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ABSTRACT
The time-dependent Schrödinger equation describing a generalized two-dimensional quantum parametric oscillator in the presence of time-
variable external fields is solved using the evolution operator method. For this, the evolution operator is found as a product of exponential
operators through the Wei–Norman Lie algebraic approach. Then, the propagator and time-evolution of eigenstates and coherent states are
derived explicitly in terms of solutions to the corresponding system of coupled classical equations of motion. In addition, using the evolution
operator formalism, we construct linear and quadratic quantum dynamical invariants that provide connection of the present results with
those obtained via the Malkin–Man’ko–Trifonov and the Lewis–Riesenfeld approaches. Finally, as an exactly solvable model, we introduce
a Cauchy–Euler type quantum oscillator with increasing mass and decreasing frequency in time-dependent magnetic and electric fields.
Based on the explicit results for the uncertainties and expectations, squeezing properties of the wave packets and their trajectories in the
two-dimensional configuration space are discussed according to the influence of the time-variable parameters and external fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048965

I. INTRODUCTION
In the present work, we consider the time-evolution problem for a quantum system described by a generalized two-dimensional quadratic

Hamiltonian of the form

Ĥgen(t) =
2

∑
j=1
(

p̂2
j

2μ(t)
+
μ(t)ω2

(t)
2

q̂2
j +

B(t)
2
(q̂jp̂j + p̂jq̂j) +Dj(t)p̂j + Ej(t)q̂j) + λ(t)(q̂1p̂2 − q̂2p̂1), (1)

where μ(t), ω2
(t), B(t), Dj(t), Ej(t), and λ(t) are real-valued parameters depending on time t. This Hamiltonian is usually used to describe

quantum particles in two-dimensional space and comprises many fundamental physical systems as subcases. A significant physical and math-
ematical distinction can be done according to the coupling parameter λ(t). When λ(t) = 0, one has a two-dimensional quantum parametric
oscillator with time-dependent mass μ(t) > 0, frequency ω(t), squeezing parameter B(t), and driving forces Dj(t), Ej(t) (j = 1, 2). Since
in that case Hamiltonian (1) is separable, formally one can speak about two independent one-dimensional oscillators. As known, for solv-
ing one-dimensional non-stationary quantum oscillator problems, there are many powerful approaches, such as Feynman path integral,1
Husimi,2 Lewis–Riesenfeld (LR),3 Malkin–Man’ko–Trifonov (MMT),4,5 and Wei–Norman (WN) approaches.6 All these methods were used
for a long time and in many research articles.7–15 Recently, in Ref. 16, by a straightforward application of the Wei–Norman technique and by
properly choosing the ordering of the exponential operators, we found the evolution operator for a quantum parametric oscillator described
by a Hamiltonian with a SU(1, 1) ⊕h(4) group structure. The significance of our results is that for a time-dependent one-dimensional
Schrödinger equation (SE) with the most general quadratic in the position and momentum Hamiltonian, we were able to determine the
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evolution operator explicitly in terms of two linearly independent homogeneous solutions and a particular solution to the corresponding
classical equation of motion. This allowed us to give an exact description of the quantum dynamics and its relation with the corresponding
classical motion. Later, based on these results, in Ref. 17, we discussed the squeezing and resonance properties of coherent states of a general-
ized Caldirola–Kanai type dissipative model, and in Ref. 18, time-evolution of squeezed coherent states for the most general one-dimensional
quadratic parametric oscillator were obtained.

Clearly, wave function solutions of the N-dimensional harmonic oscillator, and, in particular, of the two-dimensional oscillator described
by (1) when λ(t) = 0, can be easily written as a product of solutions to the one-dimensional problem.4,19,20 Since the dynamics in higher
dimensions is always more interesting and brings new questions, the N-dimensional oscillator always remains under research, and for some
recent works, one can see Refs. 21–24.

On the other hand, when λ(t) ≠ 0, that is in the presence of the angular momentum operator L̂ = q̂1p̂2 − q̂2p̂1, Hamiltonian (1) can be
used to describe the motion of a charged particle in time-dependent magnetic and electric fields. In that context, parameter λ(t) is known as
the Larmor frequency,ω(t) is the modulated frequency, and Ej(t) j=1, 2 are parameters of the external electric field. The problem of a charged
particle in magnetic and electric fields is addressed in numerous research articles and has applications in electromagnetic theory, quantum
optics, plasma physics, etc. For non-stationary systems, including a charged particle in a time-dependent electromagnetic field, long time ago
Lewis and Riesenfeld3 derived explicitly time-dependent quadratic invariants. Soon after, Malkin, Man’ko, and Trifonov suggested the use
of linear in position and momentum invariants4,5,26–29 and constructed two-dimensional coherent states of Gaussian type, which can be seen
as a generalization of the Glauber coherent states of the one-dimensional harmonic oscillator.25,31 Then, time-dependent coherent states in a
magnetic field were discussed in many related articles.26–30 For a recent review of various families of coherent states, squeezed states, and their
generalizations for a charged particle in a magnetic field, including Gaussian and non-Gaussian states, one can see the work of Dodonov.32

Although significant progress has been done, the problem of a charged particle in an electromagnetic field is still an active area of
research. Different approaches were proposed and various generalizations were discussed. For example, in Ref. 33, the time-evolution prob-
lem of a charged oscillator under the combined action of arbitrary electric and magnetic fields was solved in Heisenberg picture, and then
Green’s function and coherent states were found. In Ref. 34, authors employed linear and quadratic invariants to find coherent states from
which number states and propagator were derived for the time-dependent isotropic charged oscillator. A similar approach was developed in
Ref. 35 to solve the problem for an anisotropic charged oscillator in a constant magnetic field. In Ref. 36, an algebraic approach was used to
find the evolution operator and wave functions of the two-dimensional harmonic oscillator with time-dependent mass and frequency in a
static magnetic field. In Ref. 37, wave functions of a time-dependent coupled oscillator in a variable magnetic field were found by a unitary
transformation approach and the method of quadratic invariants. For more recent results, one can see Refs. 38–40, where a Lie algebraic
approach is used to find the evolution operator for generalized quadratic oscillators, including oscillators in the presence of magnetic and
electric fields. In those works, the technique is based on step by step application of unitary transformations that reduce the Floquet operator,
and symbolic calculations of most expressions are done using the Mathematica program. More recently, in Ref. 41, unitary transformations
were used to reduce the Hamiltonians, and a separation of variables method was proposed to solve problems for time-dependent quadratic
Hamiltonians.

In the present work, we solve the two-dimensional quantum parametric oscillator described by the generalized quadratic Hamiltonian
(1) using the evolution operator approach. We find the exact evolution operator by first applying a simple unitary transformation to decouple
the Schrödinger equation and then using the Wei–Norman Lie algebraic technique, as in Ref. 16. This gives the evolution operator of the
problem as a finite product of unitary exponential operators being generators of a Lie group associated with the closed Lie algebra describing
the Hamiltonian.

A crucial point in the Lie algebraic techniques is that of finding all time-variable coefficients that completely determine the evolution
operator as a product of Lie group generators. Usually this requires solution of a large nonlinear system of ordinary differential equations,
which is not always an easy task, and in most works, it is usually solved by quadratures. The utility of our results is that all time-variable coef-
ficients in the formulation of the evolution operator for the quantum problem are found explicitly in terms of solutions to the corresponding
system of classical equations of motion. Then, the propagator (Green’s function), time-evolution of the wave functions, expectations of the
position and momentum, and their uncertainties are also found in terms of the classical solutions. Furthermore, using the evolution operator
formalism, we also construct linear and quadratic quantum invariants and compare our results with those obtained using the MMT- and the
LR-approaches.

The main goal of this work is to provide exact and explicit results that allow us to investigate the influence of the time-dependent
parameters and external terms on the dynamics of the quantum particle described by Hamiltonian (1). Special attention is paid to the study of
the squeezing properties of the wave packets and their trajectories in the presence of time-dependent magnetic and electric fields. For this, we
organized this paper as follows: In Sec. II, we introduce the problem at the classical level. We begin by the classical Hamiltonian corresponding
to (1) and find solutions to the associated system of coupled classical equations of motion. In Sec. III, for the time-dependent Schrödinger
equation with Hamiltonian (1), the evolution operator and the propagator (Green’s function or fundamental solution) are obtained explicitly
in terms of the classical solutions found in Sec. II. In Sec. IV, we describe the exact time-evolution of harmonic oscillator eigenstates and
Glauber coherent states under the influence of the generalized Hamiltonian (1). In Sec. V, dynamical invariants for the quantum problem
are found and used to compare the results in the present work with those obtained by the MMT- and the LR-techniques. In Sec. VI, as a
generalization of the one-dimensional Cauchy–Euler type dissipative oscillator in Ref. 42, we introduce an exactly solvable Cauchy–Euler
type quantum parametric oscillator in time-dependent magnetic and electric fields and discuss the dynamical properties of the quantum
states, and using concrete numerical values, we draw some illustrative plots. Section VII includes a brief discussion and concluding remarks.
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II. THE CLASSICAL PROBLEM
First, we consider a classical two-dimensional oscillator described by the Hamiltonian

Hcl(t) =
2

∑
j=1
(

P2
j

2μ(t)
+
μ(t)ω2

(t)
2

X2
j + B(t)XjPj +Dj(t)Pj + Ej(t)Xj) + λ(t)(X1P2 − X2P1),

where μ(t) > 0,ω2
(t), B(t), Dj(t), and Ej(t), j = 1, 2, are real-valued parameters depending on time and λ(t) is a coupling parameter. The

corresponding Hamilton’s equations of motion are

Ẋ1 =
∂Hcl

∂P1
≡

P1

μ(t)
+ B(t)X1 +D1(t) − λ(t)X2,

Ẋ2 =
∂Hcl

∂P2
≡

P2

μ(t)
+ B(t)X2 +D2(t) + λ(t)X1,

Ṗ1 = −
∂Hcl

∂X1
≡ −(μ(t)ω2

(t)X1 + B(t)P1 + E1(t) + λ(t)P2),

Ṗ2 = −
∂Hcl

∂X2
≡ −(μ(t)ω2

(t)X2 + B(t)P2 + E2(t) − λ(t)P1),

where “dot” denotes the derivative with respect to time. Then, the system of classical equations of motion in position space becomes

⎛
⎜
⎝

Ẍ1

Ẍ2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎝

μ̇
μ

2λ

−2λ
μ̇
μ

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎝

Ẋ1

Ẋ2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎝

ΩX(t)
μ̇
μ
λ + λ̇

−
μ̇
μ
λ − λ̇ ΩX(t)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎝

X1

X2

⎞
⎟
⎠
=
⎛
⎜
⎝

F1,X(t)

F2,X(t)

⎞
⎟
⎠

, (2)

and for λ(t) ≠ 0, it is a system of coupled second-order differential equations. In (2), we have

ΩX(t) = ω2
(t) − (Ḃ(t) + B2

(t) +
μ̇
μ

B(t) + λ2
(t)),

and the forcing vector term

F(t) ≡
⎛
⎜
⎝

F1,X(t)

F2,X(t)

⎞
⎟
⎠
=

⎛
⎜
⎜
⎜
⎜
⎝

(
μ̇
μ
+ B(t)) λ(t)

λ(t) (
μ̇
μ
+ B(t))

⎞
⎟
⎟
⎟
⎟
⎠

D(t) +
d
dt

D(t) −
1

μ(t)
E(t),

where we shall use the column vector notations interchangeably,

D(t) =
⎛
⎜
⎝

D1(t)

D2(t)

⎞
⎟
⎠
= (D1(t), D2(t))T , E(t) =

⎛
⎜
⎝

E1(t)

E2(t)

⎞
⎟
⎠
= (E1(t), E2(t))T.

