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A B S T R A C T

The primary challenge of time-critical systems is to guarantee that a task completes its execution before
its deadline. In order to ensure compliance with timing requirements, it is necessary to analyze the timing
behavior of the overall software. Worst-Case Execution Time (WCET) represents the maximum amount of time
an individual software unit takes to execute and is used for scheduling analysis in safety-critical systems.
Recent studies focus on statistical approaches, which augments measurement-based timing analysis with
probabilistic confidence level by applying stochastic methods. Common approaches either utilize Extreme Value
Theory (EVT) for end-to-end measurements or convolution techniques for a group of program units to derive
probabilistic upper bounds for the program. The former method does not ensure path coverage while the
latter suffers from ignoring possible extreme cases. Furthermore, current state-of-the-art convolution methods
employed in a commercial WCET analysis tool overestimates the results because of using the assumption of
worst-case dependence between basic blocks. In this paper, we propose a hybrid probabilistic timing analysis
framework and modeling the program units with EVT to capture extreme cases and use Copulas to model
the dependency between the units to derive tighter distributional bounds in order to mitigate the effects of
co-monotonic assumptions.
. Introduction

The most distinguishing characteristic of safety-critical real-time
ystems is to give correct response within their strictly defined deadline.
n order to satisfy safety related requirements of these systems, timing
haracteristics of software units must be estimated to quantify safety
onfidence along with the system level requirements.

Recent advances in technology arose challenges in timing analysis.
erformance enhancing features of modern complex processors such as
ulti-cores, shared buses, pipelines, out-of-order execution, branch predic-

ion and caches made the execution time dependent to the execution
istory. These architectural improvements decrease the feasibility of
onventional static analysis techniques and cause jittery response times.
he variability in execution times makes statistical methods to be ap-
licable in WCET analysis. Statistical analysis provides WCET estimates
ith increased confidence without the necessity of full path coverage,

hus allowing us to obtain only a few measurements to estimate the
orst timing behavior of the system.

Convolution of probability distributions and Extreme Value Theory
EVT) are two main approaches in statistical timing analysis domain.
urrent state-of-the-art convolution approaches generate new paths
hat might be infeasible to reach in reality, which leads to overesti-
ation in the results. On the other hand, most of the studies in the
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literature applies EVT to end-to-end measurements of the analyzed
programs, which suffers from the path coverage problem during the
analysis runs.

The aim of this paper is to propose an enhanced hybrid probabilis-
tic timing analysis (HYPTA) framework for commercial off-the-shelf
(COTS) platforms. Static structural information is extracted from the
analyzed program by dividing it into functional blocks, which also
decreases the probe effect resulting from instrumentation of the source
code in basic block granularity. This structural information along with
the collected measurements are used to construct a probabilistic WCET
(pWCET) distribution by virtually generating new paths to upper bound
all possible execution scenarios.

Current state-of-the-art solutions either assume an independence
between the blocks or use a conservative convolution approach named
as biased convolution to upper bound all possible dependence types
between the blocks. However, neither of them reflects the real behavior
of the programs. In fact, it is possible to model the dependence between
the random variables by using Copulas. Copulas are joint probability
distribution functions that have uniform marginals. Hence, they allow
to simulate the joint behavior of the random variables by Monte-Carlo
simulation technique, which eases to derive the probability distribution
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Fig. 1. Measurement-Based Probabilistic Timing Analysis (MBPTA) notions.

of their sum. Furthermore, there are very limited studies for COTS
platforms in WCET domain.

In addition, each marginal of the 𝑛-dimensional probability distri-
bution is represented by a parametric continuous Extreme Value distri-
bution whenever possible. Since our proposed method divides the pro-
grams into functional blocks that tend to be multi-path sub-programs,
it is possible to model those functions with EVT, thus allowing us to
predict possible rare events based on its tail’s behavior.

The proposed HYPTA framework can also be considered as an
improvement over an existing popular commercial HYPTA solution
named as RapiTime by Rapita Inc., which implements a conservative
convolution mechanism [1]. Results of the case studies are compared
with the results of the tool and widely accepted independent assump-
tions. It can be observed from the results that our approach decreases
the overestimation by providing tighter bounds.

The remainder of the paper is organized as follows: Section 2
presents the background information and literature overview. The pro-
posed hybrid framework with EVT and Copulas is introduced and the
results of the case studies are given in Section 3. Section 4 concludes
the paper including a summary of this study.

2. Background information

Probabilistic timing analysis (PTA) methods have emerged in order
to mitigate some of the drawbacks of the existing solutions. Static
Probabilistic Timing Analysis (SPTA) techniques seek to reduce the
pessimism encountered due to having incomplete information about
an underlying platform by expressing some of its behaviors proba-
bilistically. Measurement-Based Probabilistic Timing Analysis (MBPTA)
on the other hand, seeks to scientifically reason about the worst case
events that are captured during the analysis phase by modeling the
execution time behavior of the program based on widely accepted sta-
tistical methods. Output of the MBPTA is not a single valued WCET, but
rather a probability distribution of the execution time profile of the pro-
gram that is guaranteed to upper bound all analysis time observations.
Those observations of course should upper bound operational execution
times for reliability. Fig. 1 distinguishes the difference between such
scenarios and presents fundamental notions of MBPTA.

MBPTA requires an analysis-time distribution (ATD) as input, which
should always upper bound the operation-time distribution (OTD).
Aiming to this purpose and to minimize the difference between the two
is referred as representativeness. Applicability of MBPTA methods also
require to represent the whole ATD with less number of samples, which
are referred as analysis-time samples (ATS). By using a computationally
affordable testing scheme and a relatively small set of samples (ATS),
pWCET distribution is calculated, which guarantees an upper bound to
both OTD and ATD.
2

2.1. Extreme value theory

Extreme Value Theory (EVT) is considered as the building block of
MBPTA [2], which is a branch of statistics that was designed to predict
unusual natural events such as extreme floods, tornado outbreaks and
earthquakes. These extreme events are modeled as probability distri-
butions and EVT deals with the extreme deviations from the median of
observations associated with the phenomena of interest. In line with [3]
and [4], a typical implementation of EVT is described step-by-step as
follows: (1) Applicability Evidence : identically distributed independent
(i.i.d) input requirement of EVT is checked to determine whether the
obtained samples are to be accepted or not, (2) Data Selection : Relevant
values in a data set that represent the tail of the distribution are selected
either by using Block Maxima (BM) or Peaks Over Threshold (PoT)
approaches [5], (3) Model Fitting : Depending on the data selection
mechanism, filtered values are either fit to a Generalized Extreme Value
Distribution (GEV) or Generalized Pareto Distribution (GPD), (4) Tail
Extension : Finally, by using the calculated parameters, the distribution
of the sample tail is found. Inverse cumulative distribution function
(ICDF) of the estimated probability distribution is then used to calculate
extreme values for the given exceedance probability. Taking 𝑝 as the
desired probability of exceedance (e.g. 10−10), 𝐼𝐶𝐷𝐹 (𝑝) = 𝑥 gives the
upper bound value with exceedance probability 𝑝.

The quality of the estimated distribution with EVT is a challenging
entity to assess. At their recent comprehensive survey about proba-
bilistic WCET analysis, Cazorla et al. state that no universal consensus
exists to date on this issue [6]. Since the whole process is a statistical
paradigm, it is reasonable to assess the reliability with some statistical
tests. Some works on WCET domain [7,8] consider the estimates ob-
tained from the EVT are reliable only if every hypothesis of the EVT
is verified. On the other hand, other approaches as in [9] propose to
use standard statistical tools such as Quantile–Quantile or Mean-Excess
plots to evaluate the reliability of the estimated distributions.

