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ABSTRACT 

 
OPTIMUM DESIGN AND ANALYSIS OF TORSION SPRING USED IN 

SERIES ELASTIC ACTUATORS FOR REHABILITATION ROBOTS 
 

Along with the developing technology, robotic systems have started to take place 

in areas where there is one-to-one interaction with people, as well as their use in industrial 

areas. As the robotic system began to take place in daily life, safety and reliability between 

humans and robots have become a critical issue. In this context, a series elastic actuator 

has been developed for the aforementioned robotic systems, which has an elastic element 

placed in series between the motor output and the mechanical output. In this thesis, the 

torsion spring, as a critical part for the rotary series elastic actuators of rehabilitation 

robots, which helps support the extension and flexion of the knee joint during physical 

therapy of individuals with lower extremity disorders, is discussed. First of all, the data 

required for modeling was produced by making analyses with the design of experiment 

and finite element method. In line with the design goal of a light, compact, durable and 

stiff spring, the torsion spring whose topology was determined was modelled using a 

hybrid method: Neuro-regression approach and cross-validation technique. To minimize 

the mass and von Mises stress of the torsion spring, the thickness of the spring and the 

inner corner radius of the flexible leg are taken as the design variables and multi-objective 

optimization problems are created. The design and optimization of the torsion spring was 

done with the help of Differential Evolution, Nelder-Mead, Random Search and 

Simulated Annealing algorithms. By comparing the obtained optimization results with 

the finite element method and the results in the literature, it has been seen that the model 

and optimization methods used in the study are reliable and applicable. 
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ÖZET 

REHABİLİTASYON ROBOTLARI İÇİN SERİ ELASTİK 

EYLEYİCİLERDE KULLANILAN BURULMA YAYININ OPTİMUM 

TASARIMI VE ANALİZİ 
 

Gelişen teknolojiyle birlikte robotik sistemler endüstriyel alanlardaki 

kullanımının yanı sıra insanlar ile birebir etkileşimin olduğu alanlarda da yer almaya 

başlamıştır. Robotik sistemlerin gündelik hayatımızda yer almaya başlaması ile insan-

robot arasındaki güvenlik ve güvenilirlik kritik bir konu haline gelmiştir. Bu bağlamda, 

bahsi geçen robotik sistemler için motor çıkışı ve mekanik çıkış arasına seri 

konumlandırılmış bir elastik elemana sahip olan seri elastik eyleyici geliştirilmiştir. Bu 

tezde, alt ekstremite bozukluğu olan bireylerin fizik tedavisi sırasında diz ekleminin 

ekstansiyon ve fleksiyonunun desteklemesine yardımcı olan rehabilitasyon robotlarının 

döner seri elastik eyleyicileri için kritik parça olan burulma yayı ele alınmıştır. Öncelikle 

deney tasarımı ve sonlu elemanlar metodu ile analizler yapılarak modelleme için gerekli 

olan veriler üretilmiştir. Hafif, kompakt, dayanıklı ve direngen bir yay tasarım hedefi 

doğrultusunda, topolojisi belirlenen burulma yayının, hibrit bir yöntem olan Nöro-

regresyon yaklaşımı ve çapraz doğruluma tekniği ile modellemesi yapılmıştır. Burulma 

yayının kütle ve von Mises gerilmesini minimize etme amacıyla, yayın kalınlığı ve esnek 

bacağın iç köşe yarıçapı tasarım değişkeni olarak alınıp çok amaçlı optimizasyon 

problemleri oluşturulmuştur.  Burulma yayının tasarım ve optimizasyonu Differential 

Evolution, Nelder-Mead, Random Search ve Simulated Annealing algoritmaları 

yardımıyla yapılmıştır. Elde edilen optimizasyon sonuçları ile sonlu elemanlar metodu ve 

literatürdeki sonuçlar kıyaslanarak gerçekleştirilen çalışmada kullanılan modelin ve 

optimizasyon yöntemlerinin güvenilirliği ve uygulanabilir olduğu görülmüştür.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1.  Robots used in Physical Rehabilitation 

As technological developments increase, the scope and usage areas of robotic 

systems are also developing. Although the term robotics reminded industry and 

production in the past, today it draws attention in the field of medicine with 

interdisciplinary studies. Since 1985, with the development of technology, robotic 

treatments have begun to be applied in many fields of medicine from surgery to physical 

therapy and rehabilitation field 1, 2.  

In addition to the undeniable benefits of robotic systems in surgical treatments, 

this technology has also many conveniences for patients and paramedics in physical 

therapy and rehabilitation. There are many rehabilitation robots that can treat neurological 

and physical diseases that impair mobility, especially traumatic brain and spinal cord 

injuries, stroke and other neurological disorders. The most widely used and still being 

developed devices are shoulder-arm robots, walking robots, hand-finger robots, non-

gravity walking system and vertical passive motion devices combined with current 

therapy. Apart from these, traditional rehabilitation devices are hardy and expensive, and 

can only be used under the control of therapists. For patients, motor learning ability is a 

process that requires skill, experience or practice. For this reason, continuous repetitions 

should be made for the targeted ability and different types of activities should be used 

each time. Therefore, it is very difficult to apply this intensive treatment program to every 

patient in the presence of a physiotherapist. In this context, robotic rehabilitation provides 

high-intensity, safe and flexible treatments by reducing the workload of physiotherapists. 

That is, a rehabilitation robot can effectively reduce the errors and shortcomings of 

classical rehabilitation. For this reason, there are already many studies on the application 

of robotic technology in therapy, and related researchers have been researching and 

developing in detail for years 3-7.  

A study in 2015, based on the idea of adaptive rehabilitation, a cable-operated 

robotic glove and sleeve were designed, modelled, and then manufactured to assist finger 

and elbow movements in a way that imitates the biological function of the tendons in 
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order to transform robotic rehabilitation technology into inherently safe and portable 

devices 8.  

Another study, published the same year, describes several new elements for a soft, 

easy-to-wear robot designed for the hand. These elements can offer solutions to the 

problems of the wearable robotic gloves that are desired to be developed. This study was 

carried out with two subjects, one healthy and one disabled. It has been suggested to 

improve the study by conducting experiments with more data for a wider range of use 9.  

In another study on the subject, the design and evaluation of a soft hand cover 

with a soft cloth electromyography (EMG) sensor, which is to be used in the rehabilitation 

of stroke and spinal cord injury patients, was performed. While designing, the criteria of 

electrical durability, compactness and portability were taken into consideration. Unlike 

other robotic gloves, it optimizes a bio-inspired fin-ray structure to rehabilitate the hand 
10.  

 

Figure 1.1. Rehabilitation robots for upper and lower limbs. (a-c) is reprinted from 8-10 

 

1.2.  Human - Robot Interaction and Series Elastic Actuator  

Due to the fact that robots are too entering the picture in daily life, it is expected 

that humans and robots work together based on physical cooperation. In this context, with 

human-robot cooperation based on mutual harmony and complementary working 

principle, challenging and time-consuming tasks find the opportunity to be performed in 

the most efficient and cost-effective manner. For robots that perform their tasks in direct 

contact with humans in industrial production, human-robot cooperation is desired to be 

safe. However, conventional rigid and high-impedance actuators cannot provide the 
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desired safety for human joints in parts where human-robot interaction is important. For 

example, in rehabilitation treatment, a robot with a rigid actuator cannot adequately react 

to the sudden movements of stroke patients caused by spasm and cannot provide safety. 

For this reason, actuators that increase interaction safety and contain elastic element have 

attracted great interest for rehabilitation robots and it has been concluded that they make 

human-robot interaction more reliable 11-18. In this context, different studies have been 

carried out on actuator designs with elastic elements as shown in Figure 1.2. 

One of the biggest concerns of the National Aeronautics and Space 

Administration (NASA) about the health of people going into space is the physical 

discomfort that can occur due to bone density loss and muscle atrophy. For this reason, 

exoskeleton designs have started to be developed by NASA. In addition to space 

applications, the developed X1 exoskeleton robot can be used as a rehabilitation device 

for walking individuals who have had paralysis, stroke, spinal cord injuries and trauma. 

using Robonaut 2 19 and Institute for Human and Machine Cognition Mobility Assist 

Exoskeleton technologies 20 using a series of elastic actuation schemes, new design has 

been made that includes elastic actuators and provides force control in hip and knee joints 
21.  

Mina v2, which is a reinforced lower extremity robotic exoskeleton designed for 

rehabilitation based on the Mina V1 22 and X1 exoskeleton, has actuators in the hip and 

knee parts like its predecessors. Apart from these, Mina V2 includes an actuator for each 

ankle joint that provides full activation in the sagittal plane. These actuators offer the 

possibility of obtaining a new exoskeleton that includes reinforced ankle plantar flexion, 

unlike existing orthotic exoskeletons. Developed with its innovations, Mina V2 gave 

pretty successful results to set forward, keep walking, going up the ramps and climbing 

upstairs 23.  

In a robot design study, which is also used for rehabilitation purposes, the design 

and control of an active knee orthosis driven by a rotary series elastic actuator containing 

a torsion spring was carried out. In order to meet the special requirements for knee joint 

flexion and extension during physical therapy of people with low motor impairment, the 

torsion spring was optimized with the help of the Finite Element Method (FEM), 

considering criteria such as acceptable peak load, flexibility, compact and lightweight 

design, and optimum design variables were obtained 24.  
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Figure 1.2. Rehabilitation robots with SEA for upper and lower limbs. a is 21 and (b,c)  

         is reprinted from 23–24, respectively 

 

As mentioned above, on the development and improvement of lower and upper 

extremity rehabilitation robots, many groups have made important studies on devices 

containing series elastic actuators. The result of the studies is that human-robot interaction 

is more collaborative and efficient when wearable rehabilitation devices are light, flexible 

and compact. For this reason, different design and optimization studies have been carried 

out for elastic elements, which are of great importance for rehabilitation robots to meet 

these requirements. 

Yıldırım et al. designed a compact and lightweight torsion spring that provides 

rehabilitation and power transfer for the upper limbs embedded in the exoskeleton robot 

system. After examining the possible types and designs of torsion springs that can be 

integrated into the series elastic actuator unit, it has been concluded that a torsion spring 

is suitable for this mechanism. In this context, they concluded that the two-legged 

topology is more acceptable than the four-legged design. As a result, a spring design has 

been developed considering the stiffness and load conditions in which the series elastic 

actuator will be used. In addition, an empirical model for this topology has been obtained 

and the reliability of the model has been tested by simulation and experimental studies 25. 

In order to determine the topology of the torsion spring, a group that started from 

two rings design connected by flexible elements, performed a study by choosing a suitable 

topology from the literature samples 24, when this topology did not give sufficient results 

to calculate the compatible structure of the elastic elements. Study has been done on the 
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development of the selected torsion spring design for an inexpensive and lightweight 

series elastic actuator used in an active orthosis. For this, a two-stage optimization study 

was carried out considering the necessary criteria. In the first step, after the appropriate 

topology decision was made, two different optimization methods, meta-model and 

genetic algorithm, were used to minimize the equivalent von Mises stresses, and then 

FEM-based optimization was performed as the second step 26. 

In a study to design a compact monolithic torsion spring to be used as the main 

component of a modular compatible system for Series Elastic Actuators, the design of the 

elastic element was carried out by iterative FEM analysis. The main objectives in the 

study were determined as giving the flexible element the ability to provide the necessary 

auxiliary torque to support the movement with low stiffness and minimizing the resulting 

weight and dimensions. After successful analysis, the presented elastic element was 

included in a SEA operating the knee orthosis to provide knee flexion and extension 

support for elderly individuals who have motor losses 27. 

Due to the kinetic and kinematic requirements for actuators used in robots, 

undesirable uncertainties occur in the movement of the load. Therefore, Nieto et al. 

conducted robust optimization studies to account for the uncertainty created during the 

design of series elastic actuators used in prosthetic robotic ankles. They performed the 

formulation of a robust-feasible convex optimization program to select the optimum 

compliance–elongation curve of the torsion spring that minimizes one or more of the 

factors of spring elongation, motor energy consumption, motor torque or motor speed. 

The formulas they created ensured that motor torque, winding temperature, and speed 

were workable despite uncertainty in kinetics, kinematics, or spring production. 

Simulation case studies help to inform about the selection of different objective functions 

when evaluating the performance of robust viable designs versus optimal solutions that 

neglect uncertainty. In this context, the designer aims for reliable robots that reduce 

overdesign, directly in optimization and showing uncertainty over certain kinetic, 

kinematic and production parameters 28. 

Modeling and torque trajectory control of the rotary series elastic actuator for the 

humanoid/memetic is critical. In a study on this subject, fuzzy logic torque controller with 

nonlinear friction compensation was considered and different controllers (PID feed 

forward controller, fuzzy logic feed forward controller and friction compensated fuzzy 

torque controller) were used to improve trajectory tracking performance in rotary series 
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elastic actuator systems. The actuator was designed and necessary tests were carried out. 

At the end of the study, the trajectory tracking error was minimized by the nonlinear 

estimation of the frictions occurring in this type of mechanism, and high accuracy 

trajectory control was achieved by using the fuzzy logic control structure when the system 

actuators were exposed to nonlinear effects 29. 

In a study on a wearable robot designed to improve hip and knee 

flexion/extension, it is aimed to provide flexibility to the system by operating the series 

elastic actuator at optimum intervals. In addition, the dynamic properties have been 

optimized thanks to the smart distribution of the oscillatory masses. In order to be 

ergonomic, non-anthropomorphic designs have been determined for kinematic synthesis, 

topology selection and morphological optimization. Afterwards, theoretical and 

experimental investigations have been made. These theoretical and experimental results 

show that the proposed design is promising for people in need of rehabilitation 30. 

In another study, studies were carried out on the precision of light robot 

positioning with serial elastic actuators. The modeling uncertainties of these robots 

negatively affect the precisions gained by approaches such as inversion-based feed-

forward. Due to this effect, this work improves the sensitivity of robots around operating 

points with a multiple-input multiple-output, iterative learning control approach. In this 

context, an input-weighted complex kernel was defined to predict local multiple-input-

multi-output models using complex Gaussian process regression, and Geršgorin theorem-

based conditions were developed to ensure precision convergence of iterative learning 

control based on noise limits. As a result, it was observed that there was an increase in 

the operating speed of the robot and an improvement of approximately 90% in the 

positioning accuracy 31. 

A group on torsion spring design and optimization examined the spring 

development and testing stages for long-term use of robots. The main aim of the study is 

to make a design that meets the actuator weight and dimensional requirements while 

adjusting the long-term durability, high torque output and the overall weight of the 

mechanism. After the recursive design and tests, optimal torsion spring geometry was 

obtained with the SIMP topology optimization method and torsion tests were carried out. 

They concluded that, through design and testing, series elastic actuators will be 

successfully adapted to applications where physical human-robot interaction is important 
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for long-term and continuous use 32. Figure 1.3 contains the visuals of the studies 

mentioned above. 

 

 

Figure 1.3. Torsion spring topology for SEA (a–c) is reprinted from 25–27, 

                               (d,e) is reprinted from 29,30   

 

1.3.  Objectives of Thesis  

The main features of the series elastic actuators, which are attached an elastic 

element to the shaft of the actuators, are as follows: i) being self-elastic ii) measuring the 

force with the help of Hooke's law by measuring the displacement of the elastic element 

iii) having high sensitivity and safe human-robot interaction during operation. As it can 

be understood from the literature studies, the basic element that gives these properties to 

serial elastic actuators is the elastic element of the actuator. In this context, structural 

changes in the elastic element directly affect the performance of series elastic actuators. 

In this thesis, the design, modeling and optimization of the torsion spring for 

minimum mass, minimum von Mises stress and maximum stiffness were performed using 

neuro-Regression approach, cross validation technique and stochastic optimization 
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methods such as Differential Evolution (DE), Nelder Mead (NM), Simulated Annealing 

(SA) and Random Search (RS). Torsion springs with constant outer and inner diameter 

length, different thickness, and different flexible leg inner corner radius were considered. 

The aim of this thesis can be listed as follows; 

 To obtain torsion spring structural designs using computer technologies and to 

investigate the capabilities of optimization methods in terms of how better structural 

design can be obtained by limited design time and limited conditions. 

 After deciding on the important factors for the outputs at the design stage, to see 

the relationship between the design variables and the response variables with the 

help of mathematical modeling. 

 To minimize mass and von Mises stress and maximize stiffness (100-200 N.m/rad) 

values simultaneously. 

 Comparison of the performance of torsion spring designs for different thickness and 

radius values using DE, NM, SA, RS stochastic methods. 