We note that if D1 = 0 and D2 = 0, then λ(t) does not influence the forcing vector F(t). In addition, in momentum space, the system of
oscillator equations becomes

⎛
⎜
⎝

P̈1

P̈2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎜
⎝

−

˙
(μω2
)

μω2 2λ

−2λ −

˙
(μω2
)

μω2

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎝

Ṗ1

Ṗ2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎜
⎝

ΩP(t) λ̇ −
˙

(μω2
)

μω2 λ

−λ̇ +
˙

(μω2
)

μω2 λ ΩP(t)

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎝

P1

P2

⎞
⎟
⎠
=
⎛
⎜
⎝

F1,P(t)

F2,P(t)

⎞
⎟
⎠

, (3)

where

ΩP(t) = ω2
(t) +

⎛

⎝
Ḃ(t) − B2

(t) −
(

˙μω2
)

μω2 B(t) − λ2
(t)
⎞

⎠

and

FP(t) ≡
⎛
⎜
⎝

F1,P(t)

F2,P(t)

⎞
⎟
⎠
= −μ(t)ω2

(t)D(t) −
d
dt

E(t) +

⎛
⎜
⎜
⎜
⎜
⎝

(
˙μω2
)

μω2 + B(t) −λ(t)

−λ(t)
(

˙μω2
)

μω2 + B(t)

⎞
⎟
⎟
⎟
⎟
⎠

E(t).
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Here, in momentum space, the forcing FP(t) will be affected by λ(t) in the presence of electric fields. To solve systems (2) and (3), it is
convenient to introduce the transformation of variables,

⎛
⎜
⎝

x1

x2

⎞
⎟
⎠
= Rθ(t)

⎛
⎜
⎝

X1

X2

⎞
⎟
⎠

,
⎛
⎜
⎝

p1

p2

⎞
⎟
⎠
= Rθ(t)

⎛
⎜
⎝

P1

P2

⎞
⎟
⎠

, (4)

where

Rθ(t) =
⎛
⎜
⎝

cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

⎞
⎟
⎠

(5)

is a rotation matrix, and the rotation angle is defined as

θ(t) = ∫
t

t0

λ(s)ds. (6)

Under transformation in (4), the coupled system (2) reduces to the decoupled system of two non-interacting damped oscillators,

⎛
⎜
⎝

ẍ1

ẍ2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎝

μ̇
μ

0

0
μ̇
μ

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎝

ẋ1

ẋ2

⎞
⎟
⎠
+
⎛
⎜
⎝

Ωx(t) 0

0 Ωx(t)

⎞
⎟
⎠

⎛
⎜
⎝

x1

x2

⎞
⎟
⎠
=
⎛
⎜
⎝

F̃1,x(t)

F̃2,x(t)

⎞
⎟
⎠

, (7)

with the same damping parameter Γ(t) = μ̇(t)/μ(t) and the same frequency

Ωx(t) = ω2
(t) − (Ḃ(t) + B2

(t) +
μ̇
μ

B(t)),

which is independent on λ(t). On the other hand, the new forcing terms become

F̃j,x(t) = −
Ẽj

μ
+

˙̃Dj + (
μ̇
μ
+ B)D̃j, j = 1, 2,

and the relations between parameters Dj(t), Ej(t) and D̃j(t), Ẽj(t), j = 1, 2 are found as

D̃(t) = Rθ(t)D(t), Ẽ(t) = Rθ(t)E(t). (8)

Similarly, in momentum space, we have

⎛
⎜
⎝

p̈1

p̈2

⎞
⎟
⎠
−

⎛
⎜
⎜
⎜
⎜
⎝

˙
(μω2
)

μω2 0

0
˙

(μω2
)

μω2

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎝

ṗ1

ṗ2

⎞
⎟
⎠
+
⎛
⎜
⎝

Ωp(t) 0

0 Ωp(t)

⎞
⎟
⎠

⎛
⎜
⎝

p1

p2

⎞
⎟
⎠
=
⎛
⎜
⎝

F̃1,p(t)

F̃2,p(t)

⎞
⎟
⎠

, (9)

where

Ωp(t) = ω2
(t) +

⎛

⎝
Ḃ(t) − B2

(t) −
˙

(μω2
)

μω2 B(t)
⎞

⎠

and

F̃j,p(t) = − ˙̃Ej +
⎛

⎝

˙
(μω2
)

μω2 + B
⎞

⎠
Ẽj − μω2D̃j, j = 1, 2.

Since the unforced part of each equation in the decoupled system (7) is same and it is of the form

ẍ(t) +
μ̇
μ

ẋ(t) +Ωx(t)x(t) = 0, (10)

let x(h)1 (t) and x(h)2 (t) denote two linearly independent solutions of the homogeneous equation (10), satisfying the initial conditions,
respectively,
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x(h)1 (t0) = x0 ≠ 0, ẋh
1(t0) = x0B(t0),

x(h)2 (t0) = 0, ẋ(h)2 (t0) =
1

x0μ(t0)
. (11)

Then, x(h)(t) = (x(h)1 (t), x(h)2 (t))
T will denote the solution of the homogeneous part of system (7) with initial conditions (ICs) (11). For

system (7) in the presence of forcing terms, we let x(p)(t) = (x(p)1 (t), x(p)2 (t))
T denote the particular solution satisfying the initial conditions

x(p)(t0) =
⎛
⎜
⎝

x(p)1 (t0)

x(p)2 (t0)

⎞
⎟
⎠
=
⎛
⎜
⎝

0

0

⎞
⎟
⎠

, ẋ (p)(t0) =
⎛
⎜
⎝

ẋ(p)1 (t0)

ẋ(p)2 (t0)

⎞
⎟
⎠
=
⎛
⎜
⎝

D̃1(t0)

D̃2(t0)

⎞
⎟
⎠

.

Furthermore, if p(h)1 (t) and p(h)2 (t) denote two homogeneous solutions of the system of oscillator equations in momentum space given by
(9), then they can be found in terms of the solutions of the classical equation in position space as

p(h)(t) =
⎛
⎜
⎝

p(h)1 (t)

p(h)2 (t)

⎞
⎟
⎠
= μ(t)

⎛
⎜
⎝

ẋ(h)1 (t) − B(t)x(h)1 (t) − D̃1(t)

ẋ(h)2 (t) − B(t)x(h)2 (t) − D̃2(t)

⎞
⎟
⎠

,

and the particular solution will be

p(p)(t) =
⎛
⎜
⎝

p(p)1 (t)

p(p)2 (t)

⎞
⎟
⎠
= μ(t)

⎛
⎜
⎝

ẋ(p)1 (t) − B(t)x(p)1 (t) − D̃1(t)

ẋ(p)2 (t) − B(t)x(p)2 (t) − D̃2(t)

⎞
⎟
⎠

.

As a result, it follows that

X(h)(t) ≡
⎛
⎜
⎝

X(h)1 (t)

X(h)2 (t)

⎞
⎟
⎠
= RT

θ (t)x
(h)
(t),

with RT
θ (t) being the transpose of Rθ(t), is a homogeneous solution to the coupled system (2) satisfying IC’s,

X(h)(t0) =
⎛
⎜
⎝

x0

0

⎞
⎟
⎠

, Ẋ (h)(t0) =

⎛
⎜
⎜
⎝

x0B(t0)

x0λ(t0) +
1

x0μ(t0)

⎞
⎟
⎟
⎠

(12)

and

X(p)(t) ≡
⎛
⎜
⎝

X(p)1 (t)

X(p)2 (t)

⎞
⎟
⎠
= RT

θ (t)x
(p)
(t)

is a particular solution to the forced coupled system (2), satisfying IC’s,

X(p)(t0) =
⎛
⎜
⎝

0

0

⎞
⎟
⎠

, Ẋ (p)(t0) =
⎛
⎜
⎝

D1(t0)

D2(t0)

⎞
⎟
⎠

. (13)

This establishes solutions to the classical problem, whose quantization using the usual replacement Xj → q̂j, Pj → p̂j, XjPj → (q̂jp̂j + p̂jq̂j)/2,
j = 1, 2 is discussed in Sec. III.

III. SOLUTION TO THE GENERALIZED QUANTUM PARAMETRIC OSCILLATOR
Now, we consider the evolution problem for a two-dimensional generalized quantum parametric oscillator given by

ih̵
∂

∂t
Ψ(q, t) = Ĥgen(t)Ψ(q, t), q ∈ R2, t > t0, (14)

Ψ(q, t0) = Ψ0
(q), q ∈ R2, (15)
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where Ψ(q, t) ∶= Ψ(q1, q2, t) is the wave function at time t > t0, Ψ0
(q) ∶= Ψ0

(q1, q2) is the initial state at time t0, and the explicitly time-
dependent Hamiltonian Ĥgen(t) is given by (1), that is,

Ĥgen(t) =
2

∑
j=1

Ĥj(t) + λ(t)L̂,

where

Ĥj(t) =
p̂2

j

2μ(t)
+
μ(t)ω2

(t)
2

q̂2
j +

B(t)
2
(q̂jp̂j + p̂jq̂j) +Dj(t)p̂j + Ej(t)q̂j,

q̂j = qj is the position operator, p̂j = −ih̵∂/∂qj is the momentum operator, and [q̂j, p̂j] = ih̵δij for j = 1, 2. In addition, L̂ = q̂1p̂2 − q̂2p̂1 is the
angular momentum operator, which satisfies the well-known commutation relations

⎡
⎢
⎢
⎢
⎢
⎣

L̂,
2

∑
j=1

p̂2
j

⎤
⎥
⎥
⎥
⎥
⎦

= 0,
⎡
⎢
⎢
⎢
⎢
⎣

L̂,
2

∑
j=1

q̂2
j

⎤
⎥
⎥
⎥
⎥
⎦

= 0,
⎡
⎢
⎢
⎢
⎢
⎣

L̂,
2

∑
j=1
(q̂jp̂j + p̂jq̂j)

⎤
⎥
⎥
⎥
⎥
⎦

= 0

and
[L̂, q̂1] = iq̂2, [L̂, q̂2] = −iq̂1, [L̂, p̂1] = ip̂2, [L̂, p̂2] = −ip̂1,

showing that L̂ does not commute with the position and momentum operators. Clearly, in the presence of the angular momentum operator,
the Hamiltonian Ĥgen(t) is coupled, but one can overcome this difficulty by introducing a unitary transformation,

Ûθ(t, t0) = exp(
i
h̵
θ(t)L̂),

where θ(t) is given by (6). Indeed, if we introduce the new wave function as

ψ(q, t) = Ûθ(t, t0)Ψ(q, t),

then initial value problem (IVP) (14) and (15) transform to the following IVP:

ih̵
∂

∂t
ψ(q, t) = Ĥdec(t)ψ(q, t), q ∈ R2, t > t0, (16)

ψ(q, t0) = Ψ0
(q), q ∈ R2, (17)

with the decoupled Hamiltonian

Ĥdec(t) =
2

∑
j=1

Ĥj(t), (18)

where

Ĥj(t) =
p̂2

j

2μ(t)
+
μ(t)ω2

(t)
2

q̂2
j +

B(t)
2
(q̂jp̂j + p̂jq̂j) + D̃j(t)p̂j + Ẽj(t)q̂j, j = 1, 2,

and parameters D̃j(t), Ẽj(t) are defined in terms of Dj(t), Ej(t) by the relations in (8). Therefore, the original IVP (14) and (15) is reduced to
solving the IVP (16) and (17).

