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Abstract. Backstepping based controller and observer models were designed

for higher order linear and nonlinear Schrödinger equations on a finite interval
in [3] where the controller was assumed to be acting from the left endpoint of

the medium. In this companion paper, we further the analysis by considering

boundary controller(s) acting at the right endpoint of the domain. It turns
out that the problem is more challenging in this scenario as the associated

boundary value problem for the backstepping kernel becomes overdetermined

and lacks a smooth solution. The latter is essential to switch back and forth
between the original plant and the so called target system. To overcome this

difficulty we rely on the strategy of using an imperfect kernel, namely one of

the boundary conditions in kernel PDE model is disregarded. The drawback
is that one loses rapid stabilization in comparison with the left endpoint con-

trollability. Nevertheless, the exponential decay of the L2-norm with a certain

rate still holds. The observer design is associated with new challenges from the
point of view of wellposedness and one has to prove smoothing properties for

an associated initial boundary value problem with inhomogeneous boundary
data. This problem is solved by using Laplace transform in time. However, the

Bromwich integral that inverts the transformed solution is associated with cer-

tain analyticity issues which are treated through a subtle analysis. Numerical
algorithms and simulations verifying the theoretical results are given.

1. Introduction.

1.1. Statements of problems and main results. Backstepping based controller
and observer models were designed for higher order linear and nonlinear Schrödinger
equations on a finite interval in [3] where the controller was assumed to be acting
from the left endpoint of the medium. In this companion paper, we further the
analysis by considering boundary controller(s) acting at the right endpoint of the
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domain. We will consider only the linear higher order Schrödinger (HLS) equation
in this paper:

iut + iβuxxx + αuxx + iδux = 0, x ∈ (0, L), t ∈ (0, T ),

u(0, t) = 0, u(L, t) = h0(t), ux(L, t) = h1(t),

u(x, 0) = u0(x),

(1)

where β > 0, α, δ ∈ R, h0(t) = h0(u(·, t)) and h1(t) = h1(u(·, t)) are feedbacks
acting at the right endpoint of the domain. The control design results of this paper
can be extended to associated higher-order nonlinear Schrödinger equations

iut + iβuxxx + αuxx + iδux + f(u) = 0

as in Part I (see [3]) with additional assumptions on the coefficients, but this topic
is omitted here considering the volume of current text and postponed to a future
paper. In addition, it is also possible to consider other sets of boundary conditions
here as in Part I that involves second order traces such as

u(0, t) = 0, ux(L, t) = h0(t), uxx(L, t) = h1(t),

but this will also be discussed in another place.
The higher-order nonlinear Schrödinger equation was originally given by

iut +
1

2
uxx + |u|2u+ εi

(
β1uxxx + β2(|u|2u)x + β3u|u|2x

)
= 0, (2)

which has been used to describe the evolution of femtosecond pulse propagation
in a nonlinear optical fiber [17, 18]. In this equation the first term represents the
evolution, second term is the group velocity dispersion, third term is self-phase mod-
ulation, fourth term is the higher order linear dispersive term, fifth term is related
to self-steepening and sixth term is related to self-frequency shift due to the stimu-
lated Raman scattering. In the absence of the last three terms, the model becomes
classical nonlinear Schrödinger equation (NLS) which describes slowly varying wave
envelopes in a dispersive medium. It has applications in several fields of physics
such as plasma physics, solid-state physics, nonlinear optics. It also describes the
propagation of picosecond optical pulse in a mono-mode fiber [34]. However, for
the pulses in the femtosecond regime, the NLS equation becomes inadequate and
higher order nonlinear and dispersive terms become crucial. See [1] for a detailed
discussion of the higher order effects upon the propagation of an optical pulse.

Higher order linear and nonlinear Schrödinger equations were studied from the
point of many different aspects. Regarding the wellposedness of solutions, we refer
the reader to [6, 7, 8, 16, 21, 30, 31]. A numerical study of this problem was given
in [9]. From the controllability and stabilization perspective, we refer the reader to
[10] for exact boundary controllability, [4] and [12] for internal feedback stabilization
and [3] for boundary feedback stabilization.

From a practical point of view, stabilization of solutions is necessary in order
to prevent the transmission of an undesirable pulse propagation. Our study offers
a practical solution to this issue because: (i) the stabilization is fast, i.e. the
absorption effect is exponential and (ii) the control acts only from the boundary
which is desirable when access to medium is limited.

In the absence of feedback controllers, L2−norm of the solution satisfies

d

dt
‖u(·, t)‖2L2(0,L) = −β|ux(0, t)|2 ≤ 0. (3)
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This can be shown by taking L2−inner product of the main equation in (1) with u
and applying integration by parts. From the estimate (3), we infer that L2−norm of
the solution does not increase in time. Furthermore, it was shown that if α2 +3βδ >
0 and

L ∈ N .
=

{
2πβ

√
k2 + kl + l2

3βδ + α2
: k, l ∈ Z+

}
, (4)

then the L2−norm of the solution does not necessarily decay to zero. Here N is the
set of critical lengths in the context of exact boundary controllability for the HLS
(see [10, 14] for the derivation of this set of critical lengths). For instance choosing
the coefficients β = 1, α = 2 and δ = 8 with k = 1 and l = 2, we obtain L = π ∈ N .
Moreover, choosing the initial state as

u0(x) = 3− e4ix − 2e−2ix,

we see that u(x, t) = u0(x) solves (1). Therefore, we find a time–independent
solution with a constant energy if no control acts on the system.

In this paper, we are interested in constructing suitable feedback controllers to
make sure that we can steer all solutions to zero with an exponential rate of decay
on domains of both critical and uncritical lengths. More precisely, we consider the
problem below:

Problem. Given L > 0, find λ > 0 and feedback control laws h0(t) = h0(u(·, t)) and
h1(t) = h1(u(·, t)) such that the solution of (1) satisfies ‖u(·, t)‖L2(0,L) = O(e−λt)
for some t > 0.

In order to solve this problem, we use backstepping method (see [20] for a general
discussion on the backstepping method), which is a well studied method for the sec-
ond order evolutionary partial differential equations [19, 22, 27, 28, 29]. In recent
years, researchers studied backstepping stabilization of several higher order evolu-
tionary equations that include third order dispersion term [3, 11, 23, 24, 32, 33]. In
these studies on KdV type equations, a single boundary feedback control is located
at one endpoint and the number of boundary conditions located at the opposite
endpoint are two. In particular, Part I of this study [3] assumes a control input
acting from the left endpoint, and there are two homogeneous boundary conditions
that are imposed from the right endpoint. Conversely, if there are two boundary
controllers acting from the right endpoint and a single homogeneous boundary con-
dition imposed at the left endpoint, which is the subject of the present paper, the
situation becomes mathematically very different as we explain below.

To this end, we want to transform the original plant via the backstepping trans-
formation

w(x, t) = [(I −Υk)u](x, t)
.
= u(x, t)−

∫ x

0

k(x, y)u(y, t)dy (5)

to a target system which already has the desired exponential stability. The classical
approach is to take the linearly damped version of the same type of pde with
homogeneous boundary conditions:

iwt + iβwxxx + αwxx + iδwx + irw = 0, x ∈ (0, L), t ∈ (0, T ),

w(0, t) = w(L, t) = wx(L, t) = 0,

w(x, 0) = w0(x)
.
= u0(x)−

∫ x
0
k(x, y)u0(y)dy.

(6)
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The key point here is to be able to show the existence of a sufficiently smooth kernel
and that the transformation I − Υk has a bounded inverse on a suitable space.
Then, the wellposedness and stability properties for the target model will also be
true for the original plant. Figure 1 below summarizes the standard algorithm of
the backstepping method.

Linear Plant
State variable u(x, t)

Target
State variable w(x, t)

w(x, t) = u(x, t)−
∫ x

0
k(x, y)u(y, t)dy

Inverse transformation

Figure 1. Backstepping

To prove the existence of a kernel, we differentiate (5) and use the original plant
together with the target system to see what conditions k must satisfy. After some
calculations (see Appendix A for details), we deduce that k must solve the following
boundary value problem

β(kxxx + kyyy)− iα(kxx − kyy) + δ(kx + ky) + rk = 0,

k(x, x) = ky(x, 0) = k(x, 0) = 0,

kx(x, x) = rx
3β ,

(7)

where (x, y) belongs to the triangular region ∆x,y
.
= {(x, y) ∈ R2 | y ∈ (0, x), x ∈

(0, L)}. To solve this problem, we change variables as s = x−y and t = y and write
G(s, t) ≡ k(x, y). Then (7) transforms into

β(3Gsst − 3Gtts +Gttt) + iα(Gtt − 2Gts) + δGt + rG = 0,

G(0, t) = Gt(s, 0) = G(s, 0) = 0,

Gs(0, t) = rt
3β ,

(8)

where (s, t) belongs to ∆s,t
.
= {(s, t) ∈ R2 | t ∈ (0, L − s), s ∈ (0, L)}. See Figure 2

for transformation of the triangular region under the above change of variables.

y

x
L

L

Triangular region ∆x,y

s = x− y
t = y

t

s
L

L

Triangular region ∆s,t

Figure 2. Triangular regions
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Observe that there is a mismatch between Gt(s, 0) and Gs(0, t) in the sense
that 0 = Gts(0, 0) 6= Gst(0, 0) = r

3β . This implies that (8) cannot have a smooth

solution and the standard algorithm of backstepping method fails. This issue was
previously observed in Korteweg de-Vries equation [11] and later treated in the case
of uncritical domains in [13] and in the case of critical domains in [25, 2]. The
idea of the latter work was to drop one of the boundary conditions from the kernel
pde model and take r sufficiently small. Note that if r is small, then the mismatch
is also small and one can hope that the solution of the corrected pde model will
yield a kernel which is good enough for our purposes. Once we drop the boundary
condition Gt(s, 0) = 0 from (8), the corrected version of the pde model (8) becomes

β(3G∗sst − 3G∗tts +G∗ttt) + iα(G∗tt − 2G∗ts) + δG∗t + rG∗ = 0, (s, t) ∈ ∆s,t,

G∗(0, t) = G∗(s, 0) = 0,

G∗s(0, t) = rt
3β ,

(9)

Setting k∗(x, y) = G∗(s, t), we deduce that k∗ is the sought after solution of
β(k∗xxx + k∗yyy)− iα(k∗xx − k∗yy) + δ(k∗x + k∗y) + rk∗ = 0, (x, y) ∈ ∆x,y,

k∗(x, x) = k∗(x, 0) = 0,

k∗x(x, x) = rx
3β ,

(10)

Existence of a smooth k∗ is given in Lemma 3.1.
Based on the above discussion, we now use the following backstepping transfor-

mation

w∗(x, t) = u(x, t)−
∫ x

0

k∗(x, y)u(y, t)dy, (11)

and corresponding target model for (1) becomes
iw∗t + iβw∗xxx + αw∗xx + iδw∗x
+irw∗ = iβk∗y(x, 0)w∗x(0, t), x ∈ (0, L), t ∈ (0, T ),

w∗(0, t) = w∗(L, t) = w∗x(L, t) = 0,

w∗(x, 0) = w∗0(x)
.
= u0(x)−

∫ x
0
k∗(x, y)u0(y)dy.

(12)

See (188)-(192) in Appendix A for detailed calculations. Notice that (12) is a
modified version of (6) in the sense that there is a trace term at the right hand
side of the main equation. This trace term is due to disregarding the condition
ky(x, 0) = 0 and using the relation ux(0, t) = w∗x(0, t). It is shown in Proposition
4 that the solution of (12) exponentially decays to zero for small r. Furhermore, it
is important that the transformation (11) has a bounded inverse (see Lemma 3.2).
Graphical illustration of the new scheme is shown in Figure 3.

Linear Plant

State variable u(x, t)

Modified target
with a trace term
State variable w∗(x, t)

w∗(x, t) = u(x, t)−
∫ x

0
k∗(x, y)u(y, t)dy

Inverse transformation

Figure 3. Backstepping with an imperfect kernel
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Based on the above strategy feedback controllers take the following forms:

h0(t) =

∫ L

0

k∗(L, y)u(y, t)dy, h1(t) =

∫ L

0

k∗x(L, y)u(y, t)dy. (13)

Let us introduce the space

X`
T
.
= C([0, T ];H`(0, L)) ∩ L2(0, T ;H`+1(0, L)), ` ≥ 0.

Now, regarding plant (1), we prove the following theorem.

Theorem 1.1. Let T, β > 0, α, δ ∈ R, u0 ∈ L2(0, L). Assume that the right
endpoint feedback controllers h0(t), h1(t) are given by (13) and let k∗ be a smooth
backstepping kernel solving (10). Then, we have the following:

(i) (Wellposedness) (1) has a unique solution u ∈ X0
T satisfying also

ux ∈ C([0, L];L2(0, T )).

Moreover, if u0 ∈ H3(0, L) and w∗0 = (I −Υk∗)[u0] satisfies the compatibility
conditions, then u ∈ X3

T .
(ii) (Decay) Suppose u0 ∈ L2(0, L). Then, there is r > 0 such that

λ = β

(
r

β
−
‖k∗y(·, 0; r)‖2L2(0,L)

2

)
> 0.

Moreover, the solution u of (1) with feedback controllers (13) satisfies

‖u(·, t)‖L2(0,L) ≤ ck∗‖u0‖L2(0,L)e
−λt, t ≥ 0,

where ck∗ is a nonnegative constant which depends on k∗.

Remark 1. It is shown in the proof of Proposition 4 that there exists r > 0 which
guarantees the condition λ > 0. See also Table 1 for different values of r, λ. Note
also from the same table that smallness of r is essential for λ to be positive.

In the second part of the paper, we consider the case where the state of the
system is not fully measurable, in particular at time t = 0. However, we assume
that the first order boundary trace y1(t) = ux(0, t) and the second order boundary
trace y2(t) = uxx(0, t) are known, say detectable through boundary sensors. In
order to deal with the robustness of the state, we construct an observer, which uses
the given boundary measurements. To this end, we propose the following observer
model 

iût + iβûxxx + αûxx + iδûx − p1(x)(y1(t)− ûx(0, t))

−p2(x)(y2(t)− ûxx(0, t)) = 0, x ∈ (0, L), t ∈ (0, T ),

û(0, t) = 0, û(L, t) = h0(t), ûx(L, t) = h1(t),

û(x, 0) = û0(x).

(14)

In the above model, the feedback controllers h0(t), h1(t) depend on the state of the
observer model. The same controllers will also be applied to the original plant (1).
p1, p2 are set to be observer gains and they will be constructed in such a way that
the so called error ũ = u− û must approach to zero as t gets larger. More precisely,
we want to solve the following problem:

Problem. Given L > 0, find observer gains p1, p2, and feedback laws h0(t) =
h0(û(·, t)), h1(t) = h1(û(·, t)) such that there exists λ > 0 for which the solution u
of (1) satisfies ‖u(·, t)‖L2(0,L) = O(e−λt).
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Note that the error function ũ satisfies
iũt + iβũxxx + αũxx + iδũx

+p1(x)ũx(0, t) + p2(x)ũxx(0, t) = 0, x ∈ (0, L), t ∈ (0, T ),

ũ(0, t) = ũ(L, t) = ũx(L, t) = 0,

ũ(x, 0) = ũ0(x).

(15)

In order to guarantee the decay of solutions of (15) at an exponential rate, we
treat p1 and p2 as control inputs and suitably construct them via the backstepping
technique. To this end, we transform (15) using the transformation

ũ(x, t) = w̃(x, t)−
∫ x

0

p(x, y)w̃(y, t)dy, (16)

to a target error model
iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃ = 0, x ∈ (0, L), t ∈ (0, T ),

w̃(0, t) = w̃(L, t) = w̃x(L, t) = 0,

w̃(x, 0) = w̃0(x),

(17)

which has exponential decay property. Differentiating (16) and using (15) with (17),
one can see that p must satisfy the following boundary value problem

β(pxxx + pyyy)− iα(pxx − pyy) + δ(px + py)− rp = 0,

p(x, x) = p(L, y) = px(L, y)0,

px(x, x) = r
3β (L− x),

(18)

on ∆x,y (see Appendix B for detailed calculations). However, changing variables as
s = L − x, t = x − y and defining H(s, t) ≡ p(x, y), one can see that the resulting
boundary value problem is overdetermined in the sense that there is a mismatch
between the boundary conditions: 0 = Hst(0, 0) 6= Hts(0, 0) = r

3β . Therefore, there

cannot exist a smooth kernel satisfying all boundary conditions. Following a similar
approach as in the earlier part of the paper, we could consider disregarding one of
the boundary conditions, namely px(L, y) = 0, and take r sufficiently small. Then,
the corrected version of the pde model (18) becomes

β(p∗xxx + p∗yyy)− iα(p∗xx − pyy) + δ(p∗x + p∗y)− rp∗ = 0,

p∗(x, x) = p∗(L, y) = 0,

p∗x(x, x) = r
3β (L− x).

(19)

Now if we use the backstepping transformation

ũ(x, t) = w̃∗(x, t)−
∫ x

0

p∗(x, y)w̃∗(y, t)dy, (20)

where p∗ solves (19), then the corresponding target error model for (6) becomes
iw̃∗t + iβw̃∗xxx + αw̃∗xx + iδw̃∗x + irw̃∗ = 0, x ∈ (0, L), t ∈ (0, T ),

w̃∗(0, t) = w̃∗(L, t) = 0, w̃∗x(L, t) =
∫ L

0
p∗x(L, y)w̃∗(y, t)dy,

w̃∗(x, 0) = w̃∗0(x),

(21)

if the control gains are chosen such that p1(x) = iβp∗y(x, 0)−αp∗(x, 0) and p2(x) =
−iβp∗(x, 0) (see Appendix B for details). Note that nonhomogeneous Neumann
type boundary condition in (21) is due to disregarding the condition px(L, y) = 0.
Nevertheless, we still have the exponential decay of solutions of (21) assuming that
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r is sufficiently small. This is given in Proposition 7. Also, it is not difficult to see
that p∗ and k∗ are related via

p∗(x, y) ≡ k∗(L− y, L− x;−r),

which immediately guarantees the existence of a smooth kernel p∗. This yields the
exponential decay of the solution of the error model.

Next, we apply the backstepping method to the observer model. To this end, we
differentiate

ŵ∗(x, t) = û(x, t)−
∫ x

0

k∗(x, y)û(y, t)dy (22)

and use (14) to deduce that ŵ∗ solves target observer model given by

iŵ∗t + iβŵ∗xxx + αŵ∗xx + iδŵ∗x + irŵ∗ = iβk∗y(x, 0)ŵ∗x(0, t)

+[(I −Υk∗)p1](x)w̃x(0, t)

+[(I −Υk∗)p2](x)w̃xx(0, t), x ∈ (0, L), t ∈ (0, T ),

ŵ∗(0, t) = ŵ∗(L, t) = ŵ∗x(L, t) = 0,

ŵ∗(x, 0) = ŵ∗0(x)
.
= û0(x)−

∫ x
0
k∗(x, y)û(y, t)dy.

(23)

Notice that we still use the solution of the corrected kernel pde model in the back-
stepping transformation given in (22). Therefore, as in the first part of this paper,
an extra trace term shows up in the main equation of (23). We prove in Proposition
8 that the solution of (23) exponentially decays to zero in time, again assuming that
r is sufficiently small.

