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Abstract

Motivation: Diagnosis and treatment decisions on genomic data have become widespread as the cost of genome
sequencing decreases gradually. In this context, disease—gene association studies are of great importance.
However, genomic data are very sensitive when compared to other data types and contains information about indi-
viduals and their relatives. Many studies have shown that this information can be obtained from the query-response
pairs on genomic databases. In this work, we propose a method that uses secure multi-party computation to query
genomic databases in a privacy-protected manner. The proposed solution privately outsources genomic data from
arbitrarily many sources to the two non-colluding proxies and allows genomic databases to be safely stored in semi-
honest cloud environments. It provides data privacy, query privacy and output privacy by using XOR-based sharing
and unlike previous solutions, it allows queries to run efficiently on hundreds of thousands of genomic data.
Results: We measure the performance of our solution with parameters similar to real-world applications. It is
possible to query a genomic database with 3 000 000 variants with five genomic query predicates under 400 ms.
Querying 1 048 576 genomes, each containing 1 000 000 variants, for the presence of five different query
variants can be achieved approximately in 6 min with a small amount of dedicated hardware and connectivity.
These execution times are in the right range to enable real-world applications in medical research and health-
care. Unlike previous studies, it is possible to query multiple databases with response times fast enough for
practical application. To the best of our knowledge, this is the first solution that provides this performance for
querying large-scale genomic data.

Availability and implementation: https://gitlab.com/DIFUTURE/privacy-preserving-variant-queries.

Contact: mete.akguen@uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction Naveed et al., 2015). Having access to genome data for individual
patients has paved the way for individualized therapies, especially in

As genome sequencing technologies become faster and more effi- e . . -
oncology. Many applications in genomic medicine call for a com-

cient, genome are increasingly used in a variety of areas including

direct-to-consumer services (23andMe, Ancestry, Gene By Gene,
MyHeritage) (Khan and Mittelman, 2018), forensic medicine
(Borsting and Morling, 2016), personalized medicine (Amendola
et al., 2018; Deng and Nakamura, 2017; Siirtin ef al., 2020) and,
genome-disease association studies (Consortium et al., 2007; Hyde
et al., 2016). For example, it is now possible for doctors to give the
right drug at the right time (for some drugs) by examining the
patient’s genome (Akgiin ez al., 20135; Erlich and Narayanan, 2014;

©The Author(s) 2022. Published by Oxford University Press.

parison of genomes either locally (‘who else has this variant in a par-
ticular gene?’) or on a global scale (‘are there patients with a similar
genome?’). While these queries are fundamentally trivial, the sensi-
tive nature of genomic data implies constraints on how such queries
can be implemented. Since genomic data can be used to distinguish
two individuals from one another and to obtain genotype, pheno-
type and ancestry (Naveed et al., 2015), disclosure of this data
results in different privacy vulnerabilities comparing the disclosure

2202

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

220z AInp 20 uo sasn ABojouyoa | Jo aynysul Jiwz| Aq 229.259/2022/8/8E/BI0IHE/SOIEULIOJUI0Iq/ W09 dNO"dlWapEed.//:Sdjy WOl POPEOjUMOQ


https://orcid.org/0000-0003-4088-2784
https://orcid.org/0000-0003-1739-4598
https://gitlab.com/DIFUTURE/privacy-preserving-variant-queries
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac070#supplementary-data
https://academic.oup.com/

Efficient privacy-preserving whole-genome variant queries

2203

of other data. Once genomic information has been disclosed to third
parties, there is no way to undo that damage (in contrast, for ex-
ample, to stolen credit card numbers, one cannot change one’s gen-
ome). Consequently, access and use of genomic data are strictly
regulated.

One way to solve the aforementioned privacy problem is to im-
plement data sharing policies and consent processes. Unfortunately,
it is very difficult and time consuming to implement these solutions
because of the different regulations of the institutions. In addition,
privacy violations that may occur in the future might be overlooked
(Aziz et al., 2017). For privacy-preserving sharing of genomic data,
the Global Alliance for Genomics and Health (GA4GH) launched
the Beacon network (Global Alliance for Genomics and Health,
2016), where distributed genomic data can be queried over the web.
The Beacon network enables queries whether there is a specific vari-
ant present in any of the genomes stored at one of the Beacon nodes
and the system responds with “Yes’ or ‘No’. Although the Beacon
network is designed to share individuals’ genomic data in a privacy-
protected way, Shringarpure and Bustamante (2015) have shown
that re-identification attacks can be carried out with a small fraction
of a target genome. Methods that can prevent this attack but also re-
duce the use of the system are provided in Raisaro et al. (2017). von
Thenen et al. (2019) improved the original attack by reducing the
number of queries required to determine the presence of an individ-
ual in a beacon.

