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Abstract: Estimation of withdrawal water and filtered sediment amounts are important to obtain
maximum efficiency from an intake structure. The purpose of this study is to develop empirical
equations to predict Water Capturing Performance (WCP) and Sediment Release Efficiency (SRE) for
Coanda type intakes. These equations were developed using 216 sets of experimental data. Intakes
were tested under six different slopes, six screens, and three water discharges. In SRE experiments,
sediment concentration was kept constant. Dimensionless parameters were first developed and then
subjected to multicollinearity analysis. Then, nonlinear equations were proposed whose exponents
and coefficients were obtained using the Genetic Algorithm method. The equations were calibrated
and validated with 70 and 30% of the data, respectively. The validation results revealed that the
empirical equations produced low MAE and RMSE and high R2 values for both the WCP and the SRE.
Results showed outperformance of the empirical equations against those of MNLR. Sensitivity analy-
sis carried out by the ANNs revealed that the geometric parameters of the intake were comparably
more sensitive than the flow characteristics.

Keywords: Coanda intake; dimensionless parameters; ANN; multicollinearity analysis; empirical
equations; GA; MNLR; calibration; validation

1. Introduction

Intake structures are used to divert water from channels and river systems for various
purposes, such as energy production, irrigation, and domestic use [1–3]. Tyrolean and
Coanda types of water intake structures are the most widely used bottom intake structures
in the world. No matter the type of intake, the expected purpose from any intake structure
is to supply required water while filtering most of sediments and other unwanted particles
as much as possible [4,5]. This is because energy production stages are carried out with dif-
ferent types of high-value machinery developed for working under clear water conditions.
They are sensitive to sediment particles within water. In addition, sediment particles can
become a shelter for various types of bacteria and protozoa and reduce sanitation efficiency,
especially for ultraviolet disinfection operations [6]. In addition, heavy metals can become
attached to particles, contaminating water in time. Therefore, water that is not purified
well from sediment and other particles can cause important health problems.

Withdrawal water and filtered sediment amounts depend on both structural design
parameters such as bar spacing of an intake, screen length, screen slope inclination, etc. and
incoming flow conditions such as discharge rate and sediment concentration of incoming
flow. Therefore, estimation and determination of withdrawal water and excluded sediment
amounts are highly important to obtain maximum efficiency from an intake structure.
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Some researchers have tried to find an optimum design to overcome the clogging
problem by performing experimental studies. A series of experiments were performed
by Orth, et al. [7] using Tyrolean type water intakes. They have proposed that a bar
profile with a rounded top has high sediment retention and clogging. Rounded shape
bars were found to be more susceptible to clogging by Krochin and Sviatoslav [8], who
have recommended that screen bars should be made of iron and their shapes should be
rectangular or trapezoidal, bar spacing should range between 2 and 6 cm, and screen
inclination should be 20. Bouvard [9] worked with Tyrolean type intakes and expressed
that screen slope should be between 10 and 60% to avoid clogging. In the case of screening
for hydroelectric power plant operations, bar spacing was expressed by Raudkiwi [10] as
at least 5 mm and the screen slope as 20% to overcome any possible clogging problem.

There is a structural difference between Tyrolean and Coanda intakes. Tyrolean-type
water intakes have straight screen bars which are oriented parallel to flow direction. On
the other hand, Coanda-type water intakes have concave screen geometry where screen
bars are placed perpendicular to the flow direction. An increment on screen slope reduces
water column height on the intake screen, reducing both the orifice effect and withdrawn
water discharge. Effect of screen inclination on withdrawn water for Tyrolean-type water
intakes was studied by Castillo, et al. [11]. According to their clear water experiments, the
best water capturing performance was obtained at 0% screen inclination and the worst
results were obtained at 30%. On the other hand, in the case of sediment-laden flow,
maximum water capture performance was obtained at 30% screen inclination and the
worst result was obtained at 0% [11]. The difference is caused by screen clogging due to
sediment particles. On the other hand, when Coanda intake is used instead of a Tyrolean
intake, even in steeper screen inclinations, the shear mechanism becomes more dominant,
keeping withdrawal water discharge relatively high. The self-cleaning ability and high-
water withdrawal capacity make Coanda-type water intakes more preferable than Tyrolean
ones. In addition, the study of Nøvik, et al. [12] indicates that Coanda screens mostly show
satisfactory performance under cold climate conditions. Furthermore, Coanda type water
intakes are environmentally friendly structures since they can allow fish and invertebrates
to pass through downstream of a river [13]. Hence, this study has focused on Coanda-type
water intakes.