A. The evolution operator
The dynamics of the quantum system described by Schrödinger equation (14) is contained in the evolution operator defined as

ih̵
d
dt
Ûgen(t, t0) = Ĥgen(t)Ûgen(t, t0), Ûgen(t0, t0) = Î.

According to the decoupling procedure discussed before, the evolution operator for IVP (14) and (15) will be of the form

Ûgen(t, t0) = Û†
θ(t, t0)Ûdec(t, t0), (19)
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where Ûdec(t, t0) is the evolution operator for IVP (16) and (17) defined as

ih̵
d
dt

Ûdec(t, t0) = Ĥdec(t)Ûdec(t, t0), Ûdec(t0, t0) = Î. (20)

The exact form of Ûdec(t, t0) can be found by using the Wei–Norman Lie algebraic process. Indeed, the Hamiltonian Ĥdec(t) given by (18) for
the decoupled oscillator can be written as time-dependent linear combination of Lie algebra generators as

Ĥdec(t) = −i
2

∑
j=1
(

h̵2

μ(t)
K̂ (−)j + μ(t)ω2

(t)K̂ +j + 2h̵B(t)K̂ (0)j + h̵D̃j(t)Ê (2)j + Ẽj(t)Ê (1)j ),

where operators

Ê (1)j = iqj, Ê (2)j =
∂

∂qj
, Ê (3)j = iÎ, j = 1, 2,

are generators of Heisenberg–Weyl algebra and

K̂ (−)j = −
i
2
∂2

∂q2
j

, K̂ (+)j =
i
2

q2
j , K̂ (0)j =

1
2
(qj

∂

∂qj
+

1
2
), j = 1, 2,

are generators of the su(1,1) algebra. Then, the evolution operator is

Ûdec(t, t0) =
2

∏
j=1

Û j(t, t0), (21)

where Û j(t, t0) for each j = 1, 2 can be expressed as a product of exponential operators,

Û j(t, t0) = exp(cj(t)Ê (3)j ) exp(
aj(t)

h̵
Ê (1)j ) exp(−bj(t)Ê (2)j ) exp( f (t)K̂ (+)j ) exp(2h(t)K̂ (0)j ) exp(g(t)K̂ (−)j ),

with f (t), g(t), h(t) and aj(t), bj(t), cj(t) being real-valued functions to be determined. Writing (21) and (18) into (20) and performing
necessary calculations, we find that Ûdec(t, t0) is a solution of (20) if the unknown functions f (t), g(t), h(t) satisfy the nonlinear system,

ḟ +
h̵

μ(t)
f 2
+ 2B(t) f +

μ(t)ω2
(t)

h̵
= 0, f (t0) = 0,

ġ +
h̵

μ(t)
e2h
= 0, g(t0) = 0,

ḣ +
h̵

μ(t)
f + B(t) = 0, h(t0) = 0,

(22)

and aj(t), bj(t), cj(t) satisfy the nonlinear system,

ȧj + B(t)aj + μ(t)ω2
(t)bj + Ẽj(t) = 0, aj(t0) = 0,

ḃj − B(t)bj −
1

μ(t)
aj − D̃j(t) = 0, bj(t0) = 0,

ċj +
1

2h̵μ(t)
a2

j +
D̃j(t)

h̵
aj −

μ(t)ω2
(t)

2h̵
b2

j = 0, cj(t0) = 0, j = 1, 2.

(23)

Then, the solution of system (22) is found in terms of two linearly independent solutions x(h)1 (t) and x(h)2 (t) of the decoupled classical system
(7) as

f (t) =
μ(t)

h̵
⎛

⎝

ẋ(h)1 (t)
x(h)1 (t)

− B(t)
⎞

⎠
,

g(t) = −h̵x2
0
⎛

⎝

x(h)2 (t)
x(h)1 (t)

⎞

⎠
,

h(t) = − ln
RRRRRRRRRRR

x(h)1 (t)
x0

RRRRRRRRRRR

.
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On the other hand, for each j = 1, 2, the solution of system (23) is obtained in terms of particular solutions of systems (7) and (9) as

aj(t) = p(p)j (t),

bj(t) = x(p)j (t),

cj(t) = ∫
t

t0

⎛

⎝

−(p(p)j (s))
2

2h̵μ(s)
−

D̃j(s)
h̵

p(p)j (s) +
μ(s)ω2

(s)
2h̵

(x(p)j (s))
2⎞

⎠
ds.

Therefore, we find

Û j(t, t0) = exp{
i
h̵∫

t

t0

[
−1

2μ(s)
(p(p)j (s))

2
− D̃j(s)p(p)j (s) +

μ(s)ω2
(s)

2
(x(p)j (s))

2
]ds}

× exp(ip(p)j (t)qj) × exp(−x(p)j (t)
∂

∂qj
) × exp

⎛

⎝
i
μ(t)
2h̵
⎛

⎝

ẋ(h)1 (t)
x(h)1 (t)

− B(t)
⎞

⎠
q2

j
⎞

⎠

× exp
⎛

⎝
ln
RRRRRRRRRRR

x0

x(h)1 (t)

RRRRRRRRRRR

(qj
∂

∂qj
+

1
2
)
⎞

⎠
× exp

⎛

⎝

i
2

h̵x2
0
⎛

⎝

x(h)2 (t)
x(h)1 (t)

⎞

⎠

∂2

∂q2
j

⎞

⎠
, j = 1, 2,

which determines Ûdec(t, t0) and Ûgen(t, t0) explicitly. We note the action of the shifting and dilatation operators on the given initial function,
respectively,

exp(ξj
∂

∂qj
)ϕ0(qj) = ϕ0(qj + ξj), exp(ξjqj

∂

∂qj
)ϕ0(qj) = ϕ0(eξj qj), j = 1, 2. (24)

In addition, we also have

exp
⎛

⎝
−

iξj

2
∂2

∂q2
j

⎞

⎠
ϕ0(qj) = ϕ(qj; ξj), (25)

where for j = 1, 2, the function ϕ(qj; zj) satisfies the free Schrödinger equation,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2
∂2

∂q2
j
ϕ(qj; zj) = i

∂

∂zj
ϕ(qj; zj),

ϕ(qj; zj)∣zj=0 = ϕ0(qj).

Then, the solution of IVP (14) and (15) is determined as Ψ(q, t) = Ûgen(t, t0)Ψ0
(q).

B. The propagator
The solution of the IVP (14) and (15) can also be written in the form

Ψ(q, t) = ∫
R2
Kgen(q, t; q′, t0)Ψ0

(q′)dq′,

where Kgen(q, t; q′, t0) denotes the propagator of the system. The propagator is the kernel of the integral transform that converts a given initial
function to a wave function solution at later times. Using the evolution operator and relation

Kgen(q, t; q′, t0) = Ûgen(t, t0)δ(q − q′), Ûgen(t0, t0) = Î,

where δ(q) denotes the Dirac-delta distribution, one can determine the propagator explicitly. For this, first we find the propagator for the
two-dimensional decoupled oscillator as
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Kdec(q, t; q′, t0) = Ûdec(t, t0)δ(q − q′)

=
−iω0

2πh̵
1

∣ϵ(t)∣ sin η(t)
exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−i
2h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

t

t0

⎛
⎜
⎝

∣p(p)(s)∣
2

μ(s)
+ 2Ẽ(s) ⋅ p(p)(s) − μ(s)ω2

(s)∣x(p)(s)∣
2⎞
⎟
⎠

ds

+(μ(t)(B(t) −
d
dt

ln ∣ϵ(t)∣) − ω0
cot η(t)
∣ϵ(t)∣2

)∣q − x(p)(t)∣
2

− 2p(p)(t) ⋅ q − ω0 cot η(t)∣q′∣2 +
2

sin η(t)∣ϵ(t)∣
(q − x(p)(t)) ⋅ q′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where

ϵ(t) =
x(h)1 (t)

x0
+ i(ω0x0)x(h)2 (t) = ∣ϵ(t)∣e

iη(t), (26)

with the modulus and phase

∣ϵ(t)∣ =

¿
Á
ÁÀ(x

(h)
1 (t))2

x2
0

+ (ω0x0)2(x(h)2 (t))2, η(t) = ∫
t

t0

ω0

μ(s)∣ϵ(s)∣2
ds, (27)

and we use the dot product notation f ⋅ g = f1 g1 + f2 g2 for any two vectors f = ( f1, f2)
T , g = (g1, g2)

T , and ∣f∣2 = f 2
1 + f 2

2. Then,

Kgen(q, t; q′, t0) = Kdec(Rθ(t)q, t; q′, t0),

where Rθ(t) is the rotation matrix given by (5), and explicitly in terms of the solutions to the coupled systems (2) and (3), we get

Kgen(q, t; q′, t0) =
−iω0

2πh̵
1

∣ϵ(t)∣ sin η(t)

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−i
2h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

t

t0

⎛
⎜
⎝

∣P(p)(s)∣
2

μ(s)
+ 2E(s) ⋅ P(p)(s) − μ(s)ω2

(s)∣X(p)(s)∣
2⎞
⎟
⎠

ds

+(μ(t)(B(t) −
d
dt

ln ∣ϵ(t)∣) − ω0
cot η(t)
∣ϵ(t)∣2

)∣q −X(p)(t)∣
2

− 2P(p)(t) ⋅ q − ω0 cot η(t)∣q′∣2 +
2

sin η(t)∣ϵ(t)∣
(Rθ(t)(q −X(p)(t))) ⋅ q′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

where ϵ(t) given by (26) can be written also in terms of the homogeneous solution to the coupled classical system (2) as

ϵ(t) =
1
x0
(cos θ(t)X(h)1 (t) + sin θ(t)X(h)2 (t)) + i(ω0x0)(− sin θ(t)X(h)1 (t) + cos θ(t)X(h)2 (t)). (28)

In general, the evolution of a state from an arbitrary time t′ to t is defined as

Ψ(q, t) = Ûgen(t, t′)Ψ(q, t′) = ∫
R2
Kgen(q, t; q′, t′)Ψ(q′, t′)dq′, t0 ≤ t′ < t,

and it implies that

Kgen(q, t; q′, t′) = Ûgen(t, t′)δ(q − q′) = Û†
θ(t, t′)Kdec(q, t; q′, t′) = Ûθ(t

′, t0)Kdec(Rθ(t)q, t; q′, t′).