Thanks to the bounded invertibility of the transformations (I −Υk∗), (I −Υp∗),
stability estimates with same decay rates also hold for observer and error models.
We have the following theorem for the wellposedness and stabilization of the plant-
observer-error system (1)-(14)-(15):

Theorem 1.2. Let T, β > 0, α, δ ∈ R, and u0, û0 ∈ H6(0, L). Assume that the
right endpoint feedback controllers are given by

h0(t) =

∫ L

0

k∗(L, y; r)û(y, t)dy, h1(t) =

∫ L

0

k∗x(L, y; r)û(y, t)dy,

where k∗ and p∗ are smooth solutions of (10) and (19), respectively. Then, we have
the following:

(i) (Wellposedness) Suppose that ŵ∗0 = (I − Υk∗)[û0] satisfies the compatibility
conditions and the pair (w̃∗0 , ψ), where w̃∗0 = (I − Υp∗)

−1[ũ0], ψ = ψ(w̃)
.
=∫ L

0
p∗x(L, y)w̃(y, t)dy, satisfies the higher order compatibility conditions. Then

the plant-observer-error system (1)-(14)-(15) has a unique solution (u, û, ũ) ∈
X3
T ×X3

T ×X6
T .

(ii) (Decay) Moreover, for sufficiently small r > 0, there exists µ > ν > 0 such
that,

‖u(·, t)‖L2(0,L) .ck,p
(
‖û0‖L2(0,L) + cp‖u0 − û0‖H3(0,L)

)
e−νt

+ ‖u0 − û0‖L2(0,L)e
−µt,

‖û(·, t)‖L2(0,L) .ck,p
(
‖û0‖L2(0,L) + ‖u0 − û0‖H3(0,L)

)
e−νt,

‖(u− û)(·, t)‖L2(0,L) .cp‖u0 − û0‖L2(0,L)e
−µt,

‖(u− û)(·, t)‖H3(0,L) .cp′‖u0 − û0‖H3(0,L)e
−µt,
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for t ≥ 0, where ck, cp, cp′ , ck,p are nonnegative constants depending on their
subindices.

1.2. Preliminaries. In this section, we state a few important inequalities and
notation which will be useful in our proofs.

1.2.1. Notation. Lp(0, L), 1 ≤ p < ∞, is the usual Lebesgue space and given u ∈
Lp(0, L), a Lebesgue measurable function, we will denote its Lp−norm by ‖u‖p, i.e.

‖u‖p
.
=

(∫ L

0

|u|pdx

) 1
p

.

If p =∞, then the corresponding norm is given by

‖u‖∞
.
= ess sup

x∈(0,L)

|u|.

Given k > 0, we denote the L2−based Sobolev space by Hk(0, L). In particular,
H1

0 (0, L) is the space of functions which belong to H1(0, L) that vanish at the
endpoints in the sense of traces. If A is a linear and bounded operator on L2(0, L),
we will denote its operator norm on L2(0, L) by ‖A‖2→2. We will write a . b to
denote an inequality a ≤ cb where c > 0 may only depend on fixed parameters of
the problem under consideration which are not of interest. Sometimes, to prove
the wellposedness of the models that we are interested in, we require compatibility
conditions between initial and boundary data. We define the notion of compatibility
in the following sense.

Definition 1.3 (Compatibility). Let T, L > 0.

(i) If φ ∈ H3(0, L), ψ ∈ H1(0, T ) are such that

φ(0) = 0, φ(L) = 0, φ′(L) = ψ(0), (24)

then we say (φ, ψ) satisfies compatibility conditions.

(ii) If φ ∈ H6(0, L), ψ ∈ H2(0, T ) and φ̃
.
= βφ′′′ − iαφ′′ + δφ′, then we say (φ, ψ)

satisfies higher order compatibility conditions provided it satisfies compatibil-
ity conditions and

φ̃(0) = 0, φ̃(L) = 0, φ̃′(L) = ψ′(0). (25)

If ψ ≡ 0, then we only refer to φ regarding compatibility conditions.

Finally, starting from Section 2, we drop the superscript notation ∗ that ex-
presses modified target models and modified backstepping kernels, and simply write
k, p, w, ŵ, w̃, etc.

1.2.2. Some useful inequalities. We will use the Cauchy–Schwarz inequality, for
u, v ∈ L2(0, L) ∣∣∣∣∣

∫ L

0

u(x)v(x)dx

∣∣∣∣∣ ≤ ‖u‖2‖v‖2,
and ε−Young’s inequality

|uv| ≤ ε

p
|u|p +

1

qε1/(p−1)
|v|q,
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where ε > 0, 1 < p < ∞ and 1
p + 1

q = 1. We will use Gagliardo–Nirenberg’s

interpolation inequality in our estimates: Let p ≥ 2, α = 1/2−1/p and u ∈ H1
0 (0, L).

Then,

‖u‖p ≤ c‖u′‖α2 ‖u‖1−α2 .

We will also use its higher order version: Let u ∈ Hk(0, L)∩H1
0 (0, L) for α = j/k ≤ 1

where j, k ∈ N. Then

‖u(j)‖p ≤ c‖u(k)‖α2 ‖u‖1−α2 .

Special case of the Gronwall’s inequality reads: given f : [0, t]→ R+ and α, β > 0,
the inequality

f(t) ≤ α+ β

∫ t

0

f(s)ds

implies

f(t) ≤ αeβt.

1.3. Outline. In Section 2, we prove smoothing properties for a nonhomogeneous
initial–boundary value problem with inhomogeneous boundary conditions. These
will be useful for the wellposedness analysis that will be carried out in Section
3 and Section 4. The tools we mainly use are semigroup theory, multipliers and
the Laplace transform. In Section 3, we first show the existence of an infinitely
differentiable smooth backstepping kernel in Lemma 3.1 and then state the invert-
ibility of the backstepping transformation with a bounded inverse in Lemma 3.2.
Then, we study the wellposedness and exponential decay properties of modified
target model (12). Finally, thanks to the bounded invertibility of the backstepping
transformation, we obtain the wellposedness and exponential decay for the original
plant. Section 4 is devoted to the observer design problem where we assume that
the state of the system is not known and only some partial boundary measurements
are available. We first make the wellposedness analysis for modified target error
model (21) and modified target observer model (23), respectively. Thanks to the
bounded invertibility of the backstepping transformations, we show the wellposed-
ness for error and observer, which imply the wellposedness of the original plant.
Next, we study the decay properties of the target error and target observer models.
Again, by using the invertibility of backstepping transformations, we obtain the
exponential stability of plant–observer–error system. In Section 5, we introduce a
numerical algorithm and then provide two numerical simulations for controller and
observer designs. Finally, in appendices, we give details of some calculations.

2. Auxiliary lemmas. In this section we prove some auxiliary lemmas which will
be useful in order to show wellposesness results in Section 3.2 and Section 4.1. Let
us start by considering the following model

iyt + iβyxxx + αyxx + iδyx = f(x, t), x ∈ (0, L), t ∈ (0, T ),

y(0, t) = ψ1(t), y(L, t) = ψ2(t), yx(L, t) = ψ3(t),

y(x, 0) = φ(x).

(26)

We will denote the solution of (26) by y[φ, f, ψ1, ψ2, ψ3]. Let A be the linear operator
defined by

Ay
.
= −βy′′′ + iαy′′ − δy′ (27)

with domain

D(A) = {y ∈ H3(0, L) | y(0) = y(L) = y′(L) = 0}. (28)
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It is shown in [10] that A generates a strongly continuous semigroup of contractions,
S(t), t ≥ 0, on L2(0, L). Thus, by standard semigroup theory, (26) with f = 0 and
ψi ≡ 0, i = 1, 2, 3, admits a unique mild solution (see [26]) for φ ∈ L2(0, L). In
the presence of nonhomogeneous boundary conditions ψi, i = 1, 2, 3, but with zero
forcing and zero initial state, i.e. φ ≡ f ≡ 0, analysis of solutions of (26) will be
carried out by obtaining a representation for the solution via the Laplace transform
in t. Also, in the following lemmas below we obtain regularity estimates for solutions
corresponding to initial, interior and boundary data in (26).

Lemma 2.1. Let f ≡ ψi ≡ 0, i = 1, 2, 3. Then, for T > 0 and φ ∈ L2(0, L),
y(·) = S(·)φ = y[φ, 0, 0, 0, 0] satisfies space-time estimates

(i) ‖y‖2C([0,T ];L2(0,L)) + β‖yx(0, ·)‖2L2(0,T ) = ‖φ‖22,

(ii) ‖y‖2L2(0,T ;H1(0,L)) . (1 + T )‖φ‖22
and the time-space estimate

(iii) sup
x∈[0,L]

‖yx(x, ·)‖L2(0,T ) . (1 +
√
T )‖φ‖2.

Proof. We first assume that φ ∈ D(A) and the solution is sufficiently smooth. The
general case then can be shown by using the classical density argument.

(i) We take L2−inner product of the main equation in (26) by 2y and get

2=
∫ L

0

iytȳdx+ 2=
∫ L

0

iβyxxxȳdx+ 2=
∫ L

0

αyxxȳdx+ 2=
∫ L

0

iδyxȳdx = 0. (29)

The first term at the left hand side of (29) can be written as

2=
∫ L

0

iytȳdx = 2<
∫ L

0

ytȳdx =
d

dt
|y(·, t)|22 . (30)

The second term can be integrated by parts in x, and using boundary condi-
tions we have

2=
∫ L

0

iβyxxxȳdx = −2<
∫ L

0

βyxxȳxdx = β|yx(0, t)|2. (31)

The third term, again via integration by parts in x, gives

2=
∫ L

0

αyxxȳdx = −2=
∫ L

0

α|yx|2dx = 0. (32)

The fourth term vanishes since

2=
∫ L

0

iδuxūdx = δ|u(x, t)|2
∣∣∣∣L
0

= 0. (33)

Combining (30)-(33) and integrating with respect to t, we arrive at

‖y(·, t)‖22 + β‖yx(0, ·)‖2L2(0,T ) = ‖φ‖22. (34)

Passing to supremum on both sides over [0, T ] yields the desired result.
(ii) Now we take L2−inner product of the main equation (26) by 2xy and consider

the imaginary parts of both sides to get

2=
∫ L

0

ixytȳdx+ 2=
∫ L

0

iβxyxxxȳdx

+ 2=
∫ L

0

αxyxxȳdx+ 2=
∫ L

0

iδxyxȳdx = 0. (35)
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The first term at the left hand side of (35) can be written as

2=
∫ L

0

ixytȳdx =
d

dt

∫ L

0

x|y|2dx. (36)

The second term can be integrated by parts in x and due to the boundary
conditions we have

2=
∫ L

0

iβxyxxxȳdx = 2β

(
−
∫ L

0

yxxūdx−
∫ L

0

xyxxyxdx

)

= 2β

(∫ L

0

|yx|2dx−
1

2

∫ L

0

x
d

dx
|yx|2dx

)

= 2β

(
‖yx(·, t)‖22dx+

1

2

∫ L

0

|yx|2dx

)
= 3β‖yx(·, t)‖22.

(37)

Third and fourth terms, again via integration by parts in x give us

2=
∫ L

0

αxyxxȳdx = 2α

(
−=

∫ L

0

yxydx−=
∫ L

0

x|yx|2dx

)
(38)

and

2=
∫ L

0

iδxyxȳdx = 2δ

∫ L

0

x
d

dx
|y|2dx = −δ‖y(·, t)‖22. (39)

Combining (36)-(39), we get

d

dt

∫ L

0

x|y|2dx+ 3β‖yx(·, t)‖22 = δ‖y(·, t)‖22 + 2α=
∫ L

0

yxydx

which, by ε−Young’s inequality applied to the second term at the right hand
side, is equivalent to

d

dt

∫ L

0

x|y|2dx+ (3β − ε)‖yx(·, t)‖22 ≤ cα,δ,ε‖y(·, t)‖22.

Integrating this result with respect to t over [0, T ] yields∫ L

0

x|y|2dx+ (3β − ε)
∫ T

0

‖yx(·, t)‖22dt =

∫ L

0

x|φ|2dx+ cα,δ,ε

∫ T

0

‖y(·, t)‖22dt.

Combining this result with (34), using Poincare inequality and choosing ε > 0
sufficiently small, we obtain (ii).

(iii) Let us take an extension of φ in L2(R), denoted by φ∗, with the property that
‖φ∗‖L2(R) . ‖φ‖L2(0,L). Consider the Cauchy problem{

ivt + iβvxxx + αvxx + iδvx = 0, x ∈ R, t ∈ (0, T ),

v(x, 0) = φ∗(x).
(40)

Using the Fourier transform ϕ̂(ξ) =
∫∞
−∞ e−ixξϕ(x)dx, the solution of the

above model can be represented as

v(x, t) =

∫ ∞
−∞

eixξeiω(ξ)tφ̂∗(ξ)dξ,
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where ω(ξ)
.
= βξ3 − αξ2 − δξ. We pick a smooth cut-off function

θ(ξ) =


1, a ≤ ξ ≤ b,
smooth, a− ε < ξ < a or b < ξ < b+ ε,

0, ξ ≤ a− ε or ξ ≥ b+ ε,

where ε > 0 is arbitrary, |θ| ≤ 1, and a and b will be chosen below in a suitable
manner. Now, we decompose v as

v(x, t) =

∫ ∞
−∞

eixξeiω(ξ)tθ(ξ)φ̂∗(ξ)dξ +

∫ ∞
−∞

eixξeiω(ξ)t(1− θ(ξ))φ̂∗(ξ)dξ
.
= v1(x, t) + v2(x, t).

(41)

Using Cauchy-Schwarz inequality on v1, Plancherel theorem and considering
that θ is a compactly supported function, we get

|∂xv1(x, t)| =
∣∣∣∣∫ ∞
−∞

iξeixξeiω(ξ)tθ(ξ)φ̂∗(ξ)dξ

∣∣∣∣
=

(∫ b+ε

a−ε
|iξ|2|θ(ξ)|2dξ

) 1
2 (∫ ∞

−∞
|φ̂∗(ξ)|2dξ

) 1
2

. ‖φ∗‖L2(R).

Taking square of both sides and integrating over [0, T ] yields

‖∂xv1(x, ·)‖2L2(0,T ) . T‖φ∗‖2L2(R). (42)

By similar arguments, we also have

‖∂jt v1(x, ·)‖2L2(0,T ) . T‖φ∗‖2L2(R) (43)

for j = 0, 1, where the constant of the inequality depends on j and θ. Inter-
polating, we get

‖v1(x, ·)‖2Hm(0,T ) . T‖φ∗‖2L2(R) (44)

for any m ∈ [0, 1], where the constant of the inequality depends on θ and m.
In particular, for m = 1/3, we have

‖v1(x, ·)‖H1/3(0,T ) .
√
T‖φ∗‖L2(R). (45)

The last inequality is a smoothing property and will have a particular impor-
tance in our wellposedness analysis later. Next, consider the second term in
(41) and rewrite it as

v2 =

∫ a

−∞
·+
∫ ∞
b

· .= v2− + v2+.

Consider the change of variable given by

τ = ω−(ξ) = ω(ξ) : (−∞, a]→ (−∞, ω(a)],

τ = ω+(ξ) = ω(ξ) : [b,∞)→ [ω(b),∞),
(46)

where we define their inverses as

ξ = ω−1
− (τ)

.
= ξ−(τ),

ξ = ω−1
+ (τ)

.
= ξ+(τ)

(47)

for each integral respectively. Indeed a suitable choice of the support of the
cut-off function ensures that the transformations given by (46) are 1 − 1,
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therefore their inverses exist. Moreover, same choices given below will provide
us that ω′(ξ) stays away from zero in (49). Depending on the sign of α2 +3βδ,
we have three different cases:

(a) Let α2 + 3βδ > 0. Then, any choice a <
α−
√
α2+3βδ

3β and b >
α+
√
α2+3βδ

3β

provides that the mapping is 1 − 1 and ω′(ξ) stays away from zero on
(−∞, a] ∪ [b,∞).

(b) Let α2 + 3βδ = 0. Then the mapping is 1− 1 for all choices of a < b. On
the other hand, choosing a < α

3β < b will provide that ω′(ξ) stays away

from zero on (−∞, a] ∪ [b,∞).
(c) Let α2 + 3βδ < 0. Then the mapping is 1− 1 and ω′(ξ) stays away from

zero on (−∞, a] ∪ [b,∞) for all choices of a < b .
Assume that we choose appropriate a and b values for each case of α2 + 3βδ
described above. Following from (46)-(47), we have

dξ =
1

3βξ2
∓(τ)− 2αξ∓(τ)− δ

dτ. (48)

Hence v2 becomes

v2(x, t) =

∫ ω(a)

−∞
eiξ−(τ)xeiτt(1− θ(ξ−(τ)))

φ̂∗(ξ−(τ))

3βξ2
−(τ)− 2αξ−(τ)− δ

dτ

+

∫ ∞
ω(b)

eiξ+(τ)xeiτt(1− θ(ξ+(τ)))
φ̂∗(ξ+(τ))

3βξ2
+(τ)− 2αξ+(τ)− δ

dτ.

Let us first consider v2− and observe that the functioneiξ−(τ)x(1− θ(ξ−(τ))) φ̂∗(ξ−(τ))
3βξ2−(τ)−2αξ−(τ)−δ , τ ∈ (−∞, ω(a)],

0, elsewhere,

is the Fourier transform of v2− with respect to its second component. Thus,

‖v2−(x, ·)‖2
H

1
3 (0,T )

≤‖v2−(x, ·)‖2
H

1
3
t (R)

=

∫ ∞
−∞

(1 + τ2)
1
3 |v̂2−(x, τ)|2dτ

=

∫ ω(a)

−∞
(1 + τ2)

1
3

∣∣∣∣∣eiξ−(τ)x(1− θ(ξ−(τ)))
φ̂∗(ξ−(τ))

3βξ2
−(τ)− 2αξ−(τ)− δ

∣∣∣∣∣
2

dτ

≤
∫ ω(a)

−∞
(1 + τ2)

1
3 | |φ̂∗(ξ−(τ))|2

|3βξ2
−(τ)− 2αξ−(τ)− δ|2

dτ.

Changing variables back as τ = ω−(ξ), it follows from the above estimate that

‖v2−(x, ·)‖2
H

1
3 (0,T )

≤
∫ a

−∞
(1 + ω2(ξ))

1
3

|φ̂∗(ξ)|2

|3βξ2 − 2αξ − δ|2
(3βξ2 − 2αξ − δ)dξ (49)

.
∫ a

−∞
(1 + ξ6)

1
3

|φ̂∗(ξ)|2

3βξ2 − 2αξ − δ
dξ '

∫ a

−∞
|φ̂∗(ξ)|2dξ

≤ ‖φ∗‖2L2(R).



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 15

‖v2+(x, ·)‖2
H

1
3 (0,T )

. ‖φ∗‖2L2(R) can be shown similarly. Hence

‖v2(x, ·)‖
H

1
3 (0,T )

. ‖φ∗‖2L2(R).

Combining this with (42), we get

‖v(x, ·)‖
H

1
3 (0,T )

. (1 +
√
T )‖φ∗‖L2(R).

Differentiating in x and repeating the above arguments, it also follows that

‖∂xv(x, ·)‖L2(0,T ) . (1 +
√
T )‖φ∗‖L2(R).

We also have the continuity of the mappings x → ‖v(x, ·)‖H1/3(0,T ) and x →
‖∂xv(x, ·)‖L2(0,T ). To this end, one needs to show that, given {xn} ⊂ R
converging to x ∈ R,

‖v(x, ·)− v(xn, ·)‖H1/3(0,T ) → 0, as n→∞
and

‖∂xv(x, ·)− ∂xv(xn, ·)‖L2(0,T ) → 0, as n→∞
hold. These can be easily shown by using the dominated convergence theorem.
Now, we can represent the solution of (26) as

y[φ, 0, 0, 0, 0] = v|(0,L) − y[0, 0, v(0, ·), v(L, ·), vx(L, ·)],
where y[0, 0, v(0, ·), v(L, ·), vx(L, ·)] is the solution of (26) with f ≡ φ ≡ 0,

y(0, t)
.
= v(0, t) ∈ H1/3(0, T ), y(L, t)

.
= v(L, t) ∈ H1/3(0, T ),

yx(L, t)
.
= vx(L, t) ∈ L2(0, T ).