 Comparison of the results of the optimization algorithms used with each other and 

with the literature outputs. 
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CHAPTER 2 
 

SERIES ELASTIC ACTUATORS AND TORSION SPRING  
 

2.1. Actuator and Series Elasticity  

The robot component that supplies the energy for a mechanism or system to 

transmit force and motion is called an actuator. Actuators that provide movement can be 

examined in two groups as linear and rotary actuators. Linear actuators move the 

mechanism to which they are attached, usually back and forth along a straight line. Rotary 

actuators, on the other hand, rotate the input of the mechanism to a certain angle limited-

infinite. Many rotary actuators are combined with reducers to reduce rotational speed and 

increase torque 33-35. In this thesis, rotary series elastic actuators that provide movement 

are issued. 

In robots designed for industrial purposes, actuators that are rigid, with high 

impedance and safe are made with sensors are used. With the development of technology, 

human-robot interactions have begun to increase, and research on these robotic systems 

has focused on the safety of the human-robot interface. This safety emphasized that torque 

and impedance control algorithms should be applied to robotic systems and that the 

actuators used should be suitable for this structure. In systems with rigid actuators, safety 

is usually provided by position/force control. However, delays and sudden shocks caused 

by the software system reduce the safety of the actuator and transient contact events 

cannot be tolerated in these cases. These problems are very unsafe for mechanisms 

interacting with humans and cause noise in the force control of the actuator. Therefore, 

choosing a compatible actuator is extremely important in human-robot interaction 

mechanisms where force control and contact dynamics are important. In this context, 

actuators with compliant elastic elements such as Series Elastic Actuator (SEA) have been 

proposed as a simple and effective solution for such mechanisms in order to overcome 

the difficulties and achieve natural compatibility.  In this way, unwanted movements can 

be reduced and damage to the device is prevented while increasing the safety of the user 
36-38. 
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2.2. Series Elastic Actuator  

Since the 1990s, numerous studies have been conducted and many scenarios have 

been created to develop SEAs. While doing these researches, scientists realized that the 

basis of human-robot mechanisms is based on understanding human muscle tissue. After 

studies on biomechanics, it was understood that elasticity in muscle tissue is important in 

terms of energy and efficiency. Studies have shown that muscle work output and stability 

of the system increase with serial elasticity. SEAs, are very suitable for application to 

human-robot interactive systems in order to eliminate the mentioned deficiencies 27, 39.  

As seen in Figure 2.1, the SEA structure is a simple but impactful solution 

consisting of a gear motor in series with a spring connected to the load. This structure 

enables decoupling the output from motor inertia and non-linearity, with benefits in the 

way of force/torque control fidelity 40. In addition, the output force of the actuator is 

dependent on the compression of the spring. Therefore, the spring elements of the SEA 

are linearized with the Hooke’s law given in Equation 2.1. Mathematically, Hooke’s law 

states that the applied force F equals a constant k times the displacement or change in 

length x. The compression of the spring is calculated with a sensor and, thanks to Hooke's 

law, the force applied to the load can be calculated automatically by measuring the 

deflection of the elastic element. According to this calculation, force control is provided 

by sending a signal to the motor. However, in this case the servo motor operates with low 

efficiency at low speed and the torque produced is small. This situation is not suitable for 

collaborative robots with humans. For this reason, small and light motors with gearboxes 

can be used at low speeds and high torques 40-44.  

 

F = kx                                                                                                            (2.1) 
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Figure 2.1. Basic Configuration/Block Diagram of Series Elastic Actuator 40 

 

Unlike a rigid actuator, SEAs contain an elastic element that provides passive 

mechanical energy storage and low mechanical output, and can filter incoming surges and 

increase power output. The elastic element, which is the main component of SEA, has a 

significant influence on the size and mechanical properties of the joint. The design of the 

elastic element is therefore the key point for SEAs. Two types of elastic elements can be 

used for SEAs: torsion spring and linear spring 38, 40. 

In this study, torsion spring is considered as an elastic element. There are two 

types of torsion spring designs as linear and planar torsion springs in the literature. The 

first of these is the designs created as a result of the arrangement of linear springs, which 

are large in volume and can be adapted to special requirements. An example of linear 

springs used in SEAs is shown in Figure 2.2. Another design is planar torsion springs, 

which are specialized to increase performance while minimizing the volume of the torsion 

spring. These customized springs show better linearity between torque and angle 27, 35. 

The design is embedded in the transmission line and directly connected to the load and is 

specialized to increase performance while minimizing the volume of the torsion spring. 

These customized springs show better linearity between torque and angle. Also, an 

example of the second type of springs used in SEA is shown in Figure 2.2 27, 42. 
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Figure 2.2. Examples of torsion spring components for rotary SEA. 

 

 

 

 

 

 

 

 

 



 

13 
 

CHAPTER 3 
 

MODELING  
 

A model is a simplification, reflection, abstraction, and conceptualization of a 

real-world system or event. Modeling, which, in its most general definition, means 

copying the truth, is defined as the set of operations made to make an unknown 

phenomenon clear and understandable by reference to existing sources. In addition, one 

of the methods used in the concretization process of mathematics, which is an abstract 

science, is modeling. In this context, mathematical modeling is a dynamic method that 

makes it easier to see the relationships in the nature of real life problems, to express the 

relationships between them in mathematical terms, to classify them and to draw 

conclusions 45-47. 

From an engineering perspective, models are smaller-sized structures that are used 

extensively in engineering problems, reflecting all the features of large-scale systems. 

These models have details that realistically reflect the features and intended use of the 

system. Therefore, in the development of optimization technology, researchers have 

primarily been interested in modeling, and mathematical modeling is the first step in the 

optimization process of engineering design problems. The expressions in the 

mathematical models created with experimental or simulation data consist of measurable 

features of the systems, design variables that determine the performance criteria to be 

optimized, and constraints that determine their limits 48. The design process for a system, 

which starts with the design of experiment and ends with finding the optimal solution, is 

given in Figure 3.1. 

 

 
Figure 3.1. Flow diagram for the optimal design 49 

 

Within the scope of this thesis, simulation data were obtained by using the Design 

of Experiments (DOE) and Finite Element Method (FEM), which were defined in the 

next chapters, in order to carry out the modeling phase of the discussed problem. 
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3.1. Design of Experiments (DOE) 

Design of experiment (DOE) is an approach that provides an effective and 

efficient examination of the cause and effect relationship between inputs and outputs. It 

is a proactive approach because the conditions that will reveal the error before it occurs 

are determined in this method. Randomization, blocking, and replication are the basic 

principles of statistical methods in DOE. Multiplication is the repetition of the simulation 

in order to obtain a more accurate result and to minimize the experimental error. The 

randomization defines the random order in which the simulation will be executed. 

Blocking aims to isolate a known systematic bias and prevent the main effects from being 

hidden.  

There are two important parameters in DOE studies. After these parameters are 

decided for the problem, the analysis can be started. 

1. Factor: Inputs that are thought to have an effect on the output. 

            2. Level: The ranges of each factor defined in the experiment. 

     In addition, there are several DOE techniques such as Full Factorial, 

Randomized Complete Block, Fractional Factorial, Taguchi, Optimal Design (D-

Optimal), and Box-Behnken. In this study, it was decided to use the D-optimal design 

method, since it provides the opportunity to choose different levels for structures that do 

not have equal effects with each other 49-51.  

3.1.1. Full Factorial Design 

A full factorial design is the combination of at least two or more parameters and 

their levels multiplied by each other in experiments. It is more effective than experiments 

in which one factor at a time is considered. Random blocks are used in full factorial design 

so that unknown and uncontrollable errors do not affect the experiment. After the 

experiment, the experiment is repeated at least three times in order to perform the 

variation analysis, so that it can be interpreted statistically. Also, the effect of the 

parameter on the experiment can be calculated with this method 50, 51. 
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3.1.2. Randomized Complete Block Design 

On a variable measured in an experiment, besides the factor whose effect is 

desired to be examined, other factors may also be effective. For this reason, it would be 

a more accurate approach to create homogeneous structures in terms of these factors and 

test the desired factor, and experimental errors can be reduced. These homogeneous 

structures in the technique are called blocks, and the experimental design that emerges 

when the trials are randomly assigned from each block is called the random block layout. 

In this most widely used experimental design, it is investigated whether the difference 

between the groups is statistically significant by comparing the measurement values 

obtained from randomly selected subjects from two or more groups. 

Random block layout is preferred in many different fields, as it provides the 

opportunity to test the effect of the investigated factor more accurately. In addition, the 

saving in sample width is another reason for preference. Apart from its advantages, the 

use of the random block layout is restricted as it is not always possible to run all trials on 

the same block. But this problem is handled by a method called incomplete random block 

layout 50, 52. 

 

3.1.3. Fractional Factorial Design  

Combinations of the levels of all factors are tried in the full factorial experiment 

design. Therefore, this experimental design method is quite costly and time consuming. 

In cases where time and cost are important, the number of experiments is proportionally 

reduced to obtain a fractional factorial experiment design. This design can be described 

as a vertical row layout that enables the discovery of significant effects with minimal 

experimental study 49. 

 

3.1.4. Taguchi Design  

The Taguchi method aims to minimize the variability in the design by creating an 

appropriate combination for the controlled factors against the uncontrollable factors that 

cause change in the design process. 
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Orthogonal arrays were created to explain more than one experimental situation 

in the Taguchi method. Orthogonal arrays, also called design matrices, are determined in 

two or three stages according to the nature of the problem. This feature allows multiple 

factors to be tested in small numbers and simultaneously changed factor levels 53, 54. 

 

3.1.5. Optimal Design ( D-Optimal)  

D-optimal design is a type of computer-aided design that is created during the 

development phase and complies with the standards or criteria set by the developers at a 

high level. In this design method, the product prototype represents the best result ever and 

is often seen as approaching the ideal design for that product. D-optimal designs are 

straight optimizations based on the chosen optimality criterion and the model that will fit. 

Unlike standard classical designs such as factorials and fractional factorials, D-optimal 

design matrices are usually not orthogonal and effect estimates are correlated. 

There are several advantages to the D-optimal design regarding the time and cost 

limitation process. In line with certain criteria, it narrows the focus of the problem and 

minimizes the expenses incurred in the research process. Different factor allows making 

different combinations. Ultimately, it ignores certain results while continuing to pursue 

more promising combinations. Therefore, it is advantageous to use the optimal design 

method in the following cases 49, 55;  

 If a small number of design work is required, 

 If there are consumables or factor configurations, 

 If unstable experiment structures are available 

 When using the operation and mixing variables in the same design. 

3.1.6. Box-Behnken Design  

The Box-Behnken method is an effective method for modeling the second-order 

response surfaces of the trial layouts introduced by Box and Behnken in the 1980. It is a 

method based on balanced incomplete block trials. Factors to be included in the model 

must have at least three levels 56. 
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3.2. Regression Analysis   

Regression is one of the most preferred techniques in statistics to determine the 

cause and effect relationship between two or more variables. In other words, it is 

examined to what extent one or more of the variables affect other variables. The 

relationship between these variables is expressed as a mathematical function and this 

function is called a regression function or a regression model. In the regression model, 

the dependent variable (response variable) is denoted by Y, while the independent 

variables (design variables) are denoted by Xi (i=1, 2,..,n). According to the number of 

variables used and the type of model, regression analysis can be classified as simple linear 

regression, simple nonlinear regression, multiple linear regression and multiple nonlinear 

regression 57, 58. 

 

3.2.1. Simple Linear Regression 

Simple linear regression; it aims to measure the effect of a one-unit change in the 

independent variable on the dependent variable. The main purpose is to find the linear 

function that expresses the relationship between the dependent and independent variable. 

The simple linear regression equation, which is a stochastic (probabilistic) model and 

shows the relationship in the population 58, is expressed as Equation 3.1; 

 

Y = β0 + β1X+∈                                                                                             (3.1) 

 

Here β0 is the point where the line intersects the y-axis and is the regression 

constant. When β1 is the slope of the line or the regression coefficient, ∈ is the random 

error value and it is assumed that this error value has a normal distribution with a mean 

of zero variance σ2. This assumption is required for importance checks of coefficients, 

not parameter estimates. Figure 3.2 graphically describes this formula 59. 
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Figure 3.2. Regression Graph for Simple Linear Model 
 

3.2.2. Simple Non-linear Regression 

Simple nonlinear regression fits a curve to nonlinear X, Y data. The y is a function 

of a single x variable: Y = f (X). Depending on the shape of the data, there are different 

types of curves, resulting from different kinds of functions. Simple nonlinear regression 

for a model that has only one input variable describes as Equation 3.2 58: 

Y = β0 + β1𝑋
2+∈                                                                                              (3.2) 

 

3.2.3. Multiple Linear Regression 

While there is one dependent and one independent variable in simple linear 

regression analysis, there is one dependent variable and two or more independent 

variables in multiple linear regression analysis. In addition, there is a linear relationship 

between the variables in both analyses. General form of multiple linear regression model 

is shown in Equation 3.3 58. 

 

 𝑌 =  β0 + β1𝑋1 + β2𝑋2 +⋯+ β𝑛𝑋𝑛+∈                                                          (3.3) 
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3.2.4. Multiple Non-linear Regression 

The multiple nonlinear regression model is more flexible than simple nonlinear 

regression models because the function does not have to be linear or linearized. Therefore, 

it offers a wide choice for fitting the nonlinear regression phenomenon to the data. The 

form of nonlinear regression models is generally similar to linear regression models. The 

biggest difference of the nonlinear regression model from the linear regression model is 

that n - the number of regression parameters is not related to the number of independent 

variables, which means X, in the model. In this thesis, multiple non-linear regression was 

used for analysis. General form of multiple nonlinear regression model is shown in 

Equation 3.4 58. 

 

𝑌 =  β0 + β1X1 + β2X2
2 +⋯+ βnXn

n+∈                                                          (3.4)          

 

3.3. Coefficient of Determination (R2) 

The coefficient of determination (R2), which is widely used in regression analysis, 

shows the degree of closeness of the data to the accuracy. In other words, it expresses 

what percentage of the changes in the dependent variable can be explained by the 

independent variables. This is a good indicator of the explanatory power of the regression 

model. This value is calculated as the square of the multiple correlation the coefficient in 

regression models. However, although the R-square value is defined as the square of an 

expression, it may turn out to be negative in some special cases. This means that the model 

is not reliable. A coefficient of determination of zero indicates that the independent 

variables cannot explain the dependent variable at all; being one show that he can explain 

it fully. A zero here indicates 0% of the model, and a one indicates that the model has 

100% explanatory power. It is desirable that this value be close to 1. However, although 

there is no definite limit, the R-square value is expected to be around 0.90 for good 

modeling. The formulation of the R-square is given in Equation 3.5 – 3.7. 

 

R2 = 1 −
SSE

SST
                                                                                                   (3.5) 

SSE = ∑ (ŷi − y̅)2i                                                                                               (3.6) 

SST = ∑ (yi − y̅)2i                                                                                               (3.7) 
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where, 

SSE is Sum of Squared Regression also known as variation explained by the model 

SST is Total Variation in the data also known as sum of squared total  

𝐲𝐢 is the y value for observation i  

�̅� is the mean of y value 

𝐲 
𝐢
 is the predicted value of y for observation i 

R-square measures the rate of variation in our dependent variable (+Y) explained 

by our independent variables (X) for the linear regression model. Apart from that, the 

adjusted R-square only measures the rate of variation explained by independent variables 

that actually affect the dependent variable. The R2 value is always greater than the 

R2adjusted values.  According to the meaningless variable added to the model, the R2 

adjusted value also changes depending on Equation 3.8. 

 

Radjusted
2 = 1 −

(1−R2)(n−1)

n−k−1
                                                                                (3.8) 

 

In this equation, k denotes the number of independent regressors, which is the 

number of variables excluding the constant, in the model, while n denotes the number of 

points in the data sample 58, 60, 61. 

 

3.4. Artificial Neural Network 

Artificial neural networks (ANNs) are computer systems developed with the aim 

of automatically performing the abilities such as deriving, creating and discovering new 

information through learning by adopting the basic structure of the human brain without 

any help. These systems have emerged as a result of mathematical modeling of the 

learning process by taking the human brain as an example. Learning process in artificial 

neural networks is done using examples. During learning, entry and exit information is 

given and rules are set. It is used in many fields such as computational finance, image 

processing and computer vision, computational biology, power generation, automotive, 

aerospace, manufacturing, and natural language processing. ANN consists of many cells 

that can work simultaneously and perform complex tasks. They have the ability to learn 

and learn with different learning algorithms. Missing patterns can be completed by pattern 

recognition and classification with ANN. Also, the ANN model is generally considered 
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as a nonlinear statistical modeling algorithm. In this algorithm, the relationships between 

inputs and outputs are modelled 57, 62. 