In Demmler et al. (2017), the authors proposed a solution based
on secure multi-party computation (MPC) for private and secure
federated variant queries. This solution was proposed as an alterna-
tive to the Beacon network. Unlike that Beacon network, it hides
which institution contributes to the answer and applied a threshold
value to the answer. In this solution, data from multiple sources is
being sent to the two proxy servers. It is assumed that the proxy
servers do not collude with each other. The knowledge of which
database contributes to the output and which variants are accessed
is unknown in this solution. For this reason, data privacy, query
privacy and output privacy are provided. The performance of this
solution when working on multiple patient data is not sufficient.
The execution times of the protocol increase linearly with the in-
crease in the number of variants, query variants and patients. Thus,
we can calculate the execution time of the protocol for a given num-
ber of variants, query variants and patients. Querying 1 000 000
genomes with 3 000 000 variants each for the presence of five differ-
ent query variants take approximately 748 333 h and querying a sin-
gle genome with 3 000 000 variants for the presence of 1000
different query variants take approximately 150 h. High perform-
ance can be achieved with a dedicated system, high memory capacity
and a high number of processors.

1.1 Our contributions
In this article, we propose a method by which we can perform
queries without violating the privacy of individuals on the genomic
data using secure MPC. We adapt MPC to transfer genomic data
from multiple sources to the two proxy servers (Kamara and
Raykova, 2011) and to run researchers’ queries privately on these
proxy servers. We solve the security and privacy problems caused by
outsourcing of the genomic data to the proxy servers due to sharing
and computation. First, we ensure data privacy. Security of genomic
data stored on the proxy servers is provided by evaluating the entire
computation process. Genomic data are secured even if one of the
proxy servers is compromised. Second, we provide query privacy.
The proxy servers do not learn anything about queries being exe-
cuted. Third, we provide privacy to the query output. The query out-
put is only learned by the researcher. Unlike the Beacon network
(Global Alliance for Genomics and Health, 2016), our solution
hides the contribution of each data owner (medical institute or hos-
pital) to the query output. The attacker can perform the re-
identification attack (Shringarpure and Bustamante, 2015) but can-
not know in which medical institution the victim’s genome is stored.
The proposed solution establishes a querying method that paves
the way for an efficient privacy-preserving system for secure genome
queries. We express each variant database in a binary balanced tree.

The queries are executed by traversing a tree representing variants.
At the end of this process, the servers reach variant values in leaf
node and compare them with the query values using secure MPC.
Unlike previous studies (Demmler et al., 2017; Hasan et al., 2018),
which had a drawback that they cannot answer queries on databases
having thousands of patient’s data in a reasonable time, our solution
responds to such queries in a very short time. Query performance of
our protocol is constant with respect to the number of variants due
to the use of tree structures to represent variants and linear with re-
spect to the number of patients and query variants. Our solution
offers unprecedented performance for secure variant queries by tak-
ing the advantage of the tree-based protocol.

We prove our method to be secure in the presence of honest-but-
curious proxy servers and malicious clients. We implement and test
our method by considering various numbers of variants, patients
and query variants. Our experiments show that in 3.23h we can
query five variants against a database of 1 048 576 patients, each
containing 1 000 000 variants in a WAN setting. The query time is
reduced to approximately 6 min using a small amount of dedicated
hardware. This shows that our method has the ability to work in
current clinical and research settings practically and efficiently.

2 Related work

There are many studies on genomic privacy in the literature.
Interested readers are referred to some excellent reviews (Akgiin
et al., 2015; Aziz et al., 2017; Mittos et al., 2019; Naveed et al.,
2015). In this section, we provide an overview of recent work
related to our solution.

The edit distance (ED) is a measure of the proximity of two
strings. It is calculated by finding the minimum number of opera-
tions to convert one string to another. In bioinformatics, ED is used
to calculate the similarity of DNA sequences that are encoded with
letters A, C, G and T. There are many studies that calculate ED on
protected genomic databases in a privacy-preserving way. In Jha
et al. (2008), a privacy-preserving edit distance calculation algo-
rithm based on Yao’s garbled circuits was developed. With this solu-
tion, the edit distance calculation of several hundred-character-long
genome sequences takes several minutes. Thus, applying it to the
whole-genome scale is computationally infeasible. Another study
(Huang et al., 2011) improved the performance of this solution 29
times.

When the whole genome is evaluated, the genome is 99% similar
in all humans, and variations in 1% are mostly simple substitutions.
These facts were utilized in two studies (Asharov et al., 2018; Wang
et al., 2015). In Wang et al. (2015), the authors proposed a distrib-
uted query system. They tested the proposed system in 250 hospi-
tals, each with 4000 genomes with length of 75 million nucleotides
each. It took 200 min to search for one million cancer patients. In
Asharov et al. (2018), the authors have studied the same problem.
They divide the genome sequences into small blocks and pre-
compute ED between these blocks. With the power of pre-
computation and their own approximation function, their method is
more accurate and faster than Wang et al. (2015).

