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Vision based solutions for the localization of vehicles have become popular recently. In this study, we
employ an image retrieval based visual localization approach, in which database images are kept with
GPS coordinates and the location of the retrieved database image serves as the position estimate of
the query image in a city scale driving scenario. Regarding this approach, most existing studies only
use descriptors extracted from RGB images and do not exploit semantic content. We show that localiza-
tion can be improved via descriptors extracted from semantically segmented images, especially when the
environment is subjected to severe illumination, seasonal or other long-term changes. We worked on two
separate visual localization datasets, one of which (Malaga Streetview Challenge) has been generated by
us and made publicly available. Following the extraction of semantic labels in images, we trained a CNN
model for localization in a weakly-supervised fashion with triplet ranking loss. The optimized semantic
descriptor can be used on its own for localization or preferably it can be used together with a state-of-
the-art RGB image based descriptor in hybrid fashion to improve accuracy. Our experiments reveal that
the proposed hybrid method is able to increase the localization performance of the standard (RGB image
based) approach up to 7.7% regarding Top-1 Recall values.
� 2022 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Visual localization (VL) can be defined as estimating the posi-
tion and orientation of a visual query material within a known
environment. Information on location of a mobile device (could
be a pedestrian or a vehicle) is critical for city-scale navigation
and other location-based services. Also due to the limitations of
GPS-based localization in urban environment (e.g. signal failure
in a cluttered environment), visual localization attracted an
increasing attention in the last decade [33].

In our work, an image retrieval based VL technique (Fig. 1) is
employed with an approximate nearest neighbor search algorithm.
This method utilizes a database of geotagged images and the
known geographic location of the retrieved database image (best
match) serves as the position estimate of the query image.

The approach proposed in this paper is based on the hypothesis
that semantic decomposition of a scene can increase localization
performance. We can rely on the semantic labels especially when
there are long-term changes in the scene. As can be observed in
Fig. 2, with illumination conditions (sunny, cloudy etc.) and sea-
sonal variances (summer, winter etc.) drastic appearance changes
occur. Standard appearance based methods face difficulties in such
cases, whereas semantic segmentation can give stable results.
Therefore, using this superior ability of semantic knowledge to
understand a scene has been our main motivation in this study.

Some related studies [53,40,29,25,43] showed that semantic
cues can be used to improve localization accuracy but none of
them have directly performed localization using a descriptor
extracted from semantically segmented images. Novelty in our
study is that we improve the localization performance directly
using learnt semantic descriptors trained with semantically seg-
mented images. More specifically, we take a state-of-the-art
appearance-based localization method where local descriptors
are extracted from RGB images (LD-VL) and combine it with our
newly developed semantic-descriptor based method (SD-VL),
resulting in a novel hybrid localization approach. We have worked
on datasets where the environment is subjected to illumination
and other long-term changes and observed a performance
improvement with the proposed hybrid approach.

We summarize the main contributions of our work as follows:
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Fig. 1. On the left, we see a query image. On the right, we see a district with a
database of images with known GPS coordinates. Retrieval from the database is
based on the similarity of descriptor vectors. The GPS location of the image
retrieved from the database serves as the position estimate of the query image. If
the estimate is within a certain distance limit, then the localization is considered as
successful.
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� A novel semantic descriptor is trained with a CNN model that
includes NetVLAD [3] layer, using semantically segmented
images as input. Then, this optimized semantic representation
is used directly for visual localization (SD-VL).

� We generated the Malaga Streetview Challenge dataset based on
the Google Streetview, which provides wide baseline and severe
environmental changes together. This newly generated test set
has been made publicly available and we believe it will be use-
ful for researchers studying in this field.

� Hybrid-VL is proposed to combine newly developed SD-VL and
the baseline LD-VL methods in post-processing stage. We
experimentally show that the proposed hybrid method
increases localization performance measured with frequently
used evaluation metrics Top-1 Recall@D and Recall@N on Malaga
Streetview Challenge and RobotCar Seasons (a benchmark dataset
for visual localization).
Fig. 2. On the left, two images of the same scene with considerable illumination chang
performance for such cases, where more stable semantic segmentation can help.

