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Abstract—As Graphics Processing Units (GPUs) have evolved
to deliver performance increases for general-purpose compu-
tations as well as graphics and multimedia applications, soft
error reliability becomes an important concern. The soft error
vulnerability of the applications is evaluated via fault injection
experiments. Since performing fault injection takes impractical
times to cover the fault locations in complex GPU hardware
structures, prediction-based techniques have been proposed to
evaluate the soft error vulnerability of General-Purpose GPU
(GPGPU) programs based on the hardware performance char-
acteristics.

In this work, we propose ML-based prediction models for the
soft error vulnerability evaluation of GPGPU programs. We con-
sider both program characteristics and hardware performance
metrics collected from either the simulation or the profiling
tools. While we utilize regression models for the prediction of
the masked fault rates, we build classification models to specify
the vulnerability level of the programs based on their silent data
corruption (SDC) and crash rates. Our prediction models achieve
maximum prediction accuracy rates of 96.6%, 82.6%, and 87%
for masked fault rates, SDCs, and crashes, respectively.

I. INTRODUCTION

Heterogeneous computing systems that bring together

general-purpose multi-core processors (CPUs) and data-

parallel graphic processing units (GPUs) offer high perfor-

mance as well as energy efficiency in large-scale computing

platforms. Due to their highly parallel computational power,

GPU architectures have been largely utilized for general-

purpose computations as well as graphics applications [1].

While the GPUs reduce the execution times significantly, they

exhibit higher vulnerability to soft errors due to their complex

structures. Hence, the soft error reliability becomes a critical

concern for GPGPU applications.

To improve the reliability of the GPU architectures, var-

ious fault tolerance techniques like error correction codes,

redundant multithreading have been employed [2], [3], [4].

Those hardware or software redundancy-based techniques in-

duce additional cost and performance overhead. Therefore,

evaluating the soft error vulnerability of the programs becomes

quite important to make decisions about the fault tolerance

techniques.

Fault injection is widely-used vulnerability evaluation tech-

nique based on controlled experiments which introduce faults

into the system [5], [6]. This technique introduces faults in

the hardware structures during the program execution, then

observes the program execution to understand the effect of

the injected fault. The fault injection yields SDC rates for

the target execution. By utilizing SDC rates as a soft error

vulnerability metric, one can decide whether the explicit fault

tolerance techniques are essential for the program execution

or we can count on the protection methods available in the

target system.

While the fault injection is useful to quantify the vulnera-

bility of the target execution, the large number of experiments

may become impractical, especially for the long-running ap-

plications. Therefore, predicting the soft error vulnerability

without performing fault injection experiments for each target

program has become an attractive solution. In this work, we

present a soft error vulnerability prediction study for GPGPU

applications using machine learning. Our work aims to elimi-

nate long fault injection times and predict the vulnerability of

the programs by using performance metrics collected either

from the simulation or the program profile. While there are

several works based on machine learning models for CPU

systems’ reliability prediction [7], [8], [9], [10], [11], [12], the

prediction approaches for GPU architectures are limited [13],

[14]. PRISM [13] presents statistical models for predicting

fault rates based on the instruction types of the GPU programs.

The proposed regression models utilize linear regression and

K-nearest neighbor algorithms, where SDC prediction does not

perform well. Our work considers both program characteristics

like instruction intensities and hardware performance metrics

like SM throughput and occupancy. Moreover, we build regres-

sion models for predicting masked fault rates while we utilize

a classification approach for SDC and crash conditions. Nie et

al. [14] propose machine learning models for the prediction of

GPU errors. The work does not focus on the soft error vulnera-

bility, it aims to predict if an error occurs during the target pro-

gram execution in a large-scale system with GPUs. The model

includes both temporal and spatial features, like application-

specific characteristics, temperature/power consumption, node

location, and error frequency. Our work specifically targets to

predict the soft error vulnerability of GPGPU programs by

building machine learning models.

To the best of our knowledge, this is the first work to predict

soft error vulnerability of GPGPU applications by utilizing
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Fig. 1. General overview of our framework.

both regression and classification models based on program

characteristics and hardware performance metrics. Our main

contributions are as follows:

• We present ML-based soft error vulnerability prediction

models for GPGPU applications. Our approach uses

both program characteristics and hardware performance

metrics. We collect the features from the simulator and

the profiling tool, and build separate prediction models

to compare both approaches.