 

3.5. Neuro-Regression Modeling   

Regression analysis and artificial neural network methods, which are widely used 

modeling analysis methods, have been examined above. Both have advantages and 

disadvantages. In this context, a hybrid method combining the strengths of regression 

analysis and artificial neural networks has been created in order to reduce the 

disadvantages and make more reliable models and predictions. Since this approach, called 

Neuro-Regression, is created by taking advantage of the advantages of RA and ANN 

methods and avoiding their disadvantages, the error rate is much lower than both methods. 

The biggest goal of Neuro-regression studies is to create a learning model that 

accurately predicts previously unknown data items. Therefore, the generated learning 

model must be generalized very well to ensure correct classification of future data items. 

Generalization actually means how well our model learns from given data and applies the 

learned information elsewhere. The most common techniques used to measure 

generalization are Validation, Training, and Test sets. If model performs well on the data 

that it has not seen in the training, it can be said that it generalizes well on the given data. 
49, 63.  

 

3.5.1. Train and Test Sets 

Before performing mathematical modeling, the data set should be divided into 

training and test sets. This distinction can be approximately 80% training dataset and 20% 

test dataset. The training set is the dataset on which the model is trained. The test set is a 

data set used to evaluate the model developed in the training set. First, the model is trained 

on the training set and predictions are made on the test set. Thus, the predictions are 

compared with the actual response variable in the test data and the accuracy of the model 

is evaluated. Also, the larger the training set, the better the model learns. On the other 

hand, the larger the test set, the more reliable the evaluation metrics and tighter confidence 

intervals 49, 63.  
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3.5.2. Validation Set 

In the modeling process, since the test set is used in the each iteration for the 

efficiency of the model, the model may cause the test set to adapt to its unique situations. 

Therefore, overfitting of the model with the test set occurs. To prevent the model from 

overfitting, the validation set that has not been trained on the model and is used to set the 

hyper parameters should be used. After the model is decided at the end of the each training 

with the validation set, it is tested with the test set and the effectiveness of the model is 

observed more reliably. In addition, the validation set has no effect on the fit performance 

of the model. It is just an intermediate step to avoid overfitting the test set. Also, it is the 

test set that controls whether the model is over fit or under fit. The validation set only 

checks for over fit to the test set 64. 

 

3.6. Cross Validation  

Cross validation is a technique used in model selection to better predict the error 

of a test performed on a machine learning model. In this technique, sample observation 

segments known as validation sets are created from the training data set. After placing a 

model on training data, its performance is measured against each new validation set. 

Later, when new observations are sought, a better assessment of how the model will 

perform is obtained.  

This technique is examined in three sub-titles as holdout, k-fold cross validation 

and single-out cross validation method. The details of the k-fold cross validation method 

used in this thesis are explained below 65, 66. 

 

3.6.1. k-Fold Cross Validation   

In this method, the dataset is divided into k subsets and the holding method is 

repeated k times. Each time, one of the k subsets is used as the test set, while the other k-

1 subsets are combined to form a training set. Then the mean error of all k trials is 

calculated. One of the advantages of this method is that it cares less about how the data 

is split. Each data point enters the test set exactly once and enters a training set k-1 times. 

The outcome estimate variance decreases as k increases. The disadvantage of this method 

is that the training algorithm has to be repeated k times from zero 67. 
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CHAPTER 4 
 

OPTIMIZATION  
 

Optimization is a mathematical process that aims to find the optimum design by 

minimizing or maximizing the determined single or multiple objective functions and 

determining the decision variables of the problem in a system with certain constraints.  In 

other words, it is the process of determining what the inputs or values of this problem will 

be in order to obtain the desired output. Having a solution to a problem does not mean 

that the solution gives the best results. Therefore, optimization techniques are used to 

reveal the best results of the problem to be solved and the solution obtained by these 

techniques is also called the optimum solution. The aim of optimization in engineering 

problems is to find the optimum solution regardless of the problem. Therefore, 

optimization is frequently used for engineering problems such as mass, displacement, 

strength, time, temperature, buckling, stiffness, vibration, etc 63, 68-70.  

In general, the optimization process can be divided into two sub-headings as 

mathematical modeling and analysis. Mathematical modeling is the transfer of structural 

features of real-life phenomena to the language of mathematics. On the other hand, 

analysis is about analysing the mathematical model and knowing the compatibility of the 

mathematical model with real life. That is, it provides mathematical modeling and 

analysis, physical interpretation and application of mathematical concepts between design 

variables and objective functions 71.   

The optimization process can be shaped according to the requirements of the 

problem to be applied. If the decision variables of the problem have a limited, the model 

is defined as constrained model. If there are no limits, this is defines as the unconstrained 

model 72. In addition, if these decision variables have positive real values, it is called 

continuous optimization, if all decision variables take integer values, it is called discrete 

optimization problem. In addition, if only the instantaneous relationship is to be examined 

in the optimization problem, the static model is used, while the dynamic model is used 

when describing the time-dependent changes in the state of the system. Apart from these, 

two different optimization problems, single and multi-purpose, can be considered in order 

to obtain the desired design in the optimization process 49, 73. 
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4.1. Single Objective Optimization 

In an engineering problem that has been mathematically formulated, it is called 

single-objective optimization to find the parameters that the model will have in order to 

obtain the most appropriate value for a single design. In other words, problems with a 

single objective function are called single objective optimization. This approach includes 

design variables, objective function, constraints and bounds of constraints 71, 74. 

The general mathematical definition of a single objective optimization problem 

is;  

Minimize f (x)    

where,   x = (x1, x2, x3, …, xn)T   

Subject to, 

gi (x) ≤ 0             i = 1,2,…,m 

hj (x) = 0             j = 1,2,….,k       

 

Here, the parameter that is desired to be optimized is called the objective function 

(f(x)), while the parameters that define the physical and functional properties of the 

system to be designed are called design variable (x). In addition, the ranges determined 

for the parameters to take values are called constraints (gi (x) and hj(x)). The above 

optimization problem is written as a minimization problem. However, the sign of the 

objective function can be changed to transform a minimization problem into a 

maximization problem. That is, as can be seen from Figure 4.1, − f (x) can be maximized 

to minimize f (x) 71, 74.  
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Figure 4.1. The minimum and maximum of the objective function f (x) 
 

Engineering problems that exist in daily life have many purposes. Single-

objective optimization algorithms do not give meaningful results due to the conflict, 

complexity or size of these objectives. For this reason, multi-objective optimization 

algorithms detailed below have been developed. 

 

4.2. Multi Objective Optimization 

Multi-objective optimization can be defined as the simultaneous optimization of 

more than one objective. Most engineering problems in daily life need simultaneous 

optimization of multiple and conflicting objectives 70. For instance; a good design for a 

spring is expressed as lightness and high stiffness. A good vehicle design needs an 

optimization model that includes the simultaneous effect of weight, fuel economy and 

load. In this context, there may not be a single solution that will meet all the requirements 

in multi-objective optimization. Therefore, these problems can be converted into single-

objective problems with constant weight linear functions. However, before the 

optimization process starts, the weights of the objective functions should be determined 

in order of importance. In addition, using the algorithms used in single-objective 

optimization in the solution of these problems may not scan the solution space sufficiently 

and healthy results may not be obtained. In multi-objective optimization, all objective 

functions can be optimized simultaneously. But the shortcoming here is that if the 

objective functions do not all get the best value at the same point, a single best point 

cannot be found. Therefore, the definition of scalar best cannot be used in multi-objective 
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optimizations, as in single-objective optimization problems. However, there are several 

different methods for solving problems using multi-objective optimization, and the most 

effective one is the Pareto optimal method 75-77. Pareto analysis has the concept of 

dominance, which requires choosing between a vector containing all objectives and the 

resulting solutions. Therefore, the probability of diversifying the solution set with this 

analysis is quite low compared to other methods. As a result, for the solution of the multi-

objective optimization problem, it is necessary to find the Pareto optimal set, which is the 

set of solutions that represents the best balance between the determined objectives 78, 79. 

The general mathematical definition of a multi objective optimization problem 

can be expressed as follows:  

Minimize f1 (x), f2 (x),…,fr (x)   

where   x = (x1, x2, x3, …, xn)T   

Subject to, 

gi (x) ≤ 0             i = 1,2,…,m 

hj (x) = 0             j = 1,2,….,k      

 

Here, the parameter that is desired to be optimized is called the objective function, 

while the parameters that define the physical and functional properties of the system to 

be designed are called design variables. In addition, the ranges determined for the 

parameters to take values are called constraints. The above optimization problem is 

written as a minimization or maximization problem 74. 

 

4.3. Traditional and Non-Traditional Optimization Methods 

The optimization process of engineering problems can be solved with different 

optimization algorithms. Optimization algorithms can be examined in two groups as 

traditional (deterministic) and non-traditional (stochastic) optimization methods. Method 

of analysis, Lagrange multipliers, restricted variation and etc. are traditional optimization 

methods and are used only in solving problems with continuous and differentiable 

functions. Years ago, these deterministic methods were used to solve engineering 

problems. However, with the development of computer technology in recent years, 
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stochastic methods have become the subject of choice in the fields where most 

deterministic methods are used. Existing stochastic methods, inspired by the concepts in 

nature and simulating them in a computer environment, are used in different fields thanks 

to their features such as producing discrete solutions and obtaining results close to the 

global optimum without looking at the starting point 49. 

Genetic Algorithm (GA), Simulated Annealing (SA), Random Search (RS), 

Differential Evolution (DE), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Tabu Search (TS), Artificial Bee Colony (ABC), Markov Chain 

Monte Carlo (MCMC), Harmony Search (HS), Covariance Matrix Adaption (CMA), 

Grenade Explosion Method (GEM) are stochastic optimization methods. Recently, 

scientists continue to modify these algorithms and add more efficient methods to the 

literature. Since the design and optimization problems of torsion springs studied in this 

thesis have complex and nonlinear functions, stochastic optimization methods were 

preferred. In this context, in the following sub-headings, Differential Evolution (DE), 

Simulated Annealing (SA), Random Search (RS) and Nelder-Mead (NM) algorithms, 

which are preferred stochastic optimization methods for the study, are detailed 63, 74. 

 

4.3.1. Modified Nelder-Mead Algorithm 

Conventional Nelder-Mead (NM) derivative optimization technique, also called 

simplex search, was discovered by John Nelder and Roger Mead Spendley in 1965 and 

has been used in many fields such as physics, chemistry, medicine, science and 

technology. This algorithm, which is a traditional local search method, is used to find the 

local minimum point in multidimensional unconstrained optimization problems. In 

addition, the simplex is a polyhedron with (n+1) vertex in n-dimensional search space 

and gradually reaches the optimum point through an iterative process, that is, it is also 

known as the best point search algorithm 80, 81. Apart from these, since it is not a global 

algorithm, it is not suitable for optimization problems with a large local minimum. 

However, it can give good results in solving optimization problems with a small number 

of local minimum. The Nelder-Mead algorithm delivers adequate results in less time, 

thanks to its ability to deliver significant improvements in a few iterations. Nelder Mead, 

one of the non-linear and non-differentiable direct search algorithms, is an iterative 
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method with four control parameters. These parameters are reflection factor, expansion 

factor, construction factor, and shrinkage factor 82.  

Since constrained optimization problems cannot be solved with conventional NM, 

the algorithm can be modified by adding a "penalty function" to the flow of the algorithm 

to solve the problem. The first step of the algorithm is to make the first working simplex 

S. Then, minimizing the function moves the search route away from the vertex that is the 

worst function value. This is achieved by obtaining a reflected and enhanced point. In this 

improved algorithm, a hybrid form with conjugate gradient and principal axis methods is 

used 63, 83. In this thesis, the Modified Nelder-Mead (MNM) algorithm was used because 

the present optimization problems have nonlinear constraints and continuous design 

variables 84. The flowchart of the algorithm is given in Figure 4.2 85. 

 

 

Figure 4.2. Nelder-Mead algorithm flowchart 
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4.3.2. Modified Differential Evolution Algorithm 

Differential Evolution (DE) Algorithm, created by Price and Storn in 1995, is a 

metaheuristic algorithm which has many variables. In addition, it is a population-based 

technique based on genetic algorithm, thanks to its operation and operators, as well as 

giving meaningful results in optimization problems with continuous data. DE, which is 

generally used in problems with continuous variables, is also used in combinations of 

discrete variables or continuous-discrete variables. In problems where DE is used, the 

objective function is used instead of the fitness function and these represent alternative 

solutions. DE does not work with constraints. It is used to solve problems that are 

integrated into the objective function of constraints. Compared to other algorithms, DE is 

one of the most powerful algorithms for real parameter optimization methods. This 

algorithm has three main control parameters so that each generation obtains new 

populations with higher quality individuals. These can be listed as 

differentiation/mutation constant, crossover constant and population size. Other control 

parameters of this algorithm are: (i) problem size scaling the difficulty of the optimization 

case, (ii) the maximum number of generations known as the stop condition, (iii) boundary 

constraint. The evolutionary process consisting of these parameters continues until the 

stopping condition is met 86, 87. 

The Modified Differential Evolution (MDE) algorithm has been developed by 

making adaptations that can change the scale factor and crossover rate, which allows all 

solutions in the original DE algorithm to easily get rid of stagnation. Thus, the most 

obvious advantage of this algorithm is the scale factor and transition speed of each 

solution. In this thesis, the MDE algorithm was used 88. The flowchart of the algorithm is 

given in Figure 4.3 89. 
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Figure 4.3. Flowchart of Differential Evolution Algorithm 

 

4.3.3. Modified Simulated Annealing Algorithm 

Simulated annealing (SA) is one of the most popular stochastic exploration 

methods that simulate the physical annealing process in which the metal is heated to high 

temperatures and then slowly cooled until a minimum energy state is achieved. The 

melting stage of the metal allows it to have a low-energy atomic structure, thus making it 

a harder material. Simulated annealing moves to neighbouring regions to find the best 

local optimum as the temperature of the material rises. As the material cools, it tries to 

stay at its best local optimum. In this context, this process, inspired by the SA algorithm, 

allows the structure to better discover the global optimum point by moving away from 

the local minimum point. In other words, it is one of the algorithms used to obtain the 

best solutions for optimization problems 63, 68, 90.  

SA provides solutions for discrete, continuous and mixed-input optimization 

problems. While doing this solution, a random point is created in each iteration and the 

algorithm stops when the criteria are met. In this context, the distance of the resting point 
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from the current point can be explained by Boltzmann's probability distribution function 

shown in Equation 4.3. 

 

P (E) = e–E/kT                                                                                                     (4.3) 

 

P (E) represents the probability of the energy level, E. k is the Boltzmann constant 

and T is the temperature. If the temperature is high, the probability of accepting the 

movements in the objective function will be high, and if the temperature is low, this 

probability will be low 74.  

In addition to these, Modified Simulated Annealing (MSA) is much stronger in 

finding the global optimum than traditional SA. The reason of this is that it is possible to 

apply hybrid algorithms and to find the local minimum to speed up the loop 

simultaneously 91. 

The main steps of the SA algorithm are given as flowchart in Figure 4.4 49. 

 

 

Figure 4.4. Flowchart of Simulated Annealing Algorithm 
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4.3.4. Modified Random Search Algorithm  

The first optimization algorithm based on stochastic processes is the Random 

Search method, known as the Monte-Carlo method. In the first step of the algorithm, a 

population with random starting points is created, and then this algorithm examines and 

evaluates the local minimum convergence of the starting points by local search method. 

As a solution, the best local minimum point is chosen. Also, there is only one solution in 

the flow process, and at each iteration step, the solution is changed by adding a random 

vector. Apart from these, some changes are suggested in the controlled random search 

algorithm for global optimization. Experiments are one of the stochastic algorithm 

methods, where modified algorithms give much more meaningful results and offer good 

alternatives for problems that need direct search methods. In MRS, programs such as 

conjugate gradient, Quasi-Newton, Newton, Levenberg-Marquardt and non-linear 

interior point method are used for the placement of all variables in the objective function 
92, 93. A flowchart summarizing the process of Random Search algorithm is shown in 

Figure 4.5 94 . 

 

Figure 4.5. Flowchart of Random Search Algorithm 
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Wolfram MATHEMATICA is one of the frequently used commercial software 

for optimization of engineering problems. The program software uses DE, NM, RS and 

SA stochastic optimization algorithms in detailed above, while solving problems. The 

relevant options in Mathematica for these algorithms are given in Table 4.1. 