2

The remainder of this paper is structured as follows. The related
works are reviewed in Section 2. Section 3 provides detailed infor-
mation about our method. Both experimental results and details of
dataset preparation can be found in Section 4 which is followed by
the conclusions in Section 5.
2. Related work

2.1. Localization with appearance based descriptors

Classical methods of image retrieval based localization mostly
depend on Bag-of-Features [32,44] approach. Furthermore, this
approach generally has expressed an image with local descriptors
that are created from points of interest. Scale-Invariant Feature
Transforms (SIFT [23]) can be given as a frequently used example
of these local descriptors. In this local descriptor, distinctive invari-
ant features were extracted from images which also can be used to
carry out reliable matching between changing views of an object or
scene.

In this Bag-of-Features approach, SIFT-like descriptors extracted
from all images in the database are clustered to define a set of ‘vi-
sual words’, then an image is represented by a visual word fre-
quency histogram. The similarity between two images is
measured by the distance between their histogram vectors. In
time, researchers managed to perform the same task with less
memory [19] and gain robustness to repetitive structures [50], illu-
mination, viewpoint changes and long-term changes [49]. This
approach has been implemented for 360 degree panoramic images
as well [17,30].

Recent studies consider using features from the deep convolu-
tional layers of convolutional neural networks (CNNs) [46,9]. A
trainable CNN, NetVLAD, was proposed by Arandjelovic et al. [3]
in which a specially designed layer is added to a standard CNN to
convert the last convolutional layer into a compact descriptor. In
their study, NetVLAD outperformed state-of-the-art localization
es. On the right, their semantic segmentation results. Standard methods have low
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techniques based on experiments performed on four different
datasets.

There are other powerful descriptors for image retrieval such as
Regional-MAC [48], Generalized Mean Pooling [36] and Local Tex-
ton XOR Patterns [4]. However, these were developed especially for
place recognition (e.g. Is this the Eiffel Tower?) rather than local-
ization. When localization (up to a distance threshold) is consid-
ered, NetVLAD is still one of the best methods [34]. Therefore, in
our study we have employed NetVLAD as the baseline approach.

Studies given above extract features from RGB images only. We
refer to them as RGB image based or appearance based methods.

2.2. Using semantic labels for long-term localization

CNN based semantic segmentation approaches have achieved
impressive results in different computer vision tasks by using both
standard and larger field-of-view cameras [20,16,7,31]. Also the
idea of using semantic labels to improve image based localization
has been explored before. In [25], localization is based on standard
feature point descriptors but feature points not belonging to man-
made objects (e.g. trees) are considered as unreliable and they are
eliminated via semantic information. In [29], features are extracted
from the convolution layers of a CNN, but a weighting scheme is
applied based on semantic labels (e.g. increasing weights for build-
ings since they are more stable in long term). Seymour et al. [40]
developed a deep learning based method for fusing appearance
and semantic information. They proposed an attention module to
predict the most reliable regions of appearance and semantic
modalities.

An attempt to design a descriptor from 2D semantic labels was
first proposed in [43] but rather than localization, the descriptor
was used to distinguish street intersections from other scenes. Also
a framework was proposed in [53] that uses semantic edge fea-
tures from images to achieve on-road localization. Firstly in our
previous work [11], we optimized a semantic descriptor based on
the semantic labels of the entire image and performed localization
with that descriptor rather than using it as a clue. In this paper, we
extend our previous work by combining it with a state-of-the-art
appearance based method (NetVLAD) and exceed its performance.