• We utilize a fault injection tool that enables to perform

regional fault injection experiments and obtain fault rates

for kernel functions in a GPU code.

• We employ regression models to predict masked fault

rates, while we use classification approach for predicting

SDC and crash conditions, of which the rates are hard to

predict.

• We obtain 96.59% prediction accuracy for our regression

model with Gradient Boosting regression algorithm based

on feature selection, and 87% and 80% accuracy for our

2-class and 3-class evaluations, respectively.

II. BACKGROUND

A. GPU Architecture

Modern GPU architectures employ a single-instruction-

multiple-thread (SIMT) execution in their Streaming Multi-

processor (SM) units, which contain many cores and high-

bandwidth memory structure. While the cores inside the same

SM can access the shared memory and L1 cache, all the

cores can communicate via L2 cache structure. The global

device memory maintains larger but relatively slower data

access for all threads executing in the device. We choose the

NVIDIA Pascal architecture [15] for our evaluation platform,

where we execute our target programs both on a real hardware

(Quadro P4000) and the simulation environment (GPGPU-

Sim) with the specific configurations. The Pascal architecture

has total 1792 CUDA cores. Since the architecture includes

more SMs, it supports more active threads, warps, and thread

blocks compared to prior GPU generations. We target the

CUDA programs developed by CUDA programming model

and compiled using NVIDIA CUDA compiler, nvcc [16].

B. Soft Error Vulnerability

In this paper, we consider soft errors that are transient

errors causing bit flips in the register file [17]. We focus

on single-bit errors since they are much more common. The

most prevalent way to evaluate the soft error vulnerability of

an application is to perform fault injection experiments. In a

fault injection scenario, one bit of one register is flipped at a

random time during the execution of the application, and the

output result is examined to observe the effect of the fault. The

outcome of the fault injection experiments can be classified

into three categories: 1) Correct Execution (Masked): The

faults have no effect on the output since the corrupted value is

not used or overwritten in the remaining part of the program.

2) Silent Data Corruption (SDC): The program terminates but

the program’s output is not the expected output due to the

corrupted data. 3) Crash: The program fails by terminating

with an error code.

III. METHODOLOGY

Our main focus is to predict fault rates by investigating the

relationship between the hardware usage performance metrics

of the GPU applications and the fault rates. In order to predict

the occurrence of the faults, we utilize machine learning

based regression and classification approaches. Figure 1 shows

the general overview of our experimental framework, which

consists of the following four main stages:

1) Fault injection: To get fault rates of the target GPGPU

programs, we perform fault injection experiments by

using a recently-proposed fault injector framework [18].

2) Performance metric collection: We both simulate and

profile GPU applications by using GPGPU-Sim [19]

and NVIDIA’s Compute tool respectively and collect

performance metrics from the target GPGPU programs.

3) Feature selection: Since there are many performance

and hardware usage metrics that can degrade prediction

performance, we select only the significant ones by

applying Pearson and Spearman correlation methods to

identify mostly correlated metrics for the faults.
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4) Fault rate prediction: We predict the fault rates by using

machine learning based regression and classification

methods.

We explain the details of those steps in the following

sections.

A. Fault Injection Framework

We utilize the fault injection tool that enables regional

vulnerability analysis for the GPGPU programs [18]. The

debugger-based fault injector targets specified kernel function

execution as each fault injection point and enables us to

evaluate SDC, crash, and masked fault rates for the target

kernel functions. In this way, we can get the vulnerability

values for each kernel function and obtain a set of data points

for our prediction model. Figure 2 presents the fault rates for

the kernel functions in our target applications.

Fig. 2. SDC, crash and masked fault rates for the benchmark applications.

B. Performance Metric Collection

To characterize the GPGPU programs for our prediction

evaluation, we collect a set of performance and hardware usage

metrics. We extract those metrics by two prevalent methods

including simulation and profiling. In this work, we perform

both approaches and compare the results.