2.2. Copula theory

In statistics, copulas are used to model the dependence of sev-
eral random variables. A copula is basically a multivariate probability
distribution with uniform marginals.

Let 𝑋1 and 𝑋2 be two different random variables with their cumu-
lative distribution functions (cdfs) 𝐹1 and 𝐹2 defined as:

𝐹1(𝑥1) = 𝑃 [𝑋1 ≤ 𝑥1]

𝐹2(𝑥2) = 𝑃 [𝑋2 ≤ 𝑥2]

Let 𝐻 be the joint cumulative distribution function of 𝑋1 and 𝑋2,
defined as:

𝐻(𝑥1, 𝑥2) = 𝐹𝑋1 ,𝑋2
(𝑥1, 𝑥2) = 𝑃 [𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2]

Here, 𝐻 represents all aspects of the joint behavior of the random
variables, but it is hard to interpret the dependence structure out of 𝐻 .
Copulas make it possible to separate the dependence structure and the
behavior of the marginals described by 𝐹1(𝑥1) and 𝐹2(𝑥2). It is worth
noting that, dependence is different from correlation. Correlation is
only one type of dependence, which is a straight line between two
random variables.

Let 𝐼 represent the interval [0, 1]. A 𝑑-dimensional copula 𝐶 is a
cumulative distribution function on 𝐼𝑑 with uniform marginals with a
general notation

𝐶(𝐮) = 𝐶(𝑢1, 𝑢2,… , 𝑢𝑑 )

Sklar’s theorem is the most important result regarding copulas,
which describes the relationship between the joint distribution 𝐻 and
a copula 𝐶 [10].
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Let 𝐹 be a 𝑑-dimensional joint distribution function with marginals
𝐹1,… , 𝐹𝑑 . Then there exists a copula 𝐶 on 𝐼𝑑 such that, for all 𝑥1,… , 𝑥𝑑
in R = [−∞,∞],

𝐹 (𝑥1,… , 𝑥𝑑 ) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑑 (𝑥𝑑 ))

or

𝐶(𝑢1,… , 𝑢𝑑 ) = 𝐹 (𝐹1
(−1)(𝑢1),… , 𝐹𝑑

(−1)(𝑢𝑑 ))

where 𝐹1
(−1),… , 𝐹𝑑

(−1) represent the quasi-inverse of the marginal dis-
tribution functions.

2.3. Literature review

There are numerous research works related to measurement-based
timing analysis (MBTA). In this work we primarily focus on the proba-
bilistic variant of MBTA, which is surveyed excessively in recent papers
of Cazorla et al. [6] and Davis et al. [11]. MBPTA was initially studied
by Edgar and Burns [12]. In [13], the input of the program under test
is randomly generated, execution time samples are collected and then
modeled through Extreme Value distributions.

Hansen et al. [14] presented the use of Block Maxima method
to estimate the pWCET through Gumbel distribution of a PowerPC
platform with VxWorks RTOS. The estimated WCET values are then
validated by collecting additional millions of measurements. They have
shown that it is possible to safely predict the WCET values without the
need for large collection of samples.

The work of Cucu-Grosjean et al. [4] is considered as the basis for
MBPTA in the literature. They introduced the methodology of how to
apply EVT for both single-path and multi-path programs on a simulator
with random replacement cache. The authors point out that in order to
satisfy the i.i.d. requirement for multi-path programs, it is reasonable
to select the inputs randomly and group the observations sequentially.

Santinelli et al. [15] studies the effects of dependence between time
observations for EVT on an Intel Xeon platform without a randomized
cache or any type of bus. They experimentally evaluate that the exe-
cution time variability results from the underlying complex hardware
architecture and is random enough for EVT applicability.

Cazorla et al. [16] defined the general properties of MBPTA with
EVT for both time-deterministic and time-randomized platforms. The
authors suggest to randomize the underlying platform to increase the
confidence of the results as was studied later in [17]. However, they
also mention that it may be possible to derive WCET estimates on time-
deterministic platforms with EVT by randomly generating inputs for the
multi-path programs.

Silva et al. [3] studied the pWCET estimation by implementing
both GEV and Gumbel fitting methods. They used L-Moments approach
to estimate the parameters for GEV and MLE approach for Gumbel.
Observations are grouped with Block Maxima method. They collected
few samples (106) to estimate the low probability execution times
and tightness assessments are done by comparing the results with 108

samples that are taken from the system. Their method is later studied
empirically on an Intel platform with Linux operating system in [18].

Years of efforts performed by G. Bernat and his team are transferred
into a commercial tool as detailed in [19]. They initially developed
a scope-tree representation method to estimate the WCET of the pro-
grams under test by mitigating the effects of conventional syntax tree
representation [20]. Then, they introduced the state-of-the-art biased
convolution method to derive the WCET of the whole program out of
the observations of small blocks [1]. The development of pWCET tool
in [21] followed. They also examined the use of Copulas for estimating
an upper-bound on WCET [22]. This study forms the basis of our work.
Throughout the years, the initial pWCET tool is observed to evolve into
RapiTime WCET tool, which is widely used in the industry [23,24].
3

3. Hybrid Probabilistic Timing Analysis (HYPTA) with EVT and
copulas

3.1. Current state-of-the-art

There are very few studies in HYPTA domain to mention [25–27].
All of these studies aim at increasing the path coverage for MBPTA.
However, our main interest is on the RapiTime tool, which is developed
by Rapita Systems Ltd.

Authors of [6] defines the RapiTime as a hybrid MBTA solution
rather than hybrid MBPTA. They argue that the tool predicates the no-
tion of pWCET, but it does not apply a predictive model to estimate the
distribution. Thus, it should be considered much more as an SPTA with
measurements rather than MBPTA. However, Davis et al. [19] states
that the tool falls into the HYPTA category since it combines the static
structural properties of the program under test with measurements,
but its probabilistic approach is still questionable. Besides, one of the
developers of the tool states that they follow a frequentist approach
in order to determine the probability values of each measurement
sample [21].

Park and Shaw [28] defined a set of rules called as the timing schema
of the program in order to evaluate the WCET as a function of tree
nodes and Bernat et al. [22] presented a probabilistic version of it. Since
the execution time of the nodes are represented by random variables
𝑋𝑖, the problem reduces to the calculation of (𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛)
for sequential blocks. If it is assumed that 𝑋𝑖s are independent of
each other, then the standard convolution of the distributions give
the result easily. However, this assumption does not hold in reality
especially for perfect positively (comonotonic) or perfect negatively
(countercomonotonic) dependent cases.

Bernat et al. [22] in their study specifically aim to solve this
problem by using copulas. The study proposes that the supremal con-
volution with the assumption of comonotonicity between blocks results
in safe estimation for any type of dependence between them. Similar to
supremal convolution, they branded Biased Convolution technique [1],
which still relies on comonotonicity and used it in their tool RapiTime.