Hence, part (iii) follows by combining the boundary smoothing property
of v and the inhomogeneous boundary value problem given in Lemma 2.6
below.

Lemma 2.2. Let φ ≡ ψi ≡ 0, i = 1, 2, 3, T > 0, and f ∈ L1(0, T ;L2(0, L)). Then
the solution y = y[0, f, 0, 0, 0] of (26) satisfies space-time estimates

(i) ‖y‖2C([0,T ];L2(0,L)) + β‖yx(0, ·)‖2L2(0,T ) . ‖f‖
2
L1(0,T ;L2(0,L)),

(ii) ‖y‖2L2(0,T ;H1(0,L)) . (1 + T )‖f‖2L1(0,T ;L2(0,L))

and the time-space estimate

(iii) sup
x∈[0,L]

‖yx(x, ·)‖L2(0,T ) . (1 +
√
T )‖f‖L1(0,T ;L2(0,L)).

Proof.

(i) Multiplying the main equation by 2ȳ, integrating over [0, T ]× [0, L] and using
(30)-(33), we get

‖y(·, t)‖22 + β‖yx(0, ·)‖2L2(0,T ) ≤ 2

∫ T

0

∫ L

0

|f(x, t)||y(x, t)|dxdt. (50)

We apply Cauchy–Schwarz and ε−Young’s inequalities to the right hand side
of (50) to obtain

‖y(·, t)‖22 + β‖yx(0, ·)‖2L2(0,T ) ≤ ε sup
t∈[0,T ]

‖y(·, t)‖22 + cε‖f‖2L1(0,T ;L2(0,L)).

Right hand side is independent of t. So passing to supremum on both sides
over [0, T ] and choosing ε > 0 sufficiently small yield (i).
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(ii) Multiplying the main equation by 2xy, integrating over [0, T ]×[0, L] and using
the same arguments in (36)-(39), we get

∫ L

0

x|y(x, t)|2dx+ 3β

∫ T

0

‖yx(·, t)‖22dt = δ

∫ T

0

‖y(·, t)‖22dt

+ 2α=
∫ T

0

∫ L

0

yx(x, t)y(x, t)dxdt+ 2=
∫ T

0

∫ L

0

xf(x, t)y(x, t)dxdt. (51)

Second term at the right hand side of (51) can be estimated via ε−Young’s
inequality as

2α=
∫ T

0

∫ L

0

yx(x, t)y(x, t)dxdt ≤ ε
∫ T

0

‖yx(·, t)‖22dt+ cα,ε

∫ T

0

‖y(·, t)‖22dt. (52)

Using Cauchy–Schwarz inequality and ε−Young’s inequality, and thanks to
(i), the third term at the right hand side of (51) can be estimated as

2=
∫ T

0

∫ L

0

xf(x, t)y(x, t)dxdt ≤ sup
t∈[0,T ]

‖y(·, t)‖22 + L2‖f‖2L1(0,T ;L2(0,L))

≤ cL‖f‖2L1(0,T ;L2(0,L)).

(53)

Using (52)-(53), it follows from (51) that∫ L

0

x|y(x, t)|2dx+ (3β − ε)
∫ T

0

‖yx(·, t)‖22dt

≤cα,δ,ε
∫ T

0

‖y(·, t)‖22 + cL‖f‖2L1(0,T ;L2(0,L))

≤cα,δ,εT sup
t∈[0,T ]

‖y(·, t)‖22 + cL‖f‖2L1(0,T ;L2(0,L))

≤cL,α,δ,ε(1 + T )‖f‖2L1(0,T ;L2(0,L)),

(54)

where we used (i) in the last line again. Finally, choosing ε ∈ (0, 3β), using
the Poincare inequality and dropping the first term at the left hand side, we
conclude with (ii).

(iii) Using Duhamel’s principle, the solution is of the form

y(x, t) =

∫ t

0

S(t− τ)f(x, τ)dτ.

By differentiating with respect to x

|∂xy(x, t)| =
∣∣∣∣∂x [∫ t

0

S(t− τ)f(x, τ)dτ

]∣∣∣∣
≤
∫ t

0

|∂x [S(t− τ)f(x, τ)]| dτ

≤
∫ T

0

|∂x [S(t− τ)f(x, τ)]| dτ.
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Taking L2− norm of both sides with respect to t on [0, T ] and using the result
in Lemma 2.1-(iii)

‖∂xy(x, ·)‖L2(0,T ) ≤

∥∥∥∥∥
∫ T

0

|∂x [S(· − τ)f(x, τ)]| dτ

∥∥∥∥∥
L2(0,T )

≤
∫ T

0

‖∂x [S(· − τ)f(x, τ)]‖L2(0,T ) dτ

.
∫ T

0

(1 +
√
T )‖f(·, τ)‖L2(R)dτ

. (1 +
√
T )‖f‖L1(0,T ;L2(0,L)).

Passing to supremum in x over [0, L] ends the proof of (iii).

Now let us turn our attention to the nonhomogeneous boundary value problem
with φ ≡ f ≡ 0 and let us first obtain an explicit representation for y[0, 0, ψ1, ψ2, ψ3]
in terms of the boundary data ψm, m = 1, 2, 3, where we consider extension of ψm’s,
denoted by ψ∗m, from (0, T ) to R satisfying ‖ψ∗j ‖H1/3(R) . ‖ψ‖H1/3(0,T ), j = 1, 2

and ‖ψ∗3‖L2(R) . ‖ψ‖L2(0,T ). We can further assume that ψ∗m(t) = 0 for t < 0.
For simplicity, we denote the extended functions again by ψm. Our approach for
obtaining a representation for the solution is to apply the Laplace transformation
in time:

f̃(s) =

∫ ∞
0

e−stf(t)dt.

This approach is motivated from [5] on the KdV equation. However, due to the
parameters β, α, δ and assuming that L may be critical, the situation gets more
complicated and the treatment of the problem is more subtle.

To this end, we apply the Laplace transformation and transform (26) to the
following infinite family of third–order boundary value problems{
isỹ(x, s) + iβỹxxx(x, s) + αỹxx(x, s) + iδỹx(x, s) = 0, (x, s) ∈ (0, L)× C,
ỹ(0, s) = ψ̃1(s), ỹ(L, s) = ψ̃2(s), ỹx(L, s) = ψ̃3(s),

(55)

where a suitable set for the complex valued independent variable s is specified below.
Using the Bromwich integral, y can be represented as

y(x, t) =
1

2πi

∫ r+i∞

r−i∞
estỹ(x, s)ds, (56)

where the vertical integration path (r− i∞, r+ i∞) in the complex plane is chosen
so that, all possible singularities of ỹ lie at the left of it. Note that for sufficiently
large r the characteristic equation,

s+ βλ3 − iαλ2 + δλ = 0, (57)

for (55) has distinct roots. In fact, there exists only finitely many s for which (57)
has double or possibly triple roots. We can classify these cases depending on the
sign of the quantity α2 + 3βδ. To this end, let λj , j = 1, 2, 3, denote the roots
of (57) and assume that λ2 = λ3 for some s ∈ C. Then direct calculations (see
Appendix C for details) yield the following cases.

(i) If α2 + 3βδ > 0, then there exists only two possible values of s and these
values belong to the imaginary axis.
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(ii) If α2 + 3βδ = 0, then we have one and only one possible value of s and this
value belongs to the imaginary axis. Note that for this value of s, we have
λ1 = λ2 = λ3.

(iii) If α2 + 3βδ < 0, then there exists only two possible values of s and these
values are symmetric with respect to the imaginary axis.

Consequently, for sufficiently large r (57) has distinct roots on the line <(s) = r
and solution of (55) is of the form

ỹ(x, s) =

3∑
j=1

cj(s)e
λj(s)x, (58)

where the column vector (c1(s), c2(s), c3(s))T is the solution of the linear system 1 1 1
eλ1(s)L eλ2(s)L eλ3(s)L

λ1(s)eλ1(s)L λ2(s)eλ2(s)L λ3(s)eλ3(s)L

c1(s)
c2(s)
c3(s)

 =

ψ̃1(s)

ψ̃2(s)

ψ̃3(s)

 . (59)

Applying Cramer’s rule, these coefficients can be obtained as cj =
∆j

∆ , where ∆ is
the determinant of the coefficient matrix and ∆j ’s are determinants of the matrices
formed by replacing the j−th column of the coefficient matrix by the column vector
(ψ̃1, ψ̃2, ψ̃3)T . Thus y is of the form

y(x, t) =
1

2πi

3∑
j=1

∫ r+i∞

r−i∞
est

∆j(s)

∆(s)
eλj(s)xds. (60)

We can rewrite y[0, 0, ψ1, ψ2, ψ3] as y ≡
∑3
m=1 ym, where ym solves the same prob-

lem with boundary data ψj ≡ 0 if j 6= m, j = 1, 2, 3. Thus ym’s can be expressed
as

ym(x, t) =
1

2πi

3∑
j=1

∫ r+i∞

r−i∞
est

∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds, m = 1, 2, 3. (61)

Here ∆j,m’s, m = 1, 2, 3, are obtained from ∆j , where ψm is replaced by 1 and ψj ’s,
j 6= m, are replaced by 0 for each j.

To change the integration path in (61) by a more convenient one, one needs to
investigate possible zeros of ∆(s) in the complex plane. These points occur not
only due to the double or possibly triple roots of (57) but may also occur due to
the eigenvalues of the operator A defined in (27) with domain D(A) defined in (28).
Note that A is a dissipative operator:

<(Aϕ,ϕ) = <
∫ L

0

(−βϕ′′′ + iαϕ′′ − δϕ′)(x)ϕ(x)dx = −β|ϕ
′(0)|2

2
≤ 0.

Thus, in particular, all eigenvalues of A lie on the left complex half plane or possibly
on the imaginary axis. The latter situation occurs only if the problem{

−βϕ′′′ + iαϕ′′ − δϕ′ = λϕ, in (0, L),

ϕ(0) = ϕ(L) = ϕ′(0) = ϕ′(L),
(62)

has nontrivial solutions. Using the corresponding characteristic equation

−βm3 + iαm2 − δm = λ



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 19

for the main equation of (62) together with the boundary conditions, one can obtain

that the roots mj , j = 1, 2, 3, must be distinct, i.e. ϕ(x) =
∑3
j=1 d1e

mjx. Together
with the boundary conditions, this implies that mj ’s must satisfy

em1L = em2L = em3L

(see [15, Proposition 2] for similar calculations). Therefore, we have

m2 −m1 =
2kπi

L
,

m3 −m2 =
2lπi

L
,

where without loss of generality, upon relabeling mj ’s we can assume that k, l ∈ Z+.
Using m1 +m2 +m3 = iα

β , we get

m1 =
iα

3β
+

2(−2k − l)πi
3L

,

m2 =
iα

3β
+

2(k − l)πi
3L

,

m3 =
iα

3β
+

2(k + 2l)πi

3L
.

Substituting these into m1m2 + m1m3 + m2m3 = δ
β , after some calculations, we

obtain
δ

β
= − α2

3β2
+

4π2(k2 + kl + l2)

3L2

or equivalently

α2 + 3βδ =
4π2β2(k2 + kl + l2)

L2
. (63)

Consequently, depending on the sign of α2 + 3βδ and the interval length L, it
is possible to obtain a nontrivial solution of (62), therefore there can be some
eigenvalues on the imaginary axis.

(i) Let α2 + 3βδ > 0. Then, choosing L from the set of critical lengths given in
(4) imply the existence of some eigenvalues that are located on the imaginary

axis. Now from the equation m1m2m3 = −λβ and using L = 2πβ
√

k2+kl+l2

α2+3βδ ,

one obtains after some calculations that

λ =
i

27β2

[
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2H(k, l)

]
(64)

where

H(k, l) =
(−2k − l)(k − l)(k + 2l)

2(k2 + kl + l2)
3
2

. (65)

It is not difficult to see that −1 < H(k, l) < 1 for k, l ∈ Z+. Thus, from (64),
we deduce that =(λ) ∈ (=s+

2 ,=s
+
1 ), where

s+
1
.
=

i

27β2

[
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2

]
and

s+
2
.
=

i

27β2

[
α3 − 3α(α2 + 3βδ)− 2(α2 + 3βδ)3/2

]
.

See Figure 4 for the graph of H(k, l).
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Figure 4. H(k, l) : [1,∞)× [1,∞)→ (−1, 1)

On the other hand s+
1 and s+

2 are the points where (55) assumes double
root (see Appendix C for detailed calculations), hence zeros of ∆(s). This
fact together with the location of the possible pure imaginary eigenvalues
imply that all possible singular points of (60) belonging to the imaginary axis
lie in the closed interval [=(s+

2 ),=(s+
1 )]. Thus, we can deform the vertical

integration path of (60) by shifting the parts {s | =(s) > =(s+
1 ) + ρ} and

{s | =(s) < =(s+
2 ) − ρ} to C+

1
.
= (s+

1 + iρ, i∞) and C+
3

.
= (−i∞, s+

2 − iρ)
respectively, ρ > 0 is fixed, whereas we shift the rest of the integration path
up to ρ units from the imaginary axis, and avoid the points s+

1 , s+
2 by a

quarter-circular arcs to the upper-right and lower-right respectively, denoted
by C+

2 . See Figure 5 below.

<(s)

=(s)

s+
2

s+
1

C+
3

C+
2

C+
1

Figure 5. Integration path for the case α2 + 3βδ > 0.
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Thus we can express (61) as

ym(x, t) =
1

2πi

3∑
j=1

∫
C+

1

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C+

2

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C+

3

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds.

(66)

Now we change the variable in the first and the third integral as s = iω(ξ) =
i(βξ3−αξ2−δξ). For α2 +3βδ > 0, the function ω(ξ) has one local maximum
and one local minimum. After some calculations one can find that the most
right inverse image of s+

1 and the most left inverse image of s+
2 are given by

ξ+
1
.
=
α+ 2

√
α2 + 3βδ

3β
, ξ+

2
.
=
α− 2

√
α2 + 3βδ

3β

respectively (see Figure 6). Thus inverse images of the paths C+
1 and C+

3

under the transformation s = iω(ξ) become (ξ+
1 + η+

1 ,∞) and (−∞, ξ+
2 − η

+
2 )

respectively for η+
1 , η

+
2 > 0. Consequently, (66) becomes

ω(ξ)

ξ+
2 ξ+

1

=(s+
2 )

=(s+
1 )

ξ

=(s)

Figure 6. Plot of transformation =(s) = ω(ξ) when α2 +3βδ > 0.

ym(x, t)

=
1

2πi

3∑
j=1

∫ ∞
ξ+1 +η+1

eiω(ξ)t
∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ

+
1

2πi

3∑
j=1

∫
C+

2

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ+2 −η
+
2

−∞
eiω(ξ)t

∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ

.
=y+

m,1(x, t) + y+
m,2(x, t) + y+

m,3(x, t),

(67)

where the superscript ∗ stands for the transformed functions under the change
of variable given above. Note also that, with respect to the new variable, we
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have the following explicit representation for the roots of the characteristic
equation (57):

λ∗1(ξ) = iξ,

λ∗2(ξ) =
−i(βξ − α)−

√
3β2ξ2 − 2βαξ − α2 − 4βδ

2β
,

λ∗3(ξ) =
−i(βξ − α) +

√
3β2ξ2 − 2βαξ − α2 − 4βδ

2β
.

(68)

(ii) Let α2 + 3βδ = 0. Then we see that (63) does not hold for any k, l ∈ Z+, thus
the eigenvalue problem (62) has only trivial solution. But this contradicts
with the fact that ϕ is an eigenvalue. Thus <(Aϕ,ϕ) < 0 and the real parts of
the all eigenvalues of the operator A are strictly negative. On the other hand

s0 .
=

iα3

27β2

is the point where (57) assumes triple root (see Appendix C for details). Thus
the integrand of (61) is continuous for all r > 0 and we can shift the contour
of integration onto the imaginary axis, provided that we avoid s0 by a half-
circular arc to the right with a radius ρ > 0 denoted by C0

2 . Defining also
C0

1
.
= (s0 + iρ, i∞) and C0

3
.
= (−i∞, s0 − iρ) (see Figure 7 below)

<(s)

=(s)

C0
2s0

C0
3

C0
1

Figure 7. Integration path for the case α2 + 3βδ = 0.

we can express (61) as

ym(x, t) =
1

2πi

3∑
j=1

∫
C0

1

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C0

2

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C0

3

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds.

(69)
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Now let us consider changing variables as s = iω(ξ) = i(βξ3−αξ2−δξ) for the
first and the third integrals. For α2 +3βδ = 0, note that ω(ξ) is nondecreasing
and (ξ0,=(s0)) is the inflection point of ω(ξ), where after some calculations,
ξ0 can be obtained as

ξ0 .
=

α

3β
.

See Figure 8 for a graphical illustration. Hence we can find the unique inverse

ω(ξ)

ξ0

=(s0)

ξ

=(s)

Figure 8. Plot of transformation =(s) = ω(ξ) when α2 +3βδ = 0.

images of C0
1 and C0

3 as (ξ0 + η0
1 ,∞) and (−∞, ξ0 − η0

2) respectively for some
η0

1 , η
0
2 > 0. Thus (69) becomes

ym(x, t) =
1

2πi

3∑
j=1

∫ ∞
ξ0+η01

eiω(ξ)t
∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ

+
1

2πi

3∑
j=1

∫
C+

2

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ0−η02

−∞
eiω(ξ)t

∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ

.
=y0

m,1(x, t) + y0
m,2(x, t) + y0

m,3(x, t),

(70)

where λ∗j ’s are given as in (68).

(iii) Let α2+3βδ < 0. Then (63) does not hold for any k, l ∈ Z+ and all eigenvalues
lie on the left half complex plane. On the other hand, there exits two values
of s for which (57) assumes double root. These values, say s−1 and s−2 with
<(s−1 ) > 0 > <(s−2 ) which are symmetric with respect to the imaginary axis
(see Appendix C), are also the branch points of the square root function√

(s− s−1 )(s− s−2 ),

where we choose the branch cut as {s ∈ C | =(s) = =(s−1 ),<(s−2 ) < <(s) <
<(s−1 )}. Indeed changing variables as s = i=(s−1 ) + r and than performing
some calculations, roots of the characteristic equation (57) can be expressed
as

λ†j(r) =
1

3β

(
iα− α2 + 3βδ

Λj(r)
+ Λj(r)

)
,
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where

Λj(r) = −3β
2
3 e

2πij
3

1−
√
r2 + 4(α2+3βδ)

729β4

2


1
3

, j = 1, 2, 3.

Note that <(s−1 ) and <(s−2 ) are the zeros of the square root above.
In conclusion, what distinguishes this case from the previous cases is that,

we have now a zero of ∆(s) that lies on the right half complex plane which is
at the endpoint of the branch cut. Therefore, to deform the integration path,
we first shift the vertical integration line to the left until we meet s−1 . Then
we deform a part of the path near s−1 by a half-circular arc to the right with
a radius ρ > 0. Next we deform the rest of the integration path as, first by
horizontal line segments to the left starting from the end points of the arc
through the imaginary axis and second continuing from the imaginary axis in
the vertical direction towards +i∞ and −i∞ respectively. See Figure 9 for
the path deformation described here.

<(s)

=(s)

<(s−1 )

s−2

C−5

C−4

C−3
C−2

C−1

Figure 9. Integration path for the case α2 + 3βδ < 0.

Consequently, we can write (61) as

ym(x, t) =
1

2πi

3∑
j=1

∫
C−1

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C−2 ∪C

−
3 ∪C

−
4

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫
C−5

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds.