As the first approach, we execute our target programs in the

GPGPU-Sim simulation environment [19]. The GPGPU-Sim

(hereafter referred to as the simulator) enables to simulate the

GPU applications by configuring the GPU hardware parame-

ters such as bandwidth, DRAM, L1/L2 cache amounts, cores,

and SMs. By utilizing the performance simulation model of

the simulator, we simulate benchmark GPU applications and

collect a set of metrics quantifying the execution.

As the other approach, we execute the programs using

NVIDIA’s Nsight Compute tool [20]. Nsight Compute tool

(hereafter referred to as the profiler) profiles GPU applications

at different levels like SASS and PTX level, and provides

detailed hardware usage and performance metrics for the

corresponding GPU program. Different from the simulator, the

profiler requires real NVIDIA hardware.

To avoid the complexity in our dataset and increase the

data quality for our fault prediction model, we collect only the

metrics that can potentially represent the relationship between

the benchmark applications and the GPU hardware. For in-

stance, while the amount of load/store operations or streaming

multiprocessor efficiency for an application is included due

to their decisive characteristics, more specific metrics such

as DRAM row utilization rate are eliminated. Table I and

II present the metrics collected from the simulator and the

profiler, respectively. Since the simulator and the profiler serve

different purposes, it is not expected to collect exactly the

same metrics from them. While the simulator mostly reports

performance metrics, the profiler generates hardware usage

and performance metrics statistically. However, some of the

metrics such as IPC, the achieved occupancy in the SMs,

and the total number of instructions executed for a kernel

are common for both of them. Since they represent different

executions, we consider the set of metrics separately, and build

different prediction models for each set.

TABLE I
THE METRICS COLLECTED FROM THE SIMULATOR.

Performance Metric Description
Load Instruction # of load instructions
Store Instruction # of store instructions
Param Mem Instruction # of parameter memory instructions
Total Instruction Total instructions for corresponding kernel
IPC Instruction per cycle
Sim Rate Simulation rate (total simulation per wall

time)
Global Mem Read Total global memory read
Global Mem Write Total global memory write
Warp Occupancy Average warp occupancy in the SMs
Control Flow Inst Inten-
sity

# of control flow instructions per total in-
struction amount in ptx code

Data Mov Inst Intensity # of data movement instructions per total
instruction amount in ptx code

Float Point Inst Intensity # of floating point instructions per total
instruction amount in ptx code

Integer Arithmetic Inst In-
tensity

# of integer arithmetic instructions per total
instruction amount in ptx code

Logic Inst Intensity # of logical instructions per total instruction
amount in ptx code

Load Inst Intensity # of load instructions per total instruction
amount in ptx code

Predicate Inst Intensity # of predicate instructions per total instruc-
tion amount in ptx code

C. Feature Selection

To capture the significant metrics and potentially increase

the prediction success rates of our prediction model, we

investigate the correlations between the fault rates and the

metrics. We use Spearman and Pearson methods to describe

the correlation. Spearman correlation method describes the

monotonic relationship between the features and the fault rates

without considering if the relationship is linear or not. The

results are scaled in the range [-1, 1], where the closeness to -1

and 1 describes a high relation between those two parameters.

Spearman’s rank correlation coefficient can be computed as

follows:

ρs = 1−
∑n

i=1 d
2
i

n3 − n

where d is the difference between two rankings and n is the

number of observations.

Pearson’s correlation describes a linear relationship of the

two inputs, and the results are scaled in between [-1, 1]
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TABLE II
THE METRICS COLLECTED FROM THE PROFILER.

Performance Metric Description
SOL SM SM throughput
SOL MEM Compute memory pipeline throughput
SOL L1 Tex Cache L1 texture memory throughput
SOL L2 Cache L2 cache throughput
SOL DRAM GPU DRAM throughput
Duration Total duration in msec
Elapsed Cycle # of cycles where GPU is active
IPC # of issued warp instructions per cycle
SM Busy SM core instruction throughput calculated

as percentage
Mem Throughput # of byte accessed in DRAM (Gbyte/sec)
L1 Tex Hit Rate # of sector hits per sector
L2 Hit Rate Proportion of L2 sector lookups that hits
Mem Busy Throughput of internal activity within