After some calculations, we obtain the following result:
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Kgen(q, t; q′, t′) =
−iω0

2πh̵∣ϵ(t)∥ϵ(t′)∣ sin(η(t) − η(t′))

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−i
2h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

t

t0

⎛
⎜
⎝

∣P(p)(s)∣
2

μ(s)
+ 2E(s) ⋅ P(p)(s) − μ(s)ω2

(s)∣X(p)(s)∣
2⎞
⎟
⎠

ds

+(μ(t)(B(t) −
d
dt

ln ∣ϵ(t)∣) −
ω0 cot(η(t) − η(t′))

∣ϵ(t)∣2
)∣RT

θ (t
′
)q −X(p)(t)∣

2

−(μ(t′)(B(t′) −
d
dt

ln ∣ϵ(t′)∣) −
ω0 cot(η(t) − η(t′))

∣ϵ(t′)∣2
)∣RT

θ (t
′
)q′ −X(p)(t′)∣

2

− 2[p(P)(t) ⋅ (RT
θ (t
′
)q) − P(p)(t′) ⋅ (RT

θ (t
′
)q′)] +

2(Rθ(t)(RT
θ (t
′
)q −X(p)(t))) ⋅ (q′ − RT

θ (t
′
)x(p)(t′))

∣ϵ(t)∥ϵ(t′)∣ sin(η(t) − η(t′))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Usually, the propagator is interpreted as the probability amplitude of finding the particle at point q and time t, given that at the past it was at
point q′ and time t′. By construction, the propagator Kgen(q, t; q′, t′) can be seen as a solution of the time-dependent Schrödinger equation in
the variables q, t, with q′, t′ treated as parameters. It is the solution corresponding to Dirac-delta initial condition δ(q − q′), which is highly
singular, and due to this, the propagator as a “wave function” is not normalizable. In any case, the propagator like the evolution operator
contains all necessary knowledge for describing the dynamics of the quantum system.

IV. TIME-EVOLUTION OF QUANTUM STATES
In this section, for the generalized two-dimensional quantum parametric oscillator, we find time-evolution of eigenstates and coherent

states explicitly.

A. Time-evolution of harmonic oscillator eigenstates
First, we solve IVP (14) and (15) by taking the initial function to be an eigenstate φn(q) of the two-dimensional simple harmonic

oscillator, whose Hamiltonian is Ĥ0 = ∑
2
j=1(p̂

2
j + ω2

0q̂2
j )/2. As known, these eigenstates correspond to eigenvalues En = En1 + En2 = h̵ω0(n1

+ n2 + 1), and for n = (n1, n2), we have
φn(q) = φn1(q1)φn2(q2), n1, n2 = 0, 1, 2, . . . ,

with

φnj(qj) = Nnj e
−

ω0
2h̵ q2

j Hnj(

√ω0

h̵
qj), j = 1, 2,

where Hnj(
√
ω0/h̵qj) are Hermite polynomials and Nnj = (ω0/πh̵)1/4

(2nj nj!)−1/2 are the normalization constants. According to this, time-
evolved eigenstates of the two-dimensional oscillator (16) and (17) with the Hamiltonian Ĥdec(t) are of the form

Ψ0
n(q, t) = Ûdec(t, t0)φn(q) =

2

∏
j=1

Û j(t, t0)φnj(qj),

and using Eqs. (24) and (25), we obtain explicitly the wave functions,

Ψ0
n(q, t) = Nn

1
∣ϵ(t)∣

exp(−
iEn

h̵ω0
η(t))

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−i
h̵ ∫

t

t0

⎛
⎜
⎝

∣p(p)(s)∣
2

2μ(s)
+ D̃(s) ⋅ p(p)(s) −

μ(s)ω2
(s)

2
∣x(p)j (s)∣

2⎞
⎟
⎠

ds
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

× exp{
i
h̵
[
−μ(t)

2
(B(t) −

d
dt

ln ∣ϵ(t)∣)∣q − x(p)(t)∣
2
+ p(p)(t) ⋅ q]}

× exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
ω0

2h̵

∣q − x(p)(t)∣
2

∣ϵ(t)∣2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Hn (

√ω0

h̵
q − x(p)(t)
∣ϵ(t)∣

, t),
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and the corresponding probability densities,

ρ0
n(q, t) = N2

n
1

∣ϵ(t)∣2
exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
ω0

h̵

∣q − x(p)(t)∣
2

∣ϵ(t)∣2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

H2
n(

√ω0

h̵
q − x(p)(t)
∣ϵ(t)∣

, t),

where ∣ϵ(t)∣ is as defined in (27), and we used the compact notations Nn = Nn1 Nn2 and

Hn(

√ω0

h̵
q
∣ϵ(t)∣

, t) ≡
2

∏
j=1

Hnj(

√ω0

h̵
(

qj

∣ϵ(t)∣
)).

Now, formally time-evolved solutions of the IVP (14) and (15) will be as expected,

Ψθ
n(q, t) = Û†

θ(t, t0)Ψ0
n(q, t) = Ψ0

n(Rθ(t)q, t).

Then, in terms of solutions to the coupled systems of classical equations (2) and (3), we have

Ψθ
n(q, t) = Nn

1
∣ϵ(t)∣

exp(−
iEn

h̵ω0
η(t)) (29)

× exp{
i
h̵
[
−μ(t)

2
(B(t) −

d
dt

ln ∣ϵ(t)∣)∣q −X(p)(t)∣
2
+ P(p)(t) ⋅ q]}

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−i
h̵ ∫

t

t0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣P(p)(s)∣
2

2μ(s)
+D(s) ⋅ P(p)(s) −

μ(s)ω2
(s)

2
∣X(p)(s)∣

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

ds
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
ω0

2h̵

∣q −X(p)(t)∣
2

∣ϵ(t)∣2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Hn

⎛
⎜
⎝

√ω0

h̵

Rθ(t)(q −X(p)(t))

∣ϵ(t)∣
, t
⎞
⎟
⎠

,

and probability densities become

ρθn(q, t) = N2
n

1
∣ϵ(t)∣2

exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
ω0

h̵

∣q −X(p)(t)∣
2

∣ϵ(t)∣2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

H2
n

⎛
⎜
⎝

√ω0

h̵

Rθ(t)(q −X(p)(t))

∣ϵ(t)∣
, t
⎞
⎟
⎠

. (30)

Here, the expectation values of the position and momentum at states Ψθ
n(q, t) are

⟨q̂⟩θn(t) =
⎛
⎜
⎝

⟨q̂1⟩
θ
n(t)

⟨q̂2⟩
θ
n(t)

⎞
⎟
⎠
= X(p)(t), ⟨p̂⟩θn(t) =

⎛
⎜
⎝

⟨p̂1⟩
θ
n(t)

⟨p̂2⟩
θ
n(t)

⎞
⎟
⎠
= P(p)(t), (31)

showing that they do not depend on the wave number n = (n1, n2) and are completely determined by the external forces. Then, the
uncertainties in the position and momentum are found as

(Δq̂)θn(t) =
⎛
⎜
⎝

(Δq̂1)
θ
n(t)

(Δq̂2)
θ
n(t)

⎞
⎟
⎠
=

√
h̵
ω0
∣ϵ(t)∣Λ(n1, n2, θ(t)), (32)

(Δp̂)θn(t) =
⎛
⎜
⎝

(Δp̂1)
θ
n(t)

(Δp̂2)
θ
n(t)

⎞
⎟
⎠
=
√

h̵ω0
Σ(t)
∣ϵ(t)∣

Λ(n1, n2, θ(t)), (33)

where

Λ(n1, n2, θ(t)) =
⎛
⎜
⎝

(cos2 θ(t)n1 + sin2 θ(t)n2 + 1/2)
1/2

(sin2 θ(t)n1 + cos2 θ(t)n2 + 1/2)
1/2

⎞
⎟
⎠

,

Σ(t) =

¿
Á
ÁÀ1 +

∣ϵ(t)∣4

ω2
0
[

d ln ∣ϵ(t)∣
dt

− B(t)]
2

,
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and the uncertainty product becomes

(Δq̂)(Δp̂)θn(t) =
⎛
⎜
⎝

(Δq̂1)(Δp̂1)
θ
n(t)

(Δq̂2)(Δp̂2)
θ
n(t)

⎞
⎟
⎠
= h̵Σ(t)

⎛
⎜
⎝

cos2 θ(t)n1 + sin2 θ(t)n2 + 1/2

sin2 θ(t)n1 + cos2 θ(t)n2 + 1/2

⎞
⎟
⎠

.

Clearly, uncertainties for some subcases can be easily recovered from above results. For example, in the case θ(t) = 0, one gets the uncertainties
for the two-dimensional decoupled parametric oscillator. In the case θ(t) ≠ 0 and μ(t) = 1, ω2

(t) = ω2
0, B(t) = 0, one gets the uncertainties

for the simple harmonic oscillator in the electromagnetic field as

(Δq̂)θn(t) =
√

h̵
ω0
Λ(n1, n2, θ(t)), (Δp̂)θn(t) =

√
h̵ω0Λ(n1, n2, θ(t)),

and we note that when n1 = n2, then Λ(n1, n2, θ(t)) becomes independent of θ(t).
Finally, it is not difficult to show that the expectation value of the angular momentum operator L̂ at wave function Ψθ

n(q, t) is

⟨L̂⟩n(t) = ⟨Ψθ
n(q, t)∣L̂∣Ψθ

n(q, t)⟩ = X(p)1 (t)P
(p)
2 (t) − X(p)2 (t)P

(p)
1 (t),

and the matrix elements are
⟨Ψθ

n(q, t)∣L̂∣Ψθ
m(q, t)⟩ = (X(p)1 (t)P

(p)
2 (t) − X(p)2 (t)P

(p)
1 (t))δnm,

where δnm is the Kronecker delta. In particular, when there are no external fields [Dj(t) = Ej(t) = 0, j = 1, 2], for the angular momentum
operator, one has expectation ⟨L̂⟩n(t) = 0 and uncertainty

(ΔL̂)n(t) =
√

h̵2((n1 + 1)2(n2 + 1)2 + n2
1n2

2)(X
(h)
1 (t)P

(h)
2 (t) − X(h)2 (t)P

(h)
1 (t))

2
,

which is determined by the homogeneous solutions of the classical equations and depends on the wave number n = (n1, n2).

B. Time-evolution of Glauber coherent states
Now, we solve IVP (14) and (15) by taking the initial function to be a coherent state of the simple two-dimensional harmonic oscillator

with the Hamiltonian Ĥ0, that is,
ϕα(q) = ϕα1(q1)ϕα2(q2),

where α = (α1,α2) and αj = α(1)j + iα(2)j , with α(1)j , α(2)j being real constants, and

ϕαj(qj) = (
ω0

πh̵
)

1
4

exp[−iα(1)j α(2)j ] exp
⎡
⎢
⎢
⎢
⎢
⎣

iα(2)j

√
2ω0

h̵
qj

⎤
⎥
⎥
⎥
⎥
⎦

exp
⎡
⎢
⎢
⎢
⎢
⎣

−
ω0

2h̵
⎛

⎝
qj −

√
2h̵
ω0
α(1)j
⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

, j = 1, 2.