An important study on Coanda intake structures was done by Wahl [14], who has
proposed empirical equations for offset height of screen bar and orifice effect. He mentions
that wire tilt angle, which is directly related to offset height, affects the screen capacity. It
increases the shear effect and withdrawal of water quantity. However, it can cause some
disadvantages to the screen performance such as sediment retention and clogging of the
screen. He also concludes that changing sloth width or wire size directly affects the screen
porosity and the screen flow capacity. In another study, Wahl [15] investigated the effect of
changes in screen parameters, such as wire tilt angle, screen curvature (arc) radius, and
screen length on the withdrawal water discharge. The studies of Wahl [14,15] are important
for investigating the effect of various screen parameters on the unit withdrawal discharge
under clear water conditions. A numerical model for clear water conditions to predict water
discharge through the intake in case of different screen design parameters and variations
was developed by Dzafo and Dzaferovic [16]. Another numeric model to analyze flow in a
diversion channel in order to indicate how the numerical (Delft3D-FLOW) and physical
models can be used to observe flow patterns nearby a diversion channel, with Coanda
intake to estimate design parameters, was developed by Hosseini and Coonrod [17].

In real-life applications, Coanda type intake structures face sediment-laden flow con-
ditions as the other intake structures. Some studies have considered sediment-laden flow
for Coanda type intakes. For example, a series of experimental studies were performed
by Howarth [18] to investigate Coanda screens. Three Coanda screens that have different
sloth widths (bar opening) were used by Huber [19] who has indicated that the sediment
exclusion efficiency is increasing with decreasing sloth width. On the other hand, a smaller
sloth width increases the risk of clogging. Some experiments were performed by May [20]
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by considering both clear water and sediment-laden flow using three different Coanda
screens which had different screen openings. May [20] summarizes that screens having
smaller wire openings show good performance for sediment exclusion but are more sus-
ceptible to clogging. Both studies [19,20] have investigated the effect of different discharge
rates and sloth widths. However, constant screen slope and curvature radius were used in
their studies. On the other hand, a series of experiments at Izmir Institute of Technology
(IZTECH) Hydraulic Laboratory was performed by Hazar and Elci [21] by using sediment-
laden flows using Coanda intakes. Parameters of Water Capturing Performance (WCP) and
Sediment Release Efficiency (SRE) were defined to explain the screen performances under
different conditions. The multi-linear equations for both WCP and SRE of Coanda screens
were developed using the linear regression as a statistical analysis method. However, these
equations were not validated since all the data were employed in their construction.

The relations between WCP and related parameters of water flow, sediment, and
intake characteristics are not linear but rather highly nonlinear, which is also true for SRE.
This implies that nonlinear empirical equations can represent the actual physical processes.
The advantage of developing such empirical equations can be beneficial for designing
optimal intakes and for predicting diverted water amount and corresponding sediment
concentration in the diverted water. Hence, there is a need for developing nonlinear
empirical equations to predict WCP and SRE as a function of Coanda intake structural
characteristics, water, fluid, and sediment parameters. This study would be the first one,
to the knowledge of the authors, in the literature to develop such empirical equations.
To develop the equations, the dimensionless parameters are first to be subjected to the
multicollinearity analysis. Empirical nonlinear equations, whose coefficients and exponents
would be determined by applying the method of Genetic Algorithm (GA), would be
proposed. The construction of the empirical equations would be carried out by using 70%
of the data for the calibration and 30% for the validation.

2. Methods and Methodology
2.1. Experimental Setup and Data

The experimental set-up and results were already presented by Hazar and Elci [21].
Experiments were performed at IZTECH Hydraulics Laboratory in Izmir, Turkey (Figure 1).
Six different Coanda screens having different properties were designed (Table 1). Each
Coanda screen had total screen length of 100 cm, net screen length of 60 cm, and screen
width of 40 cm.
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Table 1. Screen characteristics.

Screen Type Sloth Width (mm) Curvature Radius (mm) Void Ratio (e/a)

Coanda R800 (1) 1 800 0.046

Coanda R800 (2) 2 800 0.092

Coanda R800 (3) 3 800 0.138

Coanda R1200 (1) 1 1200 0.046

Coanda R1200 (2) 2 1200 0.092

Coanda R1600 (1) 1 1600 0.046

To observe the screen inclination effect on the screen performances, wooden sockets
which allow the user to adjust a screen inclination in the range of 0 and 30 degrees (0, 5, 15,
20, 25, 30 degrees) were mounted on the intake body section walls (Figure 2). During the
experiments, three different water discharges, 2.4, 5.56, and 7.96 L/s, were used to observe
the incoming flow effect on both WCP and SRE.
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In the case of sediment-laden flow, a novel sediment feeder structure was designed to
allow a user to adjust sediment concentration during the experiments (Figure 3). Uniform
sediment particles that had 0.8 mm diameter were used with 300, 695, and 995 g amounts
for 2.4, 5.56, and 7.96 L/s, respectively, to obtain the same sediment concentration of
125 g/L for each discharge case.
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Figure 3. Sediment feeder device.