caches and DRAM
Max Band Throughput of interconnects between SMs,

caches and DRAM
Active Warp Per Sch # of active warps per scheduler
Warp Cyc Inst Average # of cycles each warp is resident

per instruction issued
Executed Inst # of warp instructions executed
Reg Per Thread Launched register per thread
Achieved Occupancy Achieved occupancy in percentage
Achieved Active Warp Achieved active warps per SM

as in Spearman’s. The closeness to -1 or 1 describes that

those two metrics are correlated, while closeness to 0 reveals

the dissimilarity between those metrics. Pearson correlation

coefficient can be computed as follows:

ρp =
E[(X − μX)(Y − μY )]

σXσY

where E is the expectation, σ is the standard deviation, and μ
is the mean.

Figure 3 and Figure 4 present the correlation results for

the simulator and the profiler, respectively. The number of

streaming multiprocessors (SMs) in GPUs, the number of

cores in those SMs, the DRAM efficiency in terms of utilizing

memory coalescing, the memory bandwidth, the hit/miss rates

of L1/L2 caches, and the warp occupancy on those SMs are

the metrics that can be used to characterize the relationship

between a CUDA application and the GPU hardware. For

example, Active Warp Per Sch metric describes the active

warp amount per scheduler. As demonstrated in Figure 4,

it results in larger correlation values for Spearman method

(0.24 for SDC, 0.19 for crash, 0.34 for masked) than for

Pearson method (-0.17 for SDC, 0.18 for crash, -0.025 for

masked). The amount of load/store instructions is crucial since

the faults can be masked due to the store operations. The

corresponding correlation results are -0.45 for load and -

0.4 for store instructions with Spearman method. The warp

occupancy, which describes the efficiency of the cores on the

SMs, is another important feature in terms of describing the

relationship between the faults and the metrics. For the soft

errors injected into registers, the register amount per thread

is another significant feature. Those registers can be used

for indexing memory locations or temporal local registers,

and the faults can be masked or affect the output depending

on the register’s mission in a program. While the Spearman

correlation results between the number of registers per thread

and faults are 0.072 for SDC, 0.32 for crash and -0.33 for

masked, Pearson Correlation results are 0.18 for SDC, 0.35

for crash and -0.39 for masked. In addition, there are other

selected features obtained by classifying instructions as data

movement and control flow instructions, and scaling them

according to their intensities. The intensities are calculated by

classifying PTX instructions with the corresponding opcodes

specified in [21]. As an example, Predicate Inst Intensity met-

ric results in larger values for both Spearman (-0.38 for SDC,

-0.16 for crash, 0.42 for masked) and Pearson Correlation (-

0.38 for SDC, -0.035 for crash, 0.61 for masked) methods.

The instruction intensity metrics in Table I also have a high

correlation with the fault rates compared to the other metrics.

Fig. 3. The upper triangle shows Pearson correlation results, while the lower
triangle shows the Spearman correlation results between the simulator metrics
and the fault rates.

Fig. 4. The upper triangle shows Pearson correlation results, while the lower
triangle shows the Spearman correlation results between the profiler metrics
and the fault rates.

We determine the lowest correlation limit as 0.2 intuitively

and select the features having the correlation values (shown
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TABLE III
SELECTED FEATURES FROM THE COLLECTED METRICS.

For SDC For Crash For Masked
From the simulator

Param Mem Instruc-
tion

Load Instruction Load Instruction

IPC Store Instruction Store Instruction
Sim Rate Param Mem Instruc-

tion
Total Instruction

Data Mov Inst Inten-
sity

Total Instruction Global Mem Read

Float Point Inst Inten-
sity

Global Mem Read Global Mem Write

Logical Inst Intensity Global Mem Write Warp Occupancy
Load Inst Intensity BW Utilization Float Point Inst Inten-

sity
Predicate Inst Inten-
sity

Warp Occupancy Integer Arithmetic
Inst Intensity

Control Flow Inst In-
tensity

Logical Inst Intensity

Data Mov Inst Inten-
sity

Predicate Inst Inten-
sity

Integer Arithmetic
Inst Intensity
Load Inst Intensity

From the profiler
SOL DRAM SOL SM SOL SM
IPC SOL MEM SOL MEM
Active Warp Per Sch SOL L1 Tex Cache SOL L1 Tex Cache
Warp Cyc Inst SOL L2 Cache SOL L2 Cache
Reg Per Thread SOL DRAM L2 Hit Rate
Achieved Occupancy Mem Throughput Max Band
Achieved Active
Warp