Some previous work on image-based VL fall into the category of
3D structure-based localization which employs a 3D model of the
scene to match with the information extracted from images. Sten-
borg et al. [45] performed localization based on the query image’s
semantic content when the environment is 3D reconstructed and
semantically labeled. This is an innovative study in terms of per-
forming localization purely based on semantic labels; however it
requires semantic labels of 3D point clouds, which is not available
in most cases. In another example, 2D-3D point matches are
checked if their semantic labels are also matching [47]. In [38], a
dictionary is developed for semantic content and the scene is rep-
resented as Bag-of-Semantic-Words. Our method is based on 2D
images and their semantic segmentation results. It is much
cheaper than the localization approaches that require the semantic
3D reconstruction of the environment. In addition, it was reported
in several previous studies [51,6] that 2D approaches perform as
well as 2D-3D matching approaches.

2.3. Other modalities for long-term localization

Some previous work exploited modalities other than semantic
labels to handle illumination and long-term variations. Piasco
et al. [34] used geometry information while training their new glo-
bal image descriptor. They managed to increase localization perfor-
mance thanks to the depth map belongs to each query image.
Germain et al. [15] also produced a global image descriptor by add-
ing condition-specific sub-networks to a state-of-the-art CNN
3

based image retrieval architecture. Their descriptor is computed
according to capturing condition and becomes successful espe-
cially against day-night variation. Again in order to cope with
night-to-day challenge, Anoosheh et al. [2] managed to increase
localization accuracy via converting nighttime driving images to
a daytime representation thanks to their novel image translation
model ToDayGAN. Also, Porav et al. [35] proposed an invertable
generator that is able to convert the conditions of images to a
desired opposite ones. Their trained network outputs synthetic
images to manage this appearance transferring which is designed
to help standard local feature matching method SURF. Doan et al.
[13] introduced a new Monte Carlo localization algorithm based
on image retrieval. Moreover they proposed a software that works
with role playing game in order to collect hyper-realistic
computer-generated imagery of a city from the street level for pro-
viding different environmental conditions.
3. Our method

3.1. Method overview

The proposed semantic VL approach is also based on the image
retrieval technique previously depicted in Fig. 1. However, we
introduce semantic descriptors to find the best match instead of
standard appearance based descriptors. Thus, database consists
of pixel-level semantic segmentations of geotagged images
(Fig. 3). Similar to most visual localization studies in the literature,
our prior map (yellow path) corresponds to reference traversal of
the dataset, while images of other traversals on the same path
but collected in changing conditions are our query images.

To learn the best possible semantic descriptor, we train a CNN
model using a section of the route which is dedicated to training.
Test results are obtained with an unseen section, i.e. training and
test samples are geographically disjoint.

The proposed Hybrid-VL method can be summarized step by
step with the given pseudo-code in Fig. 4 which is constructed
on image retrieval in 2D-2D matching space. This reductionist rep-
resentation of proposed VL method also provides us which step
corresponds to which key components of a characteristic image
retrieval based localization system (image representation, image
matching, hybridization). In addition, we are able to show not only
where the novel parts of this study takes place with their corre-
sponding steps, but also how (offline-online) these parts are
operated.

In this paragraph, the proposed algorithm to match input
images with geotagged ones is introduced. Firstly note that the
algorithm from line 1 to 8 can and should be computed offline,
regarding to an actual driving mission. In this representation, pro-
posed learnt SD-VL method takes a query image Ia and return k

number of candidates CSD
a from database images in lines from 1

to 13. In the first line previously retrained semantic segmentation
method DeepLabv3 + Retrained is employed on database images
Ithat gives us their segmented versions S. In line 2, a CNN model
is trained on Swith triplet ranking loss for VL task, then the part
from line 3 to 6 corresponds to learnt semantic descriptor SDi

extraction process. Robust indexing is built up in line 7 with our
ANNS method FLANN for database image descriptors collection
SDT . Next, these same steps are operated for a semantically seg-
mented query image Sa in line 9 and 10. From line 11 to 13, ANNS
is conducted and knumber of best matching images retrieved.
Moreover, the same steps (2–12) for SD-VL method is repeated
without segmentation in order to obtain learnt LD-VL method in
lines 14 and 15, so that we obtain best matching kcandidates CLD

a

for our LD-VL method. Finally, effective decision-level hybridiza-
tion methods is represented from line 16 to 18, that incorporates



Fig. 3. In the proposed semantic content based VL approach, the database consists of pixel-wise semantic segmentations of geotagged images.
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CLD
a and CSD

a in post-processing level. As a result, among the knum-

ber of Hybrid-VL method candidates Chybrid
a the top first one Ihybrid1 is

returned against the given query image Ia.
In the following sections, we give further explanation about the

proposed algorithm with detailed implementation of each step.