Then, time-evolved coherent states Φ0
α(q, t) = Ûdec(t, t0)ϕα(q) of the decoupled oscillator are found as

Φ0
α(q, t) =

√ω0

πh̵
1

ϵ(t)
exp{−

1
2
(
(ϵ∗(t))2

∣ϵ(t)∣2
α2
+ ∣α∣2)}

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
i
h̵∫

t

t0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣p(p)(s)∣
2

μ(s)
+ 2D̃(s) ⋅ p(p)(s) − μ(s)ω2

(s)∣x(p)(s)∣
2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

ds
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

× exp{
1

2h̵
[−(iμ(t)(B(t) −

d
dt

ln ∣ϵ(t)∣) +
ω0

∣ϵ(t)∣2
)∣q − x(p)(t)∣

2
+ 2ip(p)(t) ⋅ q]}

× exp
⎧⎪⎪
⎨
⎪⎪⎩

√
2ω0

h̵
1

ϵ(t)
(q − x(p)(t)) ⋅ α

⎫⎪⎪
⎬
⎪⎪⎭

,

where α2
= α ⋅ α, ∣α∣2 = α ⋅ α∗, and we have

ρ0
α(q, t) = ∣Φ0

α(q, t)∣2 = (
ω0

πh̵
)

1
∣ϵ(t)∣2

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
ω0

h̵
∣q − ⟨q̂⟩0α(t)∣

2

∣ϵ(t)∣2

⎫⎪⎪
⎬
⎪⎪⎭

.
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Here, expectation values at Φ0
α(q, t) are obtained as

⟨q̂⟩0α(t) ≡
⎛
⎜
⎝

⟨q̂1⟩
0
α1(t)

⟨q̂2⟩
0
α2(t)

⎞
⎟
⎠
=

√
2h̵
ω0

C0
αx(h)(t) + x(p)(t), (34)

⟨p̂⟩0α(t) ≡
⎛
⎜
⎝

⟨p̂1⟩
0
α1(t)

⟨p̂2⟩
0
α2(t)

⎞
⎟
⎠
=

√
2h̵
ω0

C0
αp(h)(t) + p(p)(t), (35)

where the coefficient matrix C0
α is defined as

C0
α =

⎛
⎜
⎜
⎜
⎝

α(1)1
x0

ω0x0α(2)1

α(1)2
x0

ω0x0α(2)2

⎞
⎟
⎟
⎟
⎠

. (36)

The uncertainties at coherent states Φ0
α(q, t) are

(Δq̂)0
α(t) =

⎛
⎜
⎝

(Δq̂1)
0
α(t)

(Δq̂2)
0
α(t)

⎞
⎟
⎠

, (Δp̂)θα(t) =
⎛
⎜
⎝

(Δp̂1)
0
α(t)

(Δp̂2)
0
α(t)

⎞
⎟
⎠

,

where

(Δq̂j)
0
α(t) =

√
h̵

2ω0
∣ϵ(t)∣, (Δp̂j)

0
α(t) =

√
ω0h̵

2
1
∣ϵ(t)∣

Σ(t), j = 1, 2,

and the uncertainty product becomes

(Δq̂)(Δp̂)0
α(t) =

⎛
⎜
⎝

(Δq̂1)(Δp̂1)
0
α(t)

(Δq̂2)(Δp̂2)
0
α(t)

⎞
⎟
⎠

, (Δq̂jΔp̂j)
0
α(t) =

h̵
2
Σ(t), j = 1, 2.

Now, time-evolved coherent states of the generalized two-dimensional oscillator are

Φθ
α(q, t) = Ûgen(t, t0)ϕα(q) = Û†

θ(t, t0)Φ0
α(q, t) = Φ0

α(Rθ(t)q, t),

and in terms of solutions to the classical systems (2) and (3), we get

Φθ
α(q, t) =

√ω0

πh̵
1

ϵ(t)
exp{−

1
2
(
(ϵ∗(t))2

∣ϵ(t)∣2
α2
+ ∣α∣2)} (37)

× exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
i
h̵∫

t

t0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣P(p)(s)∣
2

μ(s)
+ 2D(s) ⋅ P(p)(s) − μ(s)ω2

(s)∣X(p)(s)∣
2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

ds
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

× exp{
1
h̵
[−(iμ(t)(B(t) −

d
dt

ln ∣ϵ(t)∣) +
ω0

∣ϵ(t)∣2
)∣q −X(p)(t)∣

2
+ 2iP(p)(t) ⋅ q]}

× exp
⎧⎪⎪
⎨
⎪⎪⎩

√
2ω0

h̵
1

ϵ(t)
Rθ(t)(q −X(p)(t)) ⋅ α

⎫⎪⎪
⎬
⎪⎪⎭

.

Then, the probability densities become

ρθα(q, t) = (
ω0

πh̵
)

1
∣ϵ(t)∣2

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
ω0

h̵
∣q − ⟨q̂⟩θα(t)∣

2

∣ϵ(t)∣2

⎫⎪⎪
⎬
⎪⎪⎭

, (38)

with the squeezing coefficient ∣ϵ(t)∣ given by (28). We note that since (28) is equal to (26), then ϵ(t) does not depend on θ(t), and thus,
uncertainties at Φ0

α(q, t) and at Φθ
α(q, t) are same. On the other hand, expectation values at Φθ

α(q, t) depend on θ(t) and are determined as

⟨q̂⟩θα(t) = RT
θ (t)⟨q̂⟩

0
α(t), ⟨p̂⟩

θ
α(t) = RT

θ (t)⟨p̂⟩
0
α(t),
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where ⟨q̂⟩0α(t), ⟨p̂⟩0α(t) are given by (34) and (35), respectively. In terms of the classical solutions to systems (2) and (3), the expectation values
are obtained as

⟨q̂⟩θα(t) =
√

2h̵
ω0

Cθ
α(t)X

(h)
(t) +X(p)(t),

⟨p̂⟩θα(t) =
√

2h̵
ω0

Cθ
α(t)P

(h)
(t) + P(p)(t),

where Cθ
α(t) is the similarity matrix,

Cθ
α(t) = RT

θ (t)C
0
αRθ(t), (39)

with C0
α = Cθ

α(t0) being the matrix given by (36).
Thus, time-evolved coherent states of the generalized quantum oscillator in the given external fields are two-dimensional squeezed

Gaussian wave packets that follow the trajectory of the classical particles. In general, they do not preserve the minimum uncertainty, and their
squeezing properties are controlled by the squeezing coefficient ∣ϵ(t)∣, which depends on the choice of the parameters μ(t),ω2

(t) and B(t).
On the other hand, the displacement properties of coherent states depend also on parameters Dj(t), Ej(t), j = 1, 2, and the rotation angle θ(t).

Finally, we write the expectation values of angular momentum at coherent states (37), when there are no external fields, as

⟨L̂⟩α(t) = 2h̵(α(1)1 α(2)2 − α(2)1 α(1)2 )(X
(h)
1 (t)P

(h)
2 (t) − X(h)2 (t)P

(h)
1 (t))

=
2h̵
ω0
(detC0

α)(X
(h)
1 (t)P

(h)
2 (t) − X(h)2 (t)P

(h)
1 (t)),

where C0
α is given by (36). In that case, uncertainties become

(ΔL̂)α(t) =
√

h̵2(∣α1∣2 + ∣α2∣2)(X(h)1 (t)P
(h)
2 (t) − X(h)2 (t)P

(h)
1 (t))

2
.

Similarly, in the presence of external fields, one can compute expectations and uncertainties of angular momentum by straightforward
calculations.

V. QUANTUM DYNAMICAL INVARIANTS
In this section, time-dependent linear and quadratic invariants for the quantum system are constructed using the evolution operator for-

malism. It is based on the fact that if time-development of a given quantum system is described by the unitary evolution operator Û(t, t0), then
any operator of the form Â(t) = Û(t, t0)Â(t0)Û †

(t, t0) is an integral of motion or a dynamical invariant. Using these dynamical invariants,
we establish the relation between the present results and those obtained by the MMT- and the LR-approaches.

A. Linear invariants
For the generalized two-dimensional oscillator with the Hamiltonian Ĥgen(t) given by (1), using the evolution operator (19), one can

find dynamical invariants that are linear in coordinate and momentum,

Âθ,j(t) = Ûgen(t, t0) âj Û †
gen(t, t0), Â†

θ,j(t) = Ûgen(t, t0) â†
j Û

†
gen(t, t0), j = 1, 2,

where
âj =

√ω0

2h̵
q̂j +

i
√

2ω0h̵
p̂j, â†

j =

√ω0

2h̵
q̂j −

i
√

2ω0h̵
p̂j, j = 1, 2,

are, respectively, the non-Hermitian lowering and raising Dirac operators for the standard two-dimensional harmonic oscillator Ĥ0 = â†
1 â1

+ â†
2 â2 + 1. Explicit calculations give us

⎛
⎜
⎝

Âθ,1(t)

Âθ,2(t)

⎞
⎟
⎠
=
−i

√
2ω0h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ(t)(ϵ̇(t) − B(t)ϵ(t))
⎛
⎜
⎝

Q̂1

Q̂2

⎞
⎟
⎠
− ϵ(t)

⎛
⎜
⎝

P̂1

P̂2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(40)

and
⎛
⎜
⎝

Â†
θ,1(t)

Â†
θ,2(t)

⎞
⎟
⎠
=

i
√

2ω0h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

μ(t)(ϵ̇∗(t) − B(t)ϵ∗(t))
⎛
⎜
⎝

Q̂1

Q̂2

⎞
⎟
⎠
− ϵ∗(t)

⎛
⎜
⎝

P̂1

P̂2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (41)
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where
⎛
⎜
⎝

Q̂1

Q̂2

⎞
⎟
⎠
= Rθ(t)

⎛
⎜
⎝

q̂1 − X(p)1 (t)

q̂2 − X(p)2 (t)

⎞
⎟
⎠

,
⎛
⎜
⎝

P̂1

P̂2

⎞
⎟
⎠
= Rθ(t)

⎛
⎜
⎝

p̂1 − P(p)1 (t)

p̂2 − P(p)2 (t)

⎞
⎟
⎠

,

and ϵ(t) is defined by (26). Here, ϵ(t) is a complex solution of Eq. (10), that is,

ϵ̈(t) +
μ̇
μ
ϵ̇(t) + (ω2

(t) − (Ḃ(t) + B2
(t) +

μ̇
μ

B(t)))ϵ(t) = 0, (42)

and it satisfies the IC’s,

ϵ(t0) = 1, ϵ̇(t0) = B(t0) +
iω0

μ(t0)
. (43)

Therefore, using the Wronskian W(t) =W(ϵ(t), ϵ∗(t)) = ϵ(t)ϵ̇∗(t) − ϵ∗(t)ϵ̇(t) = −2iω0/μ(t), one can show that these linear invariants (40)
satisfy commutation relations,

[Âθ,i(t), Â†
θ,j(t)] = δij, i, j = 1, 2,

and can be seen also as generalized lowering and rising operators.
Moreover, coherent states Φθ

α(q1, q2, t), α = (α1,α2) found in (37) by construction are eigenstates of Âθ,j(t) corresponding to complex
eigenvalues αj, j = 1, 2. Indeed, if ϕαj(qj) are eigenstates of âj so that âjϕαj(qj) = αjϕαj(qj), then

Ûgen(t, t0)âjÛ †
gen(t, t0)Ûgen(t, t0)ϕα1(q1)ϕα2(q2) = αjÛgen(t, t0)ϕα1(q1)ϕα2(q2), j = 1, 2,

from which it follows that
Âθ,j(t)Φ

θ
α(q1, q2, t) = αjΦθ

α(q1, q2, t), j = 1, 2.

