

Taking supremum on both sides, we obtain w € C([0,T]; H3(0,L)). Next, we
differentiate the main equation of (132) with respect to x and take L?—morm of
both sides with respect to = to get
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/62||wxll¢(7t)”§ < ”UL(at)Hg +0‘2||wwww('at)H§
+ (6% 4 B2(kye (-, 0)[13) l[waa (-, )13 + r2[|lwa (-, ) 13-
Proceeding as in (111)-(112), we get
||wwwww(7t)”§ N va(’t)llg + ||wz(at)H§

The right hand side belongs to L?(0,T), so w belongs to L?(0,T; H*(0, L)). Com-
bining with the previous result, we deduce that w € X3 if wg € H3(0, L). O

Now the first part of Theorem 1.1 follows from the fact that backstepping kernel is
a smooth function over a compact set and backstepping transformation is invertible
on L?(0,L) and H3(0,L).

3.3. Stability. In this part, we obtain exponential stability for the original plant.
This will be done by first obtaining the exponential stability result for the modified
target model (132). Thanks to the invertibility of the backstepping transformation,
this result will imply the exponential decay of solutions of the original plant.

Proposition 4. Let 8 > 0, o, € R, k be a smooth backstepping kernel solving
(10). Then for sufficiently small v > 0, there exists A = 8 (% — M) >0
such that solution, w, of (12) satisfies the following decay estimate

[w(-, )2 < [lwo| 2™
fort>0.
Proof. Taking the L?—inner product of the main equation of (12) by 2w and pro-
ceeding as in (30)-(33), we get

d
— w13 + Blwa (0,) + 2r [[w(-, £)|3

L
=20%R <wz(07t)/0 ky(x,())w(x,t)dx> . (150)

Using e—Young’s inequality and then the Cauchy—Schwarz inequality, the term at
the right hand side can be estimated as

L
28R /0 ky(z,0)we (0, t)w(x, t)dx
2

L
<28 41€wm(0,t)|2+e</0 |ky(x,0)||w(a;,t)dx> (151)

<2 0.0 + 28l (. O (- )3

Combining this estimate with (150) and choosing ¢ = %, we get

d k,(-,0)]3
g0+ 2 (5 = OO puc g <o,

which implies

ol S funlle ™, 2= 5 (5 - LBBOBY

™
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Next we prove that A > 0 to show that (152) is indeed a decay estimate. Define
a =3 0= %, 7= 7 and let M = max{1,@&,d,7}. Differentiating (120) with
respect to t, taking ¢ = 0 and passing to limit as n — oo, we obtain

F = _1n
Gi(s,1) = 3 nz::O HP(s,t). (153)
Then, considering 7 < 1, we first see that M is independent of 7. Using this, we get

from (131) that the term inside the summation (153) is absolutely less than some
constant ¢, ~ 5 which is independent of 7. So from (153), we get

|Gallz a0 < 252,
and therefore we have
L2 .
I O)IB < Ly (0% < ZIGH(,0)% < LIGlwqa, ) € —2

Using this estimate, we get
ky (-, 0)12 1 |ky(0)]3 1 L s
2 T 272 g
which remains positive for sufficiently small r. O

Now using (11) and the fact that k = k(x,y) is a smooth function on a compact
set Az, we have

lwollz < (L +1I%(,)lz2(a.,,)) lluoll2- (154)
Moreover, using the invertibility of the backstepping transformation given by Lemma
3.2, we have

[uCs)ll2 < 1L = Lo) " a2 llw(-, 0)]l2. (155)
Combining (154) and (155), we deduce

)z < I =Th) " sz (L4 k(M 2(a,,)) luollze ™

So we conclude the proof of the second part of Therem 1.1.

Table 1 below shows some values of r and corresponding decay rates A. Results
are obtained by choosing 8 =1, a = 2, § = 8, domain length L = 7 and N = 1001
spatial node points.

4. Observer design. In this section, our aim is to prove the wellposedness and
exponential stability of the plant—observer—error system.

4.1. Wellposedness. We start by the wellposedness analysis of the error model
(15). To this end, we first study the target error model given by (21) and then use
the invertibility of the transformation (20) and deduce that same results also hold
for (15). To see that (20) is invertible with a bounded inverse, we change variables
ass=L—yandt=L—xzon (19), and obtain that p = p(x,y) solves (19) if and
only if p(z,y) = H(s,t) solves

B(Hsss + Httt) - ia(Hss - Htt) + 5(Hs + Ht) —rH = 07
H(s,s) = H(s,0) =0,

HS(S7S) = _%a
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r /\:ﬁ<7'_”ky("0;7q)|%)

B 2
0.001 0.001981
0.01 0.018054
0.02 0.032221
0.03 0.042507
0.04 0.048918
0.05 0.051463
0.1 0.006407
0.11 —0.014113
0.5 —3.729586
1 —16.379897

TABLE 1. Some numerical values for the decay rate A correspond-
ing to various values of 7.

on A, ;. Observe that this model is exactly the same model given in (10) except
that r is replaced by —r. Therefore, we obtain the following relation
p(xvy) = H(Svt) = k(S,t, —7”) = k(L - Y L— Z; —’I"), (156)

where & solves (10). Consequently existence of smooth kernel p = p(z,y) is guar-
anteed and corresponding backstepping transformation (20) is invertible with a
bounded inverse on H'(0,L) — H'(0,L), I > 0. See Figure 12 for a graph and a
contour plot of p(x,y) for L=7, 8 =1, a =2, =8 and r = 0.05.