3.2. Semantic segmentation of geotagged images

Pixel-level semantic labels of database and query images are
extracted with the state-of-the-art DeepLabv3+ [8] model which
was pretrained on CamVid dataset [14]. In order to increase the
performance of pretrained DeepLabv3+, we conducted a retraining
with images in our dataset. While retraining, the absence of anno-
tated ground truth images for the RobotCar Seasons dataset encour-
aged us to follow a weakly-supervised approach. To be more
specific, successful segmentation results of Pretrained DeepLabv3 +
on RobotCar Seasons dataset are accepted as annotations and they
are used to retrain the model. In this way, we generated adequate
amount of labeled images in the target dataset without requiring
manual annotation. Steps of this weakly-supervised retraining
are given below:

� All the images in the query sets of RobotCar Seasons dataset (cf.
Table 1) except for night and night-rain sets were semantically
segmented with the Pretrained DeepLabv3 + model. This totals
to 2500 + images.

� Segmentation results that reflect our semantic classes in the
best way were manually selected. About 170 images per query
set were selected in this way with a total of 1024 labeled
images. These selected images were excluded from localization
experiments (query sets) since they have been seen by our
retrained segmentation CNN.

� DeepLabv3 + was retrained with these 1024 images and this
new model is named as DeepLabv3 + Retrained.
4

Retrained model produced satisfactory segmentation perfor-
mance, examples of which can be seen in Fig. 5. Our model classi-
fies the pixels into 11 semantic classes (Building, Car, Road,
Sidewalk, Sky, Tree, Pedestrian, Bicycle, Pole, Fence, Sign Symbol)
as depicted in the figure.

3.3. Training semantic descriptors for localization

In the past, we had implemented the idea of designing semantic
descriptors manually, where we divided the images into 4 equal
pieces and put the class frequencies in those pieces into vectors
[10]. The results were not very satisfactory and it is obvious that
the ideal solution is learning a semantic descriptor automatically
using a dataset contains the targeted long-term variations and illu-
mination changes.

With this aim, our semantically segmented database images are
given to a CNN as the training set to minimize a triplet loss func-
tion (Fig. 6). In triplet loss, firstly introduced in FaceNet [39], for
a given input image (anchor), images taken from a similar location
constitute a positive set and images from far away positions consti-
tute a negative set as visualized in Fig. 7. By training with triplet
loss, a descriptor (last layer of CNN) is optimized so that the dis-
tance to the positive set is minimized and the distance to the neg-
ative set is maximized. We use AlexNet [22] as our backbone CNN
with addition of NetVLAD layer in order to obtain our learnt
semantic descriptor. Actually we also examined the VGG16 [42]
as a deeper and up-to-date network, yet we prefer to use AlexNet
due to its better localization performance. In fact, it is an expected
result that a less complex CNN such as AlexNet gives better results
in semantic descriptor based localization, in which the features are
extracted from a simple representation (semantic labels). The
employed triplet ranking loss will be explained next.

Desired location-aware descriptor is represented with
f hðqÞ 2 Rd where a query image qis embedded into a d-



Fig. 4. Proposed algorithm of Decision-level Hybrid-VL.

Table 1
Detailed statistics for the two benchmark datasets used in this study.

