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Abstract. A vortex formed in the superfluid state of a Bose-Einstein condensate may exhibit
superradiance à la blackhole for radially propagating acoustic fluctuations. The analogy is
usually based on the so-called draining bathtub model of the vortex, in which an event horizon
and ergosphere emerges when the radial velocity of the superfluid exceeds the propagation speed
of sound in the condensate. The acoustic fluctuations mimic a massless scalar field in the curved
Lorentzian space-time of the vortex and are governed by the Klein-Gordon wave equation. One
common main approximation is the constant background density of the superfluid even in the
presence of the vortex. This sets a constant relativistic sound speed. However, the vortex state
solution of the Gross-Pitaevskii equation clearly shows that both the density and the speed of
sound vary radially near the vortex core, where the event horizon and thus the superradiance will
take place. What changes would this complex interdependence bring to the formulation and to
the outcomes of the superradiance based on constant density approximation? Here, we recount
this question posed under the guidance of Prof. Tekin Dereli and present recent results. We
show that the self-consistent density modifies the amplification dynamics near the event horizon
significantly, thereby altering the temporal and spectral fingerprint of the superradiance of the
vortex.

1. Introduction

The superfluid Bose-Einstein condensates demonstrated great potential to investigate physical
phenomena arising from black-holes analogously in the laboratory environment [1, 2, 3, 4].
The similarity of the formulation for the propagation of electromagnetic waves in gravitational
fields and for the acoustic waves in moving fluids provides a mapping of the dynamics [5].
The experimental realization of vortex states in rotating trapped atomic BECs [6, 7], brought
the acoustic black-hole analogy into the BEC superfluid [8, 2]. The acoustic superradiance and
even the Penrose process in both BEC superfluids and classical fluids have been suggested in the
literature [9, 10, 11], and quickly gained momentum as an active research subject. Eventually, an
acoustic black hole in a needle-shaped BEC of 87Rb is experimentally demonstrated and recently
spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from
an analogue black hole in an atomic BEC is reported [12, 13, 14].

Theoretical/numerical studies concerning acoustic superradiance mostly investigated linear
acoustic perturbations superimposed on a constant background density of the superfluid [9,
11, 15, 16, 17]. On one hand, the constant background density approximation (const-bg-dens)
combined with the draining bathtub model (DBT) [18], elegantly demonstrates the acoustic
superradiance. On the other hand, the BEC theory indicates that the self-consistent background
density profile of the superfluid (self-bg-dens) in the vicinity of the vortex is not constant [19].
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This begs the question how good the const-bg-dens approximation captures the superradiance
dynamics. Here, we present a comparative numerical study of the acoustic superradiance in
the const-bg-dens and in the self-bg-dens models to address this question. First and foremost,
the self-bg-dens formulation introduces a radially varying relativistic speed near the vortex, as
opposed to it being a constant. This fact changes the acoustic black-hole portrait entirely. In
the absence of a constant relativistic speed, scale-independence is lost. Indeed, the formulation
reveals interdependencies among the rotating vortex parameters and the black-hole parameters,
that do not appear under the const-bg-dens approximation. For multi-quantized vortex states,
this would imply further complications as the self-bg-dens changes with the vortex quantization
number. We should however note that, at present, the stability and experimental realization of
multiquantized vortices is challenging and still under progress.

There are two shortcomings of the present work we should mention at the onset, and point
the reader to the backing literature where available: (1) The dispersion of acoustic perturbations
is not included, although they are inherent. We can probably get away (but not too far!) by
arguing that it restricts the applicability of the model to weak-dispersive systems. A recent
study [20] investigated acoustic superradiance with Bogoliubov dispersion and with the const-
bg-dens approximation and concluded the following: (i) For weak dissipations the superradiance
occurs at all frequencies of the acoustic fluctuations below the angular frequency of the vortex.
This condition is the same as in the const-bg-dens and self-bg-dens cases. (ii) For strong
dispersion, the superradiance may cease to exist below a critical rotation frequency of the vortex.
We can speculate that this condition would emerge similarly in the present work when dispersion
is included. (2) The BEC superfluid is assumed to be unconfined, which is not the case under
experimental conditions. Again, one may assume that the variation of the confinement potential
within the characteristic length scales of the acoustic scaterring from the vortex is negligible,
and that the boundaries of the confinement are sufficiently far away from the vortex to interfere.