There were 108 cases (6 different slopes × 6 different screens × 3 different flow
discharge) and each experiment was repeated three times, and an average value of WCP
was obtained for each experiment. Thus, in total, 108 × 3 = 324 experiments were carried
out and 108 average WCP values were used in the analysis. The similar procedure was
also applied to the SRE and 108 average SRE values were used in the analysis. Note that
the experiments for the WCP were done in clear water while the experiments for the SRE
were carried out in sediment-laden flows and thus they were totally different experiments.
The statistics of the measured WCP and SRE from all the experiments are summarized in
Table 2. Details of the experimental setup and the experiments can be obtained from Hazar
and Elci [21].

Table 2. Statistical summary of data sets for WCP and SRE.

Data Sets WCP (Qin/Qdiv) SRE (Sin/Sre)

Maximum 100 90.4

Minimum 38.7 0.3

Range 61.3 90.0

Mean 70.3 52.7

St. Deviation 16.8 26.0

For developing the empirical equations, dimensionless parameters were developed,
as presented in Table 3.
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Table 3. Dimensionless parameters.

Dimensionless Parameters Description

θ Screen Slope (degree)

L/R Net screen length/Screen curvature radius

m = e/a Bar openings area/Total screen area

e/R Bar opening/Curvature radius

Fr(R) =
V√
gR Froude number based on screen curvature radius

We(R) =
ρV2R
σ

Weber number based on screen curvature radius

D50/R Median of the sediment diameter/Flow depth at
beginning of the screen

D50/e Median of the sediment diameter/Bar opening

WCP (Qin/Qdiv) Water capturing performance

SRE (Sin/Sre) Sediment release efficiency

Definition of parameters: θ is the screen slope, L is the net screen length, R is the
screen curvature radius, a is the distance between mid-points of two consecutive screen
bars, e is the net opening between two consecutive bars, V is the water velocity, g is the
gravitational acceleration, ρ is the water density, σ is the surface tension, d50 median of the
sediment diameter, Qin is the incoming discharge through the intake, Qdiv is the diverted
water discharge by the intake, Sin is the total sediment amount which was fed into the
main flume, and Sre is the released sediment amount by the intake.

2.2. Multicollinearity Analysis

The main aim of this study is to develop nonlinear empirical equations for WCP and
SRE as functions of fluid, sediment, flow, and intake structure parameters for Coanda
intakes. Evidently, there are 14 parameters (see Table 3), and considering all of them in
any equation could be cumbersome work, which may result in a non-practical equation.
Therefore, as a first step, the number of parameters was reduced by creating the dimension-
less parameters, as presented in Table 3, where 10 of them are defined. The objective is to
develop an empirical equation that can be as comprehensive (reflecting the actual physical
process) as possible but at the same time simple and user-friendly. Before constructing
the empirical equations, the multicollinearity analysis was performed to overcome any
possible collinearity problem.

Multicollinearity refers to one predictor or independent variable in a regression model
being able to be linearly predicted from other independent variables. It can cause a high
variance of the estimated coefficients, not being able to reflect correct values. The Variance
Inflation Factor (VIF) is one of the common methods that is used to distinguish collinearity
in an analysis [22]. A small VIF value indicates a low correlation among predictor variables.
There exist some suggestions for acceptable VIF value in the literature. Generally, a value of
10 is suggested as a top limit; VIF ≥ 10 indicates high multicollinearity among parameters.
Thus, it is acceptable if the VIF is less than 10 [23]. The VIF is defined as follows [24]:

VIF =
1

1 − R2 (1)

where R is the coefficient of determination.
Six parameters (θ, m, e/R, L/R, Froude, and Weber) for the WCP and 8 parameters

(θ, m, e/R, L/R, Froude, Weber, D50/R, and D50/e) for the SRE were subjected to the
multicollinearity analysis. The parameters having acceptable VIF values are presented in
Table 4 for the WCP and in Table 5 for the SRE.
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Table 4. Independent parameters and VIF values for WCP.

Independent Parameters VIF Value

θ (Screen Slope) 1.00
m = (e/a) 1.18

L/R 6.67
Froude 5.56
Weber 6.25

Table 5. Independent parameters and VIF values for SRE.