3
0.02
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0.016
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0.012
15 0.01
0.008
f
0.006
08 0.004
0.002
0 o
0 05 1 15 2 25 3
a

FIGURE 12. p(z,y) definedon A, for L=m, f=1,0a=2,=38
and r = 0.05.

(. )|

4.1.1. Error model. Let us prove the wellposedness of the target error model. To
this end, let us first consider the following model
Wy + 1fWpry + OWgy + 100, +irw =0, x € (0,L),t € (0,T),
w(0,t) = w(L,t) = 0,1, (L, t) = (t), (157)
w(x,0) = wo(x).
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Note that the function y, defined by y(-,t) = e (-, t) together with the initial and
boundary conditions g and 1) (t) = e"t1)(t), satisfies the results obtained in Lemma
2.1 and Lemma 2.6. Thus, for given wg € H®(0,L), v € H?(0,T) satisfying the
higher order compability conditions, Lemma 2.8 implies that

Iyllxs, + llyeell xo. < llollss o,y + e 1l 20.7)- (158)

Notice that the original boundary condition of the problem (21) is of feedback type,
given by

L
0() = 0@)0) = [ polLo)itu s
We will treat the wellposedness of the target error model by using a fixed point
argument. To this end, let us define the Banach space Q1 = {zI; € XS |y € X%}
and its complete metric subspace Qr = {w € Qr |w(-,0) = wo(-)} equipped with
the metric induced by the norm associated with Q7. Since p = p(x,y) is a smooth
solution of (19), for a given w* € Qr, we have

L
[(@") | 2 (0,1) = H/O e (L y)w*(y, -)dy

H2(0,T)

2
<VTlpa (L, )2 Y 070" xg < o0.
j=0
Thus by the Lemma 2.8, for ¢(w*)(t) € H*(0,T), the problem (26) with f = 0 has
a unique solution. This naturally defines a map ¥ : Qr — Qp, Yw* = w. Now let
w1, Wa € Qr. Using the estimates (158), we get
Wiy — Wil g, < Cllep(wr) = (W)l 2(0,1)
< CVT iy — 1z 5,
For sufficiently small T, we can guarantee that the mapping ¥ : Qr — Qr is
contraction. Thanks to the Banach fixed point theorem, this yields the existence of
a unique local solution of the target error system. As we show in Proposition 7 in

the following section, the local solution remains uniformly bounded in time. This
yields the unique global solution and we have the following proposition.

Proposition 5. Let T,5 > 0, a,0 € R, p be a smooth backstepping kernel solving
(19) and (o, ) € HO(0, L)x H%(0,T) satisfies higher order compatibility conditions
where ¥ = (W) = fOL (L, y)w(y, t)dy. Then (21) admits a unique global solution
w e X§.

Thanks to the bounded invertibility of the backstepping transformation (20), we
obtain @ € X% under the same assumptions given in Proposition 5.
4.1.2. Observer model. Consider the target observer model 23

iy + 1BWypy + gy + 100, + ir = iBky (x, 0)W, (0, 1)
+f(z,t), =€(0,L),te(0,T),
w(0,t) = w(L,t) = w,(L,t) =0,
w(z,0) = wo(x),
where f(z,t) = [(I — Ti)p1](@)wz(0,t) + [(I — Ti)p2](2)Wse (0,¢). Recall that the
backstepping transformation (20) transforms (14) to (159) if py, p2 are chosen such

(159)
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that p1(2)ifpy(z,0) — ap(z,0) and pa(x) = —ifp(x,0) where p is the backstepping
kernel that solves (19). An example for the real and imaginary parts of the observer
gains for a problem defined on [0, 7] and the coefficients § = 1, = 2,5 = 8,7 = 0.05
are given in Figure 13.

0.06 0.06

0.05 T~
0.04 N 0.04
0.03 N\ 0.03
0.02

001 F g N o 001 s x,

0 05 1 15 2 25 3 o 05 1 L5 2 25 3

FicUrRE 13. Observer gains for L =7, =1, a =2, 6 = 8 and
r = 0.05.

For a given wg € L?(0, L), let us first show that @ € X%. Thanks to Proposition
2, given g € L?(0, L), we know that solution, @, of 159 with f = 0 belongs to the
space X$. Let us express it as w;(z,t) = W (t)wo(z) and now consider the problem
where wy = 0. Let us express its solution as

wy(z,t) = /0 Wt —71)f(x,7)dr.

Recall that k = k(z,y), pi(x) = —ifpy(x,0) + ap(z,0) and p2(z) = iBp(z,0)
are smooth functions. Also, we will see in Proposition 7-(ii) below that, if @y €
H3(0, L), then w,(0,t),10,,(0,t) € L*(0,T). This implies f € L' (0,75 H>*(0, L)).
To see that wy € X%, first observe that

IWA¢N2SAHWW—TﬁhﬂMM
(160)

t
< [ 16t = Il ranony
0
Taking supremum in ¢ € [0, 7] yields
@y lleqo,rirzo.0)) < 1 fllror;z20,0)) < [fll2r om0 0,1))-

Following from (160), we also have

gl 20,722 (0,0) < VT I fllLro,rz20,0) < VIS L0750 (0,1))-
Using similar arguments, one can get