Dataset Baseline Database
images
conditions
(# images)

Query images
conditions (# images)

RobotCar Seasons [37] Short
baseline

Overcast-
Reference
(6954)

dawn (483), dusk (394),
night (483), night + rain
(440), rain (421),
overcast summer (463),
overcast winter (390),
snow (489), sun (460)

Malaga Streetview
Challenge (ours)

Wide
baseline

Reference
traversal in
2014
(Overcast/
1561)

Google Streetview
(436): all short-long
term changes by
different time period
and years from 2014 to
2020
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dimensional Euclidean space. Here, h corresponds to training
parameters that are to be optimized. In this aim, from the dataset
we use (RobotCar Seasons or Malaga Streetview Challenge), we
acquire a training set of tuples (q; pq,{nq

j }), where for each training
query image q we have a positive pq (closest image) and a set of
definite negatives {nq

j } (metric distance to the query is higher than

a threshold). We select pq as the closest image in the database tdb

according to the GPS coordinates:
5

pq ¼ argmin
tdb

dgpsðq; tdbÞ; ð1Þ

which is slightly different from the original NetVLAD implementa-
tion [3], where closest image is selected from a set of potential pos-
itives. That was because they used Google Streetview images
looking at different directions and did not know which correctly
located image actually had a view overlapping with the query
image.

Let dhðq; pqÞ = jjf hðqÞ � f hðpqÞjj, then the objective becomes to
learn the training parameters h so that distance between the query
q and the positive image pq is smaller than the distance between
the query q and all negative images in {nq

j }:

dhðq;pqÞ < dhðq;nq
j Þ; 8j: ð2Þ

Finally, triplet ranking loss Lh is defined as

Lh ¼
X
j

h d2
hðq;pqÞ þ m � d2

hðq;nq
j Þ

� �
; ð3Þ

where h is the hinge loss hðxÞ ¼ maxðx;0Þ, and m is a margin that
determines the amount of dissimilarity between positive and nega-
tive pairs (Fig. 7). According to Eq. (3), if the squared distance of a
negative image is greater than (by a margin) the squared distance
of the positive image, the loss is zero. Otherwise, loss increases pro-
portional to the amount of violation. In this way, our ‘learnt’
descriptor becomes end-to-end trainable. The above described pro-



Fig. 5. Semantic segmentation performance of the DeepLabv3 + Retrained on some sample images of RobotCar Seasons (1st row) and Malaga Streetview Challenge (2nd row)
dataset.

Fig. 6. Learnt SD (16 k) trained with triplet ranking loss for VL task on semantically segmented images.

Fig. 7. An anchor image together with positive (same location) and negative (different location) samples to be used in triplet loss while training localization CNN.
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cedure is considered as a weakly-supervised training since no
human supervision is employed, the annotations can be noisy due
to position shifts and overlap between views can be limited.

The described triplet ranking loss based learning process gives
us a learnt semantic descriptor when semantic labels are given
as input which in turn used for SD-VL.
6

3.4. Training appearance based descriptors for localization

Weshouldnote that, same training procedure in previous section
is followed directly on RGB images in implementation of the LD-VL
method. Againwe examined both the VGG16 and AlexNet as a back-
bone for obtaining our appearance based learnt descriptor. Contrary



2 https://data.ciirc.cvut.cz/public/projects/2020VisualLocalization/RobotCar-
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to the semantic descriptor case, VGG16 gives better localization per-
formance. It is not surprising that a more complex CNN such as
VGG16 gives better results in the LD-VLmethod, in which relatively
complex information (RGB image) is used as an input.

3.5. Hybridization

As a main contribution of this study, a novel Hybrid-VL method
is proposed by combining SD-VL and LD-VL methods with the aim
of alleviating the drawbacks of both methods.

3.5.1. Descriptor matching
Before explaining our hybridization methodology, we first need

to introduce our descriptor matching approach. We use the previ-
ously learnt parameters (Section 3.3) to extract the representations
of all database images fIg which can be done offline and denoted
by f hðIÞ. In test time, we need to perform an efficient comparison
between the collection f hðIÞ and a given query f hðqÞ to find the
nearest database image. This comparison task emerges as one of
the most important steps of a typical VL system. To deal with this
task efficiently, different types of fast approximate nearest neigh-
bor search (ANNS) methods [12,52,18] were introduced, some of
which are CNN-based [1].