 

Table 4.1. Corresponding options for the optimization algorithms MDE, MNM, MRS, 

and MSA 63 

Options MDE MNM MRS MSA 
Crossover fractions 0.5 - - - 
Random seed 1 5 0 2 
Scaling factor 0.6 - - - 
Tolerance 0.001 0.001 0.001 0.001 
Contact ratio - 0.5 - - 
Expand ratio - 2.0 - - 
Reflect ratio - 1.0 - - 
Shrink ratio - 0.5 - - 
Level iterations - - - 50 
Perturbation scale  - - - 1.0 
Penalty function  - - Automatic  - 
Search points  - - 2 - 
Method - - Interior point - 
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 

5.1. Problem Definition 

In this thesis, an active knee orthosis design operated using a rotary series elastic 

actuator designed to assist flexion and extension of the knee joint during physical therapy 

of patients, who have lower extremity injuries, is discussed. The design, modeling and 

optimization of the compliant torsion spring (elastic element), which is the most critical 

part of the series elastic actuators, and an actuator system that is frequently encountered 

and developed in the field of robotics, and helps the force-controlled robot joint drive, 

has been investigated.  

Prior to obtaining the optimum design of torsion spring, verification of finite 

element analysis for von Mises stress, mass, stiffness has been carried out using specific 

results from previous study in the literature. In this context, the topology and geometric 

parameters of the spring, which is aimed to be light, compact, durable and stiff, are shown 

in Figure 5.1 24. The values of these parameters are given in Table 5.1 24. 

 
Figure 5.1. Topology of torsion spring 
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Table 5.1. Torsion spring geometry parameters in millimeter 

E L D1 D2 D3 R1 R2 R3 R4 R5 
6,7,8 2 17.6 17 17.1 62.5 52.5 15 2.8 5.3 

 

The material used in the analysis is chromium-vanadium steel (AISI 6150) and its 

properties are given in Table 5.2 24. Although there are better properties on the market for 

spring designs, the reason for considering AISI 6150 material is its low cost and easy to 

find. A preliminary analysis was carried out with ANSYS Workbench software and Finite 

Element Method (FEM) to ensure that the stress and deformation values that will occur 

when the selected spring is subjected to maximum torque are less than the yield strength 

of the material and to determine the location of the stress concentration.  

 

Table 5.2. Material properties of Chromium–Vanadium (AISI 6150) 

Elastic Modulus 205 GPa 
Shear Modulus 73 GPa 
Tensile Strength: Ultimate (UTS) 940 MPa 
Tensile Strength: Yield Limit 1320 MPa 
Poisson's Ratio 0.291 
Density 7833 kg/m3 

 

Meshing is crucial in finite element analysis. The number of elements created in 

the process of dividing the design into small parts, the element shape and the number of 

nodes play the main role in the analysis. Therefore, meshing is a process that should be 

considered in the finite element model. In this study, meshing of the torsion spring, finite 

element model was performed with the "automatic method" with an element size of 1.5 

mm as shown in Figure 5.2, and as a result, 17275 and 25194 elements and nodes were 

formed on the design, respectively. In addition, the meshing quality control of the pre-

analysis design was carried out considering the skewness and orthogonal quality criteria, 

presented in Table 5.3 95. The closer the skewness, which is between values of 0-1 and 

gives the ratio between the current mesh structure and the optimum mesh structure, is to 

zero, the better our mesh quality. Orthogonal quality, which is the other mesh quality 

determination criterion, is calculated with vector mechanics and 0 is the worst value and 

1 is the best. Apart from these, element quality is another criterion for getting an idea of 

the overall mesh structure, and the closer to 1, the better the design mesh quality 95. At 

the end of the meshing process, based on the above criteria, skewness, orthogonal quality 
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and element quality values of the design are 0.654, 0.487 0.921, respectively. In addition, 

these values, which are used as a basis for the evaluation of the mesh quality applied to 

the design, are graphically shown in Figure 5.3. By looking at the distributions, it can be 

seen in which region the poor quality elements are concentrated and improvements can 

be made as much as possible.  

 

 

Figure 5.2. Finite element model of the design with automatic mesh elements 

 

Table 5.3. Mesh quality metrics in ANSYS meshing 

Skewness mesh metrics spectrum  
     

  

Excellent Very good Good Acceptable Bad Unacceptable 
0-0.25 0.25-0.50 0.50-0.80 0.80-0.94 0.95-0.97 0.98-1.00 

Orthogonal Quality mesh metrics spectrum  
 
 

    
  

Unacceptable Bad Acceptable Good Very good Excellent 
0-0.001 0.001-0.14 0.15-0.20 0.20-0.69 0.70-0.95 0.95-1.00 
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Figure 5.3. Meshing quality parameters (a) Skewness, (b) Orthogonal Quality,  

              (c) Element Quality 

 

After material selection and meshing for analysis, the approximate torque value 

was calculated according to the body mass normalized data determined for gait cycles 96. 

The calculation of the approximate torque value, which is another constraint in the finite 

element analysis, was done according to the body mass normalized data determined for 

the gait cycles. It was concluded that the maximum power and torque applied to the 

orthosis by the knee joint were 0.739 W/kg and 0.365 Nm/kg, respectively, and that the 

active knee orthosis should provide 60% of the peak torque during a healthy gait 24. Thus, 

for a person with a weight of approximately 70 kg, it can be expected that the knee 

orthosis can support a torque of up to 15 Nm. Therefore, tangential forces equivalent to 

the input torque of 15 Nm are applied to the outer ring of the torsion spring, while the 



 

38 
 

inner ring is kept constant, and a finite element analysis is carried out. As a result of the 

preliminary static analysis, it was observed that the stress concentration occurred at the 

inner corner radius of R4, as shown in Figure 5.4 and changes with the thickness (E) of 

the spring. 

 

 

Figure 5.4. Static simulation for stress distribution of torsion spring 
 

As a result of the literature research, it has been concluded that the stiffness value 

of the springs designed for series elastic actuators can take values between 100-300 

N.m/rad 95-97. In order to find the minimum stress value for these stiffness values, the 

radius R4 varied from 2.5 to 3.5 mm with an increment of 0.05 mm, the thickness E was 

changed from 5 to 8 mm at intervals of 0.5 mm increments. In order not to change the 

designed topology, D1, D2 and D3 values were changed with R4 in proportion, while R1, 

R2, R3, R5 and L values were kept constant 24. 

Considering the aforementioned analysis criteria, finite element preliminary 

analysis was performed for the three designs discussed in the previous study in the 

literature. It was decided that the parameters R4 and E have an effect on the von Mises 

stress, mass and stiffness. Table 5.4 shows comparison between the present study and the 

study of Dossantos et al. 24 for von Mises stress, mass and stiffness. In addition, the reason 

why the same results cannot be obtained may be due to the version of the program used 

and the mesh criteria being different. 
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Table 5.4. Verification of response variables 

 

After the verification study was completed, the appropriate regression models 

were created for the problem under consideration by using DOE and FEM. Afterwards, 

the optimization process was carried out with different optimization algorithms and hence 

the optimum design was obtained. These are all discussed in the following subsections. 

   

5.2. Design of Experiment Results  

Finding the optimum design for a problem experimentally can be expensive and 

time-consuming. However, using the relationship between the design parameters of the 

problem and the system responses under certain conditions, the cost and time problems 

can be minimized even eliminated. In this context, for our problem, first, the desired von 

Mises stress, mass and stiffness response (output) values of the torsion spring, the 

parameters (R4 and E) and the levels that affect them were determined. Afterwards, the 

design of experiment method, which helps to understand and optimize the effects by 

changing the levels of the design variables, was applied in the same simulation set. Thus, 

with the help of experimental design, it is possible to obtain more precise information 

about the studied system, since the combined effect of all parameters can be evaluated. 

In order to apply the experimental design method, the levelling process was carried out 

for the parameters affecting the mechanical properties of the design, based on the previous 

study 24. As indicated in Table 5.5, there are 21 levels for R4 and 7 levels for E. 

 

 

 

 

 

 
 

Design 

 
R4  

(mm) 

 
E 

(mm) 

von Mises 
Stress 
(MPa) 

Dossantos 
et al. 

von 
Mises 
Stress 
(MPa) 

Present 
Study 

 
Desired 
Stiffness  
(Nm/rad) 

Stiffness 
(Nm/rad)  
Present 
Study  

 

 
Mass 
(kg) 

Dossantos 
et al.  

 
Mass 
(kg) 

Present 
Study  

1 2.8 6 732 768.44 150 139.7514 0.292 0.292 

2 2.8 7 622 656.69 175 163.8864 0.338 0.338 

3 2.8 8 541 564.23 200 188.2700 0.384 0.384 
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Table 5.5. Factors and Levels for Design of Experiment 

Factors R4 (mm) E (mm) 
Level 1       2.50            5 
Level 2       2.55            5.5 
Level 3       2.60            6 
Level 4       2.65            6.5 
Level 5       2.70            7 
Level 6       2.75            7.5 
Level 7       2.80            8 
Level 8       2.85 - 
Level 9       2.90 - 

Level 10       2.95 - 
Level 11       3.00 - 
Level 12       3.05 - 
Level 13       3.10 - 
Level 14       3.15 - 
Level 15       3.20 - 
Level 16       3.25 - 
Level 17       3.30 - 
Level 18       3.35 - 
Level 19       3.40 - 
Level 20       3.45 - 
Level 21       3.50 - 

 

The next step after a factor and level determination is to choose the appropriate 

DOE method for the problem. For this study, it is necessary to choose an experimental 

design method that allows different and controlled selection of the levels of structures 

that do not have equal effects with each other. For this reason, the D-optimal method, 

which is optimization-based among the DOE methods mentioned in Chapter 3, was 

selected. An experimental design was conducted with the Design expert program. The 

interface steps of Design Expert program is given in Figure 5.5 98. The number of factors 

created for the experimental design in (a) and the levels of these factors in (b), (c) were 

determined. In (d), the response values are determined and finally in (e), it is shown that 

input values of 147 simulations were formed based on the main and combined effects 

(2F1) of the factors.  
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Figure 5.5. Design Expert Environments 98 
 

According to these obtained 147 input data (R4 and E) , Finite Element Analysis 

with the help of ANSYS Software 19.2 was performed for each simulation and the 

corresponding response variables stress, mass and stiffness were obtained, shown in 

Table 5.6. 

 

Table 5.6. Simulation data obtained by DOE and FEM 
Run R4 

(mm) 
E 

(mm) 
von Mises  

(MPa) 
Mass  
(kg) 

Stiffness 
 (Nm/rad) 

1 2.80 7.00 656.70 0.335 163.8864 
2 3.40 5.00 925.58 0.240 110.0294 
3 2.50 6.50 706.14 0.310 159.7752 
4 3.40 6.50 746.29 0.312 143.8114 
5 2.95 6.00 791.14 0.287 138.4258 
6 2.75 5.00 920.33 0.239 116.4776 
7 2.50 5.00 888.90 0.238 120.3282 
8 2.85 8.00 563.18 0.383 187.6808 
9 3.45 7.00 689.38 0.336 156.9286 

10 3.50 6.00 771.73 0.289 124.6784 
11 3.25 8.00 565.70 0.384 180.6200 
12 2.55 7.50 576.77 0.358 182.9608 

(cont. on next page) 
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13 3.20 8.00 567.21 0.384 180.2974 
14 3.45 6.00 801.93 0.288 133.1316 
15 2.95 5.00 896.07 0.239 115.7516 
16 3.35 6.50 727.56 0.312 145.5014 
17 3.05 7.50 622.02 0.359 172.9914 
18 3.35 7.00 662.24 0.336 156.6476 
19 2.60 5.50 806.98 0.263 130.2302 
20 3.40 8.00 594.38 0.385 179.1174 
21 3.30 5.00 930.75 0.240 110.0384 
22 2.50 5.50 832.41 0.262 134.3876 
23 2.75 5.50 836.18 0.263 128.7752 
24 2.55 6.00 725.11 0.287 144.8926 
25 3.15 5.00 875.60 0.240 112.3314 
26 3.25 6.50 711.84 0.312 145.1746 
27 3.35 6.00 771.91 0.288 133.3600 
28 2.65 6.00 750.72 0.286 143.9418 
29 3.30 5.50 846.70 0.264 122.0708 
30 3.25 5.00 940.20 0.240 110.8990 
31 3.10 7.00 669.58 0.335 159.6730 
32 2.90 7.50 638.09 0.359 174.8248 
33 2.70 6.00 749.90 0.286 141.2240 
34 3.00 7.50 633.74 0.360 174.3716 
35 2.65 7.50 594.36 0.358 181,4718 
36 3.10 6.50 693.58 0.312 147.2514 
37 3.45 7.50 641.64 0.360 166.1648 
38 3.10 8.00 583.50 0.383 183.4468 
39 3.00 6.00 793.47 0.287 138.0014 
40 3.10 7.50 622.79 0.359 171.5622 
41 2.50 7.00 629.84 0.334 170.1458 
42 2.55 5.00 871.34 0.238 120.1334 
43 2.70 7.00 639.49 0.334 165.5972 
44 2.50 6.00 762.25 0.286 145.5800 
45 3.05 8.00 582.77 0.383 184.5366 
46 2.50 8.00 540.94 0.382 195.5856 
47 2.65 5.00 923.91 0.239 118.5552 
48 3.00 7.00 681.16 0.335 161.8184 
49 2.60 5.00 887.59 0.238 118.6870 
50 2.90 6.00 798.88    0.287  138.7382 
51 3.35 5.50 842.39 0.264   121.9244 
52 3.50 8.00 565.61 0.385 176.1510 
53 2.90 6.50 740.36 0.311 150.6446 
54 2.80 7.50 610.52 0.359 176.1000 
55 2.90 7.00 685.83 0.335 162.6884 
56 2.85 5.00 960.24 0.239 116.2382 
57 3.05 5.50 793.82 0.263 126.0264 
58 2.75 8.00 570.41 0.382 190.7252 
59 3.00 8.00 585.05 0.383 185.8890 
60 3.15 7.50 624.83 0.360 170.7166 
61 3.50 7.00 658.83 0.337 153.3310 

Table 5.6. (cont.) 

(cont. on next page) 
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62 2.95 5.50 814.65 0.263 127.4184 
63 3.15 8.00 585.42 0.384 182.4752 
64 2.75 7.00 664.18 0.334 165.9786 
65 3.25 5.50 854.90 0.264 122.0390 
66 2.80 6.50 709.46 0.311 151.7436 
67 2.65 5.50 820.30 0.262 131.5926 
68 2.70 8.00 546.63 0.382 190.2286 
69 3.35 5.00 930.13 0.240 110.7192 
70 2.80 8.00 564.23 0.382 188.2700 
71 3.10 5.50 831.88 0.263 123.9622 
72 3.05 5.00 949.97 0.239 113.5320 
73 2.90 8.00 589.10 0.383 186.8866 
74 2.65 7.00 639.72 0.334 168.7762 
75 3.45 8.00 592.74 0.385 179.3320 
76 2.60 6.50 683.51 0.310 155.7388 
77 3.35 8.00 568.45 0.384 179.6684 
78 2.80 5.00 936.57 0.239 117.0556 
79 2.60 6.00 750.97 0.286 143.4202 
80 3.30 7.50 632.74 0.361 170.2522 
81 3.10 5.00 950.84 0.239 112.8802 
82 2.85 7.50 609.46 0.359 176.0798 
83 3.45 5.50 874.99 0.264 121.6964 
84 3.20 7.50 605.81 0.360 169.6968 
85 3.40 5.50 842.07 0.264 120.9196 
86 3.25 6.00 867.76 0.288 127.4910 
87 2.65 8.00 549.98 0.382 193.8756 
88 3.20 6.50 708.69 0.312 145.9830 
89 3.30 6.50 707.61 0.312 144.1444 
90 2.60 7.00 632.60 0.334 168.1842 
91 2.50 7.50 585.19 0.358 182.3114 
92 2.80 5.50 839.06 0.263 127.7550 
93 3.50 7.50 631.00 0.361 166.8786 
94 3.25 7.00 659.22 0.336 156.7768 
95 2.70 7.50 594.08 0.358 177.9256 
96 3.50 5.50 847.45 0.264 119.6324 
97 3.25 7.50 613.11 0.360 168.4784 
98 2.95 8.00 547.73 0.383 187.7454 
99 3.20 7.00 651.55 0.336 157.9402 
100 3.30 8.00 592.71 0.384 179.7242 
101 3.30 6.00 775.78 0.289 132.7306 
102 3.05 6.00 726.61 0.287 137.8424 
103 3.00 5.50 855.21 0.263 128.1936 
104 2.65 6.50 691.61 0.310 156.2832 
105 2.90 5.50 872.15 0.263 126.8298 
106 3.45 5.00 961.80 0.240 110.3502 
107 2.95 7.00 639.06 0.335 163.4206 
108 2.85 6.50 708.15 0.311 151.7378 
109 3.40 7.00 691.56 0.336 155.9114 
110 3.50 6.50 710.70 0.312 142.1230 

Table 5.6. (cont.) 