(71)

Now let us apply change of variable s = iω(ξ) = i(βξ3 − αξ2 − δξ) for the
first and third integrals. Note that for α2 + 3βδ < 0, this mapping is strictly
increasing and the inverse image of =(s−1 ) under the transformation ω(ξ) is
the point

ξ−
.
=

α

3β
.
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Then C−1 and C−5 are mapped to (ξ− + η−1 ,∞) and (−∞, ξ− − η−2 ) for some
η−1 , η

−
2 > 0. See Figure 10. Thus (71) becomes

ω(ξ)

ξ−

=(s−1 )

ξ

=(s)

Figure 10. Plot of transformation =(s) = ω(ξ) when α2 + 3βδ <
0.

ym(x, t)

=
1

2πi

3∑
j=1

∫ ∞
ξ−+η−1

eiω(ξ)t
∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3β2ξ2 − 2αξ − δ)ψ̃m(ξ)dξ

+
1

2πi

3∑
j=1

∫
C−2 ∪C

−
3 ∪C

−
4

est
∆j,m(s)

∆(s)
eλj(s)xψ̃m(s)ds

+
1

2πi

3∑
j=1

∫ ξ−−η−2

−∞
eiω(ξ)t

∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3β2ξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ

.
=y−m,1(x, t) + y−m,2(x, t) + y−m,3(x, t),

(72)

where λ∗j ’s are given by (68).

In the following three lemmas we provide estimates for ym for each m. Note that
for each solution representation (67), (70) and (72) corresponding to the different
cases of α2 + 3βδ, second integrals are bounded on the corresponding integration
paths. However, these paths lie on the right half complex plane. Therefore, for a
given T > 0, we can find c > 0 such that the norm estimates that we will obtain
below for the first and third integrals also hold for the second integrals but with a
constant ecT . On the other hand, for each case of α2 +3βδ, we need norm estimates
for the following form of integrals

Im(x, t) =
1

2πi

3∑
j=1

∫ ∞
γ1

eiω(ξ)t
∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ (73)

and

Jm(x, t) =
1

2πi

3∑
j=1

∫ γ2

−∞
eiω(ξ)t

∆∗j,m(ξ)

∆∗(ξ)
eλ
∗
j (ξ)x(3βξ2 − 2αξ − δ)ψ̃m∗(ξ)dξ, (74)
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where γ1 ∈ {ξ+
1 + η+

1 , ξ
0 + η0

1 , ξ
−+ η−1 } and γ2 ∈ {ξ+

2 + η+
2 , ξ

0 + η0
2 , ξ
−+ η−2 }. Thus,

it is enough to study (73) and (74) in order to obtain desired norm estimates for
each ym, m = 1, 2, 3.

Lemma 2.3. Let T, β > 0, α, δ ∈ R and ψ1 ∈ H1/3(0, T ). Then y1 = y[0, 0, ψ1, 0, 0]
belongs to the space C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)) and it also satisfies ∂xy1 ∈
C([0, L];L2(0, T )). Moreover, there exists a constant c > 0 such that

‖y1‖C([0,T ];L2(0,L)) + ‖y1‖L2(0,T ;H1(0,L)) . ecT ‖ψ1‖H1/3(0,T ) (75)

and

sup
x∈[0,L]

‖∂xy1(x, ·)‖L2(0,T ) . ecT ‖ψ1‖H1/3(0,T ). (76)

If α2 + 3βδ < 0, then c > <(s−1 ) > 0 where s−1 is the value for which (57) assumes
double root.

Proof. Let us first obtain the asymptotic behaviours of the ratios
∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣ for large

values of ξ. Using the relation λ∗1 + λ∗2 + λ∗3 = iα
β , we have

∆(ξ)∗ = e
iαL
β

(
e−λ

∗
1(ξ)L(λ∗3(s)− λ∗2(ξ))

−e−λ
∗
2(ξ)L(λ∗3(ξ)− λ∗1(ξ)) + e−λ

∗
3(ξ)L(λ∗2(ξ)− λ∗1(ξ))

)
(77)

and

∆∗1,1(ξ) = e
iαL
β e−λ

∗
1(ξ)L (λ∗3(ξ)− λ∗2(ξ)) , (78)

∆∗2,1(ξ) = e
iαL
β e−λ

∗
2(ξ)L (λ∗1(ξ)− λ∗3(ξ)) , (79)

∆∗3,1(ξ) = e
iαL
β e−λ

∗
3(ξ)L (λ∗2(ξ)− λ∗1(ξ)) . (80)

Using the roots of the characteristic equation (68) in the variable ξ, we obtain the
following large ξ asymptotics

∣∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣∣ ∼

e−
√

3ξL
2 , j = 1,

1, j = 2,

e−
√

3ξL, j = 3.

(81)

Let us start by taking L2−norm of I1 with respect to its first component and apply
[5, Lemma 2.5] to get

‖I1(·, t)‖22 .
3∑
j=1

∫ ∞
γ1

(
eL<(λ∗j (ξ)) + 1

)2
∣∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣∣2 ∣∣3βξ2 − 2αξ − δ
∣∣2 ∣∣∣ψ̃1

∗(ξ)
∣∣∣2 dξ.

Using the asymptotic behaviours (81), we have

(
eL<(λ∗j (ξ)) + 1

)2
∣∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣∣2 ∼

e−
√

3ξL, j = 1,

1, j = 2,

e−
√

3ξL, j = 3,

(82)

as ξ →∞. Thus, we can write

‖I1(·, t)‖22 .
∫ ∞
γ1

∣∣3βξ2 − 2αξ − δ
∣∣2 ∣∣∣ψ̃1

∗(ξ)
∣∣∣2 dξ.
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Changing variables as µ = βξ3 − αξ2 − δξ, we get

‖I1(·, t)‖22 .
∫ ∞
ω(γ1)

(1 + µ2)
1
3

∣∣∣∣∫ ∞
0

e−iµτψ1(τ)dτ

∣∣∣∣2 dµ
≤ ‖ψ1‖2H1/3(0,T ).

Passing to supremum over t ∈ [0, T ], we obtain

‖I1‖C([0,T ];L2(0,L)) . ‖ψ1‖H1/3(0,T ). (83)

Next, we differentiate I1 with respect to its first component, take L2−norm on
(0, T ) and change variables as µ = βξ3 − αξ2 − δξ to get

‖∂xI1(x, ·)‖2L2(0,T )

=

∥∥∥∥∥∥
3∑
j=1

1

2π

∫ ∞
γ1

eiω(ξ)tλ∗j (ξ)e
λ∗j (ξ)x

∆∗j,1(ξ)

∆∗(ξ)
(3βξ2 − 2αξ − δ)ψ̃1

∗(ξ)dξ

∥∥∥∥∥∥
2

L2(0,T )

.
3∑
j=1

∥∥∥∥∥
∫ ∞
ω(γ1)

eiµtλ∗j (θ(µ))eλ
∗
j (θ(µ))x

∆∗j,1(θ(µ))

∆∗(θ(µ))
ψ̃1
∗(θ(µ))dµ

∥∥∥∥∥
2

L2(0,T )

,

(84)

where θ(µ) is the real solution of µ = βξ3−αξ2− δξ for γ1 < ξ <∞. Observe that
the function {

λ∗j (θ(µ))eλ
∗
j (θ(µ))x∆∗j,1(θ(µ))

∆∗(θ(µ)) ψ̃1
∗(θ(µ)), µ ∈ (ω(γ1),∞),

0, elsewhere,

is the Fourier transform of the function given by the integral. So, thanks to the
Plancherel’s theorem, we can write

‖∂xI1(x, ·)‖2L2(0,T ) .
3∑
j=1

∫ ∞
ω(γ1)

∣∣∣∣λ∗j (θ(µ))eλ
∗
j (θ(µ))x

∆∗j,1(θ(µ))

∆∗(θ(µ))
ψ̃1
∗(θ(µ))

∣∣∣∣2 dµ (85)

for all x ∈ [0, L]. It follows that

‖∂xI1‖2L2(0,L;L2(0,T )) ≤ sup
x∈[0,L]

‖∂xI1(x, ·)‖2L2(0,T )

.
3∑
j=1

∫ ∞
γ1

|λ∗j (ξ)|2 sup
x∈[0,L]

(
e2<(λ∗j (ξ))x

) ∣∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣∣2
× (3βξ2 − 2αξ − δ)

∣∣∣ψ̃1
∗(ξ)

∣∣∣2 dξ.
(86)

Using (68) and (81), one can obtain the following asymptoic behaviours in ξ

|λ∗j (ξ)|2 sup
x∈[0,L]

(
e2<(λ∗j (ξ))x

) ∣∣∣∣∆∗j,1(ξ)

∆∗(ξ)

∣∣∣∣2 ∼

ξ2e−

√
3ξL, j = 1,

ξ2, j = 2,

ξ2e−
√

3ξL, j = 3.

(87)



28 T. ÖZSARI AND K. C. YILMAZ

Using (87) in (86), and then changing variables back as µ = βξ3 −αξ2 − δξ, we get

‖∂xI1‖2L2(0,L;L2(0,T )) ≤ sup
x∈[0,L]

‖∂xI1(x, ·)‖2L2(0,T )

.
∫ ∞
γ1

ξ2(3βξ2 − 2αξ − δ)|ψ̃1
∗(ξ)|2dξ

.
∫ ∞
ω(γ1)

(1 + µ2)
1
3

∣∣∣∣∫ ∞
0

e−iµτψ1(τ)dτ

∣∣∣∣2 dµ
.‖ψ1‖2H1/3(0,T ).

(88)

Changing the integration order on ‖∂xI1‖2L2(0,L;L2(0,T )) and using Poincare inequal-

ity, we conclude that (75) and (76) holds for I1.
To show that the mapping x ∈ [0, L] → ‖∂xI1(x, ·)‖L2(0,T ) is continuous, let

{xn}n∈N ⊂ [0, L] be such that xn → x as n→∞ and let us write

∂xI1(x, t)− ∂xI1(xn, t)

=
1

2πi

3∑
j=1

∫ ∞
γ1

eiω(ξ)tλ∗j (ξ)
(
eλ
∗
j (ξ)x − eλ

∗
j (ξ)xn

) ∆∗j,1(ξ)

∆∗(ξ)
ψ̃∗1(ξ)dξ. (89)

Applying the arguments above in (84)-(88), one can obtain that

‖∂xI1(x, ·)− ∂xI1(xn, ·)‖2L2(0,T )

.
3∑
j=1

∫ ∞
ω(γ1)

∣∣∣∣λ∗j (θ(µ))
(
eλ
∗
j (θ(µ))x − eλ

∗
j (θ(µ))xn

) ∆∗j,1(θ(µ))

∆∗(θ(µ))
ψ̃1
∗(θ(µ))

∣∣∣∣2 dµ
.‖ψ1‖2H1/3(0,T ),

for all n ∈ N. Hence, by the dominated convergence theorem, we see that

lim
n→∞

‖∂xI1(x, ·)− ∂xI1(xn, ·)‖L2(0,T ) → 0.

Applying a similar procedure yields the same results for J1.

Lemma 2.4. Let T, β > 0, α, δ ∈ R and ψ2 ∈ H1/3(0, T ). Then y2 = y[0, 0, 0, ψ2, 0]
belongs to the space C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)) and also satisfies ∂xy2 ∈
C([0, L];L2(0, T )). Moreover, there exists a constant c > 0 such that

‖y2‖C([0,T ];L2(0,L)) + ‖y2‖L2(0,T ;H1(0,L)) . ecT ‖ψ2‖H1/3(0,T ) (90)

and

sup
x∈[0,L]

‖∂xy2(x, ·)‖L2(0,T ) . ecT ‖ψ2‖H1/3(0,T ). (91)

If α2 + 3βδ < 0, then c > <(s−1 ) > 0 where s−1 is the value for which (57) assumes
double root.

Proof. We start by obtaining large ξ asymptotics for
∣∣∣∆∗j,2(ξ)

∆∗(ξ)

∣∣∣. Let us write

∆∗1,2(ξ) = λ∗2(ξ)eλ
∗
2(ξ)L − λ∗3(ξ)eλ

∗
3(ξ)L, (92)

∆∗2,2(ξ) = λ∗3(ξ)eλ
∗
3(ξ)L − λ∗1(ξ)eλ

∗
1(ξ)L, (93)

∆∗3,2(ξ) = λ∗1(ξ)eλ
∗
1(ξ)L − λ∗2(ξ)eλ

∗
2(ξ)L, (94)
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and then, use ∆∗ given in (77) and characteristic roots given in (68) to obtain

∣∣∣∣∆∗j,2(ξ)

∆∗(ξ)

∣∣∣∣ ∼


1, j = 1,

1, j = 2,

e−
√

3ξL
2 , j = 3.

(95)

The rest of the proof is as in the proof of previous lemma.

Lemma 2.5. Let T, β > 0, α, δ ∈ R and ψ3 ∈ L2(0, T ). Then y3 = y[0, 0, ψ3, 0, 0]
belongs to the space C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)) and also satisfies ∂xy3 ∈
C([0, L];L2(0, T )). Moreover, there exists a constant c > 0 such that

‖y3‖C([0,T ];L2(0,L)) + ‖y3‖L2(0,T ;H1(0,L)) . ecT ‖ψ3‖L2(0,T ) (96)

and

sup
x∈[0,L]

‖∂xy3(x, ·)‖L2(0,T ) . ecT ‖ψ3‖L2(0,T ). (97)

If α2 + 3βδ < 0, then c > <(s−1 ) > 0 where s−1 is the value for which (57) assumes
double root.

Proof. As in the previous proofs, let us obtain large ξ asymptotics of the ratios∣∣∣∆∗j,3(ξ)

∆∗(ξ)

∣∣∣. To this end, we write

∆∗1,3(ξ) = eλ
∗
3(ξ)L − eλ

∗
2(ξ)L, (98)

∆∗2,3(ξ) = eλ
∗
1(ξ)L − eλ

∗
3(ξ)L, (99)

∆∗3,3(ξ) = eλ
∗
2(ξ)L − eλ

∗
1(ξ)L, (100)

and then use ∆∗ given in (77) and characteristic roots given in (68) to obtain

∣∣∣∣∆∗j,3(ξ)

∆∗(ξ)

∣∣∣∣ ∼

ξ−1, j = 1,

ξ−1, j = 2,

ξ−1e−
√

3ξL
2 , j = 3.

(101)

Proceeding as in the proof of Lemma 2.3, we can obtain the desired result.

Combining Lemma 2.3, Lemma 2.4 and Lemma 2.5, we obtain the following
result for y[0, 0, ψ1, ψ2, ψ3].

Lemma 2.6. Let φ ≡ f ≡ 0. For T > 0 and (ψ1, ψ2, ψ3) ∈ H1/3(0, T ) ×
H1/3(0, T ) × L2(0, T ), (26) admits a unique solution which belongs to the space
C([0, T ];L2(0, L))∩L2(0, T ;H1(0, L)) with yx ∈ C([0, L];L2(0, T )). Moreover there
exists a constant c > 0 such that

‖y3‖C([0,T ];L2(0,L)) + ‖y3‖L2(0,T ;H1(0,L)) . ecT ‖ψ3‖L2(0,T ) (102)

and

sup
x∈[0,L]

‖∂xy3(x, ·)‖L2(0,T ) . ecT ‖ψ3‖L2(0,T ). (103)

If α2 + 3βδ < 0, then c > <(s−1 ) > 0 where s−1 is the value for which (57) assumes
double root.
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Now for the sake of our study, let us consider the problem
iyt + iβyxxx + αyxx + iδyx = 0, x ∈ (0, L), t ∈ (0, T ),

y(0, t) = 0, y(L, t) = 0, yx(L, t) = ψ(t),

y(x, 0) = φ(x).

(104)

From Lemma 2.1 and Lemma 2.5, we know that solution y of (104) belongs to the
space X0

T and satisfies

‖y‖X0
T
. ‖φ‖2 + ecT ‖ψ‖L2(0,T ).

Let v = yt. Then v solves the linear model below
ivt + iβvxxx + αvxx + iδvx = 0, x ∈ (0, L), t ∈ (0, T ),

v(0, t) = 0, v(L, t) = 0, vx(L, t) = ψ′(t),

v(x, 0) = φ̃(x),

(105)

where φ̃
.
= −βφ′′′ + iαφ′′ − δφ′. Assume that φ̃ ∈ L2(0, L). From Lemma 2.1 and

Lemma 2.5, v satisfies

‖v‖X0
T
. ‖φ̃‖2 + ecT ‖ψ′‖L2(0,T ).

Set y(x, t) = φ(x)+
∫ t

0
v(x, τ)dτ . Then due to compatibility conditions and φ′(L) =

ψ(0), y satisfies the initial and boundary conditions

y(x, 0) = φ(x),

y(0, t) = φ(0) +

∫ t

0

v(0, τ)dτ = φ(0) + y(0, t)− y(0, 0) = 0,

y(L, t) = φ(L) +

∫ t

0

v(L, τ)dτ = φ(L) + y(L, t)− y(L, 0) = 0,

yx(L, t) = φ′(L) +

∫ t

0

vx(L, τ)dτ = φ′(L) + yx(L, t)− yx(L, 0) = ψ(t).

Moreover,

(iyt + iβyxxx + αyxx + iδyx)(x, t)

=iv(x, t) +

∫ t

0

(iβvxxx + αvxx + iδvx)(x, τ)dτ + iβφ′′′(x) + αφ′′(x) + iδφ′(x)

=iv(x, 0) +

∫ t

0

ivt(x, τ)dτ +

∫ t

0

(iβvxxx + αvxx + iδvx)(x, τ)dτ

+ iβφ′′′(x) + αφ′′(x) + iδφ′(x)

=iv(x, 0) +

∫ t

0

(−iβvxxx − αvxx − iδvx)(x, τ)dτ

+

∫ t

0

(iβvxxx + αvxx + iδvx)(x, τ)dτ + iβφ′′′(x) + αφ′′(x) + iδφ′(x)

=0.

Thus, y solves (104). Now, from the main equation of (104), we have

β‖yxxx(·, t)‖2 ≤ ‖v(·, t)‖2 + α‖yxx(·, t)‖2 + δ‖yx(·, t)‖2. (106)
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Applying Gagliardo–Nirenberg interpolation inequality and then ε−Young’s in-
equality to the second term at the right hand side of (106), we get

α2‖yxx(·, t)‖22 ≤ cα‖yxxx(·, t)‖
4
3
2 ‖y(·, t)‖

2
3
2

≤ ε‖yxxx(·, t)‖22 + cα,ε‖y(·, t)‖22.
(107)

Similarly, for the third term at the right hand side of (106), we have

δ2‖yx(·, t)‖22 ≤ cδ‖yxxx(·, t)‖
2
3
2 ‖y(·, t)‖

4
3
2

≤ ε‖yxxx(·, t)‖22 + cδ,ε‖y(·, t)‖22.
(108)

Using (107)-(108) on (106), we obtain

(β − 2ε)‖yxxx(·, t)‖22 ≤ ‖v(·, t)‖22 + cα,δ,ε‖y(·, t)‖22.
Therefore, for sufficiently small ε > 0, we get

‖yxxx(·, t)‖22 . ‖v(·, t)‖22 + ‖y(·, t)‖22. (109)

Passing to supremum over t ∈ [0, T ] and using the fact that the right hand side
belongs to C([0, T ], L2(0, L)), we have y ∈ C([0, T ];H3(0, L)). Next, differentiating
the main equation of (104) with respect to x and taking L2−norms of each term,
we get

β‖yxxxx(·, t)‖2 ≤ ‖vx(·, t)‖2 + α‖yxxx(·, t)‖2 + δ‖yxx(·, t)‖2. (110)

Thanks to Gagliardo–Nirenberg’s interpolation inequality, ε−Young’s inequality
and Poincare inequality, the second term at the right hand side of (110) can be
estimated as

α2‖yxxx(·, t)‖22 ≤ cα‖yxxxx(·, t)‖
3
2
2 ‖y(·, t)‖

1
2
2 ,

≤ ε‖yxxxx(·, t)‖22 + cα,ε‖y(·, t)‖22
≤ ε‖yxxxx(·, t)‖22 + cα,ε‖yx(·, t)‖22.