In Salem et al. (2019), the authors developed a privacy-
preserving protocol for similar patient queries for combined medical
databases. The proposed methods work on various types of biomed-
ical data, including genomic, epigenomic and transcriptomic data as
well as their combination. The authors use the ED and Pearson cor-
relation coefficient as similarity measures. Their solution securely
queries a database of 1000 patients in less than 5 seconds with the
ED and in less than thirty seconds with the Pearson correlation coef-
ficient. It performs the similarity computation with weighted ED
over 1 million patient data in 14.6 h.

In Sousa et al. (2017), the authors proposed a solution that stores
genomic data in the cloud and provides a secure querying service. In
this solution, Variant Call Format (VCF) files are symmetrically
encrypted and then sent to the cloud. Homomorphic encryption and
private information retrieval are used to ensure data and query se-
curity. Since each VCF file uses a different encryption key, the solu-
tion cannot work on multiple patient data. An enhanced version of
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this system that works on multiple patient data was proposed in
Froelicher et al. (2017). In this solution, security and privacy fea-
tures can be predetermined to set query performance. Another factor
influencing system performance is output size. It is possible to infer
information about the query from the output. This problem can be
solved by padding the query.

In Hasan ez al. (2018), the authors proposed a solution in which
the aggregated genomic data was secretly stored and queried pri-
vately. The system only supports count queries revealing how many
records contained in the database match the given criteria.
Aggregated variants are stored using a tree. This tree is stored in the
cloud in encrypted form. The queries are executed by traversing the
encrypted tree. Traversing decisions are made according to which
branch of the current node matches the query. The proposed solu-
tion claims to provide data privacy, query privacy and output priv-
acy. This solution can only work on a set of previously known
variants and needs a single and trusted certificated institution that
knows all genomic data coming from different sources.

3 Materials and methods

In this section, we introduce preliminaries, the proposed privacy-
preserving method to query multiple genomic variant databases. We
also present the security considerations.

3.1 Secure MPC

Secure MPC is a method that allows parties to compute an arbitrary
function over their inputs together in a privacy-protected manner
without learning each other’s input. The expected security of MPC
is that the method does not disclose anything besides the output.
MPC was first introduced by Andrew Yao (1986) for two-party se-
cure computation. This method was then generalized by Goldreich,
Micali and Widgerson (GMW) (Goldreich ez al., 1987) for multiple
parties. Due to the high computational cost, MPC has been consid-
ered impractical for a long time. Only recently this perception has
been changing due to the availability of more efficient MPC algo-
rithms. Most MPC protocols are based on oblivious transfer (OT) as
a building block.

MPC calculations may require many interaction rounds and
large data conversions between parties. For these reasons, it may be
very difficult to implement MPC in practice. Some successful works
have been done to reduce the complexity of MPC and to implement
it in practice for some problems (Bogdanov et al., 2008; Demmler
et al., 2015; Huang et al., 2011; Liu et al., 2015; Malkhi et al.,
2004). The schemes proposed in these studies allow us to utilize the
benefits of MPC for some real-life applications.

In the rest of the article, we denote a shared value x as (x).

3.1.1 Boolean sharing

In Boolean sharing, an I-bit value x is shared using an XOR-based
sharing scheme as the XOR of two values. For [-bit secret sharing of
x, we have (x); ® (x); = x where (x),, (x); € Z; and I knows only
(x); where i € {0,1}. For Boolean sharing, we use the protocol of
GMW (Goldreich et al., 1987).

XOR. (z) = (x) D (y). I; locally computes (x); © (y),.

AND. (z) = (x) A (y). AND is performed using a pre-computed
Boolean multiplication triple (c); = (a); A (b),. I; cannot perform
AND locally. A Boolean multiplication triple is pre-computed effi-
ciently using random OT (R-OT) in the offline phase. More details
can be found in Asharov et al. (2013) and Demmler et al. (2015).

3.2 System model

In this article, we propose a scalable solution that allows researchers
and clinicians to query genomic variations with privacy protection.
This solution protects the privacy of queries, results and genomic
data. Figure 1 shows the general architecture of the proposed sys-
tem. The system has three types of participants: a series of genomics
stores/hospitals Hy, ... Hy storing the variants from a large number
of patients each, two proxy servers D and D, and an arbitrary

=

H feen

=,

Hy f*

E

Fig. 1. General system architecture of our solution. Genomic variant stores
H; ... HN communicate with the two non-colluding proxy servers Dy and D,. Users
can query all data through these proxy servers in a secure manner

number of researchers (clients). The variants for each patient are
stored at H; in a standardized manner (VCF files). Variants from
each patient can then be parsed to construct a single variant tree.
Hospitals use XOR-based sharing to transmit their data privately to
D, and D,. This is similar to the cloud computing solution that is
preferred for efficiently storing and processing growing data. In our
settings, we assume that there is no collusion between the two proxy
servers. In real-world settings this can be achieved by organizational
and physical separation of access to the proxy servers.