With this setting, the rest of the paper is organized as follows: In section 2 we recapitulate the
vortex state formulation of the BEC superfluid. This is followed by the Klein-Gordon equation
for the propagation of acoustic linear perturbations as section 3. The numerical implementation
is described in section 4 and the results are given in section 5. Last section concludes the study.

2. The vortex state of an unconfined BEC

The evolution of the wavefunction of the bosons is governed by the Gross-Pitaevskii equation

i~
∂Ψ(x, t)

∂t
=

(

− ~
2

2m
∇2 + Vext + U0 |Ψ|2

)

Ψ(x, t) (1)

where Vext is the external confining potential (set to zero in this study) and VH = 4aπ~2

m |Ψ|2 ≡
U0 |Ψ|2 is the repulsive Hartree potential, with a scattering length, a. Steady state solutions

can be expressed as Ψ(x, t) = ψ(x)e−iµt/~, where µ = ~
2

2mξ2
is the chemical potential expressed

in terms of the healing length ξ =
√

~2

2ρ∞mU0
. This is a characteristic length scale in which the

condensate density tends to its bulk value ρ∞ = |ψ(r → ∞)|2.

2.1. Density profile of the vortex

For the vortex state, we seek a steady state axisymmetric solution of Eq.1 with the spatial part
expressed in polar coordinates in the form

ψ(x) = fq(r)e
iqθ, (2)

Here, fq(r) is the radial profile and the integer q denotes the winding (quantization) number
of the vortex. Introducing dimensionless radial coordinate r̃ = r/ξ and the scaled function
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χq = fq/
√
ρ∞ Eq.1 yields

−1

r̃

d

dr̃

(

r̃
dχq

dr̃

)

+
q2χq

r̃2
+ χ3

q − χq = 0. (3)

Equation 3 is subject to the boundary conditions χq(0) = 0, χq(∞) = 1.
In the absence of the confinement of the condensate, multiquantized (q > 1) vortex states

are unstable and decay into single quantized vortices[21, 22]. Experimentally obtained cigar-
shaped condensates did not exhibit multiquantized vortices, either[23, 24]. Thus, while there
has been theoretical[25] and experimental[26] effort to realize multiquantized vortices in different
confinement potentials, the dynamical stability is an issue. The present work will consider the
single-quantized (q = 1) case only.

The density profile dictated by Eq.3 has no closed form solution. In order to proceed with the
analytical formulation of the metric and the solution of the Klein-Gordon equation, one has to
resort to an approximate functional form. These were reported in the literature [27, 28, 29, 30],
from which we pick the following functional form[29].

χ1 =

√

r̃2

2 + r̃2
, (4)

It should be stressed that this approximation underlies the entire subsequent formulation and its
results. Figure1 compares the numerical solution of Eq.3 with the function4. The background

0 2 4 6 8 10

r/

0

0.2

0.4

0.6

0.8

1

Figure 1: The numerical (solid) and approximate functional form (dash-dotted) of the radial
wave function χ(r/ξ).

density profile of the vortex is then found from ρ(r) = |ψ(r, θ)|2

ρ0(r) = ρ∞
(r − r0)

2

(r − r0)2 + 2ξ2
(5)

where r0 is the vortex center. The propagation speed of sound in the BEC is defined by the
density c =

√

U0ρ/m and becomes

c(r) = c∞

√

(r − r0)2

(r − r0)2 + 2ξ2
, (6)

where c∞ = ~

m

√
4πaρ∞ denotes the bulk value for the speed of sound.

Equations 5 and 6 comprise the key elements in the formulation of the vortex as an acoustic
black hole. Their radial dependence becomes inherent in the superradiance dynamics.
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2.2. Velocity profile of the vortex

At the vortex axis, the velocity of the condensate becomes singular. The consequence is that
the circulation around a contour enclosing the vortex becomes nonzero and the velocity acquires
a tangential component, described by a winding number.

Θ =

∮

~υ · ~dl = 2πq
~

m
, q = ±1,±2... (7)

υφ̂ =
Θ

2πr
θ̂ ≡ B

r
θ̂. (8)

Since the continuity equation ∂ρ
∂t +∇ · (ρ~υ) = 0, must be satisfied, the radial component of the

velocity becomes

∇ · (ρ0~υ) = 0 ⇒ υr̂ = − A

ρ(r)r
(9)

where A is an empirical parameter to be set from experimental data (see section3.1). When
contrasted with the velocity components of the draining bathtub model with a constant
background density[31, 18], ~υ = −A

r r̂ +
B
r θ̂ it is evident that the density modifies the radial

velocity rather than being a mere scaling factor.