102 ¢ L2(0,7;22(0,1)) < \/T”JCHLl(o,T;Hoo(o,L))-

Consequently, w; € X%. As a conclusion given Wy € L?(0, L), wy € H3(0,L) and
f € LY0,T; H*(0, L)), we obtain that @ € X9.
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Next, we show that @ € X3. To this end, we set Z = ;. Then Z satisfies

iZ + iBZpan + OFgy + 105, +irZ =0, xz€(0,L),te (0,T),

2(()) t) = 2(L7t) =0, Zﬂc(th) = 7//(2)’

Z(x,0) = Zo(z),
where Zg = — 0’ +iaw] — 6w} —rig. Applying the arguments in Section 4.1.1, we
see that if (Zp,v’) € H3(0, L) x H*(0,T) satisfies compatibility conditions, then z €
X2. Moreover, thanks to the Proposition 7-(ii) below, we have Z,(0,t), Z,.(0,t) €
L'(0,T). This implies by using Z = w; that, w.(0,t), Wt (0,t) € L*(0,T) where
W solves target error model satisfying (g, 1) € H®(0,L) x H?(0,T) higher order
compatibility. Thus f € WH(0,T; H>*(0, L)).

Now let us set © = w;. Then ¥ solves
104 + 103z + Uy + 100, + 170 = ifky(z, 0)04(0, )
+fi(z,t), xe€(0,L),te(0,T),
0(0,t) = 0(L,t) = 0, (L,t) = 0,
0(x,0) = 0g(z),
where
do(z) = —Big’ (z) + o (x) — dibg(2) — rido(x) + Bhy(x, 0)5(0) — i fi(,0).

Assume that 99 € L?(0, L). Then, from the above study, we deduce that ¢ € X%. If
W satisfies the compatlblhty conditions, then we can also show that w, defined by
w(x,t) = wo(x) + fo x,7)dT solves (159). Now from the main equation of (159),
we have

1BWygy(x, 1) = (=10 — athyy — 10W, — irW)(z, t) + 38k, (z,0)W,(0,t) + f(x,1).

Using w,(0,t) = — fOL Wer (7, t)dr and taking L?—norms of both side we get

B lltawa (-, )13 < 1000113 + (o + 821Ky (-, 0)13) lbaa (-, )13
+ 82|y ()13 + 2@ )13 + £ 3.
Using Gagliardo—Nirenberg’s interpolation inequality and e—Young’s inequality, sec-
ond and third terms at the right hand side can be estimated as
(@ + B2|[ky (-, O3 [ @aa (-, )3 < €llbaaall3 + cpiapell(, )3
and
8oy (-, )| < €ll a3 + cs.elld (- )3

respectively. Choosing € > 0 sufficiently small, we obtain

[@aea (013 S N0C, O3 + 1o OIF + 1¢I5

Note that from Proposition 7-(ii) given below, supremum of the trace terms w, (0, t),
Wee (0, ) exist. Therefore, taking supremum on both sides, we deduce that w €
C([0,T); H3(0, L)). Next, again from the main equation, we have

1PWpgre(x,t) = (—i0y — QWggy — 10Wey — 1Yy )(x, t)
+ 18kyz (2, 0)wy(0,t) + fa(x,t),
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and therefore we get

Bl tasaa ()11 < 102, )13+ 02 [Daae (- O3+ (62 + B2[[kay (-, 0)I13) 1 (- )3
+ 12l (N5 + 1 £ (5 )3

Similarly, by Gagliardo—Nirenberg’s inequality and then e—Young’s inequality, we
get

a2||u7mm(',t)||§ < €mem(,t)||§ + Ca,6||w('»t)||§7
(0% + B21ky (-, 0)13) [0z (-, )13 < €llaman (5013 + co5m,ellD( D)3,
7"2Hﬁ’z('vt)”§ < €mem(at)||§ + CT,E”"Z)('J)”%

Using these estimates, we obtain that
[@zzwa (3 S N0a (5 O + [0 O3 + 11 £ (.05

We see that right hand side belongs to L?(0,T'), so @ belongs to L2(0,T; H*(0, L)).
Combining with the previous result, we obtain that @ € X3 if @y € H3(0, L). This
finishes the proof of the following proposition.

Proposition 6. Let T, > 0, a,0 € R, k and p be smooth backstepping kernels
solving (10) and (19) respectively, and pi(x) = —ifBp,(z,0) + ap(z,0), p2(z) =
iBp(x,0). Assume that g € H?(0,L) satisfies the compatibility conditions and
the initial-boundary pair of the target error model (wo,v) € H®(0,L) x H?(0,T)
satisfies the higher order compatibility conditions. Then (159) admits a unique
solution b € X3.

Finally, thanks to bounded invertibility of the backstepping transformation (11),
we obtain under the same assumptions that @ € X3.. Combining the wellposedness
of 4 and @, we obtained the wellposedness of (1) and proved the first part of Theorem
1.2.

4.2. Stability. In this part, we obtain exponential stability estimates for the plant—
observer—error system. This will be done by first considering the target error and
target observer models. Then we use the bounded invertibility of the backstepping
transformations, which will yield the exponential stability for the error and observer
models, consequently for the original plant.

4.2.1. Error model.

Proposition 7. Let § > 0, a,d € R and p is the smooth backstepping kernel that
solves (19). Then for sufficiently small r > 0, it is true that

v lpa(L, 5713
= - — ————= ] >0.
p=p ( 3 3
Moreover, the solution w of (21) satisfies the following estimates

(i) 2.0l < Jatole ™, N
(i) [W20(0,8)| + [@2(0,8)] + [0, )| r20,2) S llollre(o,ye ™"
fort>0.
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Proof. (i) Taking the L?—inner product of the main equation of (21) with 2w,
following (30)-(33) and applying Cauchy—Schwarz inequality at the right hand
side, we get

d . - _ _
IS )3 + 2rll@, I3 + BloL(0,6)]* = Bl (L, 1)
2

L
:B/O pw(L,y)u?(y,t)dy

< Blipa (L, II3ID (-, )13

It follows from the last expression that

r_ ”pz(La )”g
3 2

_ lpe(L,)113
2

d
o018 +26 ) lac.olE <o.