3.2. Open challenges for HYPTA

In one of their constituent papers [22], Bernat et al. state that
the only acceptable method is comonotonic convolution for any type
of dependence between basic blocks. They support this idea with
some experiments, but the degree of overestimation is not mentioned.
Actually the results in the paper do not seem to be overestimated
because of the test scenarios that only covers the comonotonic and
independent cases. However, for a countercomonotonic case (perfect
negative dependence), the assumption of comonotonicity would result
in a huge overestimation [1]. Consider the following program:

void f1(x) {
for(int i = 0; i < x; i++) {

//delay 1ms
}

}
void f2(x) {

for(int i = 0; i < 100 - x; i++) {
//delay 1ms

}
}
void testProgram() {

f1(x);
f2(x);

}

It is obvious that the functions 𝑓1 and 𝑓2 are negatively dependent
to each other meaning that when one of them executes for (𝑛) ms, the
other one should execute for (100− 𝑛) ms, which results in 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚
always executing for 100ms. RapiTime tries to estimate the WCET of
the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 function by calculating the following expression.

𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚) = 𝑊 (𝑓1) +𝑊 (𝑓2)
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Here, 𝑊 (𝑓1) and 𝑊 (𝑓2) are observed execution time distributions
that are represented by random variables 𝑓1 and 𝑓2. Sequential ad-
dition of the random variables with comonotonic convolution results
in:

𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚) =
(

𝑝1 .. 𝑝𝑛
2 .. 200

)

The resulting distribution claims that the WCET of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚
could be 200ms with a probability 𝑝𝑛 or alternatively it claims that there
could be an input 𝑥, which could lead the program through a worst-case
path where both 𝑓1 and 𝑓2 executes for 100ms. This assumption is far
from reality and causes 100% overestimation of the actual WCET.

The second problem is related to the construction of Execution-
Time Profiles (ETPs) for each basic block. The method is based on a
frequentist approach meaning that the frequency of observation of each
value is assigned as the probability of occurrence for each value. For
example, consider the execution time observations for block 𝐴 as

𝑋𝐴 = {10, 10, 11, 11, 11, 11, 12, 13, 14, 14}.

The ETP for block 𝐴 is constructed as:

𝐸𝑇𝑃 (𝐴) =
(

0.2 0.4 0.1 0.1 0.2
10 11 12 13 14

)

It is also stated that the distributions for blocks are discrete in
nature. This statement holds for fine grained basic blocks since they
are not exposed to huge variations. However, if the blocks are defined
as functions, they are much vulnerable to input and hardware effects,
thus their execution time behavior would result in an asymptotic tail.

In practice, it is not feasible to instrument every branching point
within the program in order to construct ETPs for fine grained basic
blocks due to increasing probe effects. The only reasonable solution
for COTS platforms would be to increase the granularity of the blocks,
which then brings the variance issue due to multi-path nature of coarse
grained blocks.

The overestimation resulting from the assumption of comonotonic-
ity and the lack of rare event capturing when functional level instru-
mentation is performed has been identified as the main research focus
of the present work.

3.3. Proposed method

Avdulaj in his MSc thesis [29] proposes a procedural approach to
estimate the Value-at-Risk 𝑉 𝑎𝑅 for an empirical portfolio by using
Extreme Value Theory and Copulas. The general steps that he followed
are as follows: (1) Model each investment return with Semi Parametric
Piecewise Distribution (SPD), which fits GPD to the tails and a kernel
distribution to the intermediate part, (2) Transform each distribution
into a uniform interval, (3) Fit a t-copula to uniform marginal distri-
butions, (4) Generate huge number of uniform values from t-copula
generator, (5) Convert uniform variates back to their original domain
(Inverse Transform Sampling [30]), (6) Perform a weighted sum to
estimate overall 𝑉 𝑎𝑅, (7) Finally, the desired 𝑉 𝑎𝑅 value is calculated
with the given confidence level 𝛼.

The steps after the 3𝑟𝑑 one represents the Monte-Carlo Simulation
steps. An analogy can easily be drawn between 𝑉 𝑎𝑅 analysis and the
WCET analysis in our case. Returns of investments correspond to exe-
cution time of blocks and 𝑉 𝑎𝑅 corresponds to the overall probabilistic
WCET of the program.

In our proposal, we follow a similar approach, but instead of using
t-copulas to model the dependence, we use Vine Copulas. Although
the t-copula allows to model symmetric tail dependencies in higher
dimensions, it still relies on a single parameter. In fact, multivariate
dependencies are not necessarily symmetric. Also when the dimensions
become more complex, single parameter approach might fall behind.
For these reasons, Vine Copula approach, which models the overall
dependency by using pair-copulas and a tree model [31] is preferred.
4

Fig. 2. Example scopes in a sample program.

We model each block of the program with Extreme Value distri-
butions. However, there might be some cases when goodness-of-fit
tests are not passed. In such cases historical simulation approach is
followed, which corresponds to using frequentist ETPs. Modeling the
blocks with one of the EVT distributions provides deriving predictive
tail values while current state-of-the-art ETP approach only provides
already observed discrete values.

The most essential step in our approach is to derive the copula
model, which represents the dependency between the blocks of the
analyzed program. In order to derive a copula, marginals must have the
same dimensions, meaning that the observations of each block should
be taken at the same time. This is an important criterion especially for
conditional and iterative blocks since for a single run of the program,
sequential blocks are visited once, but conditional or iterative blocks
might be visited zero or several times, thus a special consideration is
taken for the conditional and iterative blocks. A scope can either be the
whole function body itself or a conditional or an iterative part of a func-
tion. Fig. 2 illustrates that a whole ‘‘if-else block’’ can represent a scope
while a whole ‘‘for block’’ can represent another one. This approach is
similar to Ermedahl et al. [32] to a certain extent. In [32], program
blocks (basic blocks) are grouped as scopes augmented with flow facts
to track loop counts or special conditions. Since our study does not aim
to provide a full-fledged clustering mechanism to represent all types of
programs, we are content to provide only an intuition and prerequisites
in deriving scopes.

The steps of our approach are given below:

(1) Inject instrumentation points (IPoints) to the entry and exit
points of functions in source code.

(2) Derive the timing schema of the program by using IPoints as
explained in [33].

(3) Mark those functions that are called inside iterative and condi-
tional blocks and also mark the scopes.

(4) Determine the random variables that represent the execution
time of the functional blocks (Each node inside IPoint tree).

(5) From the most inner scope to the outer one, fit the suitable
copulas for each scope that have sequential addition of random
variables.

(6) Simulate next 𝑛 execution of the scopes out of the copulas by
using Monte-Carlo approach.

(7) Derive the inverse CDFs of each random variable.
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(8) Transform each uniform margins generated from simulations
into their original domain by using their inverse CDFs.

(9) Perform a sum operation for all the marginals to derive the
overall distribution of the scope.

(10) Repeat steps 2 − 7 until no scope is left to be analyzed.

More details and codes about the procedure are available in [34].

3.4. Experimental evaluation

3.4.1. Experimental setup
The hardware platform used in this experimental evaluation phase

is a LEON3FT based ASIC platform, which is a fault tolerant version
of LEON3 SPARC V8 processor. Its general architecture is presented in
Fig. 3.

LEON3FT is designed for embedded applications, combining high
performance with low complexity and low power consumption. It runs
at 64 MHz and supports most of the functionality of standard LEON3
processor including error detection and correction in on-chip RAM
memories. First level instruction (IL1) and first level data (ID1) caches
have 4 sets, 16k bytes/set and 32 bytes/line. The replacement algo-
rithm in both caches is the Least-Recently-Used (LRU). The processor
implements a 7-stage pipeline with Harvard architecture with the use
of an efficient branch-prediction capability. It has a high-performance,
fully pipelined Floating-Point Unit (FPU). The platform has a Memory
Management Unit (MMU), but we chose to disable it since the underly-
ing real-time operating system does not have virtual address translation
capability to support MMU.