Independent Parameters VIF Value

θ (Screen Slope) 1.00
L/R 5.88

Froude 5.88
Weber 6.25
D50/e 1.11

2.3. Genetic Algorithm (GA)

Genetic Algorithm is a nonlinear search and optimization method, inspired by bio-
logical processes of natural selection and survival of the fittest. GA has two main units
as gene and chromosome. A gene consists of bits and a chromosome consists of genes.
The gene represents a model parameter to be optimized and each chromosome stands for
a solution candidate. In GA, the search process is initiated with many chromosomes. In
each iteration, search space is scanned by the chromosomes, while the fitness evaluation,
selection, pairing, crossover, and mutation operations are performed. Figure 4 shows
the flowchart summarizing the GA operations. There are innumerous studies (papers
and books) available in the literature, including [25], on the details of the GAs and their
operations, and GA applications in water resources engineering.
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2.4. Artificial Neural Networks (ANNs)

Artificial Neural Networks were employed in this study to compare the prediction per-
formance against the empirical equations. ANNs have been developed as analogies to the
human brain system, consisting of many artificial neurons, with connection links and layers
that, as a whole system, can learn from experience and experiments and store information.

Figure 5 shows a typical commonly employed single hidden layer network where
inputs (Xi) are passed on to neurons at the hidden layer as XiVij. These neurons, in turn,

sum the weighted input as netj =
n
∑

i=1

(
XiVij

)
which is then transferred by a nonlinear

transfer function (mostly, the sigmoid or the tangent hyperbolic function) to produce an
output. This response can become an input for other neurons located in the next layer. This
is continued until the network produces an output (Zmodel). The propagation from input to
hidden to output neurons is called a forward pass.
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Figure 5. Schematic representation of a single hidden layer ANN.

The back propagation algorithm is generally employed to train the network by finding
optimal values of the connection weights (Vij, Wij) that can produce an output vector
Z = (z1, z2,..., zp) as near as possible to target output vector T = (t1, t2,...,tp). For each input
pattern (p), the network produces an output and the related error is computed and then the
total error (Etotal) is obtained by summing each error as follows [25]:

Etotal =
1
2

N

∑
p=1

(
zp − tp

)2 (2)

where zp is the model produced output for p-pattern, tp is the target (actual) output for
p-pattern, and N is the number of training patterns.

The total error is then back propagated from output neuron to inner to input neurons
by tuning connection weights (Figure 5). The error propagation from output neuron to
hidden layer to input layer is called the backward pass. A single forward and backward
pass constitutes a single iteration. At each iteration, the connection weights are updated
(optimized) as follows [25], by minimizing the total error (Etotal):

vnew
ij = vold

ij − δ
∂Etotal

∂vij
(3)

where vnew
ij and vold

ij are current and previous values of connection weights at successive
iterations. δ is the learning rate which can assume values greater than zero and less
than one.
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As the iterations are continued, the total error is expected to decrease. There are
innumerous studies (papers and books) available in the literature, including, [25], on the
details of the feed forward networks, the back propagation algorithm, the network training
and testing, and ANN applications in water resources engineering.

2.5. Constructing Empirical Equations

This study proposes nonlinear empirical equations for predicting WCP and SRE, based
on the related dimensionless parameters presented in Tables 4 and 5. As presented above,
e/R is excluded from the WCP model after the multicollinearity analysis (see Table 4).
Thus, the remaining parameters (θ, m, L/R, Froude, and Weber) are considered in the
empirical equation for the WCP. However, another important issue is to decide the form
of the equation, i.e., how to place each parameter (as numerator or denominator) with
a positive exponent in the equation. To do so, the behavior (direct or inverse variation)
between each parameter and the output variable, WCP, is analyzed. According to Figure 6,
WCP varies directly with the void ratio (m) while it varies inversely with Weber number,
Froude number, and the screen slope (θ). There is no clear relation observed between L/R
and WCP. Therefore, the following nonlinear equation is proposed for WCP:

WCP = c1

 (m)a2
(

L
R

)a5

(θ)a1(Fr)a3(We)a4

 (4)

where c1 is a coefficient and a1, a2, a3, a4, and a5 are exponents whose optimal values are
obtained by the GA. The optimal values of c1, a1, a2, a3, and a4 are searched within the
positive range while the search space covered a wide range (positive to negative) for a5
since there is no clear variation pattern between L/R and WCP, as more details are given in
the next section.
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Figure 6. Variation of θ, m, L/R, Froude, and Weber number parameters with WCP.