In short, ANNS methods look for the approximate nearest
neighbors instead of exact nearest neighbors while comparing
the elements of large databases in computer vision applications.
Furthermore, superiority of using k-dimensional (k-d) trees in
ANNS was highlighted in previous works [41,21]. Additionally,
Muja and Lowe [27,28] improved these k-d trees by randomizing
them which is named as multiple randomized k-d trees. Also, they
mapped their efficient method into a compact tool called fast
library for ANNS (FLANN, [26]). In our study, both LD-VL and SD-
VL methods are constructed on FLANN to retrieve the most similar
database image for a given query.

First of all, FLANN builds a powerful index on our database
descriptors collection by means of multiple randomized k-d trees.
Then ANNS is applied for each of given element in query descrip-
tors collection by using the previously created index. Finally, it
returns k nearest candidate images with their Euclidean distances
(L2-norm) to the corresponding query image. In our work, k is set
to 10. Let SDi and LDi represent the lists of nearest candidate

images obtained by the two methods for a given ith query image.
Then, DjðSDiÞ and DjðLDiÞ are the corresponding distance vectors
where j refers to the database index of the nearest candidate
images. This collection of distance values are used to generate
the final list for Hybrid-VL as described in the following section.

3.5.2. Decision-level hybrid-VL
After k number of matching results are obtained via ANNS for

both SD-VL and LD-VL approaches, they are combined according
to the ranks of the candidate images and their distance values.

First, in order to achieve a reliable hybridization, we normalize
distance values into ½0� 1� range, then apply histogram equaliza-
tion. After this pre-processing stage, we combine SDi and LDi

results as shown in Fig. 8. More specifically, we integrate distance
values (DjðSDiÞ and DjðLDiÞ) per each query which were previously
returned in ascending order. While integrating, distance values are
weighted with their own rank (higher rank candidate is penalized
less) and multiplied by W or ð1�WÞ, where W represents the
weight of candidates coming from SD-based approach. This hybrid
distance updating equation is given below:

DjðiÞ ¼
DjðSDiÞ � ðrnkj ðSDi Þ

k Þ �W þ DjðLDiÞ � ðrnkj ðLDi Þ
k Þ � ð1�WÞ; ifj 2 ðSDi \ LDiÞ

DjðLDiÞ; elseifj 2 ðLDiÞ
DjðSDiÞ; elseifj 2 ðSDiÞ

8><
>:

ð4Þ
7

where rnkjðSDiÞ and rnkjðLDiÞ denote the ranking of the candidate
image j in SDi and LDi lists. In the first case, a database image is
in the 10 nearest neighbor list of both methods, j 2 ðSDi \ LDiÞ. Here
W parameter enables us to tune the contribution of SD-VL and LD-
VL. For instance, with W< 0.5, we trust more on LD-VL method.

Multiplying distances directly with their rankings rnkj
k (for higher

rank candidates distance values are decreased more), can also be
seen as rewarding the case that a candidate is found in both lists.

As a result of this update process, we obtain a combined list of

DjðiÞ for the ith query. Finally, we reorder these and accept the top
10 images in this new list as the final result of Hybrid-VL method.
4. Experiments

4.1. Datasets

We performed experiments on two datasets, both contain illu-
mination changes and other long-term appearance changes (such
as sunny/cloudy weather or occurrence of new structures). One
of them is publicly available2 and commonly used RobotCar Seasons
dataset on which recent examples of effective VL studies
[15,40,34,2,35,6] evaluated their performance. The other one,Malaga
Streetview Challenge dataset, was prepared by us in order to test the
performance of our method not only on short/long term changes but
also on wide baseline as depicted in Fig. 9. We have made this data-
set publicly available3 with its geotags.

RobotCar Seasons Dataset [37] is a subset of RobotCar dataset
[24] which had been collected in Oxford, UK by passing through
the same 10 km route more than 100 times in a year. RobotCar Sea-
sons dataset provides less variability in viewpoints (baseline) but a
larger variance in viewing conditions for a city-scale urban driving
scenario as summarized in Table 1. A triple camera (left, right, rear)
setup was used originally. In this study we used only rear images
since the driving direction is in the center of the image. In this
way 6954 database images (overcast reference) were obtained.
For the query set we used overcast-winter set consisting of 390
images since these provide enough amount of seasonal and illumi-
nation changes.