At the software side of the platform, RTEMS exists as the real-
time operating system (RTOS). Traces are captured through a special
mechanism, which outputs GPIO signals when instrumentation point
hit occurs, and those signals are captured and timestamped by a custom
made external hardware device in order to decrease the probe effects.
Using such a solution is mandatory since it is necessary to obtain
detailed traces instead of end-to-end measurements.

Most of the steps in this section are done in R environment, which is
a freely available language and environment for statistical computing
and graphics with powerful visualization capabilities [35].

3.4.2. Application procedure
In order to detail the steps, we constructed an example test program

as follows:

void testProgram() {
insertSortAsc(x); //Sort in ascending

order
insertSortDesc(x); //Sort in descending

order
}

The given program is composed of two consecutive sorting functions
oth depending on the given input 𝑥. 𝑥 is a randomly generated array
hat is composed of 500 float values. Since 𝑥 is randomly generated
or each run, their execution times would be negatively correlated. In
ddition, these functions are also input dependent multi-path programs,
hich have loops and floating point comparisons. For reproducibility
urposes, the sorting function is realized by the insertsort program
ut of the Mälardalen WCET Benchmarks [36]. Statistics for 10 000
nalysis runs observed by the help of functional instrumentation are
iven below.

It is observed from Table 1 that although both sorting functions
xecute for more than 260ms, the observed maximum end-to-end ex-
cution time for testProgram is about 487ms. This indicates that the
unctions are not perfectly positively correlated (comonotonic), thus
he dependency type between them should be taken into account. The
orrelation plot given in Fig. 4 summarizes the case. Note that the
5

t

able 1
xecution time statistics of observations for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚.
Scope 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

insertSortAsc 217.4657ms 272.0894ms
insertSortDesc 212.7195ms 266.9449ms
testProgram 482.2895ms 487.3415ms

Fig. 3. LEON3 architectural blocks.

Fig. 4. Correlation plot of negatively dependent sorting functions.

alues on both axes correspond to clock tick counts in which each tick
epresents 5 ns that is the resolution of our trace capturing unit.

testProgram function also has a self execution time, which is the
xecution time when the execution time of individual functions are ex-
luded from end-to-end measurements. Since testProgram is composed
f only 2 function calls, that self execution time is negligible, but we
till take it into account.

Implementation of IPoint depends on the analysis environment. In
ur work, IPoint is a macro that writes the trace identifier value x to a
eneral purpose I/O (GPIO) output register in order to capture from an
xternal trace hardware to timestamp IPoint hits. The macro toggles
he most significant bit in the register to high and eventually low to
nform the external hardware that it finished writing trace identifier to
he port (see Fig. 5).
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Fig. 5. Implementation of IPoint macro.

3.4.2.1. Timing schema of the program. The instrumented version of our
test program is given below :

void insertSortAsc(x) {
IPoint(29);
//sort x in ascending order
IPoint(28);

}
void insertSortDesc(x) {

IPoint(27);
//sort x in descending order
IPoint(26);

}
void testProgram() {

IPoint(31);
insertSortAsc(x);
insertSortDesc(x);
IPoint(30);

}

The timing schema in the form of random variables and their
orresponding IPoint pairs are shown in the following expressions:

(𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐) = 𝑊 (𝐼𝑃 𝑜𝑖𝑛𝑡29−28) (1)

(𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐) = 𝑊 (𝐼𝑃 𝑜𝑖𝑛𝑡27−26) (2)

(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑛𝑡𝑟𝑦) = 𝑊 (𝐼𝑃 𝑜𝑖𝑛𝑡31−29) (3)

(𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐𝑟𝑒𝑡) = 𝑊 (𝐼𝑃 𝑜𝑖𝑛𝑡28−27) (4)

(𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑟𝑒𝑡) = 𝑊 (𝐼𝑃 𝑜𝑖𝑛𝑡26−30) (5)

Both 𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐) and 𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐) are equal to end-
o-end execution time of the functions since they do not contain sub
unction calls inside. The total execution time of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 can
e represented as:

(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚) =

𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X

+𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y

(6)

here 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) corresponds to the timing schema of the sub-
unction calls inside the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 and 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) represents
he timing schema of the main body of the program when sub-functions
re excluded. Thus, they can be expressed as:

(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) = 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑛𝑡𝑟𝑦)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X

+𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐𝑟𝑒𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y

+𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑟𝑒𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Z

(7)

(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) =

𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

X

+𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Y

(8)

.4.2.2. Deriving the copulas. Each Eqs. (6)–(8) are composed of sub-
arts that are represented by random variables 𝑋, 𝑌 and 𝑍, which
ight be the nodes or leaves of the program structure tree. Each

andom variable represents the execution time of an inner scope of their
arent scope. Thus, the problem reduces to finding the sum of 𝑛 random
ariables where the dependency between them is unknown.
6

Considering Eq. (7) which have the highest number of variables, in
rder to derive the multivariate joint distribution 𝐻(𝑥, 𝑦, 𝑧) = 𝑃 [𝑋 ≤
, 𝑌 ≤ 𝑦,𝑍 ≤ 𝑧] which is necessary to finally derive the 𝐽 (𝑡) =
[𝑋+𝑌 +𝑍 ≤ 𝑡], copulas are suitable since according to Sklar’s theorem

or any (𝑢, 𝑣, 𝑘) ∼ 𝑈 (0, 1):

(𝑥, 𝑦, 𝑧) = 𝐶(𝐹 (𝑥), 𝐺(𝑦),𝑀(𝑧)) (9)

(𝑢, 𝑣, 𝑘) = 𝐻(𝐹 (−1)(𝑢), 𝐺(−1)(𝑣),𝑀 (−1)(𝑘)) (10)

here 𝐹 , 𝐺 and 𝑀 correspond to the cumulative distribution functions
f 𝑋, 𝑌 and 𝑍, respectively. Additionally 𝑢, 𝑣 and 𝑘 should have the
ame dimensions, which in our case are the execution time observations
or the corresponding scopes.

When 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 is run for 10 000 times, same amount of observa-
ions are collected for both 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) and 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏).
imilarly, 10 000 samples are taken for both 𝑊 (𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐) and
(𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐) when 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) is visited 10 000 times.

ame logic applies to the sub-scopes of the 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ).
Vine Copula package of R is used to fit a copula to the marginal

istributions, which in this case are 𝑋, 𝑌 and 𝑍. To do this, first the
arginals should be converted into uniform range. Original observa-

ions are converted into uniform distribution by using 𝚙𝚘𝚋𝚜 function,
hich computes the pseudo-observations for the given data matrix.
fter the conversion, the correlation between the sub-scopes are shown

n Fig. 6.
Note that the dependency between 𝑢(𝑝𝑜𝑏𝑠𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐) and

(𝑝𝑜𝑏𝑠𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐) in Fig. 6c coheres with Fig. 4. However, the depen-
ency between the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 in Fig. 6a seems to be
ndependent because there are no operations between the functions,
hich might result in any type of behavior. This situation also results

n almost independence between the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 that
s seen in Fig. 6b.

Next, 𝚁𝚅𝚒𝚗𝚎𝚂𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎𝚂𝚎𝚕𝚎𝚌𝚝 function of Vine Copula package is
sed to fit a suitable copula model to our program scopes. It also selects
he tree structures that are appropriate for the pair-copula families. The
utput of the function in R environment is given in Fig. 7.