As described in Section 3.4, a hospital H; creates a tree T for
each VCF file. It creates another tree TR that is isomorphic to T,
but stores random values. It sends TR to the proxy server Dy and
TY @ TR to the proxy server D,. H; shares the variant tree to the
two proxy servers with XOR-based sharing. This ensures that the
genomic data are protected against the two non-colluding servers.
The queries are run using secure MPC in a privacy-preserving man-
ner. The researcher receives the query result as two shares from the
proxy servers and XORes these two shares to get the final answer.
As a result, data, query and result privacy are ensured.

In our proposed solution, we construct a Boolean circuit to query
the genomic data in a privacy-protected manner. We used the GMW
(Goldreich ez al., 1987) protocol to run Boolean circuits on XOR
shared values.

3.3 Security definition
In our solution, participants in the secure computation are two
proxy servers Dy, D, and arbitrary number of clients Cy, C;, ..., C,.
We consider the problem of secure variant query under the semi-
honest adversary model. In this model, semi-honest parties follow
the protocol specification but try to learn additional information by
analyzing the transcript of messages received during the protocol
execution. A semi-honest adversary A can corrupt at most one of
the two proxy servers, and any subset of the clients. This corre-
sponds with the assumption of non-colluding servers. While one ser-
ver is controlled by the adversary and the other behaves honestly.
Our protocol securely queries variant databases and returns the
result to query client. It provides data privacy, query privacy and
output privacy and protect the data access patterns. We list desired
privacy properties:

* Djand D, learn nothing about the variant databases.

* D; and D, learn nothing about the client queries.

* D; and D, learn nothing about query output.

* D, and D; do not learn the data access patterns such as the path
of query variants in the variant trees.

* C; learn nothing about the variant databases except the final

output.

3.4 Database outsourcing
In this section, we explain how hospitals outsource their genomic
data to the two proxy servers.
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3.4.1 Variant representation

We encode each variant as a bit string using data columns in VCF
files. In a VCEF file, the variant is expressed by REF and ALT col-
umns representing reference allele and alternate non-reference allele
respectively. The REF column shows the reference bases replaced by
the non-reference allele in the ALT column. CHROM column repre-
sents the chromosome on which the variant is and POS column
shows the position of the variant on the chromosome. The position
of the variant on the reference genome is calculated using these two
pieces of information. This information is expressed as a 32-bit un-
signed integer. We map the CHR, POS, ALT, REF and 32-bit loca-
tion values of each variant in the VCEF file to a fixed number of bits
by hashing. This value is expressed as 48 bits in order to encode
SNPs, insertions, deletions and other variant types. The encoding of
a single variant with 48-bit is illustrated in Figure 2.

3.4.2 Secure outsourcing of genomic data

We describe how a patient data (VCF file) is outsourced to the two
proxy servers. This process is done for each patient. A medical unit
H; creates two trees for each patient’s variant data as described in
Algorithm 2.H; creates a binary tree for each patient’s genome data.
The root node of the tree does not store a bit value. The depth of the
tree is determined based on the number of variants. If we assume a
patient can have at most N variants, the depth of trees is [log N].
The bits represented by the two child nodes of each node are deter-
mined randomly. This means if the right child node represents a ran-
dom bit b, the left child node represents b @ 1. The remaining
48 — [log N7 bits of each variant are kept in leaf nodes. In the sys-
tem, F random variant masks are determined. These masks are pub-
licly known by every party. Each variant of the patient is XORed
with each mask. Masked variants are also added to the variant tree.
Each leaf node represents at most f = F+ 1 variants. Leaf nodes
having less than F+ 1 variants are completed with randomly chosen
dummy variants. Each variant tree has a marker bit x. x is added to
the end of each real variant. x @ 1 is added to the end of each
dummy variant. Thus, real and dummy variants are distinguished
from each other. An example of how to build a tree is shown in
Figure 3. In this example, we have three random masks and five var-
iants which are—for simplicity’s sake—expressed by five bits each
and the marker bit is not added to the variants.

H; then constructs a second tree TR which is isomorphic to T
and assign uniformly distributed binary random bits to its nodes and
random values to its leaves. H; sends TR to Dy and TR @ T} to D».
H; also divides the marker bit x; of T} into two shares and sends
them to the proxy servers. Dy and D, record the source of each
transferred tree.

3.5 Privacy-preserving querying
In this section, we provide an MPC-based efficient privacy-
preserving method to query genomic databases with the received

query.