 

(cont. on next page) 
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5.3. Neuro-Regression Modeling Results  

In this thesis, the first step in the optimization process of torsion spring is the 

mathematical modeling phase. At this stage before the optimization process, the Neuro-

Regression analysis mentioned in Section 3.5, which is a combination of the Artificial 

Neural Network (ANN) and strengths of the traditional regression analysis, was used to 

increase the accuracy, robustness and reliability of the model predictions. Three output 

variables were modelled using Neuro-Regression analysis. In this modeling, the data set 

111 2.55 6.50 670.40 0.310 157.3218 
112 3.40 7.50 643.57 0.360 167.5320 
113 2.70 5.50 819.55 0.263 129.0918 
114 3.15 7.00 671.77 0.336 158.8250 
115 2.55 5.50 791.97 0.262 132.4640 
116 3.45 6.50 743.79 0.312 142.5400 
117 2.75 6.00 765.33 0.287 140.5116 
118 2.95 7.50 594.09 0.359 175.5990 
119 2.55 8.00 531.04 0.382 195.1596 
120 3.50 5.00 916.62 0.240 114.6010 
121 3.15 6.50 667.42 0.312 148.4546 
122 3.20 5.00 926.66 0.240 111.6532 
123 2.80 6.00 768.44 0.287 139.7514 
124 3.05 7.00 668.79 0.335 160.6122 
125 2.55 7.00 620.46 0.334 169.8920 
126 2.85 6.00 766.89 0.287 139.7592 
127 3.15 6.00 728.40 0.288 135.4476 
128 3.10 6.00 761.93 0.287 135.5906 
129 3.00 6.50 735.31 0.311 149.7670 
130 2.60 7.50 588.19 0.358 182.8158 
131 2.90 5.00 870.20 0.239 115.1720 
132 2.75 7.50 617.10 0.358 178.3474 
133 3.15 5.50 795.67 0.264 123.8326 
134 3.20 5.50 847.08 0.264 122.8984 
135 3.00 5.00 940.54 0.239 116.2438 
136 3.30 7.00 680.26 0.336 158.4448 
137 2.70 6.50 691.45 0.310 153.3264 
138 2.70 5.00 936.89 0.239 117.9100 
139 3.40 6.00 805.09 0.288 132.9708 
140 2.95 6.50 733.17 0.311 150.5810 
141 3.20 6.00 776.03 0.288 134.4294 
142 2.75 6.50 707.95 0.311 152.5750 
143 3.05 6.50 665.70 0.312 149.6866 
144 2.85 7.00 655.53 0.335 163.8770 
145 3.35 7.50 615.99 0.360 168.0420 
146 2.60 8.00 550.79 0.382 193.2456 
147 2.85 5.50 837.32 0.263 127.7622 

Table 5.6 (cont.) 
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given in Table 5.6 was randomly split into three parts. Each group in which the data set 

will be randomly allocated should contain 80% training data, 20% testing data and 10% 

of the training data then was selected as the validation data. After this percentage 

distinction was done. 147 original data sets were divided into five sub-headings including 

training, testing and validation groups with different k-fold cross validation method 

(described in Section 3.3) to check whether the empirical model to be selected has quality, 

reliability, robustness and overfitting problems. These k-folds cross validation groups are 

presented in Appendix A.  

At this stage of the study, it was aimed to use 12 different regression models 

taken from literature. These models are given in Table 5.7. The coefficients (ai, aj, an, βi, 

βj, βn, βm, γj, θj ) appearing in models have been defined by the use of data given in 

Appendix A. Then, R2training, R2trainig adjusted, R2testing and R2validation values were calculated 

with “Wolfram Mathematica 10” to test the reliability and robustness of the models. 

After obtaining suitable models in terms of coefficient of determination (R2)

for each model, it is an important part of model selection that the lower and upper limits 

of the output, in desired physical range, additionally must be taken into consideration. In 

this way, the mathematical models developed for the optimization process enabled the 

estimation of stress, mass and stiffness parameters and the optimum value of the process 

parameters to obtain the desired values. In order to explain the k-fold cross validation 

process in detail, only the Neuro-Regression results of the von Mises for 60 models shown 

in Table 5.8. The results obtained for the other outputs are given in Appendix B and 

Appendix C. The coefficient of determination values for all data groups of the model to 

be selected from the 60-line Neuro-Regression results produced with 12 different models 

should be greater than 0.90 63 and the maximum-minimum values should be in an 

acceptable range in line with the physical requirements of the problem. In this context, 

each data group is shown in different colours as seen in Table 5.8. SON2, SON3, SONR, 

FOTNR, SOTN, SOTNR, SOLN2, SOLN5, SOLNR1, SOLNR4 and SOLNR5 models 

and groups were not preferred because their R2testing and maximum-minimum values are 

so far from data for von Mises. Among the remaining models, the linear rational (LR) 

model group was chosen for the von Mises output, since the model is not complex and 

the coefficient of determination and lower-upper limit values for all data groups are better 

than the others. In addition, the values in all groups are significant and acceptable for the 

LR model and the desired group can be selected. Therefore, the first group data and model 
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(LR1) were preferred for von Mises optimization analysis (Eq.5.1). R2training, R2adjusted, 

R2testing, R2validation and maximum-minimum values for this model are 0.99857, 0.998436 

0.970858, 0.951628, 991.489, 542.919, respectively. 

 

von Mises stress =
−260.1397−27.0545𝐸+674.9903𝑅4−107.7284𝑅4

2

−0.9617+0.0959𝐸+0.8900𝑅4−0.1427𝑅4
2                                      (5.1) 

 

Table 5.7. Multiple regression model types including linear, quadratic, trigonometric, 

logarithmic, and their rational forms 

Model Name Nomenclature Formula 

Multiple linear L 𝑌 = ∑(𝑎𝑖𝑥𝑖)

2

𝑖=1

+ 𝑐 

Multiple linear 
rational 

LR 𝑌 =
∑ (𝑎𝑖𝑥𝑖)
2
𝑖=1 + 𝑐1

∑ (𝛽𝑗𝑥𝑗)
2

𝑗=1

+ 𝑐2 

Second order 
multiple non-linear 

SON 𝑌 =  ∑∑(𝑎𝑗𝑥𝑗𝑥𝑘) +∑(𝑎𝑖𝑥𝑖) + 

2

𝑖=1

 

2

𝑗=1

2

𝑘=1

𝑐 

Second order 
multiple non-linear 

rational 

SONR 𝑌 =
∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘) + ∑ (𝑎𝑖𝑥𝑖) + 𝑐1

2
𝑖=1  2

𝑗=1
2
𝑘=1

∑ ∑ (𝛽𝑚𝑥𝑚𝑥𝑙) + ∑ (𝛽𝑛𝑥𝑛)
2
𝑛=1  2

𝑚=1
2
𝑙=1

+ 𝑐2 

First order 
trigonometric 

multiple non-linear 

FOTN 𝑌 =∑(𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

2

𝑖=1

+ 𝑐 

First order 
trigonometric  

multiple non-linear 
rational 

FOTNR 𝑌 =
∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

2

𝑖=1
+ 𝑐1

∑ (𝛽𝑗𝑆𝑖𝑛[𝑥𝑗] + 𝛾𝑗𝐶𝑜𝑠[𝑥𝑗])
2

𝑗=1

+ 𝑐2 

Second order 
trigonometric 

multiple non-linear 

SOTN 𝑌 = ∑(𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

2

𝑖=1

+∑(𝛽𝑗𝑆𝑖𝑛
2[𝑥𝑗] + 𝛾𝑗𝐶𝑜𝑠

2[𝑥𝑗])

2

𝑗=1

+ 𝑐 

Second order 
trigonometric 

multiple non-linear 
rational 

SOTNR 

𝑌

=
∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] + 𝑎𝑖𝐶𝑜𝑠[𝑥𝑖])

2

𝑖=1
+∑ (𝛽𝑗𝑆𝑖𝑛

2[𝑥𝑗] + 𝛾𝑗𝐶𝑜𝑠
2[𝑥𝑗])

2

𝑗=1
+ 𝑐1

∑ (𝜃𝑖𝑆𝑖𝑛[𝑥𝑘] + 𝜃𝑖𝐶𝑜𝑠[𝑥𝑘])
2

𝑘=1
+∑ (𝛿𝑗𝑆𝑖𝑛

2[𝑥𝑙] + 𝛿𝑗𝐶𝑜𝑠
2[𝑥𝑙])

2

𝑙=1

+ 𝑐2 

First order 
logarithmic multiple 

non-linear 

FOLN 𝑌 =∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

2

𝑖=1

+ 𝑐 

First order 
logarithmic multiple 
non-linear rational 

FOLNR 𝑌 =
∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

2

𝑖=1
+ 𝑐1

∑ (𝛽𝑗𝐿𝑜𝑔[𝑥𝑗])
2

𝑗=1

+ 𝑐2 

Second order 
logarithmic multiple 

non-linear 

SOLN 𝑌 = ∑∑(𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])

2

𝑗=1

2

𝑘=1

+∑(𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

2

𝑖=1

+ 𝑐 

Second order 
logarithmic multiple 
non-linear rational 

SOLNR 𝑌 =
∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])

2

𝑗=1
2
𝑘=1 +∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])

2

𝑖=1
+ 𝑐1

∑ ∑ (𝑎𝑙𝐿𝑜𝑔[𝑥𝑙𝑥𝑚])
2

𝑙=1
2
𝑚=1 +∑ (𝑎𝑛𝐿𝑜𝑔[𝑥𝑛])

2

𝑛=1

+ 𝑐2 
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Table 5.8. K-folds cross validation results of the Neuro-regression model for von Mises 

stress 
Models R2 training  R2training 

Adjusted 
R2 testing  R2 Validation Maximum  Minimum  

L1 0.998322 0.998165 0.967253 0.914878 929.849 506.065 
L2 0.998414 0.998266 0.946181 0.935766 925.348 510.525 
L3 0.998969 0.998873 0.944572 0.973644 935.036 495.629 
L4 0.998301 0.998142 0.957456 0.932683 927.194 503.393 
L5 0.998464 0.998324 0.954542 0.979779 914.453 525.281 

LR1 0.998570 0.998436 0.970858 0.951628 991.489 542.919 
LR2 0.998625 0.998496 0.958261 0.960475 969.587 542.608 
LR3 0.999305 0.999241 0.965591 0.985722 1054.65 544.095 
LR4 0.998537 0.998400 0.967307 0.953570 972.024 543.780 
LR5 0.998615 0.998489 0.970128 0.972393 955.552 538.473 

SON1 0.998610 0.998131 0.969204 0.956884 1190.45 250.589 
SON2 0.998650 0.998184 0.957816 0.959428 1168.67 68.3836 
SON3 0.999318 0.999083 0.966352 0.986512 1304.03 496.596 
SON4 0.998575 0.998084 0.96516 0.950112 1175.48 186.863 
SON5 0.998664 0.998219 0.516195 0.97491 3037.24 471.095 

SONR1 0.998710 0.998265 0.967058 0.952673 9.00268*1013 76988.9 
SONR2 0.999443 0.999251 0.73424 0.962098 4.9693*1010 537.996 
SONR3 0.999421 0.999222 0.944464 0.98996 2.14987*109 -2.96196*109 
SONR4 0.998692 0.998241 -1.65196 0.947681 8.02573*1011 512.922 
SONR5 0.998842 0.998455 0.712011 0.962581 2.94548*1013 507.891 
FOTN1 0.998148 0.997811 0.946076 0.932844 988.649 494.448 
FOTN2 0.998065 0.997713 0.94996 0.919469 965.079 485.667 
FOTN3 0.998661 0.998418 0.940032 0.95741 940.751 540.174 
FOTN4 0.998116 0.997774 0.927802 0.906991 1002.99 481.895 
FOTN5 0.998261 0.997954 0.905169 0.979354 1034.56 430.330 

FOTNR1 0.997974 0.997606 0.933368 0.934451 2.08191*1012 546.545 
FOTNR2 0.999381 0.999268 0.956876 0.960459 9.58283*109 520.903 
FOTNR3 0.999353 0.999236 0.964425 0.987335 1101.63 -6.82961*108 
FOTNR4 0.998704 0.998468 0.951684 0.955103 2.82691*1010 467.953 
FOTNR5 0.980106 0.976595 0.202376 0.012695 4.18687*108 -115986 
SOTN1 0.999041 0.995846 0.489547 0.973693 476111 -1.06428*106 
SOTN2 0.999250 0.996751 0.924087 0.573408 236257 -549685 
SOTN3 0.999618 0.998346 0.965597 0.996924 72149 -272313 
SOTN4 0.999177 0.996434 0.916569 0.976491 250003 -569484 
SOTN5 0.999166 0.996664 -820.991 0.989228 243302 -533436 

SOTNR1 0.999473 0.997718 0.896958 0.953532 2.85064*108 -3.4501*1010 
SOTNR2 0.998924 0.995336 0.931642 0.990271 1.75413*1014 -1.3891*1010 
SOTNR3 0.999675 0.998594 0.753212 0.993411 2.16133*108 -4.0312*1011 
SOTNR4 0.999679 0.998608 0.966562 0.992389 1.93875*1012 -8.92886*109 
SOTNR5 0.998794 0.995175 0.87008 0.97235 992.057 -2.3526*1012 
FOLN1 0.998525 0.998387 0.97387 0.941694 943.667 511.140 
FOLN2 0.998592 0.99846 0.958165 0.954576 934.685 521.710 
FOLN3 0.999232 0.99916 0.960789 0.984189 945.371 510.629 
FOLN4 0.998505 0.998365 0.966358 0.950355 941.639 509.466 
FOLN5 0.998599 0.998472 0.969512 0.9759 928.657 531.815 

FOLNR1 0.998569 0.998435 0.971837 0.950839 989.868 543.810 
FOLNR2 0.998627 0.998499 0.958604 0.961086 967.81 533.681 
FOLNR3 0.999309 0.999245 0.965633 0.985541 1064.66 533.94 
FOLNR4 0.998540 0.998403 0.967367 0.953485 984.372 543.502 
FOLNR5 0.998615 0.998489 0.970757 0.972519 956.847 538.390 
SOLN1 0.998607 0.998126 0.970714 0.955282 1190.17 158.995 
SOLN2 0.998660 0.998198 0.957051 0.960282 1207.61 -124.174 

(cont. on next page) 
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SOLN3 0.999332 0.999102 0.967513 0.987526 1333.09 526.771 
SOLN4 0.998577 0.998086 0.965957 0.952349 1156.41 314.571 
SOLN5 0.998664 0.998219 -0.170716 0.973618 3277.91 451.397 

SOLNR1 0.998820 0.998414 0.971126 0.949918 1.98799*109 509.993 
SOLNR2 0.999376 0.999161 0.888161 0.962731 1004.21 543.866 
SOLNR3 0.999338 0.999109 0.963842 0.986834 1023.16 528.676 
SOLNR4 0.998655 0.998192 0.939537 0.950081 6.04575*1010 7.74106 
SOLNR5 0.999257 0.99901 0.920979 0.964228 2.0161*109 543.064 

 

According to the model chosen for von Mises stress, the effect of R4 and E values 

on the von Mises stress value is shown by the three-dimensional plot in Figure 5.6. In 

addition contour plot is used to see how the output value related to input values (See 

Figure 5.7.a). Each colour shows a different von Mises value and this colour distribution 

is separated by the contour line. The sharp contour lines show the sudden rise and fall of 

the von Mises value according to the data. High stress values are indicated by light 

colours, while low ones are identified by darker colours. Figure 5.7b shows the results 

obtained by combining the data and the model in colour. As seen in the figure, it is seen 

that a linear model is captured with the data with nonlinear distribution.  