It can be observed from the output that an independence copula is
itted to the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 as expected.
aussian copula with parameter −0.13 corresponds to the almost inde-
endent case. Important result is that a t-copula with parameter {−0.99}
s fitted to (𝑢, 𝑣) pairs of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏, which also coheres with the
esults given in Fig. 6c.

Next step is to check whether this copula structure is suitable for
he given data sets. For this the 𝚁𝚅𝚒𝚗𝚎𝙶𝚘𝚏𝚃𝚎𝚜𝚝 function is used which
erforms 15 different goodness-of-fit tests for R-Vine copula models.
n our evaluation ECP2 method is selected, which is a goodness-of-fit
est based on the combination of probability integral transform (PIT )
nd empirical copula process (ECP) [37]. Results are not included here
ue to the space limitations, but all 𝑝-value results were above 0.05,
hich indicate that there is no significant evidence for rejecting the

itted copula for modeling the dependency between the sub-scopes of
he given scopes.

.4.2.3. Simulation from the copulas. By using the obtained copula
odels, Monte-Carlo simulation steps are followed basically by generat-

ng uniform probability values randomly. To do this, 𝚁𝚅𝚒𝚗𝚎𝚂𝚒𝚖 function
s used, which generates the desired number of probability value pairs
ut of the given R-Vine copula model. In our experiments we generated
.000.000 samples actually representing the next one million possible
utcomes of the program scopes in accordance with the dependency
odel.

The results of the simulations are 1.000.000 x 𝑛 matrices where
corresponds to the number of marginals of each copula. Simulated

niform margins are illustrated in Fig. 8.
Those simulated uniform values represent possible outcome of the

ext execution of the corresponding scope. For example, the first line
n Fig. 8c states that the next execution of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 would result
𝑠𝑢𝑏
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Fig. 6. Correlation plot of the pseudo-observations.

in execution time of 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐 to be 𝐹 (−1)(0.3318784754) and the
execution time of 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐 to be 𝐺(−1)(0.675288088) where 𝐹 and
𝐺 corresponds to the CDFs of the scopes. Thus, it is important to derive
the CDFs of each scope in order to construct a safe upper bound for the
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚.
7

Fig. 7. Copula fitting with RViceStructureSelect function in R.

3.4.2.4. Deriving CDFs of the segments. The total execution time of
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 that is represented with Eq. (6) can be derived by using
Eqs. (9) and (10) :

𝐶(𝑢, 𝑣) = 𝐻(𝐹 (−1)(𝑢), 𝐺(−1)(𝑣)) = 𝑃 [𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] (11)

In order to construct the 𝑃 [𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] distribution, inverse CDFs
𝐹 (−1), 𝐺(−1) must be found. 𝐹 (−1) and 𝐺(−1) represents the inverse CDFs
of the random variables 𝑋 and 𝑌 , which represent the execution times
of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏, respectively. Obviously CDFs of
the individual scopes are needed.

It is possible to model any random variable with a parametric
or non-parametric probability distribution. However, modeling a ran-
dom variable with a known parametric distribution based on observa-
tions is not always possible. Furthermore, random variables might be
composed of several sub random variables as in 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 and
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏. In such cases, modeling them by using their end-to-end
measurement observations would result in ignoring both extreme cases
and the cases resulting from the hybrid analysis. The idea is to benefit
as much as possible from the observations in each scope. For those
situations where modeling a random variable with a known parametric
extreme value distribution is not possible, we propose to use empirical
CDFs instead, at the expense of resolution loss and incapability of
prediction of capturing possible rare events.

In accordance with the explanation given above, 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓
and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 parts of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 should not be modeled via
an Extreme Value Distribution since they are composed of several sub-
parts. It is instinctively known that parts of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 are not
suitable to model with any type of Extreme Value Distribution since
in reality there are no operations between the function calls and their
execution time contribution is negligible. For these reasons and not
to complicate the overall procedure, parts of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 are
not considered to fit to a parametric continuous distribution, but their
empirical CDFs are constructed out of historical observations made.

On the other hand, the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 can be modeled
by a parametric EV distribution since they are not composed of sub-
scopes. The primary requirement of EVT is to derive whether the
original data conforms i.i.d requirements. In line with Silva et al. [3],
we followed the same approach for i.i.d tests and the results are given
in the Fig. 9.

Results illustrate that both 𝑋 and 𝑌 in Eq. (8) are suitable to be
modeled with one of the EV distributions. 𝑋 and 𝑌 can either fit to
a GEV or GPD if only the rightmost tails are important. However,
in this case lower tails are also significant since there might be a
countercomonotonic situation where GEV/GPD would result in over-
estimation. Hence, in our proposed method we chose to model each

random variable with Semi Parametric Piecewise Distribution which
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Fig. 8. Simulated uniform margins from the fitted copula models.
Fig. 9. Statistical test results of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 segments.

Fig. 10. QQ-Plots of the fitted piecewise GPD to 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 segments.

fits a GPD to both upper and lower 10% tails of the distribution and
fits a kernel distribution to the internals.

QQ Plots in Fig. 10 show that the fitted distributions are suitable
enough to represent the whole observation data of the 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐
and 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐. Thus, 𝚚𝚜𝚙𝚍 function of spd package serves to
represent the 𝐹 (−1) and 𝐺(−1) of 𝑋 and 𝑌 for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏.

Therefore, reverting back to Fig. 8c, possible next execution time of
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 can be calculated as:

𝐹 (−1)(0.3318784754) + 𝐺(−1)(0.675288088) = 97151546 (12)

where 97151546 is the clock tick count and it represents one possible
outcome for 𝐽 (𝑡) = 𝑃 [𝑋 + 𝑌 ≤ 97151546]. Deriving the full 𝐽 (𝑡)
distribution is computationally intractable. In order to approximate the
8

𝐽 (𝑡) distribution, samples must be generated as many as possible from
the copula model. Applying the methodology in Eq. (12) to the whole
matrix that is shown in Fig. 8c results in an approximate distribution
of 𝐽 (𝑡) by combining the Extreme Value Theory and Copulas.

Each random variable 𝑋 and 𝑌 that represents the execution time
of 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐 and 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐, respectively are modeled with an
Extreme Value distribution in order to capture the rare cases instead of
using empirical CDF.

3.4.2.5. Estimating the total distribution. The equations to derive the
total execution time distribution for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 becomes:

𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) = 𝐹 (−1)(𝑢𝑖) + 𝐺(−1)(𝑣𝑖) (13)

where:

• 𝑖: 1,… , 1.000.000
• 𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏): is the execution time distribution of
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏

• 𝐹 (−1): is the inverse CDF of fitted SPD model of 𝑋 in Eq. (8)
• 𝐺(−1): is the inverse CDF of fitted SPD model of 𝑌 in Eq. (8)
• 𝑢𝑖: are the simulated uniforms from the copula for 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐
• 𝑣𝑖: are the simulated uniforms from the copula for 𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐

𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) =

𝐹 (−1)(𝑢(𝑖)) + 𝐺(−1)(𝑣(𝑖)) +𝑀 (−1)(𝑘(𝑖)) (14)

where:

• 𝑖: 1,… , 1.000.000
• 𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ): is the execution time distribution of
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓

• 𝐹 (−1): is the inverse ECDF of 𝑋 in Eq. (7)
• 𝐺(−1): is the inverse ECDF of 𝑌 in Eq. (7)
• 𝑀 (−1): is the inverse ECDF of 𝑍 in Eq. (7)
• 𝑢(𝑖): are the simulated uniforms from the copula for
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑛𝑡𝑟𝑦

• 𝑣(𝑖): are the simulated uniforms from the copula for
𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐴𝑠𝑐
𝑟𝑒𝑡
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Fig. 11. Estimated pWCET distributions for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚.