3.5.1 Query generation

The client maps each variant in the query to 48-bit unsigned integer
using the MapVariant() method described in Algorithm 1. It gener-
ates an arbitrary number of dummy variants. It randomly chooses
masks from the set of known masks as many as the number of var-
iants it has (including dummy variants). It XORes query variants
with the chosen masks. It concatenates all 48-bit unsigned integers
to a bit array Q. In our example, there are four real variants and
four dummy variants. The length of O becomes 8 - 48 = 384. The
client creates another bit array Qg of the same length filled with ran-
dom bit values and divides its query into two shares to both proxy

111011000101100111011110101010101010100101001001
L J

-
48-bit
hash(CHR,POS,REF,ALT,(Total size of the previous chromosomes + POS))

Fig. 2. Encoding of a single variant

Algorithm 1: Mapping of a Variant to Unsigned Integer
MapVariant()

input : v, v is a variant in a patient’s VCF file
/* the size of all

chromosomes are known, the total length of previous

1 len < calc_chrs_len(v.CHR)

chromosomes is calculated */
2 pos < v.POS + len /* calculate global position of a
variant on the genome */
3 res < HASH(CHR||POS||ALT||REF||pos)

5 return res

Algorithm 2: Outsourcing Phase

input : (vg, v, ..., vy ), v; is a variant in a patient’s VCF file, n is the number
of variants in the VCF file
1 Initialize a tree Tlv with a root node. Root node do not store any data
2 while i < n do
3 \» s <= MapVariant(v;)

4 Insert s to Tiv in a random fashion (see description below)

5 Initialize a tree TLR with a root node which is isomorphic to T,iv and assign
uniformly distributed binary random bits to its nodes
R -
6 Send T to the proxy server Dy
7 Send T,Y 3} Tﬁ to the proxy server Do

servers via XOR-based sharing. It sends Qg to the proxy server Dy
and O @ Ok to the proxy server D,. It also generates a bit vector B
that shows whether variants are dummy. Dummy variants are repre-
sented by one and real variants are represented by zero. The client
creates another bit array Br having the same length with B and
divides B into two shares via XOR-based sharing. It sends By to the
proxy server D and B © By to the proxy server D,. Dummy var-
iants provide the following benefits.

* The proxy servers do not know the exact number of variants in
the client query.

* The proxy servers cannot differentiate two queries consisting of
same variants.

* Dummy variants obfuscate the statistics such as the number of
times a variant was queried.

3.5.2 Querying phase

We assume that the two proxy servers initialized a pseudo-random
number generator (PRNG) with the same random value (seed) for
the tree traversal in our protocol. Thus, the two proxy servers pick
the same random values during the tree traversal.

Each proxy stores a pointer on the variant tree for each variant
in the query, starting at the root node. On each level iteration, the
proxies select one child of the pointer randomly. Then, they com-
pare the bit stored at the pointer location with the corresponding bit
of the query variant. This comparison is done locally by calculating
XOR of two values, without any communication between the two
Pproxy servers.

They reconstruct the comparison result by sending shares to each
other. They update the pointers dependent on the comparison
results. If the comparison result is 0, the pointer is set to the selected
child of the pointer. If the comparison is 1, the pointer is set to the
unselected child of the pointer. This process is repeated for all levels
of the tree and in the end, each pointer is set to leaf nodes.

The variants hold in the selected leaf node are compared to the
corresponding query variant. Before this comparison is performed, a
share of the mask bit of the corresponding variant tree is added to
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D; ={V1,V2, V3, V4, V5}

Vi = 10011
Vo = 11101
V3 = 00110
V, = 10111
Vs = 01010

Vi 4 VieR
V2 ® Ry Vs @ Ry V2 @ Ry Vi® Ry
Vi@ Ry Vi®R; Dummy V3@®R,

Dummy Dummy  Dummy Dummy Dummy Dummy Dummy Dummy

Fig. 3. Generation of the variant tree

the end of the share of the query variant. The logical OR of all bits
in the comparison result is computed. Then dummy query variants
are pruned and the query result for each patient is computed.
Finally, the query results of all patients are summed. Details of this
phase are described in Algorithm 3 formally.

3.6 Security considerations

We discuss the security of our scheme in this section. The main pur-
pose of our protocol is to provide privacy for patients whose data
are outsourced to our service. The privacy of our scheme is based on
the proven security of the GMW protocol (Goldreich et al., 1987).
We assume that the two proxy servers used for secure computation
do not collude. Genome data are shared between the two servers
using arithmetic sharing. A semi-honest adversary corrupting at
most one of the two proxy servers can observe a share of patients’
data. Because the data are shared with arithmetic sharing it looks
like uniformly distributed random data and this prevents the leakage
of the patients’ data.

The proxy servers cannot learn the data access patterns such
as the path of query variants in the variant trees. Because top-
ology of each variant tree is the same, it is not possible to match a
variant tree to any VCF file. In the querying process, for each
query variant, one of the previously determined masks is random-
ly selected and the query variants are XORed with these masks.
Therefore, the proxy servers can detect if a query for the same
variants is received twice with a probability of W where F is
the number masks, 7 is the number of query variants and v is the
number of dummy variants in query. If F is 16, m is § and v is 3
the proxy servers can detect if a query with the same variants is
received twice with the probability of # This probability is fur-
ther reduced as the number of dummy variants added to the user
query increases. Furthermore, the probability of a query with the
same variants from the same user or different users to have the
same dummy variants is negligible. Therefore, the probability of
sending two queries with the same variants to proxy servers is
negligible.