3. Acoustic Perturbations and the Klein-Gordon equation

For the superradiance, we consider small fluctuations superimposed on the background
wavefunction ψ = ψ0+ψ1 =

√
ρeiΦ. With the linearized fluctuations in the density ρ = ρ0 + ρ1,

and the phase Φ = Φ0 +Φ1, substituting into Eq.1 yields the following set of equations

∂ρ1
∂t

+
~

m
∇ · (ρ0∇Φ1) +∇ · (ρ1~υ) = 0, (10)

∂tΦ1 = −υ · ∇Φ1 − U0ρ1 +
~
2

2m
D2ρ1, (11)

The velocity is expressed in terms of a ”velocity potential” ~υ = (~/m)∇Φ. The last term in
Eq.11 is known as the quantum pressure term[27] given explicitly below

D2ρ1 =
1

2
√
ρ0

∇2
ρ1√
ρ0

− ρ1

2ρ
3/2
0

∇2√ρ0. (12)

In the case of constant background density, this term can be neglected at all spatial ranges
in comparison to other terms in Eq. 11, leading to the so-called hydrodynamic approximation.
However, as the self-consistent density profile decays to zero at the vortex core, this simplification
has to be justified in the vicinity of the event horizon. In the present study, we calculated and
compared the respective magnitudes of the leading term in the quantum pressure and the Hartree
potential U0ρ1 near the event horizon and verified its validity.

Equations 10 and 11 yield the Klein-Gordon equation for the propagation of phase
perturbations:

∂

∂t

[

ρ0
c2

(

∂Φ1

∂t
+ ~υ · ∇Φ1

])

−∇ · (ρ0∇Φ1) +∇ ·
[

ρ0
c2

(

∂Φ1

∂t
+ ~υ · ∇Φ1

)]

= 0. (13)

By employing the techniques discussed in Ref.s [15], [32], one can reduce the Klein-Gordon
equation into a set of coupled first-order partial differential equations. First, the following
functions are defined

Φ1 = φ1(t, r)e
imφeikz Π = π1(t, r)e

imφeikz Γ = γ1(t, r)e
imφeikz (14)
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where(k,m) denote the axial and azimuthal wave numbers. We take translational symmetry
along vortex axis (i.e k = 0) and single quantized vortex (m = 1). These functions are then
used to define the conjugate fields

Γ =
∂Φ1

∂xi
Π = −1

c

(

∂Φ1

∂t
− βiΓi

)

, (15)

where xi = (r, θ, z) denote the cylindrical coordinates and βi = (−υr,−υθ/r, 0) are the velocity
components. Finally, the radial parts of these functions satisfy the following set of coupled
first-order partial differential equations

∂φ1
∂t

= −cπ1 − υrγ1 −
imυθ
r

φ1 (16)

∂γ1
∂t

=− ∂c

∂r
π1 − c

∂π1
∂r

− ∂υr
∂r

γ1 − υr
∂γ1
∂r

− ∂υθ
∂r

im

r
φ1 +

imυθ
r2

φ1 −
imυθ
r

∂φ1
∂r

(17)

∂π1
∂t

=π1

(

−∂c
∂r

υr
c

− imυθ
r

− 1

r

∂(rυr)

∂r

)

− υr
∂π1
∂r

+
γ1
c

(

−c
2

r
− c2

ρ

∂ρ

∂r
+
υ2θ
r

+ υθ
∂υθ
∂r

)

− c
∂γ1
∂r

+
φ1
c

(

m2c2

r2
+ c2k2 − imυr

r

∂υθ
∂r

− imυrυθ
r2

)

(18)

The numerical part of the study given in Sec.4 involves solving this set of equations.

3.1. The Black Hole profile of the vortex

The Klein-Gordon equation given in Eq. 13 renders an axisymmetric space-time with the metric

ds2 =
ρ

c

[

−cdt2 + (dr − υrdt)
2 + (rdθ − υθdt)

2
]

. (19)

The off-diagonal elements in Eq. 19 can be reduced by the following coordinate transformation

dt = dt∗ − υr/
(

c2 − υ2r
)

dr, (20)

dθ = dθ∗ − υrυθ/
(

r
(

c2 − υ2r
))

dr, (21)

dr = dr∗, (22)

which yields,

ds2 =

[

(

υ2 − c2
)

dt2 +
c2

c2 − υ2r
dr2 + r2dθ2 + 2υθrdtdθ

]

. (23)