(111)

Using the same inequalities, the third term in (110) is estimated as

δ2‖yxx(·, t)‖22 ≤ cδ‖yxxxx(·, t)‖2‖y(·, t)‖2
≤ ε‖yxxxx(·, t)‖22 + cδ,ε‖y(·, t)‖22
≤ ε‖yxxxx(·, t)‖22 + cδ,ε‖yx(·, t)‖22.

(112)

Using (111)-(112) on (110) and choosing ε > 0 sufficiently small, we obtain

‖yxxxx(·, t)‖22 . ‖vx(·, t)‖22 + ‖yx(·, t)‖22. (113)

Right hand side belongs to L2(0, T ), so the left hand side does too. This implies
y ∈ L2(0, T ;H4(0, L)). Combining this result with the previous one, we proved the
following lemma.

Lemma 2.7. Let T > 0, (φ, ψ) ∈ H3(0, L) × H1(0, T ) satisfy the compatibility
conditions. Then (104) has a unique solution y ∈ X3

T with yt ∈ X0
T and it satisfies

the following estimate

‖y‖X3
T

+ ‖yt‖X0
T
. ‖φ‖H3(0,L) + ecT ‖ψ‖H1(0,T ).

Now letting z = vt, one can see that z solves the following model
izt + iβzxxx + αzxx + iδzx = 0, x ∈ (0, L), t ∈ (0, T ),

z(0, t) = 0, z(L, t) = 0, zx(L, t) = ψ′′(t),

z(x, 0) =
˜̃
φ(x),

(114)
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where
˜̃
φ
.
= −βφ̃′′′ + iαφ̃′′ − δφ̃′. Let ψ′′(t) ∈ L2(0, T ) and

˜̃
φ ∈ L2(0, L). Then from

Lemma 2.1 and Lemma 2.5, z satisfies

‖z‖X0
T
. ‖ ˜̃

φ‖2 + ecT ‖ψ′′‖L2(0,T ). (115)

Define v(x, t)
.
= φ̃(x) +

∫ t
0
z(x, τ)dτ . If (φ̃, ψ′) satisfies the compatibility conditions,

one can show that v satisfies the following initial–boundary conditions:

v(x, 0) = φ̃(x)

and

v(0, t) = 0, v(L, t) = 0, vx(L, t) = φ′(t).

Then one can also show that v solves (105). Now defining v = yt and repeating the
same analysis as we did through (105)-(113), one concludes the following lemma.

Lemma 2.8. Let T > 0, (φ, ψ) ∈ H6(0, L) × H2(0, T ) satisfy the higher order
compatibility conditions. Then (104) has a unique solution in X6

T with ytt ∈ X0
T

and it satisfies the following estimate,

‖y‖X6
T

+ ‖ytt‖X0
T
. ‖φ‖H6(0,L) + ecT ‖ψ‖H2(0,T ).

3. Controller design. In this section, first we prove the existence of a smooth
backstepping kernel. Then we state the result of the invertibility of the backstepping
transformation with a bounded inverse. Next, we prove the global wellposedness
and exponential stability results.

3.1. Backstepping kernel. Let us express the main equation in (9) as

Gsst = DG
.
=

1

3β
[β(3Gtts −Gttt)− iα(Gtt − 2Gts)− δGt − rG] .

Integrating the above expression in the first variable and using Gs(0, t) = rt
3β we

obtain

Gst(s, t) =
r

3β
+

∫ s

0

[DG](ξ, t)dξ.

Integrating once again in the first variable and using G(0, t) = 0 we get

Gt(s, t) =
r

3β
s+

∫ s

0

∫ ω

0

[DG](ξ, t)dξdω.

Finally, integrating in the second variable and using G(s, 0) = 0 we obtain that G
solves

G(s, t) =
r

3β
st+

∫ t

0

∫ s

0

∫ ω

0

[DG](ξ, η)dξdωdη. (116)

So the solution of the boundary value problem (9) can be constructed by applying
a successive approximation method to the integral equation (116).

Lemma 3.1. There exists a C∞−function G such that G solves the integral equa-
tion (116).

Proof. Let P be defined by

(Pf)(s, t)
.
=

∫ t

0

∫ s

0

∫ ω

0

[Df ](ξ, η)dξdωdη. (117)
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Then we express (116) as

G(s, t) =
r

3β
st+ PG(s, t). (118)

Define G0 ≡ 0, G1(s, t) = − r

3β
st, and Gn+1 = G1 + PGn, n ≥ 1. Then we have

Gn+1 −Gn = P (Gn −Gn−1), n ≥ 1. (119)

To prove the existence of a solution of (118), it is enough to show that the sequence
(Gn) and its partial derivatives are Cauchy with respect to the supremum norm

‖ · ‖∞. To this end, define H0(s, t) = st, Hn = 3β
r (Gn+1 − Gn). Then by (119),

Hn+1 = PHn and for j > i,

Gj −Gi =

j−1∑
n=i

(Gn+1 −Gn) =
r

3β

j−1∑
n=i

Hn. (120)

We see from (120) that the sequence (Gn) (and its partial derivatives) is Cauchy
with respect to the norm ‖ · ‖∞, which implies that (Gn) is convergent and its
limit solves (116) if and only if the sequence (Hn) (and its partial derivatives) is
absolutely summable sequence with respect to the same norm.

To show that Hn’s are absolutely summable, let us express P as sum of six
operators

P = P1,−1 + P2,−2 + P2,−1 + P1,0 + P2,0 + P2,1,

where

P1,−1f
.
=

∫ t

0

∫ s

0

∫ ω

0

ftts(ξ, η)dξdωdη,

P2,−2f
.
= −1

3

∫ t

0

∫ s

0

∫ ω

0

fttt(ξ, η)dξdωdη,

P2,−1f
.
= − iα

3β

∫ t

0

∫ s

0

∫ ω

0

ftt(ξ, η)dξdωdη,

P1,0f
.
=

2iα

3β

∫ t

0

∫ s

0

∫ ω

0

fts(ξ, η)dξdωdη,

P2,0f
.
= − δ

3β

∫ t

0

∫ s

0

∫ ω

0

ft(ξ, η)dξdωdη,

P2,1f
.
= − r

3β

∫ t

0

∫ s

0

∫ ω

0

f(ξ, η)dξdωdη.

Then

Hn = PnH0 = (P1,−1 + P2,−2 + P2,−1 + P1,0 + P2,0 + P2,1)nst

=

6n∑
r=1

Rr,nst,
(121)

where

Rr,n
.
= Pir,n,jr,nPir,n−1,jr,n−1

· · · Pir,1,jr,1 , ir,q ∈ {1, 2}, jr,q ∈ {−2,−1, 0, 1},
for 1 ≤ q ≤ n. Observe that for positive integers m and nonnegative integers k,

P1,−1s
mtk = c1,−1s

m+1tk−1, c1,−1 =

{
0, k ≤ 0,

k
m+1 , else,

(122)
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P2,−2s
mtk = c2,−2s

m+2tk−2, c2,−2 =

{
0, k ≤ 1,

− k(k−1)
3(m+1)(m+2) , else,

(123)

P2,−1s
mtk = c2,−1s

m+2tk−1, c2,−1 =

{
0, k ≤ 0,

− iαk
3β(m+1)(m+2) , else,

(124)

P1,0s
mtk = c1,0s

m+1tk, c1,0 =
2iα

3β(m+ 1)
, (125)

P2,0s
mtk = c2,0s

m+2tk, c2,0 = − δ

3β(m+ 1)(m+ 2)
, (126)

P2,1s
mtk = c2,1s

m+2tk+1, c2,1 = − r

3β(m+ 1)(m+ 2)(k + 1)
. (127)

Let σ = σ(r) ≡
∑n
q=1 jr,q. Then from (122)-(127), for eeach n and r,

Rr,nst =

{
0, if σ ≤ −1,

Cr,ns
γtσ+1, if σ > −1,

(128)

where n + 1 ≤ γ ≤ 2n + 1 and Cr,n is a constant which only depends on r and n.

Let M = max{1, αβ ,
δ
β ,

r
β }. We claim that for each r and n,

|Cr,n| ≤
Mn

(n+ 1)!(σ + 1)!
. (129)

Taking m = 1, k = 1 in (122)-(127) we see that (129) holds for n = 1. Suppose
it holds for n = ` − 1 and for all r ∈ {1, 2, . . . , 6`−1}. Then for n = ` and r∗ ∈
{1, 2, . . . , 6`}, using (122) and (128), we get

Rr∗,`st = Pi,jRr,`−1st = Cr,`−1Pi,js
γtσ+1 = Cr,`−1ci,js

γ∗tσ
∗+1

for some i ∈ {1, 2}, j ∈ {−2,−1, 0, 1} and r ∈ {1, 2, .., 6`−1}, where γ∗ is either
γ + 1 or γ + 2, σ∗ = σ + j. By the induction assumption (129),

Cr,`−1 ≤
M `−1

`!(σ + 1)!
.

Moreover using (122)-(127) and the fact that γ ≥ ` we see that |ci,j | ≤ M σ+1
`+1 for

j = −1,−2, |ci,0| < M
`+1 , and |ci,1| < M

(σ+2)(`+1) . Hence for each i ∈ {1, 2} and

j ∈ {−2,−1, 0, 1} we obtain

|Cr∗,`| = |Cr,(`−1)ci,j | ≤
M `

(`+ 1)!(σ + j + 1)!
=

M `

(`+ 1)!(σ∗ + 1)!
,

which proves that the claim holds for n = ` as well.
Using (121), (128), (129) and the fact that 0 ≤ s, t ≤ L in the triangle ∆s,t we

obtain

‖Hn‖∞ ≤
6nMnL3n+2

(n+ 1)!
. (130)

This shows Hn is absolutely summable. On the other hand since Hn is a linear
combination of 6n monomials of the form sγtσ+1 with γ ≤ 2n + 1 and σ ≤ n, any
partial derivative ∂as ∂

b
tH

n of Hn will be absolutely less than

(2n+ 1)a(n+ 1)b6nMnL3n+2−a−b

(n+ 1)!
, (131)

which is a summable sequence.
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See Figure 11 for a graph and a contour plot of the backstepping kernel and for
the corresponding control gains for L = π, β = 1, α = 2, δ = 8 and r = 0.05.

Figure 11. Up: Plots of k(x, y) on ∆x,y. Down: Controller gains
for Dirichlet and Neumann boundary conditions. L = π, β = 1,
α = 2, δ = 8 and r = 0.05.

Next let η = η(x, y) be a C∞−function defined on ∆x,y and Υη : H l(0, L) →
H l(0, L), l ≥ 0 be an integral operator defined by

[Υηϕ](x)
.
=

∫ x

0

η(x, y)ϕ(y)dy.

Then, we have the following lemma for the operator I −Υη.

Lemma 3.2. I−Υη is invertible with a bounded inverse from H l(0, L)→ H l(0, L)
(l ≥ 0). Moreover, (I−Υη)−1 can be written as I+Φ, where Φ is a bounded operator
from L2(0, L) into H l(0, L) for l = 0, 1, 2 and from H l−2(0, L) into H l(0, L) for
l > 2.

We omit the proof since it can be done as in [22, 25].

3.2. Wellposedness. We first investigate the local and global wellposedness of the
target model. Then, using Lemma 3.1 and Lemma 3.2, we deduce the wellposedness
of the original plant (1). To this end, let us consider the modified target model

iwt + iβwxxx + αwxx + iδwx

+irw = iβky(x, 0)wx(0, t), x ∈ (0, L), t ∈ (0, T ),

w(0, t) = w(L, t) = wx(L, t) = 0,

w(x, 0) = w0(x)
.
= u0(x)−

∫ x
0
k(x, y)u(y, t)dy.

(132)
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Consider the operator A defined in (27) with domain D(A) defined in (28). Let us
express (132) in the abstract operator theoretic form as{

ẏ = Ay + Fy,

y(0) = y0,

where Fϕ
.
= −irϕ + iβa(·)Γ1

0ϕ and Γ1
0 is the first order trace operator at the left

end point. Operator A generates strongly continuous semigroup of contractions,
{S(t)}t≥0, in L2(0, L) [10]. Define the operator

w = [Ψz](t)
.
= S(t)w0 +

∫ t

0

S(t− s)Fz(s)ds (133)

and the space
YT

.
= {z ∈ X0

T | zx ∈ C([0, L];L2(0, T ))} (134)

endowed with the norm

‖z‖YT
.
=
(
‖z‖2C([0,T ];L2(0,L)) + ‖z‖2L2(0,T ;H1(0,L)) + ‖zx‖2C([0,L];L2(0,T ))

) 1
2

. (135)

We prove the following result.

Proposition 1 (Local wellposedness). Let T ′ > 0 and w0 ∈ L2(0, L). Then, there
exists T ∈ (0, T ′) which is independent of size of w0 such that (132) possesses a
unique local solution w ∈ YT .

Proof. We first show that Ψ, defined by (133) maps YT into itself. To see this, first
of all, we obtain from (133) that

‖w‖YT = ‖Ψz‖YT ≤ ‖S(t)w0‖YT +

∥∥∥∥∫ t

0

S(t− s)[Fz](s)ds
∥∥∥∥
YT

.

By using Lemma 2.1, the first term at the right hand side of the above inequality
can be estimated as

‖S(t)w0‖YT .
√

1 + T‖w0‖2. (136)

Using Lemma 2.2 and then applying Cauchy–Schwarz inequality, the second term
can be estimated as∥∥∥∥∫ t

0

S(t− s)Fz(s)ds
∥∥∥∥
YT

≤ C
√

1 + T‖ − rz + βky(·, 0)zx(0, ·)‖L1(0,T ;L2(0,L))

≤ cβ,r
√
T (1 + T )(1 + ‖ky(·, 0)‖2)‖z‖YT .

(137)

Combining (136) and (137), we see that Ψ maps YT into itself. To see that Ψ is
contraction on YT , let z1, z2 ∈ YT and w1 = Ψz1, w2 = Ψz2. Using the similar
arguments as above, we get

‖w2 − w1‖YT = ‖Ψz2 −Ψz1‖YT
≤ cβ,r

√
T (1 + T )(1 + ‖k(·, 0)‖2)‖z2 − z1‖YT .

In order for the map Ψ to be a contraction, we choose T ∈ (0, T ′) such that 0 <√
T (1 + T ) ≤ (cβ,r(1 + ‖k(·, 0)‖2))

−1
which is independent of the size of the initial

datum. This guarantees the existence of a unique local solution w ∈ YT .

This proposition shows the existence of a maximal time, Tmax, of the existence
of the solution w ∈ YT for all T < Tmax. To prove that w is global, it is enough to
show that limT→T−max

‖w‖YT <∞.



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 37

Proposition 2 (Global wellposedness). Let w0 ∈ L2(0, L). Then w extends as a
global solution in YT .

Proof. Taking L2−inner product of the main equation of (132) by 2w, taking the
imaginary parts of both sides and applying several integration by parts together
with imposing the boundary conditions, we derive

d

dt
‖w(·, t)‖22+β|wx(0, t)|2+2r ‖w(·, t)‖22 = 2β<

∫ L

0

ky(x, 0)wx(0, t)w(x, t)dx. (138)

By using ε−Young’s inequality, right hand side of (138) can be estimated as

2β<
∫ L

0

ky(x, 0)wx(0, t)w(x, t) ≤ β

2ε

∫ L

0

|ky(x, 0)|2|w(x, t)|2dx+ 2εβL|wx(0, t)|2

Choosing ε = 1
4L , (138) becomes

d

dt
‖w(·, t)‖22 +

β

2
|wx(0, t)|2 ≤ 2(βL‖ky(·, 0)‖2∞ − r)‖w(·, t)‖22.

Now integrating the above inequality over (0, t) yields

2‖w(·, t)‖22 + β

∫ t

0

|wx(0, τ)|2dτ

≤ 2‖w0‖22 + 4(βL‖ky(·, 0)‖2∞ − r)
∫ t

0

‖w(·, τ)‖22dτ. (139)

Define E(t)
.
= 2‖w(·, t)‖22 + β

∫ t
0
|wx(0, τ)|2dτ . Then, from (139)

E(t) ≤ 2‖w0‖22 + 4
∣∣βL‖ky(·, 0)‖2∞ − r

∣∣ ∫ t

0

E(τ)dτ.

Thanks to Gronwall’s inequality,

E(t) = 2‖w(·, t)‖22 + β

∫ t

0

|wx(0, τ)|2dτ ≤ 2‖w0‖22e4|βL‖ky(·,0)‖2∞−r|t, (140)

for all t ∈ [0, T ]. Passing to supremum on [0, T ] and then letting T → T−max, we get

lim
T→Tmax

‖w‖C([0,T ];L2(0,L)) ≤ ‖w0‖2e2|βL‖k(·,0)‖2∞−r|Tmax <∞. (141)

Using

sup
0≤t≤T

‖w(·, t)‖22 =
1

T
‖w‖2L2(0,T ;L2(0,L)) (142)

and then letting T → T−max, we also get

lim
T→T−max

‖w‖L2(0,T ;L2(0,L)) ≤
√
Tmax‖w0‖2e2|βL‖k(·,0)‖2∞−r|Tmax . (143)

Next, we multiply the main equation of (132) by 2xw, integrate over (0, t)× (0, L),
consider the imaginary parts and apply several integration by parts to get∫ L

0

x|w(x, t)|2dx+ 3β

∫ t

0

∫ L

0

|wx(x, τ)|2dxdτ + 2r

∫ L

0

x|w(x, t)|2dx

=

∫ L

0

x|w0(x)|2dx+ δ

∫ t

0

∫ L

0

|w(x, τ)|2dxdτ

+ 2β

∫ t

0

∫ L

0

xky(x, 0)wx(0, τ)w(x, τ)dxdτ.

(144)
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Thanks to Cauchy–Schwarz inequality, the last term at the right hand side of (144)
can be estimated as

2β

∫ t

0

∫ L

0

xky(x, 0)(x)wx(0, τ)y(x, τ)dxdτ

≤2βL

∫ t

0

∫ L

0

|ky(x, 0)||wx(0, τ)||w(x, τ)|dxdτ

≤βL2‖ky(·, 0)‖2∞
∫ t

0

|wx(0, τ)|2dτ + βL

∫ t

0

∫ L

0

|w(x, τ)|2dxdτ.

Dropping the first and third terms at the left hand side of (144), and using the
above estimate, it follows that

‖wx‖2L2(0,t;L2(0,L))

≤ L

3β
‖w0‖22 +

βL+ δ

3β

∫ t

0

∫ L

0

|w(x, τ)|2dxdτ +
L2‖ky(·, 0)‖2∞

3

∫ t

0

|yx(0, τ)|2dτ

≤ L

3β
‖w0‖22 +

(
βL+ δ

6β
+
L2‖ky(·, 0)‖2∞

3β

)∫ t

0

E(τ)dτ.