Our solution is vulnerable to re-identification attacks
(Shringarpure and Bustamante, 2015), although it hides which
hospitals’ genomic databases the matches occur in. One way to
reduce the risk of re-identification is to return the query result if it
is larger than a certain threshold as stated in Shringarpure and
Bustamante (2015). It is possible to check the threshold value
with an extra comparison gate as done in Demmler et al. (2017).
However, this extension will negatively affect the usability of our
solution in rare disease studies.

Confidentiality, integrity and, authentication between all parties
are provided using state-of-the-art technologies such as TLS (Dierks
and Rescorla, 2008).

The tree T]Vof of variants in D;

R; = 01011
Root R, = 11001
R3 = 00101

0
Vs @ Ry Vs Vs Vs @ Ry
Vi® R, VieR, V,0OR, Vs @R
Vs @ R Dummy Dummy Dummy

The formal security proof of the proposed solution is given in the
Supplementary Material.

4 Implementation

In this study, we choose the GMW protocol (Goldreich et al., 1987)
for our implementations. We have implemented the proposed solu-
tion using the C++ programming language and ABY framework
(Demmler et al., 2015), which provides an efficient implementation
of secure two-party computation protocols. This framework works
like a virtual machine that abstracts secure computation protocols.
Since we have XOR-based sharing, we benefit from the implementa-
tion of the GMW protocol in the ABY framework.

Implementation of the proposed solution requires the construc-
tion of multiple Boolean circuits. First, we need a circuit to compare
the bits stored on the pointers with the corresponding query bits.
m X s bits comparison is calculated where m is the number of queries
and s is the number of patients. The comparison is done as many
times as the depth of variant trees. We perform the single bit com-
parison using XOR operation locally.

We need a separate circuit to compare the variants stored in leaf
nodes with the query variants. This is the largest circuit in our imple-
mentation which compares m x s x f variants where f is the number
of variants (including dummy variants) in each node. Each compari-
son produces a single bit. The comparison result of each patient is
given to the OR tree in order to find whether there is a match. Thus,
a single comparison result is produced for each query variant from
each patient tree. The comparison results and the bit vector showing
whether query variants are dummy are given to OR operation to
prune the dummy variants in the query. The pruned comparison
results obtained for each patient are given to the AND tree. We get s
bits, each representing a query result for a different patient. Each pa-
tient result is given to an ADD tree and the final query result is
obtained. In our implementation, we use AND and ADD trees to
logarithmically reduce the circuit depth.

5 Results

We conducted our experiments on two Amazon EC2 t2.xlarge
instances having Ubuntu 16.04 with the 4.13.0-36-generic kernel
each from the Frankfurt and London regions, compiled our imple-
mentation with gec v5.4.0, and use a symmetric security level of
128 bits. Since the implementation of Demmler ez al. (2017) was not
available, we reimplement their algorithm based on the details given
in their article. This implementation is also available alongside our
own implementation. We reported two different execution times in
the experimental results. In our solution, in order to avoid high
memory requirements, operations on variant trees are performed by
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Algorithm 3: Querying Phase

1

2
3

4
5
6

*

I
T

N
S

2
3

29
30
31
32
33

47

input = ((q1). (q2), - (@m))- ((b1), (b2). ..o, (b)),
((T1),(Ta2), ..., (Ts)), (q;) is a share of a variant mapped to 48-bit
unsigned integer, (b;) is a share of a bit indicating whether a variant is a
dummy, (T';) is one share of a patient’s variant tree, d is bit-length of a
variant, m is the number of query variants, s is the number of patients, f
is the number of variants stored in each leaf node
Initialize a pointer vector p with size of m x s. Set m different pointers on each
variant tree. Initially, all the pointers are the root nodes of the trees
Initialize a pointer vector tmp_p with size of m x s
Initialize an unsigned integer vector (path) of size m X s, that stores path to
possible variant values. Set all elements to zero: (path[i][j]) < O
T+ 0
while » < d do
Initialize a bit array (tree_bits) of size m x s and a bit array
(variant_bits) of size m X s
for i < 1to s do
for j < 1tom do
tmp_p[i][j] € {p[i][4].left, p[i][j].right} /* choose left
or right child node randomly */
(tree_bits[i][j]) < tmp_p[i][j].val
(variant_bits[i][j]) < (g;[r]) /* gets rth bit of jth

query variant */

(result_bits) < (tree_bits) & (variant_bits) /* local
comparison */
result_bits < reconstruct({result_bits))
for i «<— 1to s do
for j + 1tomdo
if result_bits[i][j] = O then
| plils] « tmp_plill5]
else
if tmp_pli][j] = plillj].left then
| plills) < plillf]-right
else
| plillj] < plills) teft