As presented above, m, D50/R, and e/R are excluded from the SRE empirical model
after the multicollinearity analysis and therefore the remaining parameters, presented in
Table 5 (θ, D50/e, Froude, Weber, and L/R), are considered in the empirical equation for
the SRE. To decide the form of the equation, as it is presented above for the WCP, the
behavior (direct or inverse variation) between each parameter and the output variable, SRE,
is first analyzed. According to Figure 7, SRE varies directly with screen slope (θ), Froude,
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and Weber. There is no clear variation behavior observed for L/R and D50/e. Hence, the
following nonlinear empirical equation is proposed for the SRE:

SRE = c2

 (θ)b1(Fr)b2(We)b3(
D50

e

)b4
(

L
R

)b5

 (5)

where c2 is a coefficient and b1, b2, b3, b4, and b5 are exponents. The optimal values of c2,
b1, b2, and b3 are obtained by the GA, searching values within the positive range, while
the search space covered a wide range (positive to negative) for b4 and b5 since there is no
clear variation pattern between these parameters and SRE. More details are given in the
next section.

Water 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

SRE = c2 [
(θ)b1(Fr)b2(We)b3

(
D50

e
)

b4

(
L
R

)
b5

] (5) 

where c2 is a coefficient and b1, b2, b3, b4, and b5 are exponents. The optimal values of c2, 

b1, b2, and b3 are obtained by the GA, searching values within the positive range, while the 

search space covered a wide range (positive to negative) for b4 and b5 since there is no 

clear variation pattern between these parameters and SRE. More details are given in the 

next section. 

 

Figure 7. Variation of e/R, Weber, m, Slope, L/R, and D50/R parameters with SRE. 

3. Results 

3.1. GA-Based Empirical Equations 

Optimal values of coefficients and exponents of Equations (4) and (5) were found by 

employing the GA. For this purpose, a total of 216 data sets were gathered from the ex-

perimental study: 108 for the WCP and 108 for the SRE. Of the 108 sets for WCP, 70 were 

randomly selected for calibration, while the rest were for validation. The same was done 

for SRE. The mean absolute error functions were minimized while finding the optimal 

values of the coefficients and exponents of Equations (4) and (5). The respected error func-

tions can be expressed as follows: 

MAE =
1

N
∑ abs(WCPmodel − WCPmeasured)

N

i=1

 (6) 

MAE =
1

N
∑ abs(SREmodel − SREmeasured)

N

i=1

 (7) 

During iterations, 80% crossover rate, 4% mutation rate, and 6000 epochs were em-

ployed. The search space for c1 and c2 was set to 1–200 and for the exponents of a5, b4, and 

b5 the search space was set to −3 and +3 while it was set to 0–3 for the other exponents. 

The obtained optimal values of the coefficients are shown in Table 6. Figures 8 and 9 pre-

sent the validation and calibration stages for WCP and SRE, respectively. As seen, predic-

tions are satisfactory for both cases for which the related error measures are summarized 

in Table 7. 

0

20

40

60

80

100

0 2000 4000 6000 8000 10000

S
R

E

Weber

Effect of Weber number on SRE at θ= 15o

Qin = 2.4 lt/s Qin = 5.56 lt/s Qin = 7.96 lt/s

0

20

40

60

80

100

0 5 10 15 20 25 30 35

S
R

E

Slope (ϴ)

Effect of Screen Slope on SRE for Q=5.56 l/s

R800 R1200 R1600

0.0

20.0

40.0

60.0

80.0

100.0

0.00 0.20 0.40 0.60 0.80

S
R

E

L/R

Relation between SRE and L/R at Qin=5.56 l/s

Slope = 5 Slope = 10 Slope = 30

0

20

40

60

80

100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

S
R

E

Froude

Effect of Froude number on SRE at θ=15o

R800(1) type R800(2) type R800(3) Type

0.0

20.0

40.0

60.0

80.0

100.0

0.00 0.20 0.40 0.60 0.80 1.00

S
R

E

D50/e

Effect of D50/e on SRE at different Qin values

Qin=2.4 l/s Qin=5.56 l/s Qin=7.96 l/s

Figure 7. Variation of e/R, Weber, m, Slope, L/R, and D50/R parameters with SRE.