 

 

Figure 5.6. Effect of R4 and E for von Mises stress 

Table 5.8 (cont.) 
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  Figure 5.7. Contour Plots for von Mises stress 

 

For mass output, a model was selected by considering the same criteria. Among 

the 12 models and 60 groups in Appendix B, SONR2, SONR3, SONR4, SONR5, 

FOTNR3, SOTN, SOTNR models and groups could not be preferred because the 

R2testing value was negative and the maximum-minimum limits did not match the mass 

values in Table 5.6. Among the remaining models after elimination, the model group with 

the highest correlation values and an uncomplicated one was selected. The model group 

selected for Mass is shown in Table 5.9. As can be seen in the table, the first group and 

the model (L) were chosen randomly for the optimization analysis of the mass (Eq.5.2), 

since the values of all groups are very significant. R2 training, R2 adjusted, R2 testing and 

R2 validation maximum-minimum values for this model are 0.999999, 0.999999, 

0.999942, 0.999927, 0.384793, 0.237745, respectively. 

 

 Mass = −0.00893 + 0.04799E + 0.00299R4 − 0.000088R4
2                                (5.2)                          

 

Table 5.9. Cross Validation Results of the Selected Neuro-Regression Models for Mass 

Models R2 training R2 training 
Adjusted 

R2 testing R2 
validation 

Maximum Minimum 

L1 0.999999 0.999999 0.999942 0.999927 0.384793 0.237745 
L2 0.999999 0.999999 0.999933 0.999941 0.385148 0.237448 
L3 0.999999 0.999999 0.999942 0.999938 0.384804 0.237737 
L4 0.999999 0.999999 0.999950 0.999926 0.385172 0.237456 
L5 0.999999 0.999999 0.999944 0.999968 0.384796 0.237731 

Stress Stress 
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The effect of R4 and E values for the model chosen for mass is shown in the three-

dimensional graph in Figure 5.8. Then it is detailed with contour plot in Figure 5.9. 

Contrary to the effect of the data on the von Mises stress output, the data used for the 

mass showed small deviations in between and slightly wavy, near-linear contour lines 

were formed (Figure 5.9a). This is because the R4 input change has little effect on the 

mass, while the changes in the E input have a large effect on the mass, as can be seen 

from the sudden colour transitions. The graphic in Figure 5.9b, which is formed by fitting 

the data to the model, has almost completely horizontal contour lines. In other words, 

when the data is fitted to the model, the fluctuations are considerably reduced. This shows 

that the effect of the R4 change is gradually decreasing when considered in terms of the 

model for the mass.  

 

 

Figure 5.8. Effect of R4 and E for mass 
 



 

51 
 

 

Figure 5.9. Contour Plots for Mass 
 

The analysis results for the stiffness parameter, which is the last output, are 

included in Appendix C. Among the models and groups created, SONR, SOTN, 

SONTR2, SOTNR3, SOTNR4, SOTNR5, SOLNR models were eliminated because the 

R2testing value was less than 0.90 and the maximum-minimum values for this design 

variable were in the physical ranges. In Appendix C Afterwards, the model group with 

the highest correlation value and the simplest one (Linear equation) was selected for the 

stiffness output. Table 5.10 shows the model group selected for the stiffness output. As 

seen in the table, the first group and the model (L) were randomly chosen for the 

optimization analysis of the stiffness (Eq.5.3). R2training, R2adjusted, R2testing and R2validation 

maximum-minimum values for this model are 0.999937, 0.999931, 0.992763, 0.997713, 

194.749, and 106.052, respectively. 

 

Stiffness = 60.49094  + 23.92919 E − 28.61375 R4 + 2.15705 R42                    (5.3) 
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Table 5.10. Cross Validation Results of the Selected Neuro-Regression Models for 

Stiffness 

Models R2 training R2 training 
Adjusted R2 testing R2 

validation Maximum Minimum 

L1 0.999937 0.999931 0.992763 0.997713 194.749 106.052 
L2 0.999912 0.999904 0.995187 0.991430 193.979 106.807 
L3 0.999900 0.999891 0.997358 0.998608 193.933 106.689 
L4 0.999894 0.999884 0.998327 0.997175 194.122 106.833 
L5 0.999907 0.999899 0.996349 0.990546 196.138 105.961 

 

In Figure 5.10, it is shown in the form of a three-dimensional graphic that the 

stiffness value changes between about 100 N.m/rad and 200 N.m/rad according to the 

change of R4 and E. The relationship between inputs, model and output is shown in Figure 

5.11 in more detail. Figure 5.11a shows the interaction of R4, E and output values obtained 

as a result of data analysis. Sharp contour lines represent sudden shifts in stiffness values 

ranging from about 110 to 200.  In other words, it is understood that the input values that 

create the sharp lines are more effective than the others. Apart from these, Figure 5.11b 

shows the relationship between the data and the model to which the data is fitted. As can 

be seen, the data created a linear effect on the model selected for stiffness. 

 

 

Figure 5.10. Effects of R4 and E for Stiffness 
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Figure 5.11. Contour Plots for the Stiffness 

 

5.4. Optimization Results  

The purpose of regression analysis and optimization studies is to investigate 

whether classical regression analysis and optimization applications provide the desired 

results, and whether more stable and more optimum results can be obtained by using the 

same design parameters. In this context, as a result of the R2 values examined in Section 

5.3, three different models (Eq.5.1, Eq.5.2 and Eq.5.3) that correctly express the physical 

problem were selected for the three response variables. 

In this part of the thesis, it is aimed to determine the optimal values of the system 

parameters that minimize the stress and mass values of the torsion spring of the SEA used 

for rehabilitation robots. Regression models were created for each output. The 

mathematical models with which the output data converged the most were determined as 

objective functions. As shown in Table 5.11, two optimization problems for von Mises 

stress and mass, and five sub-scenarios for each problem were determined for the 

optimization processes. The stiffness, which is an important factor for torsion springs, 

was considered as a constraint.  In addition, the defined problems and sub-scenarios given 

in detailed below. These optimization processes were carried out using the stochastic 

methods “Differential Evolution”, “Simulated Annealing”, “Random Search” and 

“Nelder-Mead” algorithms with the help of “NMinimize” tool in "Wolfram 

MATHEMATICA 10" program. Options for the used stochastic methods are shown in 
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Table 4.1. In addition, the related optimization study performed with the "Wolfram 

Mathematica 10" program.  

 

Table 5.11. Optimization scenarios for each problem 

 
In scenarios 1a and 2a, it is aimed to examine the theoretical limits of the physical 

phenomenon 24 discussed. For this reason, an optimization study has been carried out by 

specifying the upper and lower limits where the input values are constant in the range, 

without any extra constraints. With these scenarios, the minimum stress and mass values 

in the range of input parameters were investigated without any strength restrictions for 

the torsion spring. 
In scenarios 1b and 2b for both objective functions, input values that directly 

affect the response values obtained as a result of the Finite Element analysis are 

considered. In this context, since the parameters R4 and E were decided as the independent 

input variables, the optimization process was carried out by expressing the parameters D2 

and D3 in terms of R4 and E in Scenario 1. Depending on the tolerance related to the mesh 

density created with finite elements, the increased levels of the R4 and E constraints were 

determined as 0.5 and 0.05, respectively. This scenario offers safer solutions for designing 

a lighter spring by not exceeding the yield strength limit of used material.  

Unlike scenario 1b, in scenario 1c, the active stiffness constraint for the von Mises 

stress model is given as greater than or equal to 197.5 Nm/rad. The purpose of this 

scenario is to obtain a more durable spring design above a certain stiffness value in order 

Scenario Optimization Problem 1 
(von Mises stress) Scenario Optimization Problem 2 

(Mass) 

1a 

2.5 ≤  R4 ≤ 3.5 
5 ≤ E ≤  8 

16.987 ≤  D2 ≤ 17.014 
17.064≤  D3 ≤ 17.12 

2a 

2.5 ≤  R4 ≤ 3.5 
5 ≤ E ≤  8 

16.987 ≤  D2 ≤ 17.014 
17.064≤  D3 ≤ 17.12 

1b 2.5 ≤  R4 ≤ 3.5 
5 ≤ E ≤  8 2b 2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 

1c 
Stiffness ≥ 197.5 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
2c 

Stiffness ≥146.021 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 

1d 
Mass ≤ 0.299 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
2d 

Stress ≤ 747.01 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 

1e 

Stiffness ≥ 146.1 
Mass ≤ 0.299 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 

2e 

Stiffness ≥ 157.9785 
Stress ≤ 684.317 

2.5 ≤  R4 ≤ 3.5 
           5 ≤ E ≤  8 
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to obtain the minimum stress value when the input parameters are defined in certain 

ranges. 

In scenario 2c, which was conducted for mass minimization, after many 

optimization attempts, it was decided that the active stiffness constraint for this model 

was 146.021 Nm/rad. In this scenario, it was aimed to minimize the mass of designs with 

stiffness equal to or greater than 146.021 Nm/rad by defining the input parameters at 

continuous intervals with certain increments as in Scenario 2b. 

Within the scope of this thesis, since a light, compact, durable and stiff torsion 

spring design is aimed, it was decided that the mass should be equal to or less than 0.299 

kilograms as another constraint in scenario 1d. As in other scenarios, in addition to this 

constraint, input parameters are defined at certain incremental and continuous intervals. 

Thanks to this scenario, it is possible to obtain lightweight spring designs with low 

stresses. 

Scenario 2d can be thought of as an optimization problem, which is a validation 

of scenario 1d. In this scenario, a stress constraint of 747.01 MPa is considered in addition 

to defining the input values as continuous intervals when the objective function is mass. 

The aim here is to obtain a torsion spring with low stresses while planning a lightweight 

spring design, as in scenario 1d. In other words, the main purpose of scenarios 1d and 2d 

is to find out what the minimum mass or stress limit of the spring is so that there is no 

yield 24, 99 at the stress value to which the spring material is exposed. 

In scenario 1e, combination of Scenario 1c and 1d, hybrid effects of stiffness and 

mass parameters on the objective function was examined. In this problem, while the 

constraint for mass was 0.299 kg, the stiffness parameter was active at 146.1 Nm/rad for 

the model, and the scenario was created with these nonlinear constraints. The aim here is 

to observe how much the optimum result changes if the variables must be under certain 

constraints. 

In Scenario 2e, similar situations were checked as in Scenario 1e. Scenario 2e was 

constructed to examine the impact of hybrid effects of scenarios 1c and 1d on the response 

variable. In this context, the stiffness value was accepted as 157.9785 Nm/rad as the 

nonlinear constraint, while the stress value was considered as 684.317 MPa. The purpose 

of this scenario is to examine how much mass can be minimized under hybrid nonlinear 

constraints. 
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5.4.1. Optimization Results for von Mises Stress Output  

Table 5.12 shows the results of optimization problems for von Mises stress model. 

According to these results; 

In Scenario 1a, stress value, which is the objective function for all optimization 

algorithms, is found to be 542.919 Mpa and the suggested input parameters are given. In 

addition, mass and stiffness values, which are other corresponding output values for the 

result, were found to be 0.382126 kg and 194.749 Nm/rad, respectively. That is, the 

maximum stress value that the torsion spring can withstand without yielding is 542.919 

MPa within the given constraints. 

For Scenario 1b, the minimum von Mises stress values in all optimization 

algorithms were obtained as 543.674 MPa, while the other compatible output values, the 

mass and stiffness values, and were found to be 0.381703 kg and 193.872 Nm/rad, 

respectively. The suggested input parameters for these outputs are defined as R4=2.5 and 

E=8. In this case, the material will be able to work reliably up to a stress value of 543.674 

MPa within the constraints determined before reaching the yield limit. 

As a result of the analyses made in scenario 1b, it was decided that the stiffness 

parameter was inactive for this problem with a value of 197.4362 Nm/rad. Therefore, 

Scenario 1c is proposed. While 197.4362 Nm/rad is still an inactive constraint in the 

solutions produced by the MNM and MRS algorithms, as can be seen from the result of 

the MSA algorithm, this problem is active in the stiffness value of 239.969 Nm/rad and 

gave the best result of the minimum von Mises stress. However, it could not produce 

values in the relevant range within the tolerances for the E parameter. On the other hand, 

in the solution of the MDE algorithm, it is seen that the change in the digits after the 

comma of the von Mises value changes the structure and gives a better stiffness value. 

When the 1d scenario is solved with the MNM and MSA optimization algorithms, 

the obtained 0.381703 kg value does not match with the nonlinear constraint mass ≤ 

0.299, so the obtained solutions with these algorithms are not considered. While the 

minimum von Mises stress value was found to be 742.487 MPa within the constraints of 

the MDE algorithm, the corresponding outputs of mass and stiffness values were found 

to be 0.285957 kg and 146.013 Nm/rad, respectively. In the part of the scenario 1dsolved 

with the MRS algorithm, the results obtained are 757.644 MPa, 0.286647 kg and 141.691 

Nm/rad values for stress, mass and stiffness, respectively. As a result, in this scenario, 

according to the comparison of optimization results, it is concluded that the computational 
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performance of MDE is better than other algorithms to find the global optimum of torsion 

spring design problems. 

In scenario 1e, the design analysis is performed with the stiffness value above 

146.1 Nm/rad, provided that the mass constraint is the same as scenario 1d. But better 

results than the previous scenario could not be obtained. For this reason, it is clearly seen 

that there is no benefit from both the stiffness value and the mass simultaneously within 

the given constraints. In such cases, instead of investigating the hybrid effect, as a 

different optimization scenario, it is decided which constraint is more important and if the 

constraints are allowed within certain tolerances, optimum results can be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

58 
 

Table 5.12. Results of the optimization problem for von Mises Stress Model 

 

 

5.4.2.  Optimization Results for Mass Output 

Table 5.13 contains the minimum optimization results for the mass of the torsion 

spring. According to these results ;  

Scenario 
No Constraints Optimization 

Algorithms 

Output1 
vonMises 

(MPa) 

Output2 
Weight 

(kg) 

Output3 
Stiffness 
(Nm/rad) 

 

Suggested Design 

1a 
 

 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
16.987 ≤  D2 ≤ 17.014 
17.064≤  D3 ≤ 17.12 

 

MNM 542.919 0.382126 194.749 R4=2.5, E=8,  
D2=17.014, D3=17.064 

MDE 542.919 0.382126 194.749 R4=2.5, E=8, 
D2=17.014, D3=17.064 

MSA 542.919 0.382126 194.749 R4=2.5, E=8, 
D2=17.014, D3=17.064 

MRS 542.919 0.382126 194.749 R4=2.5, E=8, 
D2=17.014, D3=17.064 

1b 

 
 

2.5 ≤  R4 ≤ 3.5 
5 ≤ E ≤  8 

 
 
 

MNM 543.674 0.381703 193.872 R4=2.5, E=8 

MDE 543.674 0.381703 193.872 R4=2.5, E=8 

MSA 543.674 0.381703 193.872 R4=2.5, E=8 

MRS 543.674 0.381703 193.872 R4=2.5, E=8 

1c 

Stiffness ≥  197.4362 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 

MNM 543.674 0.381703 193.872 R4=2.5, E=8 

MDE 543.2312 0.381751 197.43623 R4=2.51, E=7.58 

MSA 416.522 0.477560 239.969 R4=2.6, E=10 

MRS 543.674 0.381703 193.872 R4=2.5, E=8 

1d 

 
Mass ≤ 0.299 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 

MNM 543.674 0.381703 193.872 R4=2.5, E=8 

MDE 742.487 0.285957 146.013 R4=2.5, E=6 

MSA 543.674 0.381703 193.872 R4=2.5, E=8 

MRS 757.644 0.286647 141.691 R4=2.75, E=6 

1e 

Stiffness ≥ 146.1 
Mass ≤ 0.299 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 
 

MNM 543.674 0.381703 193.872 R4=2.5, E=8 

MDE 684.317 0.309908 157.978 R4=2.5, E=6.5 

MSA 543.674 0.381703 193.872 R4=2.5, E=8 

MRS 684.317 0.309908 157.978 R4=2.5, E=6.5 
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In Scenario 2a, the mass value, which is the objective function for all optimization 

algorithms, was found to be 0.238027 kg. The suggested input parameters R4, E, D2 and 

D3 for this result were calculated as 2.5 mm, 5 mm, 16.987 mm and 17.12 mm, 

respectively. In addition, stress and stiffness values, which are other corresponding output 

values for the result, were found to be 917.622 MPa and 193.872 Nm/rad, respectively. 

In other words, regardless of the optimization algorithm selection, within the given 

constraints, the lightest design of the torsion spring is 0.238027 kg. 

For Scenario 2b, the mass value is the same and 0.238027 kg in MNM, MDE and 

MSA optimization algorithms, while the corresponding outputs stress and stiffness values 

are 882.712 MPa and 122.084 Nm/rad. On the other hand, when the same problem was 

solved with the MRS algorithm, the mass, stress and stiffness values were calculated as 

0.239623 kg, 928.353 MPa and 110.661 Nm/rad, respectively. Among these different 

results, the result that is suitable for the study and engineering limits can be selected. 