• 𝑘(𝑖): are the simulated uniforms from the copula for
𝑖𝑛𝑠𝑒𝑟𝑡𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑟𝑒𝑡

Finally,

𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚) = 𝐹 (−1)(𝑢𝑖) + 𝐺(−1)(𝑣𝑖) (15)

where:

• 𝑖: 1,… , 1.000.000
• 𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚): is the execution time distribution of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚
• 𝐹 (−1): is the inverse of 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏)
• 𝐺(−1): is the inverse of 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 )
• 𝑢𝑖: are the simulated uniforms from the copula for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓

• 𝑣𝑖: are the simulated uniforms from the copula for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏

Note that 𝐹 , 𝐺 and 𝑀 in Eq. (14) and 𝐹 and 𝐺 in Eq. (15) are step
functions hence they do not have unique inverse functions. Therefore,
their empirical quantile functions are defined as the right inverse of the
CDFs. The quantiles are fetched from the inverse CDFs with the help of
𝚏𝚒𝚗𝚍𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕 function of R.

Evaluating the calculations given in Eqs. (13)–(15) results in a
distribution shown in Fig. 11, which is compared with the observed
end-to-end (EE) measurements and independent case and comonotonic
case that implemented for our 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 in RapiTime tool.

Clearly, the biased convolution method (comonotonic assumption)
and the standard convolution method (independent assumption) over-
estimate the results by a factor of 10% in the worst case. On the other
hand, our approach based on EVT and Copulas provides tighter upper
bound for the overall 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚. The overestimation factor of 10%
may not seem to be significant, but this only happened for a very simple
program that has only two consecutive function calls inside. This factor
is likely to increase rapidly when the program structure is composed of
more complex blocks such as iterative and conditional ones.

3.5. Case study

We constructed a synthetic and reproducible benchmark program
in which the functions are selected from the Mälardalen WCET Bench-
marks again [36]. The code is given in Fig. 2.

The inputs 𝑣𝑒𝑐_𝐴, 𝑣𝑒𝑐_𝐵, 𝑚𝑎𝑡_𝐴 and 𝑚𝑎𝑡_𝐵 are randomly gener-
ated by employing Mersenne Twister pseudo-random number generation
method, which has been proven to be ‘‘more random’’ than the built-in
generators in many common programming languages including C [38].
In fact, 𝑣𝑒𝑐_𝐴 and 𝑚𝑎𝑡_𝐴 are the same objects, the only difference is
their dimensions where 𝑣𝑒𝑐_𝐴 is 1 𝑥 100 float array and 𝑚𝑎𝑡_𝐴 is 10 𝑥 10
float matrix. This is also valid for 𝑣𝑒𝑐_𝐵 and 𝑚𝑎𝑡_𝐵. 𝑣𝑒𝑐_𝐶 and 𝑚𝑎𝑡_𝐶 are
initially arrays that are used to store the results.
9

The total execution time of this program can also be represented
by Eq. (6).

However, the expressions 𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) and 𝑊
(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) are not easily decomposed in this case as in Eqs. (7)
and (8). That is because we have conditional and iterative blocks that
should be carefully examined.

In our proposed method, conditional and iterative blocks are han-
dled as one scope at the highest level of the program scope. This
approach is necessary in order to derive the copulas that models the
dependency between the sub-scopes. This is best explained by the
following expressions:

𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) = 𝑊 (𝑓1)
⏟⏟⏟

A

+𝑊 (𝑓2)
⏟⏟⏟

B

+𝑊 (𝑓3)
⏟⏟⏟

C

+𝑊 (𝑐𝑜𝑛𝑑𝑠𝑢𝑏)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

D

+𝑊 (𝑙𝑜𝑜𝑝𝑠𝑢𝑏)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

E

(16)

𝑊 (𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 ) = 𝑊 (𝑓1𝑟𝑒𝑡)
⏟⏞⏞⏟⏞⏞⏟

A

+𝑊 (𝑓2𝑟𝑒𝑡)
⏟⏞⏞⏟⏞⏞⏟

B

+𝑊 (𝑓3𝑟𝑒𝑡)
⏟⏞⏞⏟⏞⏞⏟

C

+𝑊 (𝑐𝑜𝑛𝑑𝑠𝑒𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

D

+𝑊 (𝑙𝑜𝑜𝑝𝑠𝑒𝑙𝑓 )
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

E

(17)

𝑊 (𝑐𝑜𝑛𝑑𝑠𝑢𝑏) = 𝑚𝑎𝑥(𝑊 (𝑓4)
⏟⏟⏟

A

,𝑊 (𝑓5)
⏟⏟⏟

B

) (18)

𝑊 (𝑐𝑜𝑛𝑑𝑠𝑒𝑙𝑓 ) = 𝑚𝑎𝑥(𝑊 (𝑓4𝑟𝑒𝑡)
⏟⏞⏞⏟⏞⏞⏟

A

,𝑊 (𝑓5𝑟𝑒𝑡)
⏟⏞⏞⏟⏞⏞⏟

B

) (19)

𝑊 (𝑙𝑜𝑜𝑝𝑠𝑢𝑏) =

A
⏞⏞⏞
𝑊 (𝑓6) +... +𝑊 (𝑓6)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N

(20)

𝑊 (𝑙𝑜𝑜𝑝𝑠𝑒𝑙𝑓 ) =

A
⏞⏞⏞⏞⏞⏞⏞
𝑊 (𝑓6𝑟𝑒𝑡) +... +𝑊 (𝑓6𝑟𝑒𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N

(21)

It is worth noting that 𝑊 (𝑐𝑜𝑛𝑑𝑠𝑢𝑏), 𝑊 (𝑐𝑜𝑛𝑑𝑠𝑒𝑙𝑓 ), 𝑊 (𝑙𝑜𝑜𝑝𝑠𝑢𝑏) and
𝑊 (𝑙𝑜𝑜𝑝𝑠𝑒𝑙𝑓 ) expressions are same as the RapiTime approach [22]. How-
ever, while evaluating Eqs. (16) and (17), directly replacing the ex-
pressions for conditional and iterative blocks with their corresponding
equations given in (18)–(21) would result in the same approach given
in [22], which is the comonotonic assumption between segments.

In our approach, however, instead of directly convolving all the
expressions, a copula is fitted for the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 and
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 . After the simulation phase, the total execution time
distribution is calculated by using the derived CDFs for the sub-scopes.
Derivation of the CDFs for the sub-scopes are done in the same way as
described in the previous section for sequential blocks (𝐴, 𝐵 and 𝐶).
However, for iterative and conditional blocks a different mechanism
has to be employed.

In order to derive the copula for the sub-scopes of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏
and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 , measurements of these scopes are needed. 𝐴, 𝐵
and 𝐶 in Eq. (16) are constructed using end-to-end measurements of
𝑓1, 𝑓2 and 𝑓3. For conditional and iterative blocks, their corresponding
random variables are expressed as:

𝐷𝑖 = (𝑂𝑏𝑠𝑖(𝑓4) or 𝑂𝑏𝑠𝑖(𝑓5)) (22)

𝐸𝑖 =
𝑁𝑖
∑

𝑗=1
𝑂𝑏𝑠𝑗 (𝑓6), 𝑁𝑖 = current iteration count (23)

where: (24)
i = 1,. . . ,10000
𝑂𝑏𝑠𝑖(𝑓 ) = 𝑖th observed sample of function 𝑓
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Fig. 12. Correlation plot of 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏.