Denoting = 8 (’B ) and integrating the above estimate yields (i).

Recall that that p,(L,y) = —ky(x,0). Thus, for sufficiently small r > 0, we
can prove that g > 0 holds as we performed in Proposition 4.

(ii) We differentiate (21) with respect to ¢, take L?—inner product by 2@, and
following similar steps as in part (i), we obtain

T lpa(L )3

§ -2l o <o,

d, .
.ol +25 (
which implies
[ (-, )2 < [Je (-, 0)[l2e ™" (161)
In particular, from the main equation of (21) together with (161), we get
e (-, )2 < [le (-, 0) [z~
= || — By’ + iauiy — 01y — ridoll2e M (162)
S Mo a3 0,y
On the other hand, again from (21), we also have
Bl - 3 < ol ()13 + 8 ()1 + ()3 + e D3 (163)

Applying Gagliardo—Nirenberg interpolation inequality and then e—Young’s
inequality, the first term at the right hand side can be estimated as

4 2
[0 ()13 < Call®aoa ()3 10(, O3
< GHﬂJZM(vt)H% + Ca,elllb('at)H% (164)
Similarly, the second term can be estimated as
Sll@s (-, )13 < ellDasa (-, )3 + caellw(-, t)]I5. (165)

Combining (164)-(165) with (163), and then choosing ¢ > 0 sufficiently small,
we get

1o, 150,y S 1B O3 + e (-, )13
Using (162) and (i), it follows that

l@(, ) 30,0y < ol g go,0ye ™ - (166)
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To estimate the trace terms in (ii), we take L?—inner product of (21) by
2(L — x)W,, and consider only the imaginary terms to get

L L L
2%/ Wi W (L—m)dx—i—Zﬁ%/ wz$$5zw(L—x)dx+2ai‘s/ WepWayy (L —x)dx
0 0 0

L L
+ 25?]?/ WyWyy (L — x)dx + 2r§R/ Wy (L — 2)dz = 0. (167)
0 0

Integrating by parts, the second term is equivalent to

L
269‘%/ WepaWay (L — 2)dx = ,88?/ — || (L — x)dx
0

L|wm(0 t)|2 + Hw:rw( ) )Hg) .

The third term vanishes since it is pure real. The fourth term, again by
integration by parts, can be expressed as

L
258?/ WyWye (L — x)dx = 55)?/ |wr| — z)dx
0

(—Llie (0, 6)]* + [z (- )]13) -
Using these estimates in (167), we obtain that

(5|wm(0 t)|2 +6|ww(0 t) 2%/ wtwwm( _x)d$+ﬁ“www(7 )”2

+ 6|, (-, )2 + mﬁ/ OBas (L — z)da.
0

Applying Cauchy—Schwarz inequality and then Young’s inequality on the first
and last terms at the right hand side, using (162) and (166), we get

[0 (0, )% + [ (0, 8)* < e (-, )13 + [0, )13 0,1
< e Mol g3 o, 1)-
Combining this result with (166) yields (ii).
O

Since p is a smooth function on a compact set A, , and the backstepping trans-
formation (20) is invertible on L?(0,L) and H*(0,L) with a bounded inverse, we
obtain that

(- Dll2 < e o]l (168)
where ¢, = (1+ [pllz2(a, ) (7 = 1) 22 and
(- )ls 0.y < el (169)

where Cpt = (1 + Hp”H:S(AL,y)) H(I — Tp)71||H3(O,L)—>H3(O,L)'
4.2.2. Observer model.

Proposition 8. Let > 0, a,0 € R and k,p be the smooth backstepping kernels
solving (10), (19) respectively. Then for sufficiently small r,e > 0, it is true that

uﬁg(r_”ky("o?r)”%

p - IEROE g+ i) ) > o
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where [|[1L;|[3 = ||(I = Yi)p;ll3, j = 1,2 with pi(z) = —iBpy(x,0) +ap(z,0), pa(z) =
ipp(x,0). Moreover, the solution w of (23) satisfies the following estimate

[ (- t)ll2 S e (lwoll2 + ll@oll s (o,r)) (170)
fort>0.

Proof. We take L?—inner product of the main equation of (23) by 21 and following
the steps (30)-(33), we get

d, . . .
LS )3 + Bls (0, 8)° + 2r[l (-, £)]13

L
—28R /O ke (2, 0)ig (0, ) (2, £)da
L (171)
+2%/0 0 (2)w, (0, t)w(x, t)dx

L
493 / Ty (2) s (0, ) (, £)
0

Using Young’s inequality and then Cauchy—Schwarz inequality, the first term at the
right hand side can be estimated as

L
28R /O ky (¢, 0)t, (0, )0 (z, t)da < By (0,8)[* + Blky (-, 0)]12][d(-, )||3.