Since our problem is mass minimization, MNM, MDE and MSA optimization algorithms 

gave more meaningful results. 

When scenario 2c, created with the stiffness constraint added to Scenario 2b, is 

examined, it is seen in the table that there are improvements in the stress and stiffness 

values for output values for all optimization algorithms. When this problem was solved 

with MNM, MDE and MSA algorithms, the stress, mass and stiffness values were found 

to be 684.317 MPa, 0.309908 kg and 157.978 N.m/rad, respectively, while 702.909 MPa, 

0.310731 kg, 152.824 N.m/rad were found with the MRS algorithm. Considering the 

engineering limits of the problem, it has been observed that MNM, MDE and MSA 

algorithms give more realistic results. According to these results, it is seen that the 

maximum stress value that the spring with a stiffness of 152.824 N.m/rad and a weight of 

0.309908 kg can withstand without yielding is 684.317 MPa. 

In scenario 2d, which has a stress constraint, it is seen that the first three 

optimization algorithms give the same results (stress, mass and stiffness values are 

742.487 MPa, 0.285957 kg, 146.013 Nm/rad) for this scenario respectively. Unlike these, 

in the MRS algorithm, the values of 705.776 MPa, 0.310861 kg and 152.002 Nm/rad were 

obtained for these outputs, respectively. From these different results, a suitable result for 

the engineering limits of the problem can be selected. If the results of MNM, MDE and 

MSA algorithms are chosen, we will choose a lighter but softer spring than the other 

algorithm. If we consider the results of the MRS algorithm, we get a heavier but stiffer 
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spring with a lower stress value. In other words, analysing with different algorithms gives 

the chance to choose according to the requirements, taking into account such effects. 

In scenario 2e, which includes the hybrid effects of scenario 2c and 2d, it is seen 

that the values closest to the engineering limits of the problem are obtained. While MNM, 

MSA and MRS gave the same results for this problem, MDE offered different solutions. 

 

Table 5.13. Results of optimization problem for Mass Model 

Scenario 
No Constraints Optimization  

Algorithms 

Output1  
vonMises 

(MPa)  

Output2 
Mass 
(kg) 

 
Output3 
Stiffness 
(Nm/rad) 

 

Suggested Design  

2a 
 

 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
16.987 ≤  D2 ≤ 17.01 
17.064≤  D3 ≤ 17.12 

 
 
 
 

MNM 917.622 0.238027 193.872 R4=2.5, E=5, 
D2=16.987, D3=17.12 

MDE 917.622 0.238027 193.872 R4=2.5, E=5, 
D2=16.987, D3=17.12 

MSA 917.622 0.238027 193.872 R4=2.5, E=5, 
D2=16.987, D3=17.12 

MRS 917.622 0.238027 193.872 R4=2.5, E=5, 
D2=16.987, D3=17.12 

2b 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 

MNM 882.712 0.238027 122.084 R4=2.5, E=5 

MDE 882.712 0.238027 122.084 R4=2.5, E=5 

MSA 882.712 0.238027 122.084 R4=2.5, E=5 

MRS 928.353 0.239623 110.661 R4=3.2, E=5 

2c 

Stiffness ≥146.021 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 

MNM 684.317 0.309908 157.978 R4=2.5, E=6.5 

MDE 684.317 0.309908 157.978 R4=2.5, E=6.5 

MSA 684.317 0.309908 157.978 R4=2.5, E=6.5 

MRS 702.909 0.310731 152.824 R4=2.5, E=7.5 

2d 

Stress ≤ 747.01 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 

MNM 742.487 0.285957 146.013 R4=2.5, E=6 

MDE 742.487 0.285957 146.013 R4=2.5, E=6 

MSA 745.596 0.286101 145.127 R4=2.55, E=6 

MRS 705.776 0.310861 152.002 R4=2.85, E=6.5 

2e 

 
Stiffness≥157.9785 

Stress ≤ 684.317 
2.5 ≤  R4 ≤ 3.5 

5 ≤ E ≤  8 
 
 

MNM 632.398 0.333849 169.943 R4=2.5, E=7 

MDE 684.317 0.309908 157.978 R4=2.5, E=7 

MSA 632.398 0.333849 169.943 R4=2.5, E=7.5 

MRS 632.398 0.333849 169.943 R4=2.5, E=7.5 
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In Figures 5.12 and 5.13, convergence graphs of the minimization results obtained 

with four different search algorithms for von Mises and mass objective functions are 

given. The production number specifies when to stop the algorithms and has different 

values for each design. In addition, it is seen that there is stability after 40 iterations for 

MDE and MNM optimization algorithms. On the other hand, in the solutions of the MSA 

algorithm, the reason for jumping after about 100 iterations and coming back to the same 

value is that there is no improvement in successive iterations, confirming that the 

optimum result is after about 40 iterations. 

 

 

Figure 5.12. Convergence graphic representations of the stochastic algorithms for von 

                     Mises Stress (a) MDE, (b) MNM, (c) MSA, and (d) MRS    
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The linear answer of the random search algorithm shows that it uses the minimum and 

maximum values of the constraints of the independent variable as an initial guess in the 

solution steps. When the value of the von Mises objective function is generated for the 

case where R4 is minimum and E is maximum, no iterative progression has taken place 

after the values used as an initial guess.  

 

 

Figure 5.13. Convergence graphic representations of the stochastic algorithms for Mass 

                     (a) MDE, (b) MNM, (c) MSA, and (d) MRS 
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CHAPTER 6 
 

CONCLUSION 
 

In this thesis, the design, modeling and optimization studies of the torsion spring, 

which is the most critical and important part of the rotary series elastic actuator used in 

the rehabilitation robots of individuals with lower extremity damage, were carried out. 

First, by using the specific results given in the previous study in the literature, the von 

Mises stress, mass and stiffness values of the torsion spring were verified with the help 

of FEM. Then, using torsion spring topology parameters, 147 data sets were created with 

the help of the D-Optimal method, which is an experimental design method, in order to 

develop a new process and present new solution methods. Afterwards, a suitable three-

dimensional design space was created using SolidWorks® 2019 and finite element 

analyses were made with the ANSYS® 19.2. The Neuro-Regression approach and cross-

validation technique, which combines the strengths of artificial neural network and 

traditional regression, were used to obtain the mathematical model of the FEM 

simulations. Among the models proposed and analysed for the problem with two inputs 

(thickness and inner corner radius) and three outputs (von Mises stress, mass, stiffness), 

the model selection was made with Wolfram MATHEMATICA software for each output, 

according to the training, testing and validation determination of coefficients. In line with 

the selected models, ten different optimization scenarios were defined by selecting the 

mass and von Mises stress as an objective function. A light, compact, durable and stiff 

spring design is aimed by minimizing the mass and von Mises stress within various 

constraints. Optimization processes were performed using stochastic search techniques 

such as Differential Evolution, Nelder Mead, Random Search and Simulated Annealing. 

When the results obtained with these methods are compared, it can be clearly said that all 

algorithms give very similar results for the mass objective function. On the other hand, 

for the von Mises stress objective function, Nelder Mead and Simulated Annealing could 

not give results in the given ranges for some optimization problems.  

When the results of optimization studies, finite element analysis results and the 

results in the literature are compared, it is seen that some results based on various radii 



 

64 
 

and thicknesses are similar, while some results solved with different scenarios and 

algorithms are better than the literature.  

In conclusion, with this study, it has been revealed that the optimal design can be 

found in a shorter time, reliable and closer to reality by optimizing the conceptual models 

that will shed light on the final design with various mathematical models, optimization 

algorithms, scenarios and constraints in the early stages of the design process of the 

torsion spring. This study, with its comprehensive content, is a resource that will 

undoubtedly be useful to scientists working on torsion spring design. 
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APPENDIX A 

REGRESSION AND CROSS VALIDATION GROUPS 

                                           Testing Data 1  

Run R4 E Mass Stiffness von Mises stress 

3 2.5 6.5 0.310 159.7752 706.14 
12 2.55 7.5 0.358 182.9608 576.77 
19 2.6 5.5 0.263 130.2302 806.98 
28 2.65 6 0.286 143.9418 750.72 
68 2.7 8 0.382 190.2286 547.63 
64 2.75 7 0.334 165.9786 664.18 
78 2.8 5 0.239 117.0556 936.57 
82 2.85 7.5 0.359 176.0798 609.46 
55 2.9 7 0.335 162.6884 685.83 
98 2.95 8 0.383 187.7454 547.73 

103 3 5.5 0.263 128.1936 855.21 
124 3.05 7 0.335 160.6122 668.79 
128 3.1 6 0.287 135.5906 761.93 
133 3.15 5.5 0.264 123.8326 795.67 
141 3.2 6 0.288 134.4294 776.03 
97 3.25 7.5 0.360 168.4784 613.11 
89 3.3 6.5 0.312 144.1444 707.61 

145 3.35 7.5 0.360 168.0420 615.99 
4 3.4 6.5 0.312 143.8114 746.29 

83 3.45 5.5 0.264 121.6964 874.99 
120 3.5 5 0.240 114.6010 916.62 
41 2.5 7 0.334 170.1458 629.84 
76 2.6 6.5 0.310 155.7388 683.51 
70 2.8 8 0.382 188.2700 564.23 

135 3 5 0.239 116.2438 940.54 
122 3.2 5 0.240 111.6532 926.66 
20 3.4 8 0.385 179.1174 594.38 
10 3.5 6 0.289 124.6784 771.73 
25 3.15 5 0.240 112.3314 875.60 
35 2.65 7.5 0.358 181.4718 594.36 

 

 

                                  Training Data 1  
Run R4 E  Mass Stiffness  von Mises stress 

1 2.8 7 0.335 163.8864 656.70 
2 3.4 5 0.240 110.0294 925.58 
5 2.95 6 0.287 138.4258 791.14 
6 2.75 5 0.239 116.4776 920.33 
7 2.5 5 0.238 120.3282 888.90 
8 2.85 8 0.383 187.6808 563.18 
9 3.45 7 0.336 156.9286 689.38 

11 3.25 8 0.384 180.6200 565.70 
13 3.2 8 0.384 180.2974 567.21 
14 3.45 6 0.288 133.1316 801.93 
15 2.95 5 0.239 115.7516 896.07 
16 3.35 6.5 0.312 145.5014 727.56 
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17 3.05 7.5 0.359 172.9914 622.02 
18 3.35 7 0.336 156.6476 662.24 
21 3.3 5 0.240 110.0384 930.75 
22 2.5 5.5 0.262 134.3876 832.41 
23 2.75 5.5 0.263 128.7752 836.18 
24 2.55 6 0.287 144.8926 725.11 
26 3.25 6.5 0.312 145.1746 711.84 
27 3.35 6 0.288 133.3600 771.91 
29 3.3 5.5 0.264 122.0708 846.70 
30 3.25 5 0.240 110.8990 940.20 
31 3.1 7 0.335 159.6730 669.58 
32 2.9 7.5 0.359 174.8248 638.09 
33 2.7 6 0.286 141.2240 749.90 
34 3 7.5 0.360 174.3716 633.74 
36 3.1 6.5 0.312 147.2514 693.58 
37 3.45 7.5 0.360 166.1648 641.64 
38 3.1 8 0.383 183.4468 583.50 
39 3 6 0.287 138.0014 793.47 
40 3.1 7.5 0.359 171.5622 622.79 
42 2.55 5 0.238 120.1334 871.34 
43 2.7 7 0.334 165.5972 639.49 
44 2.5 6 0.286 145.5800 762.25 
45 3.05 8 0.383 184.5366 582.77 
46 2.5 8 0.382 195.5856 540.94 
47 2.65 5 0.239 118.5552 923.91 
48 3 7 0.335 161.8184 681.16 
49 2.6 5 0.238 118.6870 887.59 
50 2.9 6 0.287 138.7382 798.88 
51 3.35 5.5 0.264 121.9244 842.39 
52 3.5 8 0.385 176.1510 565.61 
53 2.9 6.5 0.311 150.6446 740.36 
54 2.8 7.5 0.359 176.1000 610.52 
56 2.85 5 0.239 116.2382 960.24 
57 3.05 5.5 0.263 126.0264 793.82 
58 2.75 8 0.382 190.7252 570.41 
59 3 8 0.383 185.8890 585.05 
60 3.15 7.5 0.360 170.7166 624.83 
61 3.5 7 0.337 153.3310 658.83 
62 2.95 5.5 0.263 127.4184 814.65 
63 3.15 8 0.384 182.4752 585.42 
65 3.25 5.5 0.264 122.0390 854.90 
66 2.8 6.5 0.311 151.7436 709.46 
67 2.65 5.5 0.262 131.5926 820.30 
69 3.35 5 0.240 110.7192 930.13 
71 3.1 5.5 0.263 123.9622 831.88 
72 3.05 5 0.239 113.5320 949.97 
73 2.9 8 0.383 186.8866 589.10 
74 2.65 7 0.334 168.7762 639.72 
75 3.45 8 0.385 179.3320 592.74 
77 3.35 8 0.384 179.6684 568.45 
79 2.6 6 0.286 143.4202 750.97 
80 3.3 7.5 0.361 170.2522 632.74 
81 3.1 5 0.239 112.8802 950.84 
84 3.2 7.5 0.360 169.6968 605.81 
85 3.4 5.5 0.264 120.9196 842.07 
86 3.25 6 0.288 127.4910 867.76 
87 2.65 8 0.382 193.8756 549.98 
88 3.2 6.5 0.312 145.9830 708.69 
90 2.6 7 0.334 168.1842 632.60 
91 2.5 7.5 0.358 182.3114 585.19 
92 2.8 5.5 0.263 127.7550 839.06 
93 3.5 7.5 0.361 166.8786 631.00 
94 3.25 7 0.336 156.7768 659.22 
95 2.7 7.5 0.358 177.9256 594.08 
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96 3.5 5.5 0.264 119.6324 847.45 
99 3.2 7 0.336 157.9402 651.55 
100 3.3 8 0.384 179.7242 592.71 
101 3.3 6 0.289 132.7306 775.78 
102 3.05 6 0.287 137.8424 726.61 
104 2.65 6.5 0.310 156.2832 691.61 
105 2.9 5.5 0.263 126.8298 872.15 
106 3.45 5 0.240 110.3502 961.8 
107 2.95 7 0.335 163.4206 639.06 
108 2.85 6.5 0.311 151.7378 708.15 
109 3.4 7 0.336 155.9114 691.56 
110 3.5 6.5 0.312 142.1230 710.70 
111 2.55 6.5 0.310 157.3218 670.40 
112 3.4 7.5 0.360 167.5320 643.57 
113 2.7 5.5 0.263 129.0918 819.55 
114 3.15 7 0.336 158.8250 671.77 
115 2.55 5.5 0.262 132.4640 791.97 
116 3.45 6.5 0.312 142.5400 743.79 
117 2.75 6 0.287 140.5116 765.33 
118 2.95 7.5 0.359 175.5990 594.09 
119 2.55 8 0.382 195.1596 531.04 
121 3.15 6.5 0.312 148.4546 667.42 
123 2.8 6 0.287 139.7514 768.44 
125 2.55 7 0.334 169.8920 620.46 
126 2.85 6 0.287 139.7592 766.89 
127 3.15 6 0.288 135.4476 728.40 
129 3 6.5 0.311 149.7670 735.31 
130 2.6 7.5 0.358 182.8158 588.19 
131 2.9 5 0.239 115.1720 870.20 
132 2.75 7.5 0.358 178.3474 617.10 
134 3.2 5.5 0.264 122.8984 847.08 
136 3.3 7 0.336 158.4448 680.26 
137 2.7 6.5 0.310 153.3264 691.45 
138 2.7 5 0.239 117.9100 936.89 
139 3.4 6 0.288 132.9708 805.09 
140 2.95 6.5 0.311 150.5810 733.17 
142 2.75 6.5 0.311 152.5750 707.95 
143 3.05 6.5 0.312 149.6866 665.70 
144 2.85 7 0.335 163.8770 655.53 
146 2.6 8 0.382 193.2456 550.79 
147 2.85 5.5 0.263 127.7622 837.32 

 

 

 

 

 

 

                                     Validation Data 1  
Run R4 E Mass Stiffness  von Mises stress 

7 2.5 5 0.238 120.3282 888.90 
79 2.6 6 0.286 143.4202 750.97 

113 2.7 5.5 0.263 129.0918 819.55 
1 2.8 7 0.335 163.8864 656.70 
73 2.9 8 0.383 186.8866 589.10 
34 3 7.5 0.360 174.3716 633.74 