Now, we consider Ref. 4, where Malkin, Man’ko, and Trifonov studied the problem of the N-dimensional nonstationary harmonic oscillator
and the problem of a charged particle in an axially symmetric and a uniform time-dependent electromagnetic field. The MMT-approach
for solving problems described by a Schrödinger operator Ŝ(t) = ih̵∂t − Ĥ(t) is based on finding all independent linear in position and
momentum invariants. In that context, an invariant is defined as an operator Â(t) that commutes with Ŝ(t), that is, [Â(t), Ŝ(t)] = 0.

We note that the Hamiltonian in Ref. 4 do not contain damping and external forces so that it is a particular case of Hamiltonian Ĥgen(t)
given by (1). Then, if in Ref. 4 one takes ϵ(t) to satisfy (42) for μ(t) = 1 and B(t) = 0 with the specific IC’s (43), it will coincide with ϵ(t)
defined in the present work. In addition, one can write

⎛
⎜
⎝

Â(t)

B̂(t)

⎞
⎟
⎠
=

1
2
√

e

⎛
⎜
⎝

−i 1

1 −i

⎞
⎟
⎠

⎛
⎜
⎝

Âθ,1(t)

Âθ,2(t)

⎞
⎟
⎠

,
⎛
⎜
⎝

α

β

⎞
⎟
⎠
=

√
2

2

⎛
⎜
⎝

−i 1

1 −i

⎞
⎟
⎠

⎛
⎜
⎝

α1

α2

⎞
⎟
⎠

, (44)

which shows that the invariants Â(t), B̂(t) found in Ref. 4 can be written as linear combinations of our invariants Âθ,1(t), Âθ,2(t), j = 1, 2.
Finally, if one takes α and β as defined in (44), then coherent states ∣α,β; t⟩ found in Ref. 4 will coincide with coherent states (37) found in
this work.

B. Quadratic invariants
For the quantum system described by the Hamiltonian Ĥgen(t) given by (1), using the evolution operator and Ĥ0 = â†

1 â1 + â†
2 â2 + 1, we

can define a quadratic Hermitian invariant
Îθ(t) = Ûgen(t, t0)Ĥ0Û †

gen(t, t0). (45)

This invariant can be expressed in terms of the linear invariants (40) and (41) as follows:

Îθ(t) = Â†
θ,1(t)Âθ,1(t) + Â†

θ,2(t)Âθ,2(t) + 1.

We note that the invariants (40) and (41) can be written also in the form

⎛
⎜
⎝

Âθ,1(t)

Âθ,2(t)

⎞
⎟
⎠
=

eiη(t)
√

2ω0h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
ω0

∣ϵ(t)∣
+ i∣ϵ(t)∣μ(t)(B(t) −

d
dt

ln ∣ϵ(t)∣))
⎛
⎜
⎝

Q̂1

Q̂2

⎞
⎟
⎠
+ i∣ϵ(t)∣

⎛
⎜
⎝

P̂1

P̂2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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and

⎛
⎜
⎝

Â†
θ,1(t)

Â†
θ,2(t)

⎞
⎟
⎠
=

e−iη(t)
√

2ω0h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
ω0

∣ϵ(t)∣
− i∣ϵ(t)∣μ(t)(B(t) −

d
dt

ln ∣ϵ(t)∣))
⎛
⎜
⎝

Q̂1

Q̂2

⎞
⎟
⎠
− i∣ϵ(t)∣

⎛
⎜
⎝

P̂1

P̂2

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where σ(t) = ∣ϵ(t)∣ satisfies the Ermakov–Pinney nonlinear differential equation,

σ̈(t) +
μ̇
μ
σ̇(t) + (ω2

(t) − (Ḃ + B2
+
μ̇
μ

B))σ(t) =
1

μ2σ3(t)
, (46)

with the initial conditions

σ(t0) = 1, σ̇(t0) = B(t0). (47)

Then, the quadratic invariant becomes

Îθ(t) =
1

2ω0h̵

2

∑
j=1
{

ω2
0

∣ϵ(t)∣2
Q̂2

j + [∣ϵ(t)∣μ(t)(B(t) −
d
dt

ln ∣ϵ(t)∣)Q̂ j + ∣ϵ(t)∣P̂ j]

2

}, (48)

and it is special in the sense that ∣ϵ(t)∣ is a particular solution of the Ermakov–Pinney equation (46) satisfying the initial conditions (47). Now,
since the following commutation relations hold,

[Âθ,i(t), Â†
θ,j(t)] = δij, [Îθ(t), Âθ,j(t)] = −Âθ,j(t), [Îθ(t), Â†

θ,j(t)] = Â†
θ,j(t), j = 1, 2,

then the eigenvalues and eigenstates of the invariant Îθ(t) can be found by the same algebraic procedure as for the simple harmonic oscillator.
Here, Ĥ0φn(q) = Enφn(q) so that by construction of (45), we have Îθ(t)Ψθ

n(q, t) = EnΨθ
n(q, t), showing that time-evolved wave function solu-

tions of the Scrödinger equation found asΨθ
n(q, t) = Ûgen(t, t0)φn(q) in (29) are eigenstates of the invariant Îθ(t) corresponding to eigenvalues

En = hω0(n1 + n2 + 1).
In the work of Lewis and Riesenfeld,3 for a quantum system described by an explicitly time-dependent Hamiltonian Ĥ(t), a dynamical

invariant is defined to be an operator Î(t) satisfying ih̵∂t Î(t) − [Ĥ(t), Î(t)] = 0. As known, the LR-approach for solving nonstationary quan-
tum oscillators is based on finding Hermitian quadratic invariant of the form (48). Then, eigenstates of the quadratic invariant constructed
by the LR-technique and solutions of the Scrödinger equation usually differ by a time-dependent phase factor. We note that in Ref. 3, the
Hamiltonian describing a charged particle in a time-dependent electromagnetic field is a particular case of Hamiltonian Ĥgen(t) given by (1).
For more recent and related results based on linear and quadratic invariants, one can see also Ref. 34.

VI. CAUCHY–EULER TYPE QUANTUM OSCILLATOR IN TIME-VARIABLE MAGNETIC AND ELECTRIC FIELDS
Now, we introduce and discuss an exactly solvable quantum model described by the Hamiltonian,

Ĥgen(t) =
2

∑
j=1
[

1
2tγ

p̂2
j +

B(t)
2
(q̂jp̂j + p̂jq̂j) +

ω2
0tγ−2

2
q̂2

j ]

+E0 tγ sin(ΩE ln t)q̂1 + E0 tγ cos(ΩE ln t)q̂2 +
λ0

t
(q̂1p̂2 − q̂2p̂1). (49)

In this model, for t ≥ t0, t0 = 1, we have time-dependent increasing mass μ(t) = tγ for the damping parameter γ ≥ 1 and decreasing
frequency ω2

(t) = ω2
0/t

2, ω0 > 0. Then, to preserve the Cauchy–Euler structure of the oscillator, we take B(t) = −ΩB tan(ΩB ln t)/t, whereΩB

=
√
ω2

B − (γ − 1)2/4 and ω2
B > (γ − 1)2

/4. In addition, we consider external electric fields E1(t) = E0 tγ sin(ΩE ln t), E2(t) = E0 tγ cos(ΩE ln t)
with E0,ΩE-real constants that are oscillating in time with increasing amplitude and decreasing frequency. The last term in (49) is the angular
momentum with the Larmor type frequency λ(t) = λ0/t, λ0-real constant that depends on time and tends to zero when time increases.

In what follows, first we write the solutions to the corresponding coupled system of classical equations of motion. Then, we describe in
detail the time-evolved eigenfunctions and coherent states.

A. The classical problem
For the quantum evolution problem with Hamiltonian (49), the corresponding coupled system of classical equations of motion is of the

form
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⎛
⎜
⎝

Ẍ1

Ẍ2

⎞
⎟
⎠
+
⎛
⎜
⎝

γ/t 2λ0/t

−2λ0/t γ/t

⎞
⎟
⎠

⎛
⎜
⎝

Ẋ1

Ẋ2

⎞
⎟
⎠
+

⎛
⎜
⎜
⎜
⎝

ω2
0 + ω2

B − λ2
0

t2
λ0(γ − 1)

t2

−
λ0(γ − 1)

t2
ω2

0 + ω2
B − λ2

0

t2

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎝

X1

X2

⎞
⎟
⎠
=
⎛
⎜
⎝

−E0 sin(ΩE ln t)

−E0 cos(ΩE ln t)

⎞
⎟
⎠

. (50)

For E0 = 0, system (50) with initial conditions (12) has homogeneous a solution X(h)(t) ≡ RT
θ (t)x

(h)
(t), explicitly found as

X(h)(t) = RT
θ (t)
⎛
⎜
⎜
⎜
⎝

√
ω2

0 + ω2
B

Ωg
t−(γ−1)/2 cos(Ωg ln t − δg)

1
Ωg

t−(γ−1)/2 sin(Ωg ln t)

⎞
⎟
⎟
⎟
⎠

, t ≥ 1, (51)

where Ωg =
√
ω2

0 + ω2
B − (γ − 1)2/4 is the oscillator frequency and δg = arctan((γ − 1)/2Ωg).

For E0 ≠ 0, a particular solution is X(p)(t) ≡ RT
θ (t)x

(p)
(t), and explicitly, we have

X(p)(t) = RT
θ (t)
⎛
⎜
⎜
⎝

A(h)1 t−(γ−1)/2 cos(Ωg ln t − δ(h)1 ) −
E0

√
a2 + b2

cos((ΩE + λ0) ln t − δp)

A(h)2 t−(γ−1)/2 sin(Ωg ln t − δ(h)2 ) +
E0

√
a2 + b2

sin((ΩE + λ0) ln t − δp)

⎞
⎟
⎟
⎠

, t ≥ 1, (52)

where a = (ω2
0 + ω2

B) − (ΩE + λ0)
2, b = (1 − γ)(ΩE + λ0), δp = arccot(b/a), and A(h)j , δ(h)j , j = 1, 2, are constants of the transient part such

that X(p)
(t) satisfies the initial conditions (13). Here, the rotation angle is θ(t) = λ0 ln t, and the rotation matrix becomes

Rθ(t) =
⎛
⎜
⎝

cos(λ0 ln t) sin(λ0 ln t)

− sin(λ0 ln t) cos(λ0 ln t)

⎞
⎟
⎠

, t ≥ 1,

where the sign of λ0 determines the direction of rotation.