L2 Hit Rate Active Warp Per Sch

Mem Busy Reg Per Thread
Warp Cyc Inst Achieved Occupancy
Reg Per Thread Achieved Active

Warp

in Figure 3 and Figure 4) higher than 0.2 with any of the

fault type. Table III presents our selected features for both the

simulator and the profiler.

D. Prediction Model Evaluation

In this work, we aim to predict the soft error vulnerabilities

of the GPGPU applications. Since we have distinct feature and

fault rate values per each GPU kernel, where some of those

kernels may belong to the same GPU program, we employ

kernels as our data samples. Scaling down the analysis from

the GPU program to the kernel level provides a more detailed

study opportunity to observe the possible scenarios and the

reasons for the occurrence of the faults. We utilize regression

and classification approaches for the fault prediction task.

In the regression approach, we apply the regression al-

gorithms to predict all fault rates with the help of the se-

lected features. Specifically, we use Random Forest (RF),

Support Vector Machine (SVM), and Gradient Boosting (GB)

algorithms. RF benefits from the multiple decision trees by

selecting more accurate ones resultant from the training set.

SVM starts with a curve type such as linear or parabolic, and

a certain amount of error range, called epsilon. Then, it tries

to fit the pre-specified curve with respect to the training set by

calculating errors such that the absolute value of the difference

between the expected fault rate and the actual fault rate is

lower than the epsilon value. GB builds an additive curve

model in a forward stage-wise fashion such that it allows for

the optimization of arbitrary differentiable loss functions as

in deep neural network algorithms. In each stage, a regression

tree is fitted on the negative gradient of the given loss function,

and the resultant stable curve is used for the prediction tests

of the remaining samples of the dataset.

We build 24 prediction models for each fault type (i.e., SDC,

masked, and crash). Specifically, we apply three algorithms,

with four different hyper-parameter configurations, with all the

features and only the selected features. We utilize the accuracy

results calculated according to the following formula:

(1− |errorpredicted − errorobserved|
errorobserved

) ∗ 100

Even if we can reach reliable accurate prediction rates for

the masked fault rates, which are in the range of [0.682, 0.939],

we cannot observe similar accuracy results with the regression

methods for the crash and the SDC rates, which are in the

range of [0.012, 0.263] and [0.008, 0.173], respectively. Since

the masked fault rates are quite large values compared to the

SDC and the crash rates, the little oscillations around the fitted

values for the test samples are acceptable. However, the similar

small deviations around the fitted values are not acceptable for

the SDC and the crash rates because the small deviations result

in larger prediction errors. Unlike the regression approach

for predicting masked fault rates, we use the classification

approach to predict the SDC and crash rates.

For the classification approach, similar to the previous work

[11], we define different classes by considering the SDC and

crash rates, and predict the class of each kernel function in

our evaluation. Specifically, in the two-class model for SDC

prediction, we define two different classes by considering the

SDC values of the target kernel functions. For example, the

kernel functions with SDC rates between [0.010, 0.050] and

[0.051, 0.200] are classified as Not Vulnerable (with lower

SDC rates) and Vulnerable (with higher SDC rates), respec-

tively. Accordingly, we can predict whether the functions are

vulnerable or not vulnerable to soft errors. By specifying the

threshold values based on the requirements of the application

domain, one can build models for different ranges. In our

evaluation, we create two different models by dividing our

dataset into two and three classes such that each class has

nearly the same amount of data.