In the form above, the vanishing of the coefficient of dt2 defines the ergosphere radius, re whereas
the singularity of the metric determines the event horizon, rh, in accordance with the Kerr black
hole formulation in general relativity. In terms of the components of v given in Eq.s8, 9

υ2 − c2 = 0 ⇒ A

ρ∞c∞
− r4h

(

r2h + 2ξ2
)3/2

= 0 (24)
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υ2r − c2 = 0 ⇒ A2
(

r2e + 2ξ2
)2

ρ2
∞
r6e

+
B2

r2e
− c2

∞
r2e

r2e + 2ξ2
= 0 (25)

The coefficient A may be determined by setting the event horizon at unit healing length rh = ξ:

A =
ξρ∞c∞

33/2
B =

~

m
. (26)

This is because the vortex core size of cold-atom gases in experimental studies is estimated to
be of the order of healing length [33] (i.e. ∼ 100nm). Note that B follows from Eq.8. For
an experimental correspondence, Table 1 lists the parameters of a BEC of Rb-87 atoms taken
from Ref.s[19, 34] and the resulting black hole parameters for a vortex state. We note that re is
calculated as the only positive real root of Eq.25. Figure 2, shows the speed of sound and the

Table 1: The experimental (Ref.s [19, 34]) parameters of a BEC of Rb-87 atoms and the
calculated parameters of the black-hole vortex.

a m ρ∞ c∞ ξ rh re

5.77nm 1.44 × 10−25kg 1021m−3 6.2 × 10−3m/s 83nm ξ 1.84ξ

radial velocity of the condensate fluid near the vortex. Vertical dashed lines indicate the event
horizon and the ergosphere radii, respectively. Noteworthy is the decrease of the speed of sound
from the ergosphere boundary to the event horizon (roughly within one healing length range)
by more than 25%. This significant variation is expected to have an observable effect on the
superradiance dynamics.

0 0.5 1 1.5 2 2.5 3

r/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c(r)

r
e
 (ergosphere)

r
h
 (event horizon)

r

Figure 2: The speed of sound (Eq. 6), the radial velocity of the fluid (Eq. 9) along with the event
horizon (rh) and the ergoregion radius (re) calculated using the parameters given in Table 1.
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4. Numerical Method

The propagation of the acoustic perturbations can be obtained by integrating the Eq.s 16, 17, 18.
We employ Matlab’s Partial Differential Equation Toolbox. The numerical calculations further
implement the so-called ”excision technique”[15, 35] to deal with the propagation through the
event horizon and beyond numerically. From the calculated functions Π,Φ and Γ, we construct
outgoing (Π + Φ) and incoming (Π − Φ) fields along the null ray. At large distances purely
outgoing wave is implemented such that Γ = φ. The spatiotemporal computational domain is
defined as 0.5 < r̃ < 110, 0 < t̃ < 110, where r̃ = r/ξ, t̃ = tc∞/ξ are dimensionless coordinates.
The initial acoustic perturbation is defined in Eq. 14 as an axisymmetric, radially incoming
Gaussian wave centered at r0, with a width b as follows

φ1(0, r) = Nexp
[

−(r − r0 + c(r)t)2/b2 − iω(r − r0 + c(r)t)/c(r)
]

. (27)

We set r0 = 50ξ and b = 10ξ. The initial π1 and γ1 are calculated by Eq.15. The main quantity
we are interested in is the temporal variation of the energy of propagating acoustic perturbations,

E(t) =

∫

d2r
1

2
Mρ |~υ|2 = (~2/2M)

∫

2π

0

dθ

∫ rmax

ξ
ρ(r)(∇Φ)2rdr, (28)

with the scaled velocity

~̃υ = − 1

3
√
3

(

1

r̃
+

2

r̃3

)

r̂ +

√
2

r̃
θ̂. (29)

5. Results: Temporal and spectral features of superradiance

We begin with the demonstration of the superradiance by contrasting the scattering of acoustic
perturbations (density fluctuations ρ1) from the event horizon of a vortex with (a) m = 1 and
(b) m = 0 v(right panel) in Fig. 3 under const-bg-dens approximation. The self-bg-dens case is
not shown as it is very similar to the const-bg-dens case in this plot type. At t = 100 ∗ c/a (the

(a) (b)

Figure 3: Propagation of the density fluctuations (ρ1) in the scaled r − t plane for (a) the
superradiant (m = 1) and (b) the subradiant [m = 0)) settings of the vortex. The perturbation
interacts with the event horizon between t ∗ c/a = 40 and 60.

upper edge of the figures) the reflected wave returns to the launch point at r0 = 50ξ. There is
a clear difference between the superradiant and subradiant reflected profiles.
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For a better representation in the self-bg-dens case, the bulk-normalized background density
profile (Eq. 5) without and with the acoustic fluctuations at t ∗ c/a = 50 superimposed are
plotted in Fig. 4. For visibility, the profiles are cut out in an angular range and the profile with
fluctuations is shifted vertically. The event horizon located at ρ0 = 0.5 (see Fig. 3) remains just
below the plotted range. The fluctuations against the rapidly decaying background density near
the event horizon are hardly noticeable, but they are prominent near the ergosphere r/a ∼ 2.