Applying Cauchy—Schwarz inequality and e—Young’s inequality to the second and
third terms at the right hand side of (171), we get

1

— |, (0,8)]%, j=1,2.
26/8\10 0,87 J

L
~ —= 2 A
2£§j£ I ()i, (0, ), £)| < 26B]| |21, )3 +

Using these estimates in (171), we obtain that

v kG0

d
.o+ 2 (5 - LCOR - g + i) ) poc o1

1 _ _
<53 (|02 (0,8)]* + |W4(0,8)[?) . (172)
ep
From Proposition 4 we know that, there exists a sufficiently small » > 0 such that
2
the term (% — w> remains positive. So choosing e sufficiently small, we are

able to guarantee that the term

) 2
v (5 - PoCOB g+ pmag))

remains positive. Now applying Proposition 7-(ii) to the right hand side of (172),
we get

d, . . . .
S 1@C D5 + 20l 113 S ol Frs o,y

Also, observing |[pz(L, )2 = ||ky(-,0)|2 and comparing v with x, we observe that
> v. Thus, integrating the above inequality from 0 to ¢, we finally obtain

(-, t)[l2 S e (ldoll2 + [[woll 3 0,1)) -
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Since k, p are smooth backstepping kernels on the triangular domain A, , and
thanks to the invertibility of the corresponding backstepping transformations (11),
(20) on L2(0, L) and H?3(0, L) respectively, with a bounded inverse, we deduce that

[a(, )2 < ckpe™" (ltoll2 + a0l 2 0,1)) - (173)

where ¢, ;, is the maximum of

or = (L4 [[Ellr2(a, ) 1 = Tk) " 22
and
ep=(1+ ||pHH3(Am,y)) (I — Tp)il“H3(0,L)—>H3(O,L)~
Finally, combining (168) and (173)

(-, t)ll2 = [|(@+ @) (-, 1)l
< la e + 1w —a) (- t)|l2
< crp ([loll2 4 luo — Gollgzo,2)) € + cplluo — doll2e ™.

This gives us the second part of Theorem 1.2.

5. Numerical simulations. In this part, we present our numerical algorithm and
numerical simulations for controller and observer designs.

5.1. Controller design. Our algorithm consists of three steps. We first obtain an
approximation for the backstepping kernel k by solving the integral equation (116).
Then we solve the modified target equation (12) numerically. As a third and final
step, we use the invertibility of the backstepping transformation and end up with
the numerical solution to the original plant. Details are given in the below.

Step i. We solve the integral equation

t s w
GIt(s,t) = st +/ / / [DGY)(€,m)dédwdn,  §=1,2,...
33 o Jo Jo
iteratively, where the iteration is initialized with

Gl(s,t) = %st.
As the initial function is a polynomial, the result of the each iteration yields
again a polynomial. Thus, here, we use the advantage of the fact that sum-
mation and multiplication with a scalar of polynomials, their differentiation
and integration can be carried out easily by simple algebraic operations. To
perform these operations computationally, we express a given n—th degree
polynomial with complex coefficients, say

P(S, t) =ap,0 + a1,08 + @p1t + 042’082 + a1t + O[O’th + -

n n—1 n—2,2 n (174)
+ Qn oS F+ p-115 tF+an_22s T+ +agat,
in a more convenient form as
Q0,0 Qo1 o Qon—-1 Qon
1,0 g1 e Ol p—1
P | SR . (175)
Qp—1,0 Op—1,1 O

Qn .0
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Once we introduce this matrix representation (175) of P in our algorithm, then
it is easy to perform summation and scalar multiplication. Moreover, using the
elementary row and column operations, one can perform the differentiation
and integration operations. For instance multiplying the j—th row of [P] by
j — 1, writing the result to the (j — 1)—th row and repeating this process for
each j, j = 2,3,...,n+ 1 yields the matrix representation, [Ps], of Ps(s,t).
Similarly, multiplying the j—th row of [P] by 1/j, writing the result to the
(j +1)—th row, repeating this process for each j, j = 1,2,...,n+ 1 and filling
the first row by a zero vector yields | fos Pds]. Differentiation and integration
with respect to t can be done by performing analogous column operations.
Step ii. Let us consider the uniform discretization of [0, L] with the set of M > 3
node points {x,, }*_, where z,,, = (m—1)h, and h, = ML—l is the the uniform
spatial grid spacing. Let us introduce the following finite dimensional vector
space

XM = {W: [wy - - war]t G(CM},
where each w € XM satisfies
wl(t) = ’UJM(t) = 07 (176)
U)M,Q(t) — 4wM,1(t) + 3wM(t)
2h,
for t > 0. Note that wy, () is an approximation to w(z,t) at the point x = x,,
and, (176) and (177) correspond to Dirichlet and Neumann type boundary
conditions respectively. Consider the standard forward and backward differ-

ence operators Ay : XM — XM and A_ : XM — XM respectively and let us
introduce the following finite difference operators on X*:

= 0, (177)

1
A=y (AL +A ) A=A, A A=A, A A (178)
Next assume N be a positive integer, T be the final time and consider the
nodal points in time axis ¢, = (n — 1)k, where n = 1,..., N is time index and

hi = 7 is the time step size. Let w™ = [w} ---w™]” be an approximation

of the solution at the n-th time step where w?, is an approximation to w(z, t)
at the point (2,,,t,). Discretizing (12) in space by using the finite difference
operators (178) and in time by using Crank—Nicolson time stepping, we end
up with the discrete problem: Given w” € XM | find w™t! € XM such that

(IM + %A —~ ﬁ}”Ké”(no)Fé’M) witt =Fw", n=12,...,N. (179

2
Here IM is the identity matrix on X, A is defined as
A = BA® —iaA? £ 5A 4+ 7TV (180)
K} (-,0) is an M x M diagonal matrix, where each element on the diagonal
consists of the elements of the form ky(z,,0), m = 1,..., M where k,(x,0)

is obtained exactly in the previous step, I‘é’M is a discrete counterpart of the
trace operator I'} and given by an M x M matrix
-3 4 -1 0 --- 0
PV _ 1 |[-3 4 -1 0 --- 0
0 - =7 . . . . . . 5
2hy | 2 e
-3 4 -1 0 --- 0

(181)
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and

y Bhy 1L,M
—§A+4?Ky@m% .