In addition to RF and GB algorithms, we utilize an ensemble

classification model, which is configured by cascading a

standard scaler (SS) and Stochastic Gradient Descent (SGD)

classifier. Our purpose is to investigate the effect of the scaled

features on the classification success. SS transforms the given

dataset such that its distribution has the mean value of zero

and the standard deviation of one. SGD algorithm calculates

the gradient loss estimated for each sample, and the algorithm

parameters are updated along with the learning rate. Moreover,

there are L1 and L2 regularizations used in the SGD algorithm

to disturb algorithm parameters and prevent overfitting. For our

classification model evaluation, we use the accuracy metric,

which is simply the rate of correct classifications. Additionally,

we utilize precision, recall, and F-score metrics. Precision
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is the percentage of the relevant samples found among the

recovered instances, whereas recall is the percentage of the

relevant instances found. Hence, both precision and recall are

based on relevance. F-score is the harmonic mean of precision

and recall used for test accuracy results. The formula for each

term is as follows:

precision =
tp

tp+ fp
recall =

tp

tp+ fn

Fscore = 2 ∗ precision ∗ recall
precision+ recall

where tp stands for true positive, fp stands for false positive,

fn stands for false negative.

Since our dataset consists of 14 GPU applications created

with 26 different GPU kernels, we prefer to use the K-

fold cross-validation method for the prediction work. In this

method, training model parameters are obtained with K-1

amount of GPU kernels, and the remaining kernel is used

to test for prediction. In our study, K is equal to 24 for the

experiments carried out on GPGPU-Sim environment, while

K is equal to 26 for the experiments on Nsight Compute tool.

IV. EXPERIMENTAL STUDY

In this section, we explain the experimental setup details

and the results of our experiments.

A. Experimental Setup

We select twelve CUDA applications from Polybench

[22] benchmark suite including 2DConvolution, 3DConvolu-

tion, 3mm, Atax, Bicg, Corr, Covar, Fdtd-2D, Gramschmidt,

Gemm, Gesummv, Mvt. For our prediction framework, we

perform fault injection experiments by targeting each kernel

function in those programs and collect the metrics for the

kernel functions separately.

We run the fault injection experiments in an Intel-based

workstation with an NVIDIA Quadro P4000 GPU. We use

1000 fault injections per each kernel function by using a

statistical approach [23] with the confidence level of 95%

and an error margin of 3%. We run the target programs for

our profiler-based metric collection in the same environment

with NVIDIA’s Nsight Compute tool, version 1.0.0. For the

simulator part, we execute the same programs in GPGPU-Sim

simulator, version 4.0. We configure Quadro P4000 device

based on the configuration provided in the simulator by

specifying hardware parameters such as SM amount, warp

scheduler, and DRAM bandwidth. Then, we collect the men-

tioned parameters for this configuration shared in our Github

repository 1.

As mentioned in Section III, we employ three different

machine learning algorithms for the regression (SVM, RF and

GB) and the classification (ensemble, RF and GB) experi-

ments, where each algorithm has four different configurations

with changing hyper-parameters. We utilize the algorithms

1https://github.com/topcuburak/FaultPredictionOnGPGPUs

implemented in Sci-kit library [24]. The learning rates used

for the GB regression algorithm are 0.001, 0.01, 0.1 and

0.25. For the RF regression algorithm, we configure the effect

of randomness as 20 and 50, the number of estimators as

100, 1000 and 10000 and keep other parameters as default.

For the SVM regression, we assign the kernel function as

polynomial curves with two and three degrees, sigmoid curve

and radial curve. For the classification, the maximum depth

of trees is two, the total iteration amount is 1000 for each

algorithm. In addition, the epsilon error is 0.001 and the

number of parallel workers is 20. With those hyper-parameters,

we evaluate prediction models for GB, RF and ensemble

learning classification algorithms.

B. Experimental Results

1) Feature Selection: After collecting the hardware perfor-

mance metrics from both the simulator and the profiler, we

compute Spearman and Pearson correlation coefficient values

to understand which features affect the fault rates of the target

code. As we explain the detailed correlation results among all

the values including the features and the fault rates in Section

III-C, in this section, we focus only on the correlation results

between the features and the fault rates including masked

faults, crash, and SDC. Figure 5 and 6 present the Spearman

Fig. 5. Spearman and Pearson correlation results between the simulator
features and the fault rates.

and Pearson correlation results between the faults and the

metrics, respectively. In line with those correlation results,

we select the features as shown in Table III from both the

simulator and the profiler to eliminate irrelevant features and

reach out more accurate prediction rates.