Malaga Streetview Challenge Dataset contains a reduced sub-
set of publicly available Malaga Downtown Dataset [5] as the data-
base images. These were collected on nearly 8 km. urban route
visualized in Fig. 3. To be able to include viewpoint variety and
long term changes, we collected query images from Google Street-
view within every 10–20meter in the same 8 km. route in different
times (left column in Fig. 9). In total, Malaga Streetview Challenge
has 436 query images and 1561 database images (Table 1).
4.2. Evaluation metrics

In this study, GPS based metric error is computed to evaluate
the performance of SD-VL, LD-VL and Hybrid-VL methods. Each
database and query image is associated with a GPS position, which
is in WGS84 geographic coordinate system. Just summing up or
averaging the metric error values to measure the localization per-
formance is not reliable, because similar descriptor mismatching
cases may result in very different GPS based metric errors. Thus,
more reliable evaluation metrics were proposed for localization
tasks and have been frequently used in the literature
[3,49,51,34,33,15,38,37,53]. These evaluation metrics are
explained below:
Seasons/
3 https://github.com/ibrahimcinaroglu/Malaga-Streetview-Challenge



Fig. 8. Decision-level hybridization methodology.
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� Top-1 Recall @D: Distance between the top ranked (1st)
returned database image position and the query ground truth
position is calculated. Then the percentage of queries with dis-
tances less than a fix threshold D (changing from 5 to 150
meter) is plotted.

� Recall @N: Percentage of well localized (625 m distance error)
queries are plotted with respect to N number of returned candi-
dates. Even if one of these N candidates is well localized then
the query is accepted as correctly localized.
Fig. 9. Viewpoint, illumination and other long-term (new buildings, road etc.) changes b
Downtown database images (right).

8

4.3. Experimental results

Adapting the triplet ranking loss for our descriptors requires to
divide our driving path into three geographically disjoint parts as
training, validation and testing set. For instance, each division of
RobotCar Seasons contains around 2300 database and 130 query
images. For the sake of fairness, all the examined VL methods were
examined on the same division of Overcast-Winter traversal in
RobotCar Seasons and Malaga Streetview Challenge.

As a result of training, we obtained 16 k dimensional VLAD vec-
tors (Fig. 6) with K ¼ 64 cluster numbers [3]. This descriptor size
was used for both SD-VL and LD-VL methods. Eventually, we exam-
ined our proposed Hybrid-VL method on the test sets of RobotCar
Seasons (130 test queries) and Malaga Streetview Challenge (111
test queries).

If we examine the proposed method in terms of its efficiency,
steps from line 1 to 8 in the algorithm (Fig. 4) are computed offline,
regarding to our actual driving mission. Then, returning a best

matching database image Ihybrid1 for a given query image Ia (steps
from line 9 to 18) takes nearly 1.5 s. Most of this time is spent
between line 9 and 10 while computing the returned candidates
for both LD-VL and SD-VL method. Negligible time is spent on
the remaining steps (11–18).

Fig. 10 depicts the superiority of the proposed Hybrid-VL
method via previously given evaluation metrics (Top-1 Recall@D,
Recall@N). Hybrid-VL is able to increase Recall@1 of LD-VL method
by 4% and 3.6% on RobotCar Seasons (bottom-left plot) and Malaga
Streetview Challenge (bottom-right plot) respectively. In these
plots, distance threshold D is set to 25 m. which is common in
related studies. As N increases, recall values increase for all meth-
etween Malaga Streetview Challenge query images (left) and corresponding Malaga