Note that the nonzero elements in the matrix I‘(l)’M given in (181) are due to
the one—sided second order finite difference approximation to the first order
derivative at the point x = 0.

Step iii. In this final step, we find the inverse image, u, of w under the backstep-
ping transformation: Given w, we find u by using succession method. More
precisely, we set v = Tpu, therefore we obtain v = v + w and substitute u by
v+w on (11) to get

F=1M

x

v(z,t) Z/OIk(:my)w(y,t)dyﬂL/o k(z,y)v(y, t)dy.

Now given w obtained numerically in the previous step, we solve this equation
successively for v. Using the numerical results for w and v on u = v + w, we
obtain a numerical solution for .
Now, let us present a numerical simulation that verifies our exponential decay
results. We take M = 1001 spatial nodes, N = 5001 time steps. The iteration for
the backstepping kernel is performed j = 27 times so that the error is around

max |GV — GI| ~ 107,
(s,t)EAS ¢

We consider the following model

iUy + WUgre + 2Ugy + 8iu, =0, x € (0,7),t € (0,7),
w(0,t) = 0,u(m, t) = ho(t), ug(m, t) = hi(t), (182)
u(z,0) = 3 — ¥ — 27212,

In the absence of controllers, i.e. ho(t) = hi(t) = 0, we have a stationary solution
u(z,t) = 3 — e*® — 2e72%. Let us choose r = 0.05. This choice yields a positive
exponent value A, defined in Proposition 4, i.e. solution is decaying exponentially in
time (see Table 1). Contour plot of the corresponding solution and time evolution
of its L2—norm are given by Figures 14.

u(x. )|

0 20 40 60 80 100
t

[le(-s ]|

FIGURE 14. Numerical results in the presence of controllers. Left:
Time evolution of |u(x,t)|. Right: Time evolution of |u(-,t)|2.
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5.2. Observer design. Our algorithm consists of five steps. First we obtain an
approximation for the backstepping kernel p. In the second and third steps, we
obtain a numerical solution for the error model (15) and modified target observer
model (23), respectively. As a fourth step, we get a numerical solution for the
observer model by using the invertibility of the backstepping transformation (11).
At the fifth and the last step, we deduce numerical solution of the original plant via
U= U+ U.
Step i. Following the same procedure we introduced in the first step of Section
5.1 and then changing the variables first as § = L — ¢, = L — s — t then as
s=x—y,t =1y, we get

GGt —r)=G(L—t,L—s—t;—r)=k(L—y,L—x;—1) = p(z,y).

Note that using p, we also derive pi(z) = —if8p,(z,0) + ap(x,0) and pa(x) =
ifp(x,0).

Step ii. To solve (15), we apply the same discretization procedure as we introduced
in the second step of Section 5.1. The trace terms included in the main
equation of (15) are approximated by the following one sided second order
finite differences

—3tg(t) + 411 (t) — Ua(t)

2h, ’

200(t) — by (t) + 4ug(t) — us(t)

Step iii. Applying the similar discretization procedure, now we solve (23) numer-
ically. Note that using w(0,¢) = 0 and p(x,z) = 0, one can show by using
the backstepping transformation (20) that @, (0,¢) = 4,(0,t) and W;,(0,t) =
Uz4(0,t). Therefore, instead of approximating the first order and second order
traces of w at the left end point, we can use (183). Note also that a discrete
counterpart, Y of T can be obtained by applying a suitable numerical in-
tegration technique. For instance applying composite trapezoidal rule yields
the following representation

U, (0,t) =

(183)
Uy (0, 1) &

0 0 0 0
%k(l‘g,l’l) %k(l’g,{ﬂQ) 0 0
i =he : : ' : :
sk(zy—1,m1) k(zp—1,m2) - k(rm—1,20m-1) 0
sk(zar, 1) k(zar,x2) -+ k(zaam—1)  sk(za, o)

Step iv. Using the invertibility of the backstepping transformation (11), we obtain
inverse image u of w. This will be done by applying a similar procedure as

we introduced in the first step of Section 5.1.
Step v. Using the numerical results for the observer and error models and setting
u = 14 + 4, we deduce an approximation for the solution of the original plant.
Now let us go on with the numerical simulations. We obtain our results by

taking M = 1001 spatial nodes, N = 5001 time steps. We performed the iteration

for p(x, y) and k(z,y) several times so that the error is around ( n)laii |GIHL—GI| ~
s,t)EAs ¢

10~14. We consider the same model
Uy + (Uppy + 2Upe + 8iuy, =0, z € (0,7),t € (0,T),
w(0,t) = 0,u(m, t) = ho(t), u,(m,t) = hi(t),
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where, unlike the controller design case, the feedback controllers use the state of
the observer model. We initialize the error model as i(x,0) = 3 — e** — 2e=21 and
observer model @(z,0) = 0. We take » = 0.05. Since the problem parameters are
same as the previous numerical example, this choice will yield positive exponent
vales u > v > 0 where u, v are defined in Proposition 7 and Proposition 8.