2) Regression Results: As mentioned in Section III-D,

we use the regression model to predict the masked fault

rates. Table IV shows the accuracy results obtained by the

regression algorithms, based on the simulator and the profiler

metrics. While all ML algorithms yield prediction accuracy

values that are larger than 90%, GB algorithm results in the

highest prediction accuracy that is 96.59%. We observe that

the simulator results are better than the profiler results except

for one case (SVM with selected features). Since the accuracy

values are not significantly different for the simulator and
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Fig. 6. Spearman and Pearson correlation results between the profiler features
and the fault rates.

the profiler, deciding on the platform to be used for metric

collection is not reliable at this moment.

TABLE IV
REGRESSION ACCURACY RESULTS FOR MASKED FAULTS ON EACH

MACHINE LEARNING ALGORITHM.

The simulator metrics The profiler metrics
Algorithm All Selected All Selected
RF 96.127 96.209 95.209 95.509
GB 96.463 96.592 95.671 95.812
SVM 92.111 92.105 91.747 94.814

3) Classification Results: For the SDC and crash rate

predictions, instead of predicting the absolute rates, we build

classification models by defining the problem as classifying the

kernel functions according to their SDC and crash rates. We

present our results for both 2-class and 3-class model, where

we define different classes by considering the fault rates of

the kernel functions. Besides the prediction accuracy values

considering all class predictions, we include precision, recall,

and F-score values with respect to the prediction of the class

with the highest rates. Since we believe that the predicting a

vulnerable function (with higher SDC or crash rate) as not

vulnerable is more problematic than the case where the model

tells more vulnerable for a function with lower vulnerability,

we choose to evaluate the precision/recall values for the first

case.

Table V and Table VI present our 2-class and 3-class

evaluations, respectively. Since we observe the similar or

higher accuracy results by using the all the features and the

selected features, we only include the results with the selected

features (given in Table III), and omit the values obtained from

the experiments where all the features are used for training.

The maximum classification accuracy achievable in 2-class

SDC prediction experiments is 82.6%, and we observe this

rate by using the simulator metrics and the GB algorithm.

Similarly, the GB algorithm using the simulator metrics yield

the highest accuracy values for crash conditions. While we

achieve 80.0% classification accuracy with the GB algorithm

using the profiler metrics, which is the highest accuracy rate in

3-class SDC prediction experiments, the ensemble algorithm

trained with the simulator metrics yield similar accuracy value

(78.3%) and perfect precision/recall values. We can figure out

that the algorithms are able to predict SDC and crash condi-

tions more accurately with the simulator metrics compared to

the profiler. The implicit reason behind this is that the profiler

provides statistical metrics for the program’s execution on the

hardware and does not provide any explicit metrics describing

the instruction intensities of the applications. Therefore, as

we use the metrics related to the execution of any GPU

application in hardware, we can say that we move away

from its relationship with fault injection that injects faults

onto specific locations on the hardware such as registers or

memory locations and observes the fault effects. However, the

simulator metrics are more representative for the application’s

structure such that they characterize application’s behaviour

by the instruction intensities in addition to the hardware usage

metrics. Although the profiler seems to provide those metrics

through the cache hit/miss rates implicitly, the register usage

per thread, row utilization and memory coalescing for DRAM,

there are many dependent configurations that determine these

metrics without the applications behaviour such as the lim-

itation on the hardware resources. Furthermore, our fault

injection experiments target the registers for our benchmark

applications. Thus, rather than other hardware metrics in the

GPU, the application’s use of registers and what it uses these

registers (i.e pointing for memory locations) is more beneficial

for predicting fault rates as confirmed by our experimental

results.

While the classification accuracy achieved in the 2-class

classification of SDCs and crashes are 82.6% and 87.0%, the

corresponding values for 3-class classification are 80.0% and

60.9%, respectively. Furthermore, the GB algorithm results

in higher accuracy values in 2-class case, while the RF and

ensemble algorithms yield more successful results in 3-class

evaluation with relatively lower accuracy values. We can see

that GB algorithm is able to maintain successful results due

to its ability to deal with complex datasets [25].