Fig. 10. Superiority of proposed Hybrid-VL method that incorporates LD-VL and SD-VL methods. Results represented with Top-1 Recall@D (1st row) and Recall@N (2nd row)
evaluation metrics on the RobotCar Seasons Overcast-Winter traversal (1st column) and Malaga Streetview Challenge (2nd column).
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ods but Hybrid-VL stays on the top. We are also able to observe
Top-1 Recall values for varying distance thresholds in Fig. 10. The
improvement of the proposed hybrid method over LD-VL for Robot-
Car Seasons (top-left plot) is clear. For small D values, increase in
recall is around 5%. Whereas, for larger values (D > 30m.) the
increase is more significant and reaches up to %7.7. For Malaga
Streetview Challenge (top-right plot) the improvement over LD-VL
is relatively small but still it increases the performance for every
D value.

Some visual examples where LD-VL fails but Hybrid-VL
approach retrieves correct locations can be viewed in Fig. 11.
One can observe the challenging illumination conditions or
appearance differences (changing cars). Steady semantic content
helps the proposed hybrid method for better retrieval
performance.

To sum up, experimental results indicate that the performance
of the proposed Hybrid-VL method is superior against the state-of-
the-art baseline LD-VL method (NetVLAD with RGB images) on the
examined data sets. Thus, our initial hypothesis described in Sec-
tion 1 ‘semantic decomposition of a scene can increase localization
performance’ is validated with the provided performance scores
and visual samples.
9

These results were obtained with selected W parameter (0.2 for
RobotCar Seasons, 0.1 for Malaga Streetview Challenge). The follow-
ing subsection investigates the sensitivity of success on W
parameter.
4.4. Sensitivity on W parameter

We already explained (Section 3.5.2) that the proposed Hybrid-
VL method is based on W parameter. Thanks to W parameter (Eq.
(4)), we are able to tune the contributions of SD-VL and LD-VL in
hybridization. Logically, we should trust on the better-
performing VL method among the SD-VL and LD-VL methods and
LD-VL results are better in most cases. This intuition is approved
in Fig. 10, where the best Hybrid-VL results are obtained by
increased contribution of LD-VL (W < 0.5).

Results for varying values of W are given in Fig. 12. Only the
results on the RobotCar Seasons were included in the figure but
the same trend occurs for Malaga Streetview Challenge as well.
One can observe that W values close to 0.2 (e.g. 0.1 or 0.3) result
in a similar performance. In fact, as long as we trust LD-VL more
than SD-VL it is beneficial to Hybrid-VL. In contrast, as we give



Fig. 11. Superiority of proposed Hybrid-VL method with three sample localization cases from both datasets. RGB image based method LD-VL (left) fails but Hybrid-VL (right)
retrieves correct images for a given query (middle).
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Fig. 12. Effect of alteringW parameter method on RobotCar Seasons dataset. Best hybridization result (top-right) was obtained withW = 0.2, but difference is negligible when
compared to W = 0.1 and W = 0.3.
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more weight to SD-VL (W P 0.5) performance of Hybrid-VL
decreases.
5. Conclusions and future work

In this study, we propose a Hybrid-VL method that exploits
semantic segmentation to improve localization performance. For
this purpose, firstly a novel SD is trained with a triplet ranking loss
based CNNmodel using semantically segmented images. Then, this
optimized semantic representation is used directly for visual local-
ization named as learnt SD-VL method. Lastly, Hybrid-VL method is
11
proposed by combining the newly developed learnt SD-VL and the
baseline LD-VL methods at decision level.

Improved localization performance is measured with frequently
used evaluation metrics on the benchmark RobotCar Seasons data
set and newly generated Malaga Streetview Challenge data set
which is shared with the research community. This performance
improvement is achieved owing to incorporating the distinguish-
ing power of the relative positions of the objects in a semantically
segmented image. We can conclude that the proposed Hybrid-VL
method is able to alleviate the shortcomings of the appearance
based methods.
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As for the future work, employing different kind of descriptors
(e.g. using depth maps) would contribute to the success of this
work. Furthermore, performing the proposed method on omnidi-
rectional cameras may also increase the localization performance
owing to its wide field of viewing angle.
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