Contour plot of the numerical solution of original plant is given at the left side
of Figure 15. At the right, we show time evolution of the L?—norms of solutions of
plant-observer-error system.

el e, 2)]
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-

120 ! ! . - : :
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,
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FIGURE 15. Numerical results. Left: Time evolution of |u(z,t)].
Right: Time evolution of |Ju(-,t)||2, ||@(,t)]|2 and ||a(-,)||2-

Appendix A. Deduction of the kernel pde model (7). In this section, we
present the details of the calculations for obtaining the kernel model given in (7).
Differentiating both sides of (5) with respect to t we get

twe(z,t) =tug(x,t) — /01‘ tk(z, y)u(y, t)dy

=iu(x,t) + /O k(, ) (@B1uyyy (4, 1) + auyy (y, 1) +iduy (y, ))dy

=iug(x,t)

+1iB <k(x, Y)tuyy (Y1) — ky(z,y)uy(y,t) + kyy (2, y)u(y, t)

0

- [ ety t>dy)

+ « (k(.’t, y)uy(y,t) - ky($7y)u(yat)

0 +/0 kyy(x7y)u(y,t)dy>

+ 46 (k:(a:,y)u(y,t) - /gC ky(g:,y)u(y,t)dy> ‘
o 0
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Using the boundary condition u(0,¢) = 0, rearrenging the last expression in terms
of u(x,t),ug(x,t), gy (z, 1), uy(0,t) and u,,(0,t), we obtain

twy(z,t) =tu(x,t) + / (—iBkyyy + akyy — idky) (z, y)u(y, t)dy
0

(
+ (iBkyy(z, z) — aky(z, z) + idk(x, ) u(z, t) (184)
+ (=iBky(z, z) + ak(x, z)) uy(z, t) + iBk(z, x)uyy(z, t)
+ (ifky(z,0) — ak(z,0)) ug(0,t) — ifk(x, 0)uL, (0,1).

Next we differentiate both sides of (11) with respect to « up to the order three and
multiply the results by id, o and i3 respectively to obtain

10wy (x,t) = i0ug(x,t) 15—/ k(x,y)u(y,t)dy

(185)
= iduy(x,t) — /0 10k (2, y)uly, t)dy — iok(z, r)u(z,t),
QWgp (T, 1) =gy (2, t) — a(,% /: ko (z,y)u(y, t)dy — a% (k(z,z)u(x,t))
=QUg,(x,t) — /Ow ke (z,y)u(y, t)dy (186)
+a (—km(x, x) — %k(aj, a:)) u(z,t) — ak(x, x)uz(z,t)
and
Zﬁwrxz (I t) *Zﬁuzzz Zﬂ / rr ay ya t)dy
_zﬁ— (( z(z,x) + dxk(x x)) u(z, t) + k(z, z)ug (z, t))
=ifUpp (T, 1) — /01 1B8kyer(z,y)u(y, t)dy (187)

2

+ Zﬂ <kx(x,:c) - QJIk(x,l‘)) um(x,t) - iﬂk(xax)umx(xat)'

Adding (184)-(187) side by side together with

rw(x, t) = iru(z,t) — ir/ k(x, y)u(y,t)dy,
0



56 T. OZSARI AND K. C. YILMAZ
and then using the main equation of the linear plant, we obtain
Wy + 1fWege + QWay + 10w, + irw
- / (B Ukuan + Fyyy) — Alns — Fyy) — i6(ks + by) — k) (2, g)uy, D)dy (188)

= <iﬁ (k;yy(x,x) — ko (2, 1) — %kx(l‘ax) - (z;k(%x))

+a <—ky(x,x) — ky(z, ) — jpk(m,x)) + ir) u(z,t) (189)
—if (ky(x, x) + ky(z,z) + 2%]@(% m)) Ug (2, 1) (190)
+ (ifky(z,0) — ak(z,0)) u.(0,1) (191)
— iBk(x, 0)ug,(0,1). (192)

From (192) we have k(z,0) = 0 and therefore, from (191) we get k,(z,0) = 0. Using
the relation -Lk(z, ) = ky(z, %) + ky(z, z), we obtain from (190) that

d

%k‘(x, x)=0

and thanks to k(z,0) = 0, this implies k(x, 2) = 0. Next, we differentiate %k‘(x, x)
= ky(z, %) + ky(z, z) with respect to = and use -Lk(z,z) = 0 to obtain ky,(z,z) =
—2kyy(x, ) — kze(z, z). Using this result on (189), we deduce that

which, by the implications k,(z,0) = 0 = kg (2,0) = 0 = k;(0,0) = 0, is equivalent
to
re

%.
Also note that taking z = 0 in the backstepping transformation implies w(0,t) =
u(0,t) = 0 and, taking x = L implies

ky(z,z) =

L
w(Lt) = u(L.t) = [ KLty dy =0
and
L
wy (L, t) = ugy(L,t) — /0 ki (L, y)u(y, t)dy — k(0,0)u(0,t) = 0.