Fig. 13. Correlation plots of the program scopes.

After constructing 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏, correlation
between the pseudo-observations (𝑢, 𝑣, 𝑘, 𝑚, 𝑛, respectively) of the
sub-scopes are shown in Fig. 12.

The same procedures are applied to 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚
and the correlation between their scopes are shown in Fig. 13.

A Vine Copula model is fitted to each 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚, 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓
and 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏 scope by using 𝚁𝚅𝚒𝚗𝚎𝚂𝚝𝚛𝚞𝚌𝚝𝚞𝚛𝚎𝚂𝚎𝚕𝚎𝚌𝚝 function of
R. Then goodness-of-fit test is applied to each copula with
𝚁𝚅𝚒𝚗𝚎𝙶𝚘𝚏𝚃𝚎𝚜𝚝 function and all the fitted copulas turned out to be valid.
For simplicity of this section, these results are omitted.

The challenging part is the derivation of a CDF for each sub-scope
of the scopes. For sequential sub-scopes which correspond to 𝐴, 𝐵, and
𝐶 inside 𝑡𝑒𝑥𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏, same procedure can be applied as in previous
section.

However, for conditional blocks, each part of the condition should
be considered as a separate scope and our hybrid approach should
be applied since these are separate programs. The result would be
a distribution for each condition block and by using their inverses,
Eq. (18) or (19) can be calculated. In this case study, condition blocks
only consist of one functional block so it is valid to model them using
SPD if they conform the requirements.

For iterative blocks, their CDF is calculated by the approach detailed
in [1], which is based on checking whether there is independency
across iterations. If so, then standard convolution is applied. Otherwise,
biased convolution is applied for Eqs. (20) and (21). Instead of mod-
eling each random variable inside the loop with their empirical CDFs
(ETP), our method primarily aims to model them with SPD if possible.
All functions inside our 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 is observed to conform the i.i.d
requirements.

Fig. 14 shows that all the functions except 𝑓6 are suitable to be
represented by an SPD model. According to our proposed method, if
any random variable cannot be represented by an Extreme Value dis-
tribution, its empirical distribution should be used. Therefore, empirical
CDF is used for 𝑓6 case only.
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Fig. 14. QQ-Plots of piecewise GPD fit for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏.

Fig. 15. QQ-Plots of piecewise GPD fit for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 .

Sub-scopes of the 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 are not suitable to be modeled by
an EV distribution as shown in Fig. 15. QQ results for 𝑓2, 𝑓3 and 𝑓5
are missing because the 𝚜𝚙𝚍𝚏𝚒𝚝 function of R could not even estimate
suitable parameters for them. Therefore, empirical CDFs are used to
represent the random variables within 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 .

Finally, the equations to derive the total execution time distribution
for this case study becomes:

𝑊𝑖(𝑐𝑜𝑛𝑑𝑠𝑢𝑏) = 𝑚𝑎𝑥(𝐹 (−1)
𝐴 (𝑚𝑖), 𝐹

(−1)
𝐵 (𝑚𝑖)) (25)

where:

• 𝑖: 1,… , 1.000.000
• 𝑊𝑖(𝑐𝑜𝑛𝑑𝑠𝑢𝑏): is the execution time distribution of 𝑐𝑜𝑛𝑑𝑠𝑢𝑏
• 𝐹 (−1)

𝐴 : is the inverse CDF of fitted SPD model of 𝐴 in Eq. (18)
• 𝐹 (−1)

𝐵 : is the inverse CDF of fitted SPD model of 𝐵 in Eq. (18)
• 𝑚𝑖: are the simulated uniforms from the copula for 𝐷 in Eq. (16)

𝐹𝑙𝑜𝑜𝑝𝑠𝑢𝑏 = 𝐹𝐴 ⊛⋯⊛ 𝐹𝐴
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑁

= 𝐹⊛𝑁
𝐴 (26)

𝑊𝑖(𝑙𝑜𝑜𝑝𝑠𝑢𝑏) = 𝐹 (−1)
𝑙𝑜𝑜𝑝𝑠𝑢𝑏

(𝑛𝑖) (27)

where:

• 𝑖: 1,… , 1.000.000
• 𝐹𝑙𝑜𝑜𝑝𝑠𝑢𝑏 : is the CDF of 𝐸 in Eq. (16)
• 𝐹𝐴: is the ECDF of 𝐴 in Eq. (20)
• 𝑁 : is the maximum observed iteration count
• ⊛: is the convolution operation (standard or biased) for CDFs
• 𝑊𝑖(𝑙𝑜𝑜𝑝𝑠𝑢𝑏): is the execution time distribution of 𝑙𝑜𝑜𝑝𝑠𝑢𝑏
• 𝑛𝑖: are the simulated uniforms from the copula for 𝐸 in Eq. (16)

𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏) =

𝐹 (−1)
𝐴 (𝑢𝑖) + 𝐹 (−1)

𝐵 (𝑣𝑖) + 𝐹 (−1)
𝐶 (𝑘𝑖) +𝑊𝑖(𝑐𝑜𝑛𝑑𝑠𝑢𝑏)

+𝑊𝑖(𝑙𝑜𝑜𝑝𝑠𝑢𝑏) (28)

where:

• 𝑖: 1,… , 1.000.000
• 𝑊𝑖(𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑢𝑏): is the execution time distribution of
𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚
𝑠𝑢𝑏
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Fig. 16. Correlation across the iterations.

Table 2
Calculated pWCET values for case study.

pWCET EVT-Cop Independent RapiTime EE

10−2 57.2ms 60.2ms 79.1ms 54.8ms
10−4 58.1ms 63.7ms 95.8ms 56.3ms
10−6 58.6ms 67.0ms 113.6ms 56.3ms
10−9 58.7ms 68.3ms 113.6ms 56.3ms

• 𝐹 (−1)
𝐴 : is the inverse CDF of fitted SPD model of 𝐴 in Eq. (16)

• 𝐹 (−1)
𝐵 : is the inverse CDF of fitted SPD model of 𝐵 in Eq. (16)

• 𝐹 (−1)
𝐶 : is the inverse CDF of fitted SPD model of 𝐶 in Eq. (16)

• 𝑊𝑖(𝑐𝑜𝑛𝑑𝑠𝑢𝑏): is the execution time distribution of 𝑐𝑜𝑛𝑑𝑠𝑢𝑏 given in
Eq. (25)

• 𝑊𝑖(𝑙𝑜𝑜𝑝𝑠𝑢𝑏): is the execution time distribution of 𝑙𝑜𝑜𝑝𝑠𝑢𝑏 given in
Eq. (27)

• 𝑢𝑖: are the simulated uniforms from the copula for 𝐴 in Eq. (16)
• 𝑣𝑖: are the simulated uniforms from the copula for 𝐵 in Eq. (16)
• 𝑘𝑖: are the simulated uniforms from the copula for 𝐶 in Eq. (16)

Similar procedure is applied for 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑒𝑙𝑓 in Eq. (17) and its
total CDF is derived. The only difference is that ECDFs are used to
represent the segments because of the unsuitability of SPD for modeling
them as shown in Fig. 15.

It is worth noting that the convolution operation used for loop case
is the standard convolution. Fig. 16 shows correlation between the
iteration index parameter and the execution time of 𝑓6.