3. Results
3.1. GA-Based Empirical Equations

Optimal values of coefficients and exponents of Equations (4) and (5) were found
by employing the GA. For this purpose, a total of 216 data sets were gathered from the
experimental study: 108 for the WCP and 108 for the SRE. Of the 108 sets for WCP, 70 were
randomly selected for calibration, while the rest were for validation. The same was done for
SRE. The mean absolute error functions were minimized while finding the optimal values
of the coefficients and exponents of Equations (4) and (5). The respected error functions
can be expressed as follows:

MAE =
1
N

N

∑
i=1

abs(WCPmodel −WCPmeasured) (6)

MAE =
1
N

N

∑
i=1

abs(SREmodel − SREmeasured) (7)

During iterations, 80% crossover rate, 4% mutation rate, and 6000 epochs were em-
ployed. The search space for c1 and c2 was set to 1–200 and for the exponents of a5, b4, and
b5 the search space was set to−3 and +3 while it was set to 0–3 for the other exponents. The
obtained optimal values of the coefficients are shown in Table 6. Figures 8 and 9 present the
validation and calibration stages for WCP and SRE, respectively. As seen, predictions are
satisfactory for both cases for which the related error measures are summarized in Table 7.
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Table 6. Optimal values of the coefficients for GA based equations.

Parameter c1 c2 a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

WCP 151.8 - 0.12 0.15 0.39 0.07 0.15 - - - - -

SRE - 56.5 - - - - - 0.26 0.81 0.04 −0.21 0.60
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Table 7. Error measures for WCP and SRE.

GA
Calibration Stage Validation Stage

WCP SRE WCP SRE

MAE 4.32 10.32 4.71 10.77

RMSE 5.72 13.18 6.15 12.99

R2 0.88 0.75 0.87 0.80

The resulting empirical equations can be presented as follows:

WCP = 151.8

 (m)0.15
(

L
R

)0.15

(θ)0.12(Fr)0.39(We)0.07

 (8)

SRE = 56.5

 (θ)0.26(Fr)0.81(We)0.04
(

D50
e

)0.21

(
L
R

)0.60

 (9)
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3.2. MNLR Based Empirical Equations

The performances of the empirical equations were compared against those of the Multi
Nonlinear Equations (MNLR). The proposed MNLR are expressed as follows:

WCP = c1(θ)
a1+c2(m)a2+c3(Fr)a3+c4(We)a4+c5

(
L
R

)a5

(10)

SRE = d1(θ)
b1+d2(Fr)b2+d3(We)b3+d4

(
D50

e

)b4

+d5

(
L
R

)b5

(11)

The same data used for the calibration of Equations (8) and (9) were employed for
finding the coefficients and exponents of Equations (10) and (11). The obtained optimal
values of the coefficients are presented in Tables 8 and 9. Figures 10 and 11 present the
calibration and validation stages for WCP and SRE, respectively. The error measures related
to these figures are summarized in Table 10.

Table 8. Optimal values of the coefficients for WCP in the case of MNLR equations.

Parameter c1 c2 c3 c4 c5 a1 a2 a3 a4 a5

WCP 140.09 10.39 7.54 215.73 19.96 −30.15 7.83 −0.77 −0.21 2.47

Table 9. Optimal values of the coefficients for SRE in the case of MNLR equations.

Parameter d1 d2 d3 d4 d5 b1 b2 b3 b4 b5

SRE 1.83 21.00 −217.90 51.67 0.82 0.85 20.00 −9.81 0.47 0.43
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Table 10. Error measures for WCP and SRE.

MNLR
Calibration Stage Validation Stage

WCP SRE WCP SRE

MAE 6.95 18.04 6.28 20.14

RMSE 9.12 24.00 8.48 25.98

R2 0.70 0.22 0.77 0.17

The obtained MLNR equations can be expressed as follows:

WCP = 140.09(θ)−30.15 +10.39(m)7.83+7.54(Fr)−0.77+215.73(We)−0.21+19.96
(

L
R

)2.47
(12)

SRE = 1.83(θ)0.85+21(Fr)20 − 217.9(We)−9.81+51.67
(

D50
e

)0.47
+0.82

(
L
R

)0.43
(13)

3.3. ANN Predictions

The ANN for the WCP has 5 neurons (input parameters: θ (angle), m (void ratio),
L/R, Froude number, and Weber number) in the input layer, 11 neurons in the hidden
layer, and a single output neuron for WCP (see Figure 12). The ANN of SRE contains
5 neurons (Input parameters: θ (angle), L/R, Froude number, Weber number, D50/e) in
the input layer, 11 neurons in the hidden layer, and 1 output neuron for the SRE (see
Figure 13). The networks were trained with 6000 epochs. The same data sets, which were
randomly separated as about 70% for the calibration and 30% for the validation for the
GA-based and MNLR empirical equations, were employed for the ANN training and
testing stages, respectively.
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Table 11 presents the error measures for the WCP and SRE at the training and testing
stages. As seen, for both the cases, ANNs produced low MAE and RMSE and high
R2 values.

Table 11. Error measures for WCP and SRE.