| (pathli][j][r]) < plil[j].val

r—r+1

Initialize an unsigned integer vector (v) of size m X s X f
Initialize an unsigned integer vector (tmp_q) of size m X s X t
/* repetition of query variants (q) by s X f times */
Initialize a bit vector (¢mp_b) of size m X s /* repetition of
cancellation bits (b) by the number of patients s */
for i <+ 1to sdo
for j «+ 1tomdo
(tmp_blill5])  (bs)
for k + 1to f do
L (vi][][k]) < (path[i][5])||(variants_of_path[k])
(tmp_alil G < (q;)I(zs)
(res_comp) < secure_comparison({v), (tmp_q))
for i < 1to s do
for j + 1tomdo
(res_alillj]) « (res_comp[i][j][1])
for k < 2to f do
L (res_qli][j]) <

secure_or({res_q[i][j]), (res_compl[i][j][k]))

(res_q) < secure_or({res_q), (tmp_b)) /* pruning dummy
variants */
(res) < 0
for i < 1to s do
(and_res) < (res_qli][1])
for j «+ 2tomdo
L (and_res) < secure_and({and_res), (res_q[i][j]))

(res) < secure_add((res), (and_res))

Send (res) to the client

reading the relevant bits from the hard drive. Therefore, there is a
delay due to IO operations. We reported this delay as IO time.

In our experiments, we compare our solution with Demmler
et al.’s solution in terms of execution time and communication cost.
We show how the execution times of both solutions scale for varying
variant count, and query length. The execution time and communi-
cation cost of both solutions increase linearly with the variant count
and query length. Figure 4 shows the execution time of both solu-
tions. The increase in the execution time and communication cost of
our protocol with respect to the increasing variant count and query
length is negligible when compared to those of Demmler et al.’s
solution (see Tables 1 and 2). The reason for this performance
improvement is that patients’ variants are stored in a binary tree.

We show the execution time of our solution increases linearly
with the number of masks in Table 3 and in Figure 5a. Since the
number of variants remains constant, the IO time remains constant.
However, the MPC time increases linearly because each leaf node
stores as many variants as the number of masks.

Unlike the previous studies, we show that how our solution
scales with varying number of patients in our experiments. We con-
sider the number of patients between 1024 and 1 048 576 (see
Fig. 5b and Table 4). These results show the ability of our solution
to scale up to tens of millions of patients and it is much more prac-
tical than Demmler et al.’s solution. For querying 1 048 576
patients’ exome databases each containing 1 000 000 variants,
assuming a query of length 5, their solution takes 196 754h
approximately. Our solution takes 3.23h for the same operation.
Demmler et al. performed all tests on a database having single
patient data. They stated that there is a need for dedicated hardware
and faster networks to query multiple patient data and that this
querying cannot give instant answers. The cost of the dedicated
hardware required for Demmler et al.’s solution to work effectively
on the data of millions of patients will be very high. For example,
querying 1 048 576 patients’ exome databases each containing
1 000 000 variants with a query of length 5 in 12 min, Demmler
et al.’s solution requires 951 816 CPU cores, ethernet cards, internet
connections and 31 457 of GB memory. We assume that a CPU core
is needed for each parallel execution. Our solution needs 16 CPU
cores, ethernet cards, internet connections and 0.50 GB of memory
to answer the same query in 12 min. This shows that with a small
amount of dedicated hardware, our solution can respond to queries
running on millions of patient data in reasonable times.

Furthermore, under the assumption that the total number of var-
iants that all databases have is fixed, we show that how the running
time and communication cost of our solution scale with the varying
number of databases (see Table 5). Although the total number of
variants in the system remains constant, as the number of databases
increases, the costs of our solution increase linearly. The first reason
for this is that the number of IO operations required to traverse the
trees increases. The second reason is that each tree yields a set of

(a) Runtime (b) Runtime

e~ Demmier et. al
10°4 ~e- Our solution e

e~ Demmier et. al
10° —e- Oursolution

Number of Variants. Query Length

Fig. 4. Comparison of time performance of our solution and Demmler et al.’s solu-
tion (Demmler et al., 2017) under various numbers of variants/numbers of query
variants. (a) Runtime with a single patient, a varying number of variants, a fixed
variant length=48bit, and 5 query variants, (b) runtime with a single patient,
100 000 variants, a fixed variant length =48 bit and a varying number of query
variants
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Table 1. Benchmark results and circuit properties for varying variant count at fixed variant length 48 bit, query length 5 and mask count 16

Demmler et al.’s solution

Our solution

No. of No. of Depth Time Comm No. of Depth 10 MPC Total Comm
variant ANDs (ms) (MB) ANDs time time time (MB)
(ms) (ms) (ms)
100 3.0x10% 17 330 <1 3.8x10° 13 <1 158 158 <1
1000 2.4x10° 20 1623 4 3.8x10° 13 <1 198 198 <1
10 000 3.9%x10° 24 11721 63 3.8x10° 13 1 224 225 <1
100 000 3.1x107 27 85126 510 3.8x10° 13 1 264 265 <1
1000 000 2.5x10% 30 675562 4089 3.8x10° 13 1 290 291 <1
3000 000 1.0x10° 32 2694093 16 357 3.8x10° 13 1 304 305 <1