So the boundary conditions are being satisfied without any extra conditions on k.
As a conclusion, linear plant is mapped to target model (not modified one) if
k(x,y) satisfies the following boundary value problem

k(z,z) = ky(z,0) = k(x,0) =0,
kalo,2) = 22,

on Ay y.
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Appendix B. Deduction of the kernel pde model (18). In this section, we
present the details of the calculations for obtaining the kernel model given in (19).
Differentiating (16) with respect to ¢, we get

ity (z, t) =i (z, t) — /Ow ip(x, y)w (y, t)dy

=iy (x,t) + / p(x, y) (1BWyyy (y, t) + ayy (y, t) + 100y (y, t) + irw)dy
0

:th (SU, t)

x

+ i (p(x,y)”@yy(y,t) — py(, Y)Wy (y, 1) + pyy(z,y)w(y, t)

_ /j pyyy(x7y)ﬁ)(y7t)dy)

+a (p(xvy)ﬁ}y(f% ) py('T y) (y7 )

0

T

+ /0 pyy@,y)w(y,t)dy)

- / Ipyu,y)w(y,t)dy)
0 0

L
+ir/0 p(z, y)w(y,t)dy.

x

+i5<( ;) (y, 1)

Using the boundary conditions w(0,t) = 0, rearranging the last expression in terms
of W(x,t),Wy(x, 1), Wez(x,t), Wy (0,t) and Wy, (0,t), we obtain

ity (z,t) =iwy(z,1) +/ (—iBpyyy + apyy — i6py + irp) (z,y)W (Y, t)dy
0

+ (iBpyy (v, x) — apy(z, x) + i0p(z, ) w(z, ) (193)
+ (_iﬂpy(xv 1‘) + Oép({E, I)) ’LZJx(JC, t) + i,@p(ﬁc, x)ﬁ]:c:c(xv t)
+ ('Lﬂpy (.’t, 0) - ap(x, 0)) d}m (07 t) - iﬂp($v O)ﬁ)zz (07 t)'

Next we differentiate (16) up to order three and multiply the results by id, o and
13 respectively to obtain

10U, (2, t) = 10w, (z, 1) 25—/ (z,y)0(y, t)dy
(194)
= 10W,(x,t) — / 10ps (z, y)w(y, t)dy — idp(z, x)w(x,t),
0
- 0 .
gy (2, 1) =QWyy (2, t) / Pz (z, y)w(y, t)dy — as- (p(z, z)w(x,t))
=0lyq (2, 1) — /0 apaz (2, y)w(y, t)dy (195)

+ (—pm(x,x) — jxp(:mx)) w(z,t) — ap(z, z)W,(x,t)
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and

a xr
18Uy ea (xa t) =iBWyea (1'7 t) - Zﬂ% A Pzx (1‘, y)ﬁ)(y, t)dy
d

it ((paloa) + o) ) 0(et) 4 o))

. d d? N
+ 7/5 (_pzz(xvx) - %pz(xvx) - MP(%@) U)(Z',t)

+ i3 (pz(x, x) — Q%p(:p, x)) Wy (2, 1) — i0p(x, )Wy (x, t).
From (194) and (195) we also have
p1(2)t(0,t) = p1(2)w,(0, ) (197)
and

P2(2) gy (0,1) = po(z)(Wey (0, ) — p(0,0)w,(0,1)). (198)
Adding (193)-(198) side by side we obtain

iUy + 18Ugzy + Qlgy + 10Uy + p1(2)Uy(0,1) + po(2) Uy (0, 1)
=Wy + 1fWygy + 0Wyy + 10W, (199)

+ / (=iB(Prae + Dyyy) — Brs — Dyy) — 10(pa + py) + irp) (2, 1)y, )y

(200)

~ (18 (wte2) = pusto0) = et~ fplon))
+a <—py(x,x) — pe(x,2) — dip(x,x))) w(z,t) (201)
—ip (py(am x) + po(z,x) + 2%]9(90, x)) Wy (2, 1) (202)
+ (Zﬁpy ((ﬂ, 0) - ap(x, 0) =+ D1 (Z) - p(oa 0)272 (:E)) sz (07 t) (203)
+ (—iﬂp(a@()) +p2(x))wmz(07t)' (204)

Note that, taking 2 = L on (20) and using the boundary condition @(L,t) = 0, we
must have p(L,y) = 0 in order to get w(L,t) = 0. On the other hand, using the
relation %p(x, z) = pa(x, &) + py(z, z), we get from (202) that

d
which, thanks to p(L,y) = 0 implies
p(z,z) = 0.

Next, we differentiate Lp(z,z) = p,(z,z) + py(z,z) with respect to z and use
L p(z,2) = 0 to obtain py,(z,2) = —2py(2,2) — pra(z,2). Using this result in
(201), we deduce that

”

35

T pala, ) =
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which, due to the implications p(L,y) = 0 = p,(L,y) = 0 = p,(L,L) = 0 =
p(L, L) =0, is equivalent to

pe(x,2) = — (L — x).

-
36
On the other hand we obtain from (203)-(204) that

p1(x) = —ifpy(z,0) + ap(z,0),

p2(x) = iBp(z,0).
Note that for = 0 in (20), we have @(0,t) = w(0,t) = 0. For x = L and thanks
to p(L,y) = 0, we have @(L,t) = w(L,t) = 0. Also for x = L on (194), we see that
Wy (L,t) =0 holds if p,(L,y) = 0.

As a conclusion, the error model is mapped to the target error model (not mod-

ified one), if p satisfies the following boundary value problem

B(Przz + Pyyy) — i(Pra — Pyy) + 6(pz +py) — 1P =0,
p(z,z) = p(L,y) = p(L,y) =0,

T

p$($€,$) = T(L - ;C)7

on Ay y.

Appendix C. Roots of the characteristic equation (57). In this part, we
investigate the roots A\; = \j(s), j = 1,2, 3, of the c