ANN
Training Stage Testing Stage

WCP SRE WCP SRE

MAE 0.75 1.47 3.39 4.32

RMSE 1.08 2.37 4.30 5.37

R2 0.99 0.99 0.94 0.96

3.4. Sensitivity Analysis by ANNs

Sensitivity analysis was carried out by employing the ANNs to identify the sensitive
parameters. Tables 12 and 13 summarize the results for WCP and SRE, respectively. As
seen in Table 12, the geometric characteristics of θ (screen slope) and m = (ratio of bar
openings area to total screen area) parameters turned out to be the most sensitive ones for
the WCP. For the SRE, θ (screen slope) and D50/e (ratio of median of sediment diameter to
bar opening) are the most sensitive ones (Table 13). It turns out that flow characteristics
are not, comparatively, as sensitive as the intake geometric ones for the WCP and intake
geometric and sediment characteristics for the SRE.

Table 12. Sensitivity analysis for WCP.

Independent Parameters MAE RMSE R2

θ (Screen Slope) 4.259 5.475 0.892
M = (e/a) 4.670 6.132 0.865

L/R 1.220 1.826 0.988
Froude 1.353 1.886 0.987
Weber 1.209 1.666 0.990
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Table 13. Sensitivity analysis for SRE.

Independent Parameters MAE RMSE R2

θ (Screen Slope) 7.408 9.304 0.871
L/R 2.857 3.464 0.982

Froude 2.511 3.249 0.984
Weber 2.134 2.853 0.988
D50/e 9.033 11.24 0.812

4. Discussion

The calibration and validation of Equation (8), the GA-based empirical equation
predicting WCP as a function of the intake geometric and flow characteristics variables,
was successfully accomplished with low errors (MAE = 4.32, RMSE = 5.72 for the calibration
stage, and MAE = 4.71, RMSE = 6.15 for the validation stage) and high R2 values of 0.88
(calibration) and 0.87 (validation). When its success is compared against that of the MNLR
equation (Equation (12)), it is clearly seen that the empirical equation outperformed the
MNLR one, which produces relatively low R2 = 0.70 and high errors of MAE = 6.95,
RMSE = 9.12, at the calibration stage and MAE = 6.28, RMSE = 8.48, R2 = 0.77 at the
validation stage (see Table 14). The GA-based empirical model produced comparable
results against those of the ANN, which is a very powerful soft computing method for
nonlinear problems. Although ANN produced less errors and high R2 values, as seen in
Table 14, they do not yield any mathematical equation, as opposed to the empirical one.

Table 14. Performance comparison between GA_based empirical equation, MNLR, and ANN
for WCP.

WCP
Calibration Stage Validation Stage

GA MNLR ANN GA MNLR ANN

MAE 4.32 6.95 0.75 4.71 6.28 3.39

RMSE 5.72 9.12 1.08 6.15 8.48 4.30

R2 0.88 0.70 0.99 0.87 0.77 0.94

The calibration and validation of Equation (9), the GA-based empirical equation pre-
dicting SRE as a function of the intake geometric, fluid, sediment, and flow characteristics
variables, was successfully accomplished with low errors (MAE = 10.32, RMSE = 13.18
for calibration, and MAE = 10.77, RMSE = 12.99 for validation) and high R2 values of 0.75
(calibration) and 0.80 (validation). When its success was compared against that of the
MNLR equation (Equation (13)), it was seen that the empirical equation outperformed
the MNLR one, which had produced high errors and very low R2 values of 0.22 (calibra-
tion) and 0.17 (validation) (see Table 15). It may be stated that the MNLR method had
produced a worse performance for SRE than for WCP. The GA-based empirical model
produced comparable results against those of the ANN, as seen in Table 15. However, as it
is pointed out above, ANNs do not accomplish any mathematical relations between the
dependent and independent variables. They are, as it is pointed out in the literature, very
powerful interpolators but poor extrapolators and they are black box models [25]. The
empirical models, on the other hand, can be easily employed for both the interpolation and
extrapolation purposes.
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Table 15. Performance comparison between GA_based empirical equation, MNLR, and ANN for SRE.

SRE
Calibration Stage Validation Stage

GA MNLR ANN GA MNLR ANN

MAE 10.32 18.04 1.47 10.77 20.14 4.32

RMSE 13.18 24.00 2.37 12.99 25.98 5.37

R2 0.75 0.22 0.99 0.80 0.17 0.96

The above model validation performance results were also summarized by using the
Taylor Diagram, which quantifies the degree of correspondence between predicted and
measured data [26]. For this purpose, it employs three different statistics called (1) the
Pearson correlation coefficient, (2) the centered RMSE, and (3) the Standard deviation.
Figures 14 and 15 present these statistics for WCP and SRE performance results for the
validation stages, respectively. In these figures, the correlation coefficient is related to
the azimuthal angle and shown by black contours; the centered RMSE is represented by
green arc contours and blue-dashed contours show the standard deviation. As seen in
Figures 14 and 15, the corresponding three statistics for each case are compatible with the
performance measures presented in Tables 14 and 15.
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Figure 14. Summary of statistics of predicted WCP values by Taylor Diagram (black contours:
Pearson correlation coefficient; green contours: centered RMSE; blue contours: standard deviation).
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Figure 15. Summary of statistics of predicted SRE values by Taylor Diagram (black contours: Pearson
correlation coefficient; green contours: centered RMSE; blue contours: standard deviation).