Table 2. Benchmark results and circuit properties for varying query length at fixed variant length 48 bit, variant count 100 000 and mask

count 16
Demmler e# al.’s solution Our solution

No. of No. of Depth Time Comm No. of Depth IO Time MPC Time Total Time Comm
queries ANDs (ms) (MB) ANDs (ms) (ms) (ms) (MB)
1 6.3x10° 24 18 070 103 767 11 <1 197 197 <1
2 1.2x107 25 34 982 204 1535 12 <1 211 211 <1
4 2.5%107 26 68 587 409 3071 13 1 237 238 <1
8 5.1x107 27 132171 830 6143 14 2 261 263 <1
16 1.0x108 28 270283 1635 12287 15 4 356 360 <1
32 2.0x10% 29 542 836 3271 24 575 16 7 462 469 <1
64 4.0x10% 30 1085198 6542 49 151 17 14 607 621 <1
128 8.0x10% 31 2171901 13 086 98 303 21 29 937 966 1

Table 3. Benchmark results and circuit properties for varying mask count at fixed variant length 48 bit, variant count 1 000 000 and query

length 5

No. of masks No. of ANDs Depth 10 time (ms) MPC time (ms) Total time (ms) Comm (MB)
16 3.8x10° 13 1 277 278 <1

64 1.5%x10* 15 1 699 700 <1

256 6.1x10* 17 1 1174 1175 1
1024 2.4%x10° 19 1 1901 1902 4
4096 9.6x10° 21 1 5108 5109 16

16 384 3.9x10° 23 1 11286 11287 63

(a) Runtime (b) Runtime

e~ Our solution . 107 - our solution

> 2

= o o= B
Number of Masks Number of Patients

Fig. 5. Time performance of our solution under various numbers of masks/numbers
of patients. (a) Runtime with a varying number of masks, 1 000 000 variants, a
fixed variant length =48 bit, and 5 query variants, (b) Runtime with a varying num-
ber of patients, 1 000 000 variants, a fixed variant length=64Dbit and 5 query
variants

candidate variants to correspond to each query variant. As the num-
ber of trees increases, the number of candidate variant sets and
therefore the amount of data that will be input to secure comparison
increases.

6 Conclusion

In this study, we develop a solution able to perform privacy-
preserving genomic variant queries on multiple center genomic
databases. Our solution enables secure storage of genomic data-
bases in cloud environments. It provides data privacy, query priv-
acy and output privacy. Most importantly, unlike the previous
studies, it allows secure variant queries to work on millions gen-
omic databases and significantly reduce the execution time of
these queries. We prove the security of our solution against hon-
est but-curious proxy servers and malicious clients, and we im-
plement and test the performance of our protocol. Our
experimental results demonstrate that the running time of a
query having five query variants on a single genomic database
with 3 000 000 variants is 305 ms. Furthermore, the running
time of a query having five query variants on 1 048 576 genomic
databases, each with 1 000 000 variants, is 3.23h on a single
core. If this query is executed on 32 cores with some other dedi-
cated hardwares it takes 6 min approximately. These running
times are very convincing in terms of integration into real
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Table 4. Benchmark results and circuit properties for varying patient count at fixed query length 5, variant length 48 bit, variant count

1000 000 and the number of masks 16

No. of patient No. of ANDs Depth IO time MPC time Total time Comm
(ms) (ms) (ms) (MB)
210 3.9x10° 29 1048 11 602 12 650 64
212 1.5%107 34 3998 43190 47188 255
214 6.2x107 39 15663 167 019 182 682 1023
216 2.5x10% 46 68 307 631 831 700 138 4092
218 1.0x10° 49 255113 2634416 2889 529 16 371
220 4.0x10° 54 1021196 10 607 612 11 628 808 65 485

Table 5. Benchmark results and circuit properties for varying database count at fixed query length 5, variant length 48 bit, total number of

variants of all patients 2'* x 108 and the number of masks 16

No. of databases No. of ANDs Depth 10 time MPC time Total time Comm
(ms) (ms) (ms) (MB)
28 3.9x10° 29 302 3307 3609 64
210 3.9x10° 29 1129 12270 13 399 64
212 1.5%107 34 4197 45603 49 800 255
214 6.2x107 39 15 663 167019 182 682 1023
216 2.5x10% 46 59471 628 844 688 315 4092
218 1.0x10° 49 223026 2352573 2575599 16 371
220 4.0x10° 54 835 895 8779 585 9615 480 65 485

medical systems. To the best of our knowledge, this is the first so-
lution that provides this performance for querying multiple gen-
omic databases.
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