B. Time-evolution of the wave functions Ψθ
n(q, t)

For the wave functions Ψθ
n(q, t), the probability densities are given by Eq. (30), that is,

ρθn(q, t) = N2
n

1
∣ϵ(t)∣2

exp
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
ω0

h̵

∣q −X(p)(t)∣
2

∣ϵ(t)∣2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

H2
n

⎛
⎜
⎝

√ω0

h̵

Rθ(t)(q −X(p)(t))

∣ϵ(t)∣
, t
⎞
⎟
⎠

, n = (n1, n2),

where X(p)
(t) is found in (52), and the squeezing coefficient is

∣ϵ(t)∣ =
t−(γ−1)/2

Ωg

√

(ω2
0 + ω2

B)cos2(Ωg ln t − δg) + ω2
0 sin2(Ωg ln t), (53)

which is smooth and oscillatory for t ≥ 1. Then, for given ω0 > 0 and γ ≥ 1, the frequency Ωg =
√
ω2

0 + ω2
B − (γ − 1)2/4 of oscillations in ∣ϵ(t)∣

can be increased by increasing the value of ωB in parameter B(t). When γ = 1, the amplitude is fixed, and one has ∣ϵ(t)∣→ 1 as ωB → 0.
However, when γ > 1, the amplitude of oscillations in ∣ϵ(t)∣ decreases and approaches zero as time increases.

In Fig. 1, we plot the probability density ρθn(q, t) with n = (1, 2) at three different times. For this, we take γ = 2,
B(t) = −3

√
11 tan(3

√
11 ln t)/t, ωB =

√
397/2, Larmor type frequency λ(t) = 7/t, and E0 = 0 so that there are no external electric fields.

These plots show how the width and amplitude of the wave packets change with time and how they are rotated with angle θ(t) = 7 ln t under
the influence of the magnetic field. Uncertainties of the position and momentum at time-evolved wave functions Ψθ

n(q, t) are found by Eqs.
(32) and (33), respectively,

(Δq̂)θn(t) =
√

h̵
ω0
∣ϵ(t)∣Λ(n1, n2, θ(t)), (Δp̂)θn(t) =

√
h̵ω0

Σ(t)
∣ϵ(t)∣

Λ(n1, n2, θ(t)),

where for this model we obtain the vector valued function

Λ(n1, n2, θ(t)) =
⎛
⎜
⎝

(cos2
(λ0 ln t)n1 + sin2

(λ0 ln t)n2 + 1/2)
1
2

(sin2
(λ0 ln t)n1 + cos2

(λ0 ln t)n2 + 1/2)
1
2

⎞
⎟
⎠

,
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FIG. 1. Probability density ρθn(q, t) for n = (1, 2), γ = 2,h = 1,ω0 = 1, θ(t) = 7 ln t, E0 = 0, at times (a) t0 = 1, (b) t = 1.07, and (c) t = 1.85.

and the coefficient

Σ(t) = {1 +
1

4ω2
0t2 [(2ΩB tan(ΩB ln t) − γ + 1)((ω2

0 + ω
2
B)cos2

(Ωg ln t − δg) + ω2
0 sin2

(Ωg ln t))

+ Ωg(−(ω2
0 + ω

2
B) sin(2(Ωg ln t − δg)) + ω2

0 sin(2Ωg ln t))]
2
}

1/2

. (54)

Clearly, Λ(n1, n2, θ(t)) carries the dependence of the uncertainties on the wave numbers n1, n2 and the rotation angle θ(t), while ∣ϵ(t)∣ and
Σ(t) depend only on parameters μ(t),ω2

(t) and B(t). We note that for γ = 1 and ωB → 0, one has Σ(t)→ 1. Otherwise, coefficient Σ(t) has
singularities due to the singularities in B(t), and this affects the uncertainties in momentum. Using the same parameters as in Fig. 1, then in
Fig. 2, we plot uncertainties in the position and momentum at wave function Ψθ

n(q, t) for n = (1, 2). As can be seen in Fig. 2(a), uncertainty
in the position is smooth, oscillatory, and approaches to zero as time increases. However, singularities appear in uncertainties of momentum
since they depend on the coefficient Σ(t) found by (54).

Now, we discuss possible trajectories of the wave packets in the two-dimensional coordinate space, which are determined by the expec-
tation values of the position at state Ψθ

n(q, t). According to the general results found in (31), if there are no external fields, wave packets
are localized at (q1, q2) = (0, 0) in R

2, as in Fig. 1. However, in the presence of external fields, wave packets will move along the trajectory
⟨q̂⟩θn(t) = X(p)(t) in R

2, which for this model is given by (52). Then, depending on parameter γ ≥ 1 in (52), we consider the following two
cases:

(i) For γ = 1, we have the trajectory

⟨q̂⟩θn(t) = RT
θ (t)
⎛
⎜
⎜
⎜
⎝

E0

∣a∣Ωg
((ΩE + λ0) sin(Ωg ln t) −Ωg sin((ΩE + λ0) ln t))

E0

∣a∣
(cos(Ωg ln t) − cos((ΩE + λ0) ln t))

⎞
⎟
⎟
⎟
⎠

, t ≥ 1,

FIG. 2. Uncertainties in the position and momentum for n = (1, 2) and γ = 2, h = 1, ω0 = 1: (a) (Δq̂j)
θ
nj
(t), j = 1, 2, for t ∈ [1, 5] and (b) (Δp̂j)

θ
nj
(t), j = 1, 2, for t ∈ [1, 5].
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where Ωg =
√
ω2

0 + ω2
B is the oscillator frequency and ΩE, λ0 are frequencies due to the external fields. When (ΩE + λ0) = Ωg , then one

has balance between frequencies and the particle is localized at the origin for any time. When (ΩE + λ0)/Ωg is a rational number, the
trajectory ⟨q̂⟩θn(t) is a closed plane curve. In this case, a particle moving along the trajectory returns to its starting point after some time,
whatever the starting point is, and then retraces the same curve. On the other hand, when (ΩE + λ0)/Ωg is not rational, the curve will
never close and the particle will pass through every point of a bounded region containing the origin in R

2, eventually filling it. Clearly,
we have non-uniform motion with smoothly decreasing speed.

(ii) For γ > 1, since transient part of X(p)
(t) quickly tends to zero, after some time, we have

⟨q̂⟩θn(t) ≈ RT
θ (t)
⎛
⎜
⎜
⎝

−
E0

√
a2 + b2

cos((ΩE + λ0) ln t − δp)

E0
√

a2 + b2
sin((ΩE + λ0) ln t − δp)

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

−
E0

√
a2 + b2

cos(ΩE ln t − δp)

E0
√

a2 + b2
sin(ΩE ln t − δp)

⎞
⎟
⎟
⎠

.

Then, the particle exhibits again a non-uniform motion with decreasing speed and with λ0 contributing to the phase and radius of the
orbit. In that case, the trajectory is not closed since usually it does not repeat, but in the long time limit, it converges to a circular orbit
given by (55). ◻

As an example, for γ = 1 in Fig. 3, we plot the trajectory

⟨q̂⟩θn(t) =
E0

∣a∣
RT
θ (t)
⎛
⎜
⎝

15 + λ0

10
sin(10 ln t) − sin((15 + λ0) ln t)

cos(10 ln t) − cos((15 + λ0) ln t)

⎞
⎟
⎠

, θ(t) = λ0 ln t,

starting at the origin and with parameters Ωg = 10, ΩE = 15, E0 = 800, a = 100 − (15 + λ0)
2. In Fig. 3(a), we see the plot for θ(t) = 0, which is

a closed curve since ΩE/Ωg = 3/2 is rational. In Fig. 3(b), we show this curve under rotation with the rotation angle θ(t) = 15 ln t.
Another example for γ = 1 is given in Fig. 4, where we plot the trajectory

⟨q̂⟩θn(t) =
E0

∣a∣
RT
θ (t)
⎛
⎜
⎝

20π + λ0

10
sin(10 ln t) − sin((20π + λ0) ln t)

cos(10 ln t) − cos((20π + λ0) ln t)

⎞
⎟
⎠

, θ(t) = λ0 ln t,

with parameters Ωg = 10,ΩE = 20π, E0 = 5 × 103 and a = 100 − (20π + λ0)
2. In Fig. 4(a), we have θ(t) = 0, and note that ΩE/Ωg = 2π is irra-

tional so that the curve is not closed. The particle will start from the origin, and then it will pass through every point of a bounded region in
R

2 as t →∞. In Fig. 4(b), we take θ(t) = 20 ln t and see particle motion along another open trajectory confined to a bounded region.

FIG. 3. Trajectory of the wave packets ∣Ψθ
n(q, t)∣2 for ∀n and γ = 1, ω0 = 1,h = 1, B(t) = −3

√

11 tan(3
√

11 ln t)/t, ωB = 3
√

11, E1(t) = 800t sin(15 ln t), E2(t)
= 800t cos(15 ln t), t ∈ [1, 4]: (a) when λ(t) = 0 and (b) when λ(t) = 15/t.
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C. Time-evolution of coherent states Φθ
α(q, t)

At coherent states Φθ
α(q, t), probability densities are two-dimensional Gaussian wave packets given by (38), i.e.,

ρθα(q, t) = (
ω0

πh̵
)

1
∣ϵ(t)∣2

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
ω0

h̵
∣q − ⟨q̂⟩θα(t)∣

2

∣ϵ(t)∣2

⎫⎪⎪
⎬
⎪⎪⎭

, α = (α1,α2) ∈ C2,

where for this model, the squeezing coefficient is explicitly given by (53). As an example, in Fig. 5, we plot the probability density for
α = (20

√
2/
√

401, 10i), γ = 2, h = 1,ω0 = 1, λ(t) = 10/t, and squeezing parameter B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2 at different
times t = 1, 1.2, 2. These plots show the changes in width and amplitude of the wave packet that follows a trajectory

⟨q̂⟩θα(t) = RT
θ (t)
⎛
⎜
⎝

2t−1/2 cos(10 ln t − arctan(1/20))
√

2t−1/2 sin(10 ln t)

⎞
⎟
⎠

, (55)

with the rotation angle θ(t) = 10 ln t, and in the case E0 = 0. Explicitly, the corresponding uncertainties are found according to (56), that is,

(Δq̂j)
0
α(t) =

√
h̵

2ω0
∣ϵ(t)∣, (Δp̂j)

0
α(t) =

√
ω0h̵

2
1
∣ϵ(t)∣

Σ(t), j = 1, 2,

where the coefficients ∣ϵ(t)∣ and Σ(t) are given by (53) and (54), respectively. Clearly, uncertainties do not depend on α and θ(t), and
they are equal in both directions. Figure 6 shows (Δq̂j)αj(t) and (Δp̂j)αj(t) for each j = 1, 2, where we take B(t) = −3

√
11 tan(3

√
11 ln t)/t,

ωB =
√

397/2 as in Fig. 5. We note that uncertainties in position are smooth, oscillatory, and approach zero as t →∞, but uncertainties in
momentum have singularities due to the singularities in B(t), as we see in Fig. 6(b).