Figure 4: The self-consistent background density profile without (bottom) and with (top)
superimposed density fluctuations near the vortex. The fluctuations are plotted at t ∗ c/a = 50
while interacting with the event horizon. The top plot is displaced by 0.1 upward to enhance
visibility.

Figure 5 is the main result of the paper. On the left, the variation of the relative energy (gain)
for the superradiant and subradiant cases under const-bg-dens approximation are compared. In
the subradiant case, the energy of the wave is completely absorbed by the vortex. The right
panel shows the energy gain for the const-bg-dens and self-bg-dens formulations. The prominent
difference is that the const-bg-dens results in an overshoot in the gain which then decreases as
the wave is outgoing, whereas the non-constant density model reaches monotonically to a final
gain value of the outgoing wave. In the self-bg-dens case, the fluctuations arrive slightly later,
since the sound speed decreases near the vortex. Both formulations predict a gain of about 40%.

Finally, we investigate the spectral behavior of the superradiance. The energy gain factors
achieved for acoustic fluctuations with different frequencies are plotted in Fig. 6, as obtained in
const-bg-dens and self-bg-dens cases, respectively. The fluctuation wave frequency is scaled by
the vortex rotation frequency, which is determined from ~υθ = ~Ω× ~r as

Ω =
B

r2h
= q

~

m

1

r2h
= q

√
2
c∞
ξ

(30)

The const-bg-dens and self-bg-dens profiles differ in the calculated superradiance mostly in the
intermediate range of the scaled frequency, where the non-constant density model yielding a



DERELI-FS-2021
Journal of Physics: Conference Series 2191 (2022) 012014

IOP Publishing
doi:10.1088/1742-6596/2191/1/012014

9

0 30 60 90 120
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a)

0 20 40 60 80 100
tc /

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

E
(t

)/
E

(t
=

0
)

(r) =  r2/(r2+2 2)

 =

(b)

Figure 5: [left] The energy gain for the superradiant (m = 1) (red) and the subradiant (m = 0)
(blue) settings of the vortex. The vertical dashed line is the time the wave reaches the event
horizon. [right] The energy gain under constant background density (red) and self-consistent
background density (blue) formulations.
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Figure 6: Superradiance as a function of the frequency of the incident acoustic perturbative
wave, normalized by the vortex rotation frequency, and calculated with the constant density
(circles) and self-consistent density (dots) background density profiles. Maximum gain for each
case is marked by a vertical line.

slightly higher (∼ 10%) gain. This is consistent with the result for single frequency shown in
Fig. ??. For low frequency perturbations, ω/Ω1 the difference decreases but remains finite.
Both models exhibit a superradiance profile biased towards the upper midrange with respective
maxima attained at ω̃ = 0.60 and ω̃ = 0.67.
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6. Conclusion

We performed the formulation of the acoustic superradiance with the self-consistent background
density model of the BEC vortex state. The resulting dynamics of superradiance is compared
with that of the constant background density approximation. The main conclusion is that
the self-consistent background density eliminates the overshoot behavior of the constant density
approximation in the superradiance, and provides an overall enhanced gain for the superradiance
effect for the single-quantized vortex state. Moreover, the self-consistent background density
formulation implies that multiquantized vortices each would have a different background density
profile and thus appear as a different black-hole, as the characteristic parameters (i.e. event
horizon, ergosphere) changes. The vortex rotation frequency, which can be set independently
as integer multiples of a fixed value in the constant density approximation, becomes an implicit
function of the background density profile and changes nontrivially for multiquantized vortices.
Admittedly, these implications may become relevant after the stability issues of multiquantized
vortex states are resolved experimentally. We conclude by indicating two directions in which the
present formulation may be advanced. The first one is to implement dispersion effects as it is
inherent to any wave propagation phenomenon. The second is to include confinement potentials
as the stability of multiquantized vortices may only become available in their presence.
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