𝑢 and 𝑣 represent pseudo-observations of loop iteration index pa-
rameter and pseudo-observations of execution time of 𝑓6 respectively.
No correlation between iteration index and execution time of 𝑓6 is
observed. It means that the execution time of 𝑓6 does not increase
when loop iteration count increases or vice-versa. In order to calculate
Eq. (20) standard convolution of random variable 𝐴 is sufficient. This
calculation is basically sum of 𝑁 random variables, which is the main
problem in our work. Therefore, the same copula approach could be
applied, but in order to do that 1.000.000 x 𝑁 simulated uniforms
should have been generated with a fitted copula. Then by using inverse
CDF of 𝑓6, Eq. (20) could have been calculated as 𝑡𝑒𝑠𝑡𝑃 𝑟𝑜𝑔𝑟𝑎𝑚 itself.
However, this is computationally intractable, therefore an adequate
independence test is sufficient to decide whether to use standard convo-
lution or biased convolution for loop blocks. Finally, solving the same
equation shown in Eq. (15) yields Fig. 17.

Our main result is illustrated in Fig. 17 which is the tightest among
all methods employed. Although the standard convolution is used
to calculate the execution time distribution of the loop block, it is
still below the independent method. The comonotonic assumption of
commercial RapiTime tool is observed to overestimate the result by a
huge factor.

Following table summarizes some pWCET values that are obtained
from the estimated distributions.

Results in Table 2 show that the RapiTime’s approach overesti-
mates the observed end-to-end execution time more than 100% for
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Fig. 17. Estimated pWCET distributions for case study.

pWCET(10−9) case. Higher level design decisions are usually made
based on this value, which might push the limits of some real-time
embedded software environments having limited resources to be sched-
uled. In cases where overestimation leads to poor utilization, our results
might prove useful since WCET is now tightly bounded up to some
confidence level based on the tail modeling methodology (EVT) and
the proposed dependency modeling approach (Copulas).

3.5.1. Tightness assessment
In order to provide evidence for the tightness of the proposed EVT-

Copula method, 106 additional observations are collected from the same
setup. The highest observed execution time (𝐻𝑂𝐸𝑇 ) out of the 106

measurements for the Case Study was 57.44 ms. It shows that our EVT-
Copula method is both tight and reliable compared to the Independent
and Comonotonic assumptions.

Reliability is another important issue for EVT applications, however
a universal consensus do not exist on this topic [6]. Results of all
statistical approaches are as reliable as the applied statistical tests and
can be trusted only up to some confidence level.

Fig. 17 shows 𝐻𝑂𝐸𝑇 of 106 observations in black dashed line. Our
EVT-Copula method seems to be both safe and tight for pWCET(10−6)
in comparison to other approaches.

4. Conclusion

This paper proposes an enhanced HYPTA framework for time-
critical applications running on COTS hardware platforms.

A literature review revealed that there is no known study to this
day, which employed a hybrid approach using Copulas with EVT for
timing analysis of real-time applications running on COTS platforms.

The main principle in our proposed framework is to model the de-
pendency between the random variables using Copulas and model each
random variable with a proper Extreme Value distribution whenever
possible. Instead of representing the whole program as one syntax tree,
a specialized version similar to the scope-tree approach is followed.
In order to fit a copula for each scope of the program under test,
this representation method was necessary. Basically, the program is
divided into scopes and each scope is analyzed in isolation by using
our proposed methodology.

The majority of studies in MBPTA domain utilize a time randomized
platform (for example by altering cache behavior) to eliminate some
of the prerequisites of EVT. However, in COTS platforms this is not
possible at all, which leaves us with using randomized inputs for the
programs under test. Similar to other measurement based methods,
coverage of all hardware effects are not guaranteed with our approach
and it is not possible to analyze and ensure the coverage without an
analysis of the compiled object code.
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The effects of the underlying hardware units such as caches,
pipelines, out-of-order executions, etc. can only be analyzed by em-
ploying Static Timing Analysis techniques, which require to model
every aspect of the underlying platform precisely. Lack of knowledge
about the details of the platform and unpredictability resulting from
modern day architectural properties forces static methods to manage
the available complexity only by making very conservative/pessimistic
assumptions for the basic/functional block, which in return leads to
overestimation of the WCET.

Results of our experiments show that the proposed EVT with Copula
method can provide much tighter results in comparison to the com-
mercial tool named RapiTime. RapiTime employs either co-monotonic
or standard convolution between blocks. In the present work instead
of aiming a fully automated solution such as RapiTime, we preferred
to search for a meaningful enhancement possibility over existing ap-
proaches to be applicable to COTS platforms and have succeeded in
pointing out such an opportunity.

To the best of our knowledge, there is no known methodology
or a commercial solution that autonomously resolves all issues and
analyzes a program or a piece of code without a user intervention.
Even Static Timing Analysis tools require manual annotation of loop
bounds or recursion limits in source code, which decreases the usability
and autonomy of timing analysis without some empirical and also pes-
simistic assumptions made by the user. Measurement-based approaches
do not require much intervention or annotation hence making it more
applicable in industry.

Our proposal may be employed as an extension to RapiTime tool,
which is broadly used in industry. We introduce modeling of functional
blocks with EVT whenever possible. This part hugely depends on the
quality of inputs given to the analyzed program. Generation of qualified
and high coverage inputs is not the main focus hence we used a
classical random generation approach. If those inputs are sufficient
to somehow generate enough variability in execution times of the
functional blocks then they are modeled with parametric probability
distributions. In the other case, we fall back to using the same approach
that RapiTime applies, which is to use frequentist ETPs for those
specific (non-conforming EVT prerequisites) functional blocks. Thus,
we claim that our approach is suitable for industrial use as much as
RapiTime.

This study aims to propose a hybrid approach to enhance cur-
rent state-of-the-art solutions. The proposed method has the following
limitations:

(1) Structured and relatively simple programs are currently sup-
ported.

(2) Injection of instrumentation points (IPoints) is not automated
yet.

(3) Scalable by the number of IPoints that can be inserted in a
program.

Future work
Despite limitations, there are opportunities for further research. The

present work aims to provide a hybrid probabilistic measurement based
timing analysis mechanism for COTS platforms, hence the only appli-
cable source of execution time variability is random input generation.
This randomization process can be made more intelligent by using
model checking or genetic algorithms.

For the application of EVT, our procedures are based on visual
checking from the plots in order to conclude that the models are
fit to the data or the data conforms to applicability requirements.
There exists recent studies, which calculates the applicability of EVT
numerically and selects the best distribution to represent the observed
data such as MBPTA-CV [2]. Furthermore, an open-source study named
as chronovise [39] that implements MBPTA-CV method in C++ is
12

vailable. By adapting more automatic mechanisms like chronovise, the
ecessity of user interaction within the proposed framework could be
ecreased.

This work presents a framework, which is implemented in MATLAB
nd R. The experiments and case studies are analyzed mostly by manual
odifications or re-writing of analysis code in R or MATLAB. In order to

ransform the proposal into a full function automatic tool, the following
ctions might be carried out:

(1) An automatic C/C++ source code parser is needed in order
to extract the structural information of the analyzed code and
instrument the necessary points automatically.

(2) A trace parser is needed to extract the execution traces of each
individual instrumentation point and associate them with the
corresponding blocks inside the program.

(3) Representation of the analyzed program with our proposed scope
tree approach should be automated.

(4) A fully automatic mechanism to derive the copulas and estimate
the extreme value distributions by testing the applicability is
needed.
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