Using (140) we get,

lim
T→Tmax

‖wx‖L2(0,T ;L2(0,L)) ≤

√
L

3β
‖w0‖2

+

(√
βL+ δ

6β
+
L‖kx(·, 0)‖∞√

3β

)√
2Tmax‖w0‖2e2|βL‖ky(·,0)‖2∞−r|Tmax . (145)

Combining (143) and (145), we deduce that

lim
T→T−max

‖w‖L2(0,T ;H1(0,L)) ≤

√
L

3β
‖w0‖2 +

(
1 +

√
βL+ δ

6β
+
L‖ky(·, 0)‖∞√

3β

)
×
√

2Tmax‖w0‖2e2|βL‖ky(·,0)‖2∞−r|Tmax <∞. (146)

From Proposition 1, w is the fixed point of (132), so it satisfies

w = S(t)w0 +

∫ t

0

S(t− τ)[Fw](τ)dτ

for some t ∈ (0, T ′). From Lemma 2.1-(iii) and Lemma 2.2-(iii), we know that

sup
x∈[0,L]

‖∂x[S(t)w0](x)‖L2(0,T ) . (1 +
√
T )‖w0‖2 (147)

and

sup
x∈[0,L]

∥∥∥∥∂x [∫ t

0

S(t− τ)[Fw](τ)dτ

]
(x)

∥∥∥∥
L2(0,T )

. (1 +
√
T )

∫ T

0

‖[Fw](·, t)‖2dt (148)
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holds. Using the definition of Fw, right hand side of (148) can be estimated as

(1 +
√
T )

∫ T

0

‖[Fw](·, t)‖L2(0,L)dt

≤(1 +
√
T )r

∫ T

0

‖w(·, t)‖2dt+ (1 +
√
T )β‖k(·, 0)‖2

∫ T

0

|wx(0, t)|dt

≤ (1 +
√
T )r

2

∫ T

0

√
E(t)dt+

√
T (1 +

√
T )
√
β‖k(·, 0)‖2

√
E(t)

≤(1 +
√
T )

(
Tr

2
+
√
T
√
β‖k(·, 0)‖2

)√
2‖w0‖2e2|βL‖ky(·,0)‖2∞−r|T .

(149)

Finally using (147)-(149)

lim
T→T−max

‖wx‖C([0,L];L2(0,T )) . (1 +
√
Tmax)‖w0‖2 + (1 +

√
Tmax)

×
(
Tmaxr

2
+
√
Tmax

√
β‖k(·, 0)‖2

)√
2‖w0‖2e2|βL‖ky(·,0)‖2∞−r|Tmax <∞.

This completes the proof.

Choosing w0 ∈ H3(0, L) that satisfies compatibility conditions, the global solu-
tion enjoys higher order regularity given by the following proposition.

Proposition 3 (Regularity). Let w0 ∈ H3(0, L) satisfy the compatibility conditions.
Then w ∈ Y 3

T .

Proof. Let v = wt and consider the following problem
ivt + iβvxxx + αvxx + iδvx + irv = iβky(x, 0)vx(0, t), x ∈ (0, L), t ∈ (0, T ),

v(0, t) = v(L, t) = vx(L, t) = 0,

v(x, 0) = v0(x),

where v0(x)
.
= −βw′′′0 (x) + iαw′′0 (x) − δw′0(x) − rw0(x) + βky(x, 0)w′0(0). For a

given v0 ∈ L2(0, L), we know from Proposition 1 that v ∈ Y 0
T . Set w(x, t) =

w0(x) +
∫ t

0
v(x, τ)dτ . Under the compatibility conditions, one can show that w

solves (132). From the main equation of (132), we have

iβwxxx(x, t) = (−iv − αwxx − iδwx − irw)(x, t) + iβky(x, 0)wx(0, t).

Observe that wx(0, t) = −
∫ L

0
wxx(x, t)dx. Using this in the above expression and

then taking L2−norms of both sides with respect to x, we get

β2‖wxxx(·, t)‖22 ≤ ‖v(·, t)‖22
+
(
α2 + β2‖ky(·, 0)‖22

)
‖wxx(·, t)‖22 + δ2‖wx(·, t)‖22 + r2‖w(·, t)‖22.

Similar work as we did on (108)-(109) yields

‖wxxx(·, t)‖22 . ‖v(·, t)‖22 + ‖w(·, t)‖22.

Taking supremum on both sides, we obtain w ∈ C([0, T ];H3(0, L)). Next, we
differentiate the main equation of (132) with respect to x and take L2−norm of
both sides with respect to x to get
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β2‖wxxxx(·, t)‖22 ≤ ‖vx(·, t)‖22 + α2‖wxxx(·, t)‖22
+
(
δ2 + β2‖kyx(·, 0)‖22

)
‖wxx(·, t)‖22 + r2‖wx(·, t)‖22.

Proceeding as in (111)-(112), we get

‖wxxxx(·, t)‖22 . ‖vx(·, t)‖22 + ‖wx(·, t)‖22.
The right hand side belongs to L2(0, T ), so w belongs to L2(0, T ;H4(0, L)). Com-
bining with the previous result, we deduce that w ∈ X3

T if w0 ∈ H3(0, L).

Now the first part of Theorem 1.1 follows from the fact that backstepping kernel is
a smooth function over a compact set and backstepping transformation is invertible
on L2(0, L) and H3(0, L).

3.3. Stability. In this part, we obtain exponential stability for the original plant.
This will be done by first obtaining the exponential stability result for the modified
target model (132). Thanks to the invertibility of the backstepping transformation,
this result will imply the exponential decay of solutions of the original plant.

Proposition 4. Let β > 0, α, δ ∈ R, k be a smooth backstepping kernel solving

(10). Then for sufficiently small r > 0, there exists λ = β
(
r
β −

‖ky(·,0;r)‖22
2

)
> 0

such that solution, w, of (12) satisfies the following decay estimate

‖w(·, t)‖2 ≤ ‖w0‖2e−λt

for t ≥ 0.

Proof. Taking the L2−inner product of the main equation of (12) by 2w and pro-
ceeding as in (30)-(33), we get

d

dt
‖w(·, t)‖22 + β|wx(0, t)|2 + 2r ‖w(·, t)‖22

= 2β<

(
wx(0, t)

∫ L

0

ky(x, 0)w(x, t)dx

)
. (150)

Using ε−Young’s inequality and then the Cauchy–Schwarz inequality, the term at
the right hand side can be estimated as

2β<
∫ L

0

ky(x, 0)wx(0, t)w(x, t)dx

≤2β

 1

4ε
|wx(0, t)|2 + ε

(∫ L

0

|ky(x, 0)||w(x, t)|dx

)2


≤ β
2ε
|wx(0, t)|2 + 2βε‖ky(·, 0)‖22‖w(·, t)‖22.

(151)

Combining this estimate with (150) and choosing ε = 1
2 , we get

d

dt
‖w(·, t)‖22 + 2β

(
r

β
− ‖ky(·, 0)‖22

2

)
‖w(·, t)‖22 ≤ 0,

which implies

‖w(·, t)‖2 . ‖w0‖2e−λt, λ
.
= β

(
r

β
− ‖ky(·, 0)‖22

2

)
. (152)
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Next we prove that λ > 0 to show that (152) is indeed a decay estimate. Define

α̃ = α
β , δ̃ = δ

β , r̃ = r
β and let M = max{1, α̃, δ̃, r̃}. Differentiating (120) with

respect to t, taking i = 0 and passing to limit as n→∞, we obtain

Gt(s, t) =
r̃

3

∞∑
n=0

Hn
t (s, t). (153)

Then, considering r̃ < 1, we first see that M is independent of r̃. Using this, we get
from (131) that the term inside the summation (153) is absolutely less than some
constant cL,α̃,δ̃ which is independent of r̃. So from (153), we get

‖Gt‖L∞(∆s,t) ≤
r̃cL,α̃,δ̃

3
,

and therefore we have

‖ky(·, 0)‖22 ≤ L‖ky(·, 0)‖2∞ ≤ L‖Gt(·, 0)‖2∞ ≤ L‖Gt‖2L∞(∆s,t)
≤
Lr̃2c2

L,α̃,δ̃

9
.

Using this estimate, we get

λ = 2β

(
r̃ − ‖ky(·, 0)‖22

2

)
= 2βr̃2

(
1

r̃
− ‖ky(·, 0)‖22

2r̃2

)
≥ 2βr̃2

(
1

r̃
−
Lc2

L,α̃,δ̃

18

)
,

which remains positive for sufficiently small r.

Now using (11) and the fact that k = k(x, y) is a smooth function on a compact
set ∆x,y, we have

‖w0‖2 ≤
(
1 + ‖k(·, ·)‖L2(∆x,y)

)
‖u0‖2. (154)

Moreover, using the invertibility of the backstepping transformation given by Lemma
3.2, we have

‖u(·, t)‖2 ≤ ‖(I −Υk)−1‖2→2‖w(·, t)‖2. (155)

Combining (154) and (155), we deduce

‖u(·, t)‖2 ≤ ‖(I −Υk)−1‖2→2

(
1 + ‖k(·, ·)‖L2(∆x,y)

)
‖u0‖2e−λt.

So we conclude the proof of the second part of Therem 1.1.
Table 1 below shows some values of r and corresponding decay rates λ. Results

are obtained by choosing β = 1, α = 2, δ = 8, domain length L = π and N = 1001
spatial node points.

4. Observer design. In this section, our aim is to prove the wellposedness and
exponential stability of the plant–observer–error system.

4.1. Wellposedness. We start by the wellposedness analysis of the error model
(15). To this end, we first study the target error model given by (21) and then use
the invertibility of the transformation (20) and deduce that same results also hold
for (15). To see that (20) is invertible with a bounded inverse, we change variables
as s = L− y and t = L− x on (19), and obtain that p = p(x, y) solves (19) if and
only if p(x, y) ≡ H(s, t) solves

β(Hsss +Httt)− iα(Hss −Htt) + δ(Hs +Ht)− rH = 0,

H(s, s) = H(s, 0) = 0,

Hs(s, s) = − rs
3β ,
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r λ = β

(
r

β
− ‖ky(·, 0; r)‖22

2

)
0.001 0.001981

0.01 0.018054

0.02 0.032221

0.03 0.042507

0.04 0.048918

0.05 0.051463

0.1 0.006407

0.11 −0.014113

0.5 −3.729586

1 −16.379897

Table 1. Some numerical values for the decay rate λ correspond-
ing to various values of r.

on ∆s,t. Observe that this model is exactly the same model given in (10) except
that r is replaced by −r. Therefore, we obtain the following relation

p(x, y) = H(s, t) = k(s, t;−r) = k(L− y, L− x;−r), (156)

where k solves (10). Consequently existence of smooth kernel p = p(x, y) is guar-
anteed and corresponding backstepping transformation (20) is invertible with a
bounded inverse on H l(0, L) → H l(0, L), l ≥ 0. See Figure 12 for a graph and a
contour plot of p(x, y) for L = π, β = 1, α = 2, δ = 8 and r = 0.05.

Figure 12. p(x, y) defined on ∆x,y for L = π, β = 1, α = 2, δ = 8
and r = 0.05.

4.1.1. Error model. Let us prove the wellposedness of the target error model. To
this end, let us first consider the following model

iw̃t + iβw̃xxx + αw̃xx + iδw̃x + irw̃ = 0, x ∈ (0, L), t ∈ (0, T ),

w̃(0, t) = w̃(L, t) = 0, w̃x(L, t) = ψ̃(t),

w̃(x, 0) = w̃0(x).

(157)
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Note that the function y, defined by y(·, t) .
= ertw̃(·, t) together with the initial and

boundary conditions w̃0 and ψ(t)
.
= ertψ̃(t), satisfies the results obtained in Lemma

2.1 and Lemma 2.6. Thus, for given w̃0 ∈ H6(0, L), ψ ∈ H2(0, T ) satisfying the
higher order compability conditions, Lemma 2.8 implies that

‖y‖X6
T

+ ‖ytt‖X0
T
. ‖w̃0‖H6(0,L) + ecT ‖ψ‖H2(0,T ). (158)

Notice that the original boundary condition of the problem (21) is of feedback type,
given by

ψ(t) = ψ(w̃)(t) =

∫ L

0

px(L, y)w̃(y, t)dy.

We will treat the wellposedness of the target error model by using a fixed point
argument. To this end, let us define the Banach space QT ≡

{
w̃ ∈ X6

T | w̃tt ∈ X0
T

}
and its complete metric subspace Q̃T ≡ {w̃ ∈ QT | w̃(·, 0) = w̃0(·)} equipped with
the metric induced by the norm associated with QT . Since p = p(x, y) is a smooth

solution of (19), for a given w̃∗ ∈ Q̃T , we have

‖ψ(w̃∗)‖H2(0,T ) =

∥∥∥∥∥
∫ L

0

px(L, y)w̃∗(y, ·)dy

∥∥∥∥∥
H2(0,T )

≤
√
T‖px(L, ·)‖2

2∑
j=0

‖∂jt w̃∗‖X0
T
<∞.

Thus by the Lemma 2.8, for ψ(w̃∗)(t) ∈ H2(0, T ), the problem (26) with f ≡ 0 has

a unique solution. This naturally defines a map Ψ : Q̃T → Q̃T , Ψw̃∗ = w̃. Now let
w̃1, w̃2 ∈ Q̃T . Using the estimates (158), we get

‖Ψw̃1 −Ψw̃2‖Q̃T ≤ C‖ψ(w̃1)− ψ(w̃2)‖H2(0,T )

≤ C
√
T‖w̃1 − w̃2‖Q̃T .

For sufficiently small T , we can guarantee that the mapping Ψ : Q̃T → Q̃T is
contraction. Thanks to the Banach fixed point theorem, this yields the existence of
a unique local solution of the target error system. As we show in Proposition 7 in
the following section, the local solution remains uniformly bounded in time. This
yields the unique global solution and we have the following proposition.

Proposition 5. Let T, β > 0, α, δ ∈ R, p be a smooth backstepping kernel solving
(19) and (w̃0, ψ) ∈ H6(0, L)×H2(0, T ) satisfies higher order compatibility conditions

where ψ = ψ(w̃) =
∫ L

0
px(L, y)w̃(y, t)dy. Then (21) admits a unique global solution

w̃ ∈ X6
T .

Thanks to the bounded invertibility of the backstepping transformation (20), we
obtain ũ ∈ X6

T under the same assumptions given in Proposition 5.

4.1.2. Observer model. Consider the target observer model 23
iŵt + iβŵxxx + αŵxx + iδŵx + irŵ = iβky(x, 0)ŵx(0, t)

+f(x, t), x ∈ (0, L), t ∈ (0, T ),

ŵ(0, t) = ŵ(L, t) = ŵx(L, t) = 0,

ŵ(x, 0) = ŵ0(x),

(159)

where f(x, t)
.
= [(I − Υk)p1](x)w̃x(0, t) + [(I − Υk)p2](x)w̃xx(0, t). Recall that the

backstepping transformation (20) transforms (14) to (159) if p1, p2 are chosen such
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that p1(x)iβpy(x, 0)− αp(x, 0) and p2(x) = −iβp(x, 0) where p is the backstepping
kernel that solves (19). An example for the real and imaginary parts of the observer
gains for a problem defined on [0, π] and the coefficients β = 1, α = 2, δ = 8, r = 0.05
are given in Figure 13.

Figure 13. Observer gains for L = π, β = 1, α = 2, δ = 8 and
r = 0.05.

For a given ŵ0 ∈ L2(0, L), let us first show that ŵ ∈ X0
T . Thanks to Proposition

2, given ŵ0 ∈ L2(0, L), we know that solution, ŵ, of 159 with f ≡ 0 belongs to the
space X0

T . Let us express it as ŵi(x, t)
.
= W (t)ŵ0(x) and now consider the problem

where ŵ0 ≡ 0. Let us express its solution as

ŵf (x, t)
.
=

∫ t

0

W (t− τ)f(x, τ)dτ.

Recall that k = k(x, y), p1(x) = −iβpy(x, 0) + αp(x, 0) and p2(x) = iβp(x, 0)
are smooth functions. Also, we will see in Proposition 7-(ii) below that, if w̃0 ∈
H3(0, L), then w̃x(0, t), w̃xx(0, t) ∈ L1(0, T ). This implies f ∈ L1(0, T ;H∞(0, L)).
To see that ŵf ∈ X0

T , first observe that

‖ŵf (·, t)‖2 ≤
∫ t

0

‖W (t− τ)f(·, τ)‖2dτ

≤
∫ t

0

‖f(·, τ)‖2dτ = ‖f‖L1(0,T ;L2(0,L)).

(160)

Taking supremum in t ∈ [0, T ] yields

‖ŵf‖C([0,T ];L2(0,L)) ≤ ‖f‖L1(0,T ;L2(0,L)) ≤ ‖f‖L1(0,T ;H∞(0,L)).

Following from (160), we also have

‖ŵf‖L2(0,T ;L2(0,L)) ≤
√
T‖f‖L1(0,T ;L2(0,L)) ≤

√
T‖f‖L1(0,T ;H∞(0,L)).

Using similar arguments, one can get

‖∂xŵf‖L2(0,T ;L2(0,L)) ≤
√
T‖f‖L1(0,T ;H∞(0,L)).

Consequently, ŵf ∈ X0
T . As a conclusion given ŵ0 ∈ L2(0, L), w̃0 ∈ H3(0, L) and

f ∈ L1(0, T ;H∞(0, L)), we obtain that ŵ ∈ X0
T .
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Next, we show that ŵ ∈ X3
T . To this end, we set z̃ = w̃t. Then z̃ satisfies

iz̃t + iβz̃xxx + αz̃xx + iδz̃x + irz̃ = 0, x ∈ (0, L), t ∈ (0, T ),

z̃(0, t) = z̃(L, t) = 0, z̃x(L, t) = ψ′(z̃),

z̃(x, 0) = z̃0(x),

where z̃0
.
= −βw̃′′′0 +iαw̃′′0 −δw̃′0−rw̃0. Applying the arguments in Section 4.1.1, we

see that if (z̃0, ψ
′) ∈ H3(0, L)×H1(0, T ) satisfies compatibility conditions, then z ∈

X3
T . Moreover, thanks to the Proposition 7-(ii) below, we have z̃x(0, t), z̃xx(0, t) ∈

L1(0, T ). This implies by using z̃ = w̃t that, w̃xt(0, t), w̃xxt(0, t) ∈ L1(0, T ) where
w̃ solves target error model satisfying (w̃0, ψ) ∈ H6(0, L) × H2(0, T ) higher order
compatibility. Thus f ∈W 1,1(0, T ;H∞(0, L)).

Now let us set v̂ = ŵt. Then v̂ solves
iv̂t + iβv̂xxx + αv̂xx + iδv̂x + irv̂ = iβky(x, 0)v̂x(0, t)

+ft(x, t), x ∈ (0, L), t ∈ (0, T ),

v̂(0, t) = v̂(L, t) = v̂x(L, t) = 0,

v̂(x, 0) = v̂0(x),

where

v̂0(x)
.
= −βŵ′′′0 (x) + iαŵ′′0 (x)− δŵ′0(x)− rŵ0(x) + βky(x, 0)ŵ′0(0)− ift(x, 0).

Assume that v̂0 ∈ L2(0, L). Then, from the above study, we deduce that v̂ ∈ X0
T . If

ŵ0 satisfies the compatibility conditions, then we can also show that ŵ, defined by

ŵ(x, t) = ŵ0(x) +
∫ t

0
v̂(x, τ)dτ solves (159). Now from the main equation of (159),

we have

iβŵxxx(x, t) = (−iv̂ − αŵxx − iδŵx − irŵ)(x, t) + iβky(x, 0)ŵx(0, t) + f(x, t).

Using ŵx(0, t) = −
∫ L

0
ŵxx(x, t)dx and taking L2−norms of both side we get

β2‖ŵxxx(·, t)‖22 ≤ ‖v̂(·, t)‖22 +
(
α2 + β2‖ky(·, 0)‖22

)
‖ŵxx(·, t)‖22

+ δ2‖ŵx(·, t)‖22 + r2‖ŵ(·, t)‖22 + ‖f(·, t)‖22.