The classification results reveal that we can utilize the

classifiers for vulnerability prediction of GPGPU programs

or kernel functions. When we formulate the problem as a

classification problem to obtain the vulnerability level of the

target program, we can predict in which range we expect to

see SDC or crash conditions. This evaluation enables us to

understand how vulnerable the program is, even if we are not

able to predict the absolute SDC or crash rates. Based on the

classification outcome, we can decide whether to perform any

fault tolerance techniques.

V. CONCLUSION

To conclude, we try to predict occurrence rates of SDCs,

crashes and masked faults with the help of the simulator and

the profiler metrics. Since SDCs and crashes are observed

dramatically less compared to the masked faults, we use a clas-

sification method to determine the error vulnerable conditions

instead of the regression approach. For both the regression

and the classification approaches, the experiments with the
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TABLE V
CLASSIFICATION RESULTS FOR 2-CLASS EVALUATION.

The simulator metrics The profiler metrics
Algorithm Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

RF 66.7 50.0 57.1 73.9 50.0 40.0 44.4 60.0
SDC GB 75.0 75.0 75.0 82.6 54.5 60.0 57.1 64.0

SS+SGD 50.0 50.0 50.0 56.5 100.0 50.0 66.7 60.0

RF 81.2 86.7 83.9 78.3 77.8 82.4 80.0 72.0
Crash GB 87.5 93.3 90.3 87.0 68.4 76.5 72.2 60.0

SS+SGD 68.8 73.3 71.0 69.6 75.0 70.6 72.7 68.0

TABLE VI
CLASSIFICATION RESULTS FOR 3-CLASS EVALUATION.

The simulator metrics The profiler metrics
Algorithm Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

RF 50.0 25.0 33.3 60.9 x x x 68.0
SDC GB 75.0 75.0 75.0 69.6 100.0 75.0 85.8 80.0

SS+SGD 100.0 100.0 100.0 78.3 33.3 25.0 28.7 60.0

RF 69.2 81.8 75.0 60.9 58.3 58.3 58.3 44.0
Crash GB 72.7 72.7 72.7 52.2 63.6 58.3 60.9 48.0

SS+SGD 50.0 45.5 47.6 34.8 55.6 41.7 47.6 48.0

simulator metrics result in more reliable prediction accuracy

results compared to the profiler metrics. Furthermore, we share

the accuracy quantities such as precision and recall scores for

the largest vulnerable fault classes of SDCs and crashes. This

work can be expanded such that fault injection experiments can

be enhanced to inject faults into the different hardware regions

in different physical condition such as space condition. In this

way, vendors generate their GPUs with different precautions

by depending on the usage conditions.
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119E011.

REFERENCES

[1] T. M. Aamodt, W. W. L. Fung, T. G. Rogers, and M. Martonosi, General-
Purpose Graphics Processor Architecture, 2018.

[2] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for gpgpu reliability,” in Workshop on General Purpose
Processing on Graphics Processing Units, 2009.

[3] S. Mittal and J. S. Vetter, “A survey of techniques for modeling and
improving reliability of computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 4, pp. 1226–1238, 2016.

[4] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W.
Keckler, “Optimizing software-directed instruction replication for gpu
error detection,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, ser. SC ’18,
2018.

[5] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “A systematic
methodology for evaluating the error resilience of gpgpu applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 12,
pp. 3397–3411, 2016.

[6] “Nvbitfi: An architecture-level fault injection tool for gpu
application resilience evaluations,” 2020. [Online]. Available:
https://github.com/NVlabs/nvbitfi

[7] L. Guo, D. Li, and I. Laguna, “Paris: Predicting application resilience
using machine learning,” Journal of Parallel and Distributed Computing,
vol. 152, pp. 111–124, 2021.

[8] D. Oliveira, F. B. Moreira, P. Rech, and P. Navaux, “Predicting the
reliability behavior of hpc applications,” in International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
2018.

[9] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson, “Ipas:
Intelligent protection against silent output corruption in scientific appli-
cations,” in IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2016.

[10] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: A
model for predicting the sdc proneness of an application for configurable
protection,” in International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2014.
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