Now, we recall that the center of the wave packet ρθα(q, t) in the two-dimensional coordinate space follows the classical trajectory

⟨q̂⟩θα(t) = RT
θ (t)⟨q̂⟩

0
α(t) =

√
2h̵
ω0

Cθ
α(t)X

(h)
(t) +X(p)(t), (56)

and for this model, Cθ
α(t) is defined by (39) with θ(t) = λ0 ln t, X(h)

(t) is given by (51), and X(p)
(t) is given by (52). In particular, when θ(t) = 0

and there are no external electric fields (E0 = 0), then the trajectory will be ⟨q̂⟩0α(t) =
√

2h̵/ω0 C0
α x(h)(t), which can be written explicitly as

⟨q̂⟩0α(t) =
√

2h̵
ω0

⎛
⎜
⎝

α(1)1 ω0α(2)1

α(1)2 ω0α(2)2

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎝

√
ω2

0 + ω2
B

Ωg
t−(γ−1)/2 cos(Ωg ln t − δg)

1
Ωg

t−(γ−1)/2 sin(Ωg ln t)

⎞
⎟
⎟
⎟
⎠

. (57)

In Eq. (57), depending on the values of γ ≥ 1 and α = (α1,α2) ∈ C
2, we note the following possibilities:

FIG. 4. Trajectory of the wave packets ∣Ψθ
n(q, t)∣2 for any n, with γ = 1, ω0 = 1,h = 1, B(t) = −3

√

11 tan(3
√

11 ln t)/t, ωB = 3
√

11, E1(t) = 5 × 103t sin
(20π ln t), E2(t) = 5 × 103t cos(20π ln t), t ∈ [1, 20]: (a) when λ(t) = 0 and (b) when λ(t) = 20/t.
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FIG. 5. Probability density ρθα(q, t) for α = (20
√

2/
√

401, 10i), λ(t) = 10/t, γ = 2, h = 1,ω0 = 1, E0 = 0 at times: (a) t = t0 = 1, (b) t = 1.2, and (c) t = 2.

(a) For γ = 1, the trajectory could be a line segment, a circle, or an ellipse in R
2, centered at the origin. In the case det(C0

α) ≡ ω0(α(1)1 α(2)2

− α(1)2 α(2)1 ) = 0, the wave packet oscillates along a line segment. If α(2)1 = α(1)2 = 0 and ∣α(2)2 ∣ =
√

1 + (ω2
B/ω2

0) ∣α
(1)
1 ∣ or similarly if

α(1)1 = α(2)2 = 0 and ∣α(2)1 ∣ =
√

1 + (ω2
B/ω2

0) ∣α
(1)
2 ∣, then we have a circular motion. Otherwise, the motion is along an ellipse, and in

any case, it is a non-uniform motion.
(b) For γ > 1, the wave packet moves toward the origin due to damping effects. In the case det(C0

α) = 0, it oscillates forth and back along a
line segment passing through the origin, with decreasing amplitude and approaching the origin. If det(C0

α) ≠ 0, the wave packet moves
inward usually along a spiral like trajectory as time increases.

It follows that when θ(t) ≠ 0, the rotated trajectories (except the circular ones) will be more complicated, as one can see in the following
plots. For example, we consider the trajectory (56) for γ = 1,

⟨q̂⟩θα(t) = RT
θ (t)
⎛
⎜
⎝

cos(10 ln t)
1
2

sin(10 ln t)

⎞
⎟
⎠

, θ(t) = λ0 ln(t),

which is an ellipse for θ = 0 and E0 = 0, as we see in Fig. 7(a). In Fig. 7(b), we see the rotated ellipse for θ(t) = 25 ln t, λ0 = 25. Then, in Fig. 7(c),
we plot the trajectory

⟨q̂⟩θα(t) = RT
θ (t)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎝

cos(10 ln t)
1
2

sin(10 ln t)

⎞
⎟
⎠
+
⎛
⎜
⎝

3 sin(10 ln t) − sin(30 ln t)

cos(10 ln t) − cos(30 ln t)

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

FIG. 6. Uncertainties for γ = 2, h = 1, ω0 = 1: (a) (Δq̂j)αj (t), j = 1, 2, and (b) (Δp̂j)αj (t), j = 1, 2, t ∈ [1, 10].
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FIG. 7. Trajectories of ρθα(q, t) with γ = 1, α = (
√

2/2, 5
√

2i/2), B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB = 3
√

11, h = ω0 = 1: (a) λ(t) = 0, E0 = 0, t ∈ [1, 2],
(b) λ(t) = 25/t, E0 = 0, t ∈ [1, 4], and (c) λ(t) = 25/t, E1(t) = 800t sin(5 ln t), E2(t) = 800t cos(5 ln t), t ∈ [1, 4].

with the rotation angle θ(t) = 25 ln t and under the influence of electric fields. In that case, the trajectory depends also on the particular
solution of the classical system, and since the ratio (ΩE + λ0)/Ωg = 3 is a rational number, the trajectory is closed.

As another example, for γ = 2 in Fig. 8, we plot

⟨q̂⟩θα(t) = 2
√

2RT
θ (t)
⎛
⎜
⎝

t−1/2 sin(10 ln t)

t−1/2 sin(10 ln t)

⎞
⎟
⎠

, θ(t) = λ0 ln(t), (58)

where in Fig. 8(a) we have θ = 0 and det(C0
α) = 0, so that the wave packet oscillates along a straight line and approaches the origin as time

increases. Figure 8(b) shows the trajectory given by Eq. (58) with the rotation angle θ(t) = 20 ln t. Then, in Fig. 8(c), we plot

⟨q̂⟩θα(t) = 2
√

2RT
θ (t)
⎛
⎜
⎝

t−1/2 sin(10 ln t)

t−1/2 sin(10 ln t)

⎞
⎟
⎠
+

E0
√

a2 + b2

⎛
⎜
⎝

− cos(5 ln t − arccot(b/a))

sin(5 ln t − arccot(b/a))

⎞
⎟
⎠

,

where a = 401/4 − (5 + λ0)
2, b = −(5 + λ0), for θ(t) = 20 ln t, and in the presence of electric fields.

FIG. 8. Trajectories of ρθα(q, t) with γ = 2, α = (20i, 20i), B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2, h = ω0 = 1, t ∈ [1, 20]: (a) λ(t) = 0, E0 = 0, (b) λ(t) = 20/t,
E0 = 0, and (c) λ(t) = 20/t, E1(t) = 2 × 103t sin(5 ln t), E2(t) = 2 × 103t cos(5 ln t).
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FIG. 9. Trajectories of ρθα(q, t) with γ = 2, α = (20
√

2/
√

401, 10i), B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2, h = ω0 = 1, t ∈ [1, 25]: (a) λ(t) = 0, E0 = 0.
(b) λ(t) = 10/t, E0 = 0. (c) λ(t) = 10/t, E1(t) = 103t sin(15 ln t), E2(t) = 103t cos(15 ln t).

Finally, for γ = 2 in Fig. 9, we show the trajectory given by Eq. (55). In Fig. 9(a), we take θ(t) = 0, E0 = 0, and since det(C0
α) ≠ 0, the wave

packet initially located at (q1, q2) = (2 cos(arctan(1/20)), 0) follows a spiral like path approaching the origin as time increases. In Fig. 9(b),
we have θ(t) = 10 ln t, E0 = 0, and the wave packet again moves inward along a spiral. Then, in Fig. 9(c), we display the trajectory

⟨q̂⟩θα(t) = RT
θ (t)
⎛
⎜
⎝

2t−1/2 cos(10 ln t − arctan(1/20))
√

2t−1/2 sin(10 ln t)

⎞
⎟
⎠
+

E0
√

a2 + b2

⎛
⎜
⎝

− cos(15 ln t − arccot(b/a))

sin(15 ln t − arccot(b/a))

⎞
⎟
⎠

of ρθα(q, t) for θ(t) = 10 ln t, a = 401/4 − (15 + λ0)
2, b = −(15 + λ0), and electric fields E1(t) = 103t sin(15 ln t) and E2(t) = 103t cos(15 ln t).

Briefly saying, we have discussed the squeezing properties of the wave packets due to influence of parameters B(t) and γ ≥ 1. Then, the
trajectories of the wave packets in coordinate space were investigated according to the value of the damping parameter γ ≥ 1. For coherent
states, we have seen that their center follows the path of the classical particle in the two-dimensional configuration space and that the shape of
the trajectory is closely related with the choice of α = (α1,α2). Finally, according to their presence, the effects of magnetic and electric fields
were illustrated by considering three different cases: (a)λ0 = 0, E0 = 0, (b)λ0 ≠ 0, E0 = 0, and (c)λ0 ≠ 0, E0 ≠ 0.

VII. CONCLUSION
A generalized two-dimensional quantum parametric oscillator in the presence of time-varying magnetic and electric fields was solved

using the evolution operator method. The evolution operator and the propagator were found exactly in terms of solutions to the corresponding
system of coupled classical equations of motion. Then, the evolution operator was applied to initial states, such as the eigenstates and coherent
states of the simple two-dimensional harmonic oscillator, and propagation of the time-dependent wave functions was described explicitly.

In addition, by the evolution operator formalism, we constructed linear and quadratic invariants for the generalized two-dimensional
quantum oscillator. These dynamical invariants can be used to find propagators and time-evolved wave function solutions by employing
well-known techniques, such as the Lewis–Riesenfeld approach based on self-adjoint quadratic invariants and the Malkin–Man’ko–Trifonov
approach based on dynamical symmetries of the Schrödinger equation. As known, a common point of the LR, MMT, and WN techniques
is that the solution of the quantum problem reduces to that of solving an associated classical equation of motion. In the literature, usually
quadratic invariants are found in terms of solutions to the nonlinear Ermakov–Pinney differential equation,3 linear invariants are given
in terms of complex-valued solutions to the linear classical equation of motion,4 while using the Wei–Norman algebraic procedure, the
evolution operator is determined in terms of real-valued solutions to the corresponding classical problem.16 Then, using the well-known
relations between the classical solutions and the results in the present work, one can show that under the same initial conditions, the solutions
obtained by the LR, MMT, and WN techniques will eventually coincide.

Finally, as an exactly solvable model, we introduced a two-dimensional Cauchy–Euler type quantum parametric oscillator with smoothly
decreasing Larmor type frequency in an oscillating external electric field. After solving the problem at the classical level, the probability den-
sities, uncertainties, and expectations at time-evolved eigenstates and coherent states were evaluated explicitly and their behavior was studied
in detail. That gave us more insight into how one can control the dynamics of the system by varying the parameters of damping and squeezing
terms and by choosing proper external forces. Therefore, we can say that the compact and explicitly found formulas in the present work can
provide a good basis for understanding the influence of all time-dependent parameters and external fields on the behavior of the quantum sys-
tem. This can also contribute to the exact and approximate study of other two-dimensional quantum parametric oscillators in magnetic and
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electric fields. For example, such interesting models could be related with the classical orthogonal polynomials and hypergeometric functions15

or associated with the Heun equation and, in particular, Mathieu, Lamé, and Coulomb equations.43
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17Ş. A. Büyükaşık, J. Math. Phys. 59, 082104 (2018).
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