Using Gagliardo–Nirenberg’s interpolation inequality and ε−Young’s inequality, sec-
ond and third terms at the right hand side can be estimated as

(α2 + β2‖ky(·, 0)‖22)‖ŵxx(·, t)‖22 ≤ ε‖ŵxxx‖22 + cβ,α,k,ε‖ŵ(·, t)‖22
and

δ2‖ŵx(·, t)‖22 ≤ ε‖ŵxxx‖22 + cδ,ε‖ŵ(·, t)‖22
respectively. Choosing ε > 0 sufficiently small, we obtain

‖ŵxxx(·, t)‖22 . ‖v̂(·, t)‖22 + ‖ŵ(·, t)‖22 + ‖f(·, t)‖22.

Note that from Proposition 7-(ii) given below, supremum of the trace terms w̃x(0, t),
w̃xx(0, t) exist. Therefore, taking supremum on both sides, we deduce that ŵ ∈
C([0, T ];H3(0, L)). Next, again from the main equation, we have

iβŵxxxx(x, t) = (−iv̂x − αŵxxx − iδŵxx − irŷx)(x, t)

+ iβkyx(x, 0)ŵx(0, t) + fx(x, t),
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and therefore we get

β2‖ŵxxxx(·, t)‖22 ≤ ‖v̂x(·, t)‖22+α2‖ŵxxx(·, t)‖22+
(
δ2 + β2‖kxy(·, 0)‖22

)
‖ŵxx(·, t)‖22

+ r2‖ŵx(·, t)‖22 + ‖fx(·, t)‖22.

Similarly, by Gagliardo–Nirenberg’s inequality and then ε−Young’s inequality, we
get

α2‖ŵxxx(·, t)‖22 ≤ ε‖ŵxxxx(·, t)‖22 + cα,ε‖ŵ(·, t)‖22,(
δ2 + β2‖ky(·, 0)‖22

)
‖ŵxx(·, t)‖22 ≤ ε‖ŵxxxx(·, t)‖22 + cβ,δ,k,ε‖ŵ(·, t)‖22,
r2‖ŵx(·, t)‖22 ≤ ε‖ŵxxxx(·, t)‖22 + cr,ε‖ŵ(·, t)‖22.

Using these estimates, we obtain that

‖ŵxxxx(·, t)‖22 . ‖v̂x(·, t)‖22 + ‖ŵ(·, t)‖22 + ‖fx(·, t)‖22.

We see that right hand side belongs to L2(0, T ), so ŵ belongs to L2(0, T ;H4(0, L)).
Combining with the previous result, we obtain that ŵ ∈ X3

T if ŵ0 ∈ H3(0, L). This
finishes the proof of the following proposition.

Proposition 6. Let T, β > 0, α, δ ∈ R, k and p be smooth backstepping kernels
solving (10) and (19) respectively, and p1(x) = −iβpy(x, 0) + αp(x, 0), p2(x) =
iβp(x, 0). Assume that ŵ0 ∈ H3(0, L) satisfies the compatibility conditions and
the initial–boundary pair of the target error model (w̃0, ψ) ∈ H6(0, L) × H2(0, T )
satisfies the higher order compatibility conditions. Then (159) admits a unique
solution ŵ ∈ X3

T .

Finally, thanks to bounded invertibility of the backstepping transformation (11),
we obtain under the same assumptions that û ∈ X3

T . Combining the wellposedness
of û and ũ, we obtained the wellposedness of (1) and proved the first part of Theorem
1.2.

4.2. Stability. In this part, we obtain exponential stability estimates for the plant–
observer–error system. This will be done by first considering the target error and
target observer models. Then we use the bounded invertibility of the backstepping
transformations, which will yield the exponential stability for the error and observer
models, consequently for the original plant.

4.2.1. Error model.

Proposition 7. Let β > 0, α, δ ∈ R and p is the smooth backstepping kernel that
solves (19). Then for sufficiently small r > 0, it is true that

µ = β

(
r

β
− ‖px(L, ·; r)‖22

2

)
> 0.

Moreover, the solution w̃ of (21) satisfies the following estimates

(i) ‖w̃(·, t)‖2 ≤ ‖w̃0‖2e−µt,
(ii) |w̃xx(0, t)|+ |w̃x(0, t)|+ ‖w̃(·, t)‖H3(0,L) . ‖w̃0‖H3(0,L)e

−µt,

for t ≥ 0.
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Proof. (i) Taking the L2−inner product of the main equation of (21) with 2w̃,
following (30)-(33) and applying Cauchy–Schwarz inequality at the right hand
side, we get

d

dt
‖w̃(·, t)‖22 + 2r‖w̃(·, t)‖22 + β|w̃x(0, t)|2 = β|w̃x(L, t)|2

= β

∣∣∣∣∣
∫ L

0

px(L, y)w̃(y, t)dy

∣∣∣∣∣
2

≤ β‖px(L, ·)‖22‖w̃(·, t)‖22.

It follows from the last expression that

d

dt
‖w̃(·, t)‖22 + 2β

(
r

β
− ‖px(L, ·)‖22

2

)
‖w̃(·, t)‖22 ≤ 0.

Denoting µ
.
= β

(
r
β −

‖px(L,·)‖22
2

)
and integrating the above estimate yields (i).

Recall that that px(L, y) = −ky(x, 0). Thus, for sufficiently small r > 0, we
can prove that µ > 0 holds as we performed in Proposition 4.

(ii) We differentiate (21) with respect to t, take L2−inner product by 2w̃t and
following similar steps as in part (i), we obtain

d

dt
‖w̃t(·, t)‖22 + 2β

(
r

β
− ‖px(L, ·)‖22

2

)
‖w̃t(·, t)‖22 ≤ 0,

which implies

‖w̃t(·, t)‖2 ≤ ‖w̃t(·, 0)‖2e−µt. (161)

In particular, from the main equation of (21) together with (161), we get

‖w̃t(·, t)‖2 ≤ ‖w̃t(·, 0)‖2e−µt

= ‖ − βw̃′′′0 + iαw̃′′0 − δw̃′0 − rw̃0‖2e−µt

. ‖w̃0‖H3(0,L)e
−µt.

(162)

On the other hand, again from (21), we also have

β‖w̃xxx(·, t)‖22 ≤ α‖w̃xx(·, t)‖22 + δ‖w̃x(·, t)‖22 + r‖w̃(·, t)‖22 + ‖w̃t(·, t)‖22. (163)

Applying Gagliardo–Nirenberg interpolation inequality and then ε−Young’s
inequality, the first term at the right hand side can be estimated as

α‖w̃xx(·, t)‖22 ≤ cα‖w̃xxx(·, t)‖
4
3
2 ‖w̃(·, t)‖

2
3
2

≤ ε‖w̃xxx(·, t)‖22 + cα,ε‖w̃(·, t)‖22. (164)

Similarly, the second term can be estimated as

δ‖w̃x(·, t)‖22 ≤ ε‖w̃xxx(·, t)‖22 + cδ,ε‖w(·, t)‖22. (165)

Combining (164)-(165) with (163), and then choosing ε > 0 sufficiently small,
we get

‖w̃(·, t)‖2H3(0,L) . ‖w̃(·, t)‖22 + ‖w̃t(·, t)‖22.

Using (162) and (i), it follows that

‖w̃(·, t)‖H3(0,L) . ‖w̃0‖H3(0,L)e
−µt. (166)
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To estimate the trace terms in (ii), we take L2−inner product of (21) by
2(L− x)w̃xx and consider only the imaginary terms to get

2<
∫ L

0

w̃tw̃xx(L−x)dx+2β<
∫ L

0

w̃xxxw̃xx(L−x)dx+2α=
∫ L

0

w̃xxw̃xx(L−x)dx

+ 2δ<
∫ L

0

w̃xw̃xx(L− x)dx+ 2r<
∫ L

0

w̃w̃xx(L− x)dx = 0. (167)

Integrating by parts, the second term is equivalent to

2β<
∫ L

0

w̃xxxw̃xx(L− x)dx = β<
∫ L

0

d

dx
|w̃xx|2(L− x)dx

= β
(
−L|w̃xx(0, t)|2 + ‖w̃xx(·, t)‖22

)
.

The third term vanishes since it is pure real. The fourth term, again by
integration by parts, can be expressed as

2δ<
∫ L

0

w̃xw̃xx(L− x)dx = δ<
∫ L

0

d

dx
|w̃x|2(L− x)dx

= δ
(
−L|w̃x(0, t)|2 + ‖w̃x(·, t)‖22

)
.

Using these estimates in (167), we obtain that

L(β|w̃xx(0, t)|2 + δ|w̃x(0, t)|2) =2<
∫ L

0

w̃tw̃xx(L− x)dx+ β‖w̃xx(·, t)‖22

+ δ‖w̃x(·, t)‖22 + 2r<
∫ L

0

w̃w̃xx(L− x)dx.

Applying Cauchy–Schwarz inequality and then Young’s inequality on the first
and last terms at the right hand side, using (162) and (166), we get

|w̃xx(0, t)|2 + |w̃x(0, t)|2 . ‖w̃t(·, t)‖22 + ‖w̃(·, t)‖2H3(0,L)

. e−µt‖w̃0‖H3(0,L).

Combining this result with (166) yields (ii).

Since p is a smooth function on a compact set ∆x,y and the backstepping trans-
formation (20) is invertible on L2(0, L) and H3(0, L) with a bounded inverse, we
obtain that

‖ũ(·, t)‖2 ≤ cp‖ũ0‖2 (168)

where cp =
(
1 + ‖p‖L2(∆x,y)

)
‖(I −Υp)

−1‖2→2 and

‖ũ(·, t)‖H3(0,L) ≤ cp′‖ũ0‖H3(0,L) (169)

where cp′ =
(
1 + ‖p‖H3(∆x,y)

)
‖(I −Υp)

−1‖H3(0,L)→H3(0,L).

4.2.2. Observer model.

Proposition 8. Let β > 0, α, δ ∈ R and k, p be the smooth backstepping kernels
solving (10), (19) respectively. Then for sufficiently small r, ε > 0, it is true that

ν
.
= β

(
r

β
− ‖ky(·, 0; r)‖22

2
− ε
(
‖Π1‖22 + ‖Π2‖22

))
> 0,
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where ‖Πj‖22 = ‖(I−Υk)pj‖22, j = 1, 2 with p1(x) = −iβpy(x, 0)+αp(x, 0), p2(x) =
iβp(x, 0). Moreover, the solution ŵ of (23) satisfies the following estimate

‖ŵ(·, t)‖2 . e−νt
(
‖ŵ0‖2 + ‖w̃0‖H3(0,L)

)
(170)

for t ≥ 0.

Proof. We take L2−inner product of the main equation of (23) by 2ŵ and following
the steps (30)-(33), we get

d

dt
‖ŵ(·, t)‖22 + β|ŵx(0, t)|2 + 2r‖ŵ(·, t)‖22

=2β<
∫ L

0

ky(x, 0)ŵx(0, t)ŵ(x, t)dx

+ 2=
∫ L

0

Π1(x)w̃x(0, t)ŵ(x, t)dx

+ 2=
∫ L

0

Π2(x)w̃xx(0, t)ŵ(x, t)dx.

(171)

Using Young’s inequality and then Cauchy–Schwarz inequality, the first term at the
right hand side can be estimated as

2β<
∫ L

0

ky(x, 0)ŵx(0, t)ŵ(x, t)dx ≤ β|ŵx(0, t)|2 + β‖ky(·, 0)‖22‖ŵ(·, t)‖22.

Applying Cauchy–Schwarz inequality and ε−Young’s inequality to the second and
third terms at the right hand side of (171), we get∣∣∣∣∣2=

∫ L

0

Πj(x)w̃x(0, t)ŵ(x, t)

∣∣∣∣∣ ≤ 2εβ
∥∥Πj

∥∥2

2
‖ŵ(·, t)‖22 +

1

2εβ
|w̃x(0, t)|2, j = 1, 2.

Using these estimates in (171), we obtain that

d

dt
‖ŵ(·, t)‖22 + 2β

(
r

β
− ‖ky(·, 0)‖22

2
− ε
(
‖Π1‖22 + ‖Π2‖22

))
‖ŵ(·, t)‖22

≤ 1

2εβ

(
|w̃x(0, t)|2 + |w̃xx(0, t)|2

)
. (172)

From Proposition 4 we know that, there exists a sufficiently small r > 0 such that

the term
(
r
β −

‖ky(·,0)‖22
2

)
remains positive. So choosing ε sufficiently small, we are

able to guarantee that the term

ν
.
= β

(
r

β
− ‖ky(·, 0)‖22

2
− ε
(
‖Π1‖22 + ‖Π2‖22

))
remains positive. Now applying Proposition 7-(ii) to the right hand side of (172),
we get

d

dt
‖ŵ(·, t)‖22 + 2ν‖ŵ(·, t)‖22 . ‖w̃0‖2H3(0,L)e

−2µt.

Also, observing ‖px(L, ·)‖2 = ‖ky(·, 0)‖2 and comparing ν with µ, we observe that
µ > ν. Thus, integrating the above inequality from 0 to t, we finally obtain

‖ŵ(·, t)‖2 . e−νt
(
‖ŵ0‖2 + ‖w̃0‖H3(0,L)

)
.
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Since k, p are smooth backstepping kernels on the triangular domain ∆x,y and
thanks to the invertibility of the corresponding backstepping transformations (11),
(20) on L2(0, L) and H3(0, L) respectively, with a bounded inverse, we deduce that

‖û(·, t)‖2 . ck,pe
−νt (‖û0‖2 + ‖ũ0‖H3(0,L)

)
, (173)

where ck,p is the maximum of

ck =
(
1 + ‖k‖L2(∆x,y)

)
‖(I −Υk)−1‖2→2

and

cp =
(
1 + ‖p‖H3(∆x,y)

)
‖(I −Υp)

−1‖H3(0,L)→H3(0,L).

Finally, combining (168) and (173)

‖u(·, t)‖2 = ‖(û+ ũ)(·, t)‖2
≤ ‖û(·, t)‖2 + ‖(u− û)(·, t)‖2
. ck,p

(
‖û0‖2 + ‖u0 − û0‖H3(0,L)

)
e−νt + cp‖u0 − û0‖2e−µt.

This gives us the second part of Theorem 1.2.

5. Numerical simulations. In this part, we present our numerical algorithm and
numerical simulations for controller and observer designs.

5.1. Controller design. Our algorithm consists of three steps. We first obtain an
approximation for the backstepping kernel k by solving the integral equation (116).
Then we solve the modified target equation (12) numerically. As a third and final
step, we use the invertibility of the backstepping transformation and end up with
the numerical solution to the original plant. Details are given in the below.

Step i. We solve the integral equation

Gj+1(s, t) =
r

3β
st+

∫ t

0

∫ s

0

∫ ω

0

[DGj ](ξ, η)dξdωdη, j = 1, 2, . . .

iteratively, where the iteration is initialized with

G1(s, t) =
r

3β
st.

As the initial function is a polynomial, the result of the each iteration yields
again a polynomial. Thus, here, we use the advantage of the fact that sum-
mation and multiplication with a scalar of polynomials, their differentiation
and integration can be carried out easily by simple algebraic operations. To
perform these operations computationally, we express a given n−th degree
polynomial with complex coefficients, say

P (s, t) =α0,0 + α1,0s+ α0,1t+ α2,0s
2 + α1,1st+ α0,2t

2 + · · ·
+ αn,0s

n + αn−1,1s
n−1t+ αn−2,2s

n−2t2 + · · ·+ α0,nt
n,

(174)

in a more convenient form as

[P] =


α0,0 α0,1 · · · α0,n−1 α0,n

α1,0 α1,1 · · · α1,n−1

...
...

...

αn−1,0 αn−1,1 0
αn,0

 . (175)
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Once we introduce this matrix representation (175) of P in our algorithm, then
it is easy to perform summation and scalar multiplication. Moreover, using the
elementary row and column operations, one can perform the differentiation
and integration operations. For instance multiplying the j−th row of [P ] by
j − 1, writing the result to the (j − 1)−th row and repeating this process for
each j, j = 2, 3, . . . , n + 1 yields the matrix representation, [Ps], of Ps(s, t).
Similarly, multiplying the j−th row of [P ] by 1/j, writing the result to the
(j+1)−th row, repeating this process for each j, j = 1, 2, . . . , n+1 and filling
the first row by a zero vector yields [

∫ s
0
Pds]. Differentiation and integration

with respect to t can be done by performing analogous column operations.
Step ii. Let us consider the uniform discretization of [0, L] with the set of M > 3

node points {xm}Mm=1 where xm = (m−1)hx and hx = L
M−1 is the the uniform

spatial grid spacing. Let us introduce the following finite dimensional vector
space

XM .
=

{
w = [w1 · · ·wM ]T ∈ CM

}
,

where each w ∈ XM satisfies

w1(t) = wM (t) = 0, (176)

wM−2(t)− 4wM−1(t) + 3wM (t)

2hx
= 0, (177)

for t > 0. Note that wm(t) is an approximation to w(x, t) at the point x = xm
and, (176) and (177) correspond to Dirichlet and Neumann type boundary
conditions respectively. Consider the standard forward and backward differ-
ence operators ∆+ : XM → XM and ∆− : XM → XM , respectively and let us
introduce the following finite difference operators on XM :

∆
.
=

1

2
(∆+ + ∆−) ∆2 .

= ∆+∆− ∆3 .
= ∆+∆+∆−. (178)

Next assume N be a positive integer, T be the final time and consider the
nodal points in time axis tn = (n− 1)k, where n = 1, . . . , N is time index and
ht = T

N−1 is the time step size. Let wn = [wn1 · · ·wnm]T be an approximation

of the solution at the n-th time step where wnm is an approximation to w(x, t)
at the point (xm, tn). Discretizing (12) in space by using the finite difference
operators (178) and in time by using Crank–Nicolson time stepping, we end
up with the discrete problem: Given wn ∈ XM , find wn+1 ∈ XM such that(
IM +

ht
2

A− βht
2

KM
y (·, 0)Γ1,M

0

)
wn+1 = Fwn, n = 1, 2, . . . , N. (179)

Here IM is the identity matrix on XM , A is defined as

A
.
= β∆3 − iα∆2 + δ∆ + rIM , (180)

KM
y (·, 0) is an M ×M diagonal matrix, where each element on the diagonal

consists of the elements of the form ky(xm, 0), m = 1, . . . ,M where ky(x, 0)

is obtained exactly in the previous step, Γ1,M
0 is a discrete counterpart of the

trace operator Γ1
0 and given by an M ×M matrix

Γ1,M
0 =

1

2hx


−3 4 −1 0 · · · 0
−3 4 −1 0 · · · 0
...

...
...

...
. . .

...
−3 4 −1 0 · · · 0

 , (181)
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and

F
.
= IM − ht

2
A +

βht
2

KM
y (·, 0)Γ1,M

0 .

Note that the nonzero elements in the matrix Γ1,M
0 given in (181) are due to

the one–sided second order finite difference approximation to the first order
derivative at the point x = 0.

Step iii. In this final step, we find the inverse image, u, of w under the backstep-
ping transformation: Given w, we find u by using succession method. More
precisely, we set v

.
= Υku, therefore we obtain u = v +w and substitute u by

v + w on (11) to get

v(x, t) =

∫ x

0

k(x, y)w(y, t)dy +

∫ x

0

k(x, y)v(y, t)dy.

Now given w obtained numerically in the previous step, we solve this equation
successively for v. Using the numerical results for w and v on u = v + w, we
obtain a numerical solution for u.

Now, let us present a numerical simulation that verifies our exponential decay
results. We take M = 1001 spatial nodes, N = 5001 time steps. The iteration for
the backstepping kernel is performed j = 27 times so that the error is around

max
(s,t)∈∆s,t

|Gj+1 −Gj | ∼ 10−14.

We consider the following model
iut + iuxxx + 2uxx + 8iux = 0, x ∈ (0, π), t ∈ (0, T ),

u(0, t) = 0, u(π, t) = h0(t), ux(π, t) = h1(t),

u(x, 0) = 3− e4ix − 2e−2ix.