It is worth noting that this study is the first one developing empirical equations for the
SRE and the WCP as functions of water, sediment, fluid, and flow parameters and Coanda
intake physical characteristics. Based on the results of the experiments, an optimum design
based on curvature radius was developed to prevent clogging during the intake operations.
As pointed out in the Introduction section, there is a limited number of studies on Coanda
intakes, especially subjected to the sediment-laden flows. These studies have involved
mostly experimental works that lack any equation development. Therefore, discussing
the developed empirical equations within the framework of existing literature becomes
quite limited. Hazar and Elci [21] have only attempted to propose multilinear regression
(MLR) equations for the variables of SRE and WCP. Apart from the fact that the process
is nonlinear rather than linear, they have employed all the data for the calibration stage
and they have not verified their equations. In this study, however, the nonlinear empirical
equations were calibrated with about 70% of the data and validated using the rest (about
30%). These equations were compared against those of the MNLR ones. The results have
shown the superiority of the empirical equations.

Note that when Equation (8) was developed, about 76 sets of data were used in its
calibration. The so-developed equation was then employed to make the predictions of the
other 32 WCP values, which were not presented to the model at all during its calibration
stage. As discussed above, the equation made good predictions of the measured 32 WCP
values and outperformed the MNLR model (see Table 14 and Figure 14). This success points
to the right form of the equation. In a similar fashion, in the development of Equation (9),
76 sets of data were used in its construction and the rest (32 sets) were employed to test its
performance. As discussed above, the equation made successful predictions of SRE values
and outperformed the MNLR model (see Table 15 and Figure 15). This also conforms to the
right form of the constructed equation.
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5. Summary and Conclusions

The main aim of this study is to develop nonlinear empirical equations for WCP and
SRE, as functions of fluid, sediment, flow, and intake structure parameters for Coanda
type intakes. To develop comprehensive but at the same time practical and user-friendly
equations, the number of parameters and variables was first reduced from 14 to 10 by
creating the dimensionless parameters. Then, the multicollinearity analysis was performed
to remove any possible collinearity problem. As a result, only five dimensionless parameters
for the WCP and five for the SRE were considered in the development of the equations.
Next, the forms of the equations were decided upon by investigating direct or inverse
variation between each parameter and the respected output variable of SRE and WCP. The
optimal values of the exponents and coefficients of the proposed equations were obtained
using the GA. The proposed equations were successfully calibrated with 70% of the data
and validated with the rest. The developed equations were then compared against the
MNLR and ANN. Results have shown that the GA-based empirical equations have reliable
predictive capability and outperform the MNLR ones.

The performance of the GA_based empirical equations is comparable to that of the
ANNs that produce less error and high R2 values. Yet, the ANN cannot accomplish neither
any mathematical relations nor can they be used for the extrapolation purpose, unlike the
empirical equations. The sensitivity analysis results carried out by the ANNs reveal that
the geometric characteristics parameters of Coanda intakes are comparably more sensitive
than the flow ones for the WCP. Similarly, both the geometric and sediment parameters are
more sensitive than the flow characteristics in the case of the SRE.

Note that each nonlinear empirical equation (Equations (8) and (9)) was developed
using 76 sets of data and verified by being applied to another 32 validation data sets that
were not presented to the model at all during the respected calibration stage. The successful
predictions of the validation data conform to the right form of each proposed equation.
Therefore, this study concludes that the developed empirical equations can be employed
to predict WCP and SRE for Coanda type intakes. It needs to be pointed out, however,
that the equations developed in this study have used laboratory data. Thus, it would be
suggested to test these equations in field conditions.

With the advantage of reducing the number of variables that describe a system,
the empirical equations derived from non-dimensional numbers reduce the number of
experiments enabling correlations of physical phenomena to scalable systems. It is noted
that all the experiments were conducted using constant angled T-shape bars and a screen
length of 60 cm. In a future study, at higher discharge rates and varying angled T-shape
bars, different screen lengths can be investigated, and accordingly, the proposed empirical
equations can be revised.
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