(182)

In the absence of controllers, i.e. h0(t) ≡ h1(t) ≡ 0, we have a stationary solution
u(x, t) = 3 − e4ix − 2e−2ix. Let us choose r = 0.05. This choice yields a positive
exponent value λ, defined in Proposition 4, i.e. solution is decaying exponentially in
time (see Table 1). Contour plot of the corresponding solution and time evolution
of its L2−norm are given by Figures 14.

Figure 14. Numerical results in the presence of controllers. Left:
Time evolution of |u(x, t)|. Right: Time evolution of ‖u(·, t)‖2.
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5.2. Observer design. Our algorithm consists of five steps. First we obtain an
approximation for the backstepping kernel p. In the second and third steps, we
obtain a numerical solution for the error model (15) and modified target observer
model (23), respectively. As a fourth step, we get a numerical solution for the
observer model by using the invertibility of the backstepping transformation (11).
At the fifth and the last step, we deduce numerical solution of the original plant via
u = û+ ũ.

Step i. Following the same procedure we introduced in the first step of Section
5.1 and then changing the variables first as s̃ = L − t, t̃ = L − s − t then as
s = x− y, t = y, we get

G(s̃, t̃;−r) = G(L− t, L− s− t;−r) = k(L− y, L− x;−r) = p(x, y).

Note that using p, we also derive p1(x) = −iβpy(x, 0) + αp(x, 0) and p2(x) =
iβp(x, 0).

Step ii. To solve (15), we apply the same discretization procedure as we introduced
in the second step of Section 5.1. The trace terms included in the main
equation of (15) are approximated by the following one sided second order
finite differences

ũx(0, t) ≈ −3ũ0(t) + 4ũ1(t)− ũ2(t)

2hx
,

ũxx(0, t) ≈ 2ũ0(t)− 5ũ1(t) + 4ũ2(t)− ũ3(t)

h2
x

.

(183)

Step iii. Applying the similar discretization procedure, now we solve (23) numer-
ically. Note that using w̃(0, t) = 0 and p(x, x) = 0, one can show by using
the backstepping transformation (20) that w̃x(0, t) = ũx(0, t) and w̃xx(0, t) =
ũxx(0, t). Therefore, instead of approximating the first order and second order
traces of w̃ at the left end point, we can use (183). Note also that a discrete
counterpart, ΥM

k , of Υk can be obtained by applying a suitable numerical in-
tegration technique. For instance applying composite trapezoidal rule yields
the following representation

ΥM
k = hx


0 0 · · · 0 0

1
2k(x2, x1) 1

2k(x2, x2) · · · 0 0
...

...
. . .

...
...

1
2k(xM−1, x1) k(xM−1, x2) · · · 1

2k(xM−1, xM−1) 0
1
2k(xM , x1) k(xM , x2) · · · k(xM , xM−1) 1

2k(xM , xM )

 .
Step iv. Using the invertibility of the backstepping transformation (11), we obtain

inverse image û of ŵ. This will be done by applying a similar procedure as
we introduced in the first step of Section 5.1.

Step v. Using the numerical results for the observer and error models and setting
u = û+ ũ, we deduce an approximation for the solution of the original plant.

Now let us go on with the numerical simulations. We obtain our results by
taking M = 1001 spatial nodes, N = 5001 time steps. We performed the iteration
for p(x, y) and k(x, y) several times so that the error is around max

(s,t)∈∆s,t

|Gj+1−Gj | ∼

10−14. We consider the same model{
iut + iuxxx + 2uxx + 8iux = 0, x ∈ (0, π), t ∈ (0, T ),

u(0, t) = 0, u(π, t) = h0(t), ux(π, t) = h1(t),
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where, unlike the controller design case, the feedback controllers use the state of
the observer model. We initialize the error model as ũ(x, 0) = 3− e4ix− 2e−2ix and
observer model û(x, 0) ≡ 0. We take r = 0.05. Since the problem parameters are
same as the previous numerical example, this choice will yield positive exponent
vales µ > ν > 0 where µ, ν are defined in Proposition 7 and Proposition 8.

Contour plot of the numerical solution of original plant is given at the left side
of Figure 15. At the right, we show time evolution of the L2−norms of solutions of
plant-observer-error system.

Figure 15. Numerical results. Left: Time evolution of |u(x, t)|.
Right: Time evolution of ‖u(·, t)‖2, ‖û(·, t)‖2 and ‖ũ(·, t)‖2.

Appendix A. Deduction of the kernel pde model (7). In this section, we
present the details of the calculations for obtaining the kernel model given in (7).
Differentiating both sides of (5) with respect to t we get

iwt(x, t) =iut(x, t)−
∫ x

0

ik(x, y)ut(y, t)dy

=iut(x, t) +

∫ x

0

k(x, y)(iβuyyy(y, t) + αuyy(y, t) + iδuy(y, t))dy

=iut(x, t)

+ iβ

(
k(x, y)uyy(y, t)− ky(x, y)uy(y, t) + kyy(x, y)u(y, t)

∣∣∣∣∣
x

0

−
∫ x

0

kyyy(x, y)u(y, t)dy

)
+ α

(
k(x, y)uy(y, t)− ky(x, y)u(y, t)

∣∣∣∣∣
x

0

+

∫ x

0

kyy(x, y)u(y, t)dy

)

+ iδ

(
k(x, y)u(y, t)

∣∣∣∣∣
x

0

−
∫ x

0

ky(x, y)u(y, t)dy

)
.



STABILIZATION OF HIGHER ORDER SCHRÖDINGER EQUATIONS 55

Using the boundary condition u(0, t) = 0, rearrenging the last expression in terms
of u(x, t),ux(x, t), uxx(x, t), ux(0, t) and uxx(0, t), we obtain

iwt(x, t) =iut(x, t) +

∫ x

0

(−iβkyyy + αkyy − iδky) (x, y)u(y, t)dy

+ (iβkyy(x, x)− αky(x, x) + iδk(x, x))u(x, t)

+ (−iβky(x, x) + αk(x, x))ux(x, t) + iβk(x, x)uxx(x, t)

+ (iβky(x, 0)− αk(x, 0))ux(0, t)− iβk(x, 0)uxx(0, t).

(184)

Next we differentiate both sides of (11) with respect to x up to the order three and
multiply the results by iδ, α and iβ respectively to obtain

iδwx(x, t) = iδux(x, t)− iδ ∂
∂x

∫ x

0

k(x, y)u(y, t)dy

= iδux(x, t)−
∫ x

0

iδkx(x, y)u(y, t)dy − iδk(x, x)u(x, t),

(185)

αwxx(x, t) =αuxx(x, t)− α ∂

∂x

∫ x

0

kx(x, y)u(y, t)dy − α ∂

∂x
(k(x, x)u(x, t))

=αuxx(x, t)−
∫ x

0

αkxx(x, y)u(y, t)dy

+ α

(
−kx(x, x)− d

dx
k(x, x)

)
u(x, t)− αk(x, x)ux(x, t)

(186)

and

iβwxxx(x, t) =iβuxxx(x, t)− iβ ∂

∂x

∫ x

0

kxx(x, y)u(y, t)dy

− iβ ∂

∂x

((
kx(x, x) +

d

dx
k(x, x)

)
u(x, t) + k(x, x)ux(x, t)

)
=iβuxxx(x, t)−

∫ x

0

iβkxxx(x, y)u(y, t)dy

+ iβ

(
−kxx(x, x)− d

dx
kx(x, x)− d2

dx2
k(x, x)

)
u(x, t)

+ iβ

(
−kx(x, x)− 2

d

dx
k(x, x)

)
ux(x, t)− iβk(x, x)uxx(x, t).

(187)

Adding (184)-(187) side by side together with

irw(x, t) = iru(x, t)− ir
∫ x

0

k(x, y)u(y, t)dy,



56 T. ÖZSARI AND K. C. YILMAZ

and then using the main equation of the linear plant, we obtain

iwt + iβwxxx + αwxx + iδwx + irw

=

∫ x

0

(−iβ(kxxx + kyyy)− α(kxx − kyy)− iδ(kx + ky)− irk) (x, y)u(y, t)dy (188)

=

(
iβ

(
kyy(x, x)− kxx(x, x)− d

dx
kx(x, x)− d2

dx2
k(x, x)

)
+α

(
−ky(x, x)− kx(x, x)− d

dx
k(x, x)

)
+ ir

)
u(x, t) (189)

− iβ
(
ky(x, x) + kx(x, x) + 2

d

dx
k(x, x)

)
ux(x, t) (190)

+ (iβky(x, 0)− αk(x, 0))ux(0, t) (191)

− iβk(x, 0)uxx(0, t). (192)

From (192) we have k(x, 0) = 0 and therefore, from (191) we get ky(x, 0) = 0. Using

the relation d
dxk(x, x) = kx(x, x) + ky(x, x), we obtain from (190) that

d

dx
k(x, x) = 0

and thanks to k(x, 0) = 0, this implies k(x, x) = 0. Next, we differentiate d
dxk(x, x)

= kx(x, x) + ky(x, x) with respect to x and use d
dxk(x, x) = 0 to obtain kyy(x, x) =

−2kxy(x, x)− kxx(x, x). Using this result on (189), we deduce that

d

dx
kx(x, x) =

r

3β

which, by the implications ky(x, 0) = 0⇒ kx(x, 0) = 0⇒ kx(0, 0) = 0, is equivalent
to

kx(x, x) =
rx

3β
.

Also note that taking x = 0 in the backstepping transformation implies w(0, t) =
u(0, t) = 0 and, taking x = L implies

w(L, t) = u(L, t)−
∫ L

0

k(L, y)u(y, t)dy = 0

and

wx(L, t) = ux(L, t)−
∫ L

0

kx(L, y)u(y, t)dy − k(0, 0)u(0, t) = 0.

So the boundary conditions are being satisfied without any extra conditions on k.
As a conclusion, linear plant is mapped to target model (not modified one) if

k(x, y) satisfies the following boundary value problem
β(kxxx + kyyy)− iα(kxx − kyy) + δ(kx + ky) + rk = 0,

k(x, x) = ky(x, 0) = k(x, 0) = 0,

kx(x, x) = rx
3β ,

on ∆x,y.
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Appendix B. Deduction of the kernel pde model (18). In this section, we
present the details of the calculations for obtaining the kernel model given in (19).
Differentiating (16) with respect to t, we get

iũt(x, t) =iw̃t(x, t)−
∫ x

0

ip(x, y)w̃t(y, t)dy

=iw̃t(x, t) +

∫ x

0

p(x, y)(iβw̃yyy(y, t) + αw̃yy(y, t) + iδw̃y(y, t) + irw̃)dy

=iw̃t(x, t)

+ iβ

(
p(x, y)w̃yy(y, t)− py(x, y)w̃y(y, t) + pyy(x, y)w̃(y, t)

∣∣∣∣∣
x

0

−
∫ x

0

pyyy(x, y)w̃(y, t)dy

)
+ α

(
p(x, y)w̃y(y, t)− py(x, y)w̃(y, t)

∣∣∣∣∣
x

0

+

∫ x

0

pyy(x, y)w̃(y, t)dy

)

+ iδ

(
p(x, y)w̃(y, t)

∣∣∣∣∣
x

0

−
∫ x

0

py(x, y)w̃(y, t)dy

)

+ ir

∫ L

0

p(x, y)w̃(y, t)dy.

Using the boundary conditions w(0, t) = 0, rearranging the last expression in terms
of w̃(x, t),w̃x(x, t), w̃xx(x, t), w̃x(0, t) and w̃xx(0, t), we obtain

iũt(x, t) =iw̃t(x, t) +

∫ x

0

(−iβpyyy + αpyy − iδpy + irp) (x, y)w̃(y, t)dy

+ (iβpyy(x, x)− αpy(x, x) + iδp(x, x)) w̃(x, t)

+ (−iβpy(x, x) + αp(x, x)) w̃x(x, t) + iβp(x, x)w̃xx(x, t)

+ (iβpy(x, 0)− αp(x, 0)) w̃x(0, t)− iβp(x, 0)w̃xx(0, t).

(193)

Next we differentiate (16) up to order three and multiply the results by iδ, α and
iβ respectively to obtain

iδũx(x, t) = iδw̃x(x, t)− iδ ∂
∂x

∫ x

0

p(x, y)w̃(y, t)dy

= iδw̃x(x, t)−
∫ x

0

iδpx(x, y)w̃(y, t)dy − iδp(x, x)w̃(x, t),

(194)

αũxx(x, t) =αw̃xx(x, t)− α ∂

∂x

∫ x

0

px(x, y)w̃(y, t)dy − α ∂

∂x
(p(x, x)w̃(x, t))

=αw̃xx(x, t)−
∫ x

0

αpxx(x, y)w̃(y, t)dy

+ α

(
−px(x, x)− d

dx
p(x, x)

)
w̃(x, t)− αp(x, x)w̃x(x, t)

(195)
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and

iβũxxx(x, t) =iβw̃xxx(x, t)− iβ ∂

∂x

∫ x

0

pxx(x, y)w̃(y, t)dy

− iβ ∂

∂x

((
px(x, x) +

d

dx
p(x, x)

)
w̃(x, t) + p(x, x)w̃x(x, t)

)
=iβw̃xxx(x, t)−

∫ x

0

iβpxxx(x, y)w̃(y, t)dy

+ iβ

(
−pxx(x, x)− d

dx
px(x, x)− d2

dx2
p(x, x)

)
w̃(x, t)

+ iβ

(
−px(x, x)− 2

d

dx
p(x, x)

)
w̃x(x, t)− iβp(x, x)w̃xx(x, t).

(196)

From (194) and (195) we also have

p1(x)ũx(0, t) = p1(x)w̃x(0, t) (197)

and

p2(x)ũxx(0, t) = p2(x)(w̃xx(0, t)− p(0, 0)w̃x(0, t)). (198)

Adding (193)-(198) side by side we obtain

iũt + iβũxxx + αũxx + iδũx + p1(x)ũx(0, t) + p2(x)ũxx(0, t)

=iw̃t + iβw̃xxx + αw̃xx + iδw̃x (199)

+

∫ x

0

(−iβ(pxxx + pyyy)− α(pxx − pyy)− iδ(px + py) + irp) (x, y)w̃(y, t)dy

(200)

=

(
iβ

(
pyy(x, x)− pxx(x, x)− d

dx
px(x, x)− d2

dx2
p(x, x)

)
+α

(
−py(x, x)− px(x, x)− d

dx
p(x, x)

))
w̃(x, t) (201)

− iβ
(
py(x, x) + px(x, x) + 2

d

dx
p(x, x)

)
w̃x(x, t) (202)

+ (iβpy(x, 0)− αp(x, 0) + p1(x)− p(0, 0)p2(x)) w̃x(0, t) (203)

+ (−iβp(x, 0) + p2(x))w̃xx(0, t). (204)

Note that, taking x = L on (20) and using the boundary condition ũ(L, t) = 0, we
must have p(L, y) = 0 in order to get w̃(L, t) = 0. On the other hand, using the
relation d

dxp(x, x) = px(x, x) + py(x, x), we get from (202) that

d

dx
p(x, x) = 0, (205)

which, thanks to p(L, y) = 0 implies

p(x, x) = 0.

Next, we differentiate d
dxp(x, x) = px(x, x) + py(x, x) with respect to x and use

d
dxp(x, x) = 0 to obtain pyy(x, x) = −2pxy(x, x) − pxx(x, x). Using this result in
(201), we deduce that

d

dx
px(x, x) = − r

3β
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which, due to the implications p(L, y) = 0 ⇒ py(L, y) = 0 ⇒ py(L,L) = 0 ⇒
px(L,L) = 0, is equivalent to

px(x, x) =
r

3β
(L− x).

On the other hand we obtain from (203)-(204) that

p1(x) = −iβpy(x, 0) + αp(x, 0),

p2(x) = iβp(x, 0).

Note that for x = 0 in (20), we have ũ(0, t) = w̃(0, t) = 0. For x = L and thanks
to p(L, y) = 0, we have ũ(L, t) = w̃(L, t) = 0. Also for x = L on (194), we see that
w̃x(L, t) = 0 holds if px(L, y) = 0.

As a conclusion, the error model is mapped to the target error model (not mod-
ified one), if p satisfies the following boundary value problem

β(pxxx + pyyy)− iα(pxx − pyy) + δ(px + py)− rp = 0,

p(x, x) = p(L, y) = px(L, y) = 0,

px(x, x) = r
3β (L− x),

on ∆x,y.

Appendix C. Roots of the characteristic equation (57). In this part, we
investigate the roots λj = λj(s), j = 1, 2, 3, of the characteristic equation

s+ βλ3 + iαλ2 + δλ = 0

that is obtained by the one parameter family of boudary value problems (55). More
precisely, we show that (57) has double or possibly triple roots only for finitely
many exceptional cases of the values of s in the complex plane. The location of s in
the complex plane is directly related with the sign of the quantity α2 + 3βδ. Also
in the following calculations, we drop notation for s dependence and simply write
λj(s) = λj , j = 1, 2, 3 for simplicity.

To this end, let us assume that two roots, say λ2 and λ3, are equal for some
s ∈ C. Then λ1 and λ2 satisfy

λ1 + 2λ2 =
iα

β
, (206)

2λ1λ2 + λ2
2 =

δ

β
, (207)

λ1λ
2
2 = − s

β
, (208)

where s ∈ (r − i∞, r + i∞) for some r ∈ R+. Let λ1 = a + ib, λ2 = λ3 = c + id,
a, b, c, d are real functions of s. From the real and imaginary parts of (206)-(207),
we have following equations:

a+ 2c = 0, (209)

b+ 2d =
α

β
, (210)

2ac− 2bd+ c2 − d2 =
δ

β
, (211)

ad+ bc+ cd = 0. (212)

Using (209) in (212), we get c(b− d) = 0.
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(i) Let b = d. By (210), b = d = α
3β . Substituting these into (211) yields

c(2a+ c) =
α2 + 3βδ

3β2
.

Using (209), we get

a2 = −4(α2 + 3βδ)

9β2
, c2 = −α

2 + 3βδ

9β2
.

Assuming α2 + 3βδ > 0 yields a contradiction. Assuming α2 + 3βδ = 0 yields
λ1 = λ2 = λ3 = iα

3β . For this case we see from (208) that, the only value for s

is pure imaginary and given by

s0 =
iα3

27β2
.

Now let α2 + 3βδ < 0. Then we have

a1,2 = ∓
2
√
−(α2 + 3βδ)

3β
, c1,2 = ±

√
−(α2 + 3βδ)

3β
.

Note that using (209) and b = d, we obtain from (208) there are two possible
values of s, denoted by s−1 and s−2 , which are given by

<(s−1 ) =
2

27β2
(−α2 − 3βδ)3/2, <(s−2 ) = − 2

27β2
(−α2 − 3βδ)3/2

and

=(s−1 ) = =(s−2 ) = − α

27β2
(2α2 + 9βδ).

(ii) Let c = 0. Then, by (209), a = 0. Using this, direct calculation from (210)-
(211) yields

b1,2 =
α∓ 2

√
α2 + 3βδ

3β
, d1,2 =

α±
√
α2 + 3βδ

3β
.

Observe that α2 + 3βδ < 0 yields a contradiction and α2 + 3βδ = 0 ends up
with the triple root case investigated in (i). Now let α2 + 3βδ > 0. From
(208), we see that there are two possible values of s, denoted by s+

1 and s+
2 ,

given by

s+
1 =

i

27β2

(
α3 − 3α(α2 + 3βδ) + 2(α2 + 3βδ)3/2

)
and

s+
2 =

i

27β2

(
α3 − 3α(α2 + 3βδ)− 2(α2 + 3βδ)3/2

)
.
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