143 3.05 6.5 0.312 149.6866 665.70 
31 3.1 7 0.335 159.6730 669.58 
84 3.2 7.5 0.360 169.6968 605.81 

100 3.3 8 0.384 179.7242 592.71 
139 3.4 6 0.288 132.9708 805.09 
110 3.5 6.5 0.312 142.1230 710.70 
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                                             Testing Data 2  
Run R4 E Mass Stiffness  von Mises stress 

7 2.5 5 0.238 120.3282 888.90 
24 2.55 6 0.287 144.8926 725.11 
79 2.6 6 0.286 143.4202 750.97 
74 2.65 7 0.334 168.7762 639.72 

113 2.7 5.5 0.263 129.0918 819.55 
132 2.75 7.5 0.358 178.3474 617.10 
66 2.8 6.5 0.311 151.7436 709.46 
8 2.85 8 0.383 187.6808 563.18 
32 2.9 7.5 0.359 174.8248 638.09 
15 2.95 5 0.239 115.7516 896.07 
34 3 7.5 0.360 174.3716 633.74 
45 3.05 8 0.383 184.5366 582.77 
81 3.1 5 0.239 112.8802 950.84 
63 3.15 8 0.384 182.4752 585.42 
84 3.2 7.5 0.360 169.6968 605.81 
86 3.25 6 0.288 127.4910 867.76 

100 3.3 8 0.384 179.7242 592.71 
51 3.35 5.5 0.264 121.9244 842.39 

139 3.4 6 0.288 132.9708 805.09 
116 3.45 6.5 0.312 142.5400 743.79 
93 3.5 7.5 0.361 166.8786 631.00 
69 3.35 5 0.240 110.7192 930.13 
90 2.6 7 0.334 168.1842 632.60 
94 3.25 7 0.336 156.7768 659.22 
88 3.2 6.5 0.312 145.9830 708.69 

105 2.9 5.5 0.263 126.8298 872.15 
99 3.2 7 0.336 157.9402 651.55 

111 2.55 6.5 0.310 157.3218 670.40 
147 2.85 5.5 0.263 127.7622 837.32 
142 2.75 6.5 0.311 152.5750 707.95 

 

                                           Training Data 2  
Run R4 E  Mass  Stiffness  von Mises stress 

1 2.8 7 0.335 163.8864 656.70 
2 3.4 5 0.240 110.0294 925.58 
3 2.5 6.5 0.310 159.7752 706.14 
4 3.4 6.5 0.312 143.8114 746.29 
5 2.95 6 0.287 138.4258 791.14 
6 2.75 5 0.239 116.4776 920.33 
9 3.45 7 0.336 156.9286 689.38 
10 3.5 6 0.289 124.6784 771.73 
11 3.25 8 0.384 180.6200 565.70 
12 2.55 7.5 0.358 182.9608 576.77 
13 3.2 8 0.384 180.2974 567.21 
14 3.45 6 0.288 133.1316 801.93 
16 3.35 6.5 0.312 145.5014 727.56 
17 3.05 7.5 0.359 172.9914 622.02 
18 3.35 7 0.336 156.6476 662.24 
19 2.6 5.5 0.263 130.2302 806.98 
20 3.4 8 0.385 179.1174 594.38 
21 3.3 5 0.240 110.0384 930.75 
22 2.5 5.5 0.262 134.3876 832.41 
23 2.75 5.5 0.263 128.7752 836.18 
25 3.15 5 0.240 112.3314 875.60 
26 3.25 6.5 0.312 145.1746 711.84 
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27 3.35 6 0.288 133.3600 771.91 
28 2.65 6 0.286 143.9418 750.72 
29 3.3 5.5 0.264 122.0708 846.70 
30 3.25 5 0.240 110.8990 940.20 
31 3.1 7 0.335 159.6730 669.58 
33 2.7 6 0.286 141.2240 749.90 
35 2.65 7.5 0.358 181.4718 594.36 
36 3.1 6.5 0.312 147.2514 693.58 
37 3.45 7.5 0.360 166.1648 641.64 
38 3.1 8 0.383 183.4468 583.50 
39 3 6 0.287 138.0014 793.47 
40 3.1 7.5 0.359 171.5622 622.79 
41 2.5 7 0.334 170.1458 629.84 
42 2.55 5 0.238 120.1334 871.34 
43 2.7 7 0.334 165.5972 639.49 
44 2.5 6 0.286 145.5800 762.25 
46 2.5 8 0.382 195.5856 540.94 
47 2.65 5 0.239 118.5552 923.91 
48 3 7 0.335 161.8184 681.16 
49 2.6 5 0.238 118.6870 887.59 
50 2.9 6 0.287 138.7382 798.88 
52 3.5 8 0.385 176.1510 565.61 
53 2.9 6.5 0.311 150.6446 740.36 
54 2.8 7.5 0.359 176.1000 610.52 
55 2.9 7 0.335 162.6884 685.83 
56 2.85 5 0.239 116.2382 690.24 
57 3.05 5.5 0.263 126.0264 793.82 
58 2.75 8 0.382 190.7252 570.41 
59 3 8 0.383 185.8890 585.05 
60 3.15 7.5 0.360 170.7166 624.83 
61 3.5 7 0.337 153.3310 658.83 
62 2.95 5.5 0.263 127.4184 814.65 
64 2.75 7 0.334 165.9786 664.18 
65 3.25 5.5 0.264 122.0390 854.9 
67 2.65 5.5 0.262 131.5926 820.3 
68 2.7 8 0.382 190.2286 547.63 
70 2.8 8 0.382 188.2700 564.23 
71 3.1 5.5 0.263 123.9622 831.88 
72 3.05 5 0.239 113.5320 949.97 
73 2.9 8 0.383 186.8866 589.1 
75 3.45 8 0.385 179.3320 592.74 
76 2.6 6.5 0.310 155.7388 683.51 
77 3.35 8 0.384 179.6684 568.45 
78 2.8 5 0.239 117.0556 936.57 
80 3.3 7.5 0.361 170.2522 632.74 
82 2.85 7.5 0.359 176.0798 609.46 
83 3.45 5.5 0.264 121.6964 874.99 
85 3.4 5.5 0.264 120.9196 842.07 
87 2.65 8 0.382 193.8756 549.98 
89 3.3 6.5 0.312 144.1444 707.61 
91 2.5 7.5 0.358 182.3114 585.19 
92 2.8 5.5 0.263 127.7550 839.06 
95 2.7 7.5 0.358 177.9256 594.08 
96 3.5 5.5 0.264 119.6324 847.45 
97 3.25 7.5 0.360 168.4784 613.11 
98 2.95 8 0.383 187.7454 547.73 

101 3.3 6 0.289 132.7306 775.78 
102 3.05 6 0.287 137.8424 726.61 
103 3 5.5 0.263 128.1936 855.21 
104 2.65 6.5 0.310 156.2832 691.61 
106 3.45 5 0.240 110.3502 961.8 
107 2.95 7 0.335 163.4206 639.06 
108 2.85 6.5 0.311 151.7378 708.15 
109 3.4 7 0.336 155.9114 691.56 
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110 3.5 6.5 0.312 142.1230 710.7 
112 3.4 7.5 0.360 167.5320 643.57 
114 3.15 7 0.336 158.8250 671.77 
115 2.55 5.5 0.262 132.4640 791.97 
117 2.75 6 0.287 140.5116 765.33 
118 2.95 7.5 0.359 175.5990 594.09 
119 2.55 8 0.382 195.1596 531.04 
120 3.5 5 0.240 114.6010 916.62 
121 3.15 6.5 0.312 148.4546 667.42 
122 3.2 5 0.240 111.6532 926.66 
123 2.8 6 0.287 139.7514 768.44 
124 3.05 7 0.335 160.6122 668.79 
125 2.55 7 0.334 169.8920 620.46 
126 2.85 6 0.287 139.7592 766.89 
127 3.15 6 0.288 135.4476 728.4 
128 3.1 6 0.287 135.5906 761.93 
129 3 6.5 0.311 149.7670 735.31 
130 2.6 7.5 0.358 182.8158 588.19 
131 2.9 5 0.239 115.1720 870.2 
133 3.15 5.5 0.264 123.8326 795.67 
134 3.2 5.5 0.264 122.8984 847.08 
135 3 5 0.239 116.2438 940.54 
136 3.3 7 0.336 158.4448 680.26 
137 2.7 6.5 0.310 153.3264 691.45 
138 2.7 5 0.239 117.9100 936.89 
140 2.95 6.5 0.311 150.5810 733.17 
141 3.2 6 0.288 134.4294 776.03 
143 3.05 6.5 0.312 149.6866 665.7 
144 2.85 7 0.335 163.8770 655.53 
145 3.35 7.5 0.360 168.0420 615.99 
146 2.6 8 0.382 193.2456 550.79 

 

                                       Validation Data 2  
Run R4 E Mass Stiffness  von Mises stress 
10 3.5 6 0.289 124.6784 771.73 
11 3.25 8 0.384 180.6200 565.70 
12 2.55 7.5 0.358 182.9608 576.77 
23 2.75 5.5 0.263 128.7752 836.18 
27 3.35 6 0.288 133.3600 771.91 
28 2.65 6 0.286 143.9418 750.72 
37 3.45 7.5 0.360 166.1648 641.64 
54 2.8 7.5 0.359 176.1000 610.52 
59 3 8 0.383 185.8890 585.05 
62 2.95 5.5 0.263 127.4184 814.65 

121 3.15 6.5 0.312 148.4546 667.42 
124 3.05 7 0.335 160.6122 668.79 

 

                                  Testing Data 3  
Run R4 E Mass Stiffness  von Mises stress 
22 2.5 5.5 0.262 134.3876 832.41 
42 2.55 5 0.238 120.1334 871.34 

130 2.6 7.5 0.358 182.8158 588.19 
87 2.65 8 0.382 193.8756 549.98 

137 2.7 6.5 0.310 153.3264 691.45 
117 2.75 6 0.287 140.5116 765.33 
1 2.8 7 0.335 163.8864 656.70 
56 2.85 5 0.239 116.2382 960.24 
50 2.9 6 0.287 138.7382 798.88 
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62 2.95 5.5 0.263 127.4184 814.65 
129 3 6.5 0.311 149.7670 735.31 
102 3.05 6 0.287 137.8424 726.61 
31 3.1 7 0.335 159.6730 669.58 
60 3.15 7.5 0.360 170.7166 624.83 
13 3.2 8 0.384 180.2974 567.21 
65 3.25 5.5 0.264 122.0390 854.90 
80 3.3 7.5 0.361 170.2522 632.74 
27 3.35 6 0.288 133.3600 771.91 
2 3.4 5 0.240 110.0294 925.58 
9 3.45 7 0.336 156.9286 689.38 

110 3.5 6.5 0.312 142.1230 710.70 
46 2.5 8 0.382 195.5856 540.94 
73 2.9 8 0.383 186.8866 589.10 

107 2.95 7 0.335 163.4206 639.06 
123 2.8 6 0.287 139.7514 768.44 
143 3.05 6.5 0.312 149.6866 665.70 
95 2.7 7.5 0.358 177.9256 594.08 
39 3 6 0.287 138.0014 793.47 

134 3.2 5.5 0.264 122.8984 847.08 
37 3.45 7.5 0.360 166.1648 641.64 

 

                                        Training Data 3  
Run R4 E  Mass  Stiffness  von Mises stress 

3 2.5 6.5 0.310 159.7752 706.14 
4 3.4 6.5 0.312 143.8114 746.29 
5 2.95 6 0.287 138.4258 791.14 
6 2.75 5 0.239 116.4776 920.33 
7 2.5 5 0.238 120.3282 888.90 
8 2.85 8 0.383 187.6808 563.18 

10 3.5 6 0.289 124.6784 771.73 
11 3.25 8 0.384 180.6200 565.70 
12 2.55 7.5 0.358 182.9608 576.77 
14 3.45 6 0.288 133.1316 801.93 
15 2.95 5 0.239 115.7516 896.07 
16 3.35 6.5 0.312 145.5014 727.56 
17 3.05 7.5 0.359 172.9914 622.02 
18 3.35 7 0.336 156.6476 662.24 
19 2.6 5.5 0.263 130.2302 806.98 
20 3.4 8 0.385 179.1174 594.38 
21 3.3 5 0.240 110.0384 930.75 
23 2.75 5.5 0.263 128.7752 836.18 
24 2.55 6 0.287 144.8926 725.11 
25 3.15 5 0.240 112.3314 875.60 
26 3.25 6.5 0.312 145.1746 711.84 
28 2.65 6 0.286 143.9418 750.72 
29 3.3 5.5 0.264 122.0708 846.70 
30 3.25 5 0.240 110.8990 940.20 
32 2.9 7.5 0.359 174.8248 638.09 
33 2.7 6 0.286 141.2240 749.90 
34 3 7.5 0.360 174.3716 633.74 
35 2.65 7.5 0.358 181.4718 594.36 
36 3.1 6.5 0.312 147.2514 693.58 
38 3.1 8 0.383 183.4468 583.50 
40 3.1 7.5 0.359 171.5622 622.79 
41 2.5 7 0.334 170.1458 629.84 
43 2.7 7 0.334 165.5972 639.49 
44 2.5 6 0.286 145.5800 762.25 
45 3.05 8 0.383 184.5366 582.77 
47 2.65 5 0.239 118.5552 923.91 
48 3 7 0.335 161.8184 681.16 
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49 2.6 5 0.238 118.6870 887.59 
51 3.35 5.5 0.264 121.9244 842.39 
52 3.5 8 0.385 176.1510 565.61 
53 2.9 6.5 0.311 150.6446 740.36 
54 2.8 7.5 0.359 176.1000 610.52 
55 2.9 7 0.335 162.6884 685.83 
57 3.05 5.5 0.263 126.0264 793.82 
58 2.75 8 0.382 190.7252 570.41 
59 3 8 0.383 185.8890 585.05 
61 3.5 7 0.337 153.3310 658.83 
63 3.15 8 0.384 182.4752 585.42 
64 2.75 7 0.334 165.9786 664.18 
66 2.8 6.5 0.311 151.7436 709.46 
67 2.65 5.5 0.262 131.5926 820.30 
68 2.7 8 0.382 190.2286 547.63 
69 3.35 5 0.240 110.7192 930.13 
70 2.8 8 0.382 188.2700 564.23 
71 3.1 5.5 0.263 123.9622 831.88 
72 3.05 5 0.239 113.5320 949.97 
74 2.65 7 0.334 168.7762 639.72 
75 3.45 8 0.385 179.3320 592.74 
76 2.6 6.5 0.310 155.7388 683.51 
77 3.35 8 0.384 179.6684 568.45 
78 2.8 5 0.239 117.0556 936.57 
79 2.6 6 0.286 143.4202 750.97 
81 3.1 5 0.239 112.8802 950.84 
82 2.85 7.5 0.359 176.0798 609.46 
83 3.45 5.5 0.264 121.6964 874.99 
84 3.2 7.5 0.360 169.6968 605.81 
85 3.4 5.5 0.264 120.9196 842.07 
86 3.25 6 0.288 127.4910 867.76 
88 3.2 6.5 0.312 145.9830 708.69 
89 3.3 6.5 0.312 144.1444 707.61 
90 2.6 7 0.334 168.1842 632.60 
91 2.5 7.5 0.358 182.3114 585.19 
92 2.8 5.5 0.263 127.7550 839.06 
93 3.5 7.5 0.361 166.8786 631.00 
94 3.25 7 0.336 156.7768 659.22 
96 3.5 5.5 0.264 119.6324 847.45 
97 3.25 7.5 0.360 168.4784 613.11 
98 2.95 8 0.383 187.7454 547.73 
99 3.2 7 0.336 157.9402 651.55 
100 3.3 8 0.384 179.7242 592.71 
101 3.3 6 0.289 132.7306 775.78 
103 3 5.5 0.263 128.1936 855.21 
104 2.65 6.5 0.310 156.2832 691.61 
105 2.9 5.5 0.263 126.8298 872.15 
106 3.45 5 0.240 110.3502 961.80 
108 2.85 6.5 0.311 151.7378 708.15 
109 3.4 7 0.336 155.9114 691.56 
111 2.55 6.5 0.310 157.3218 670.40 
112 3.4 7.5 0.360 167.5320 643.57 
113 2.7 5.5 0.263 129.0918 819.55 
114 3.15 7 0.336 158.8250 671.77 
115 2.55 5.5 0.262 132.4640 791.97 
116 3.45 6.5 0.312 142.5400 743.79 
118 2.95 7.5 0.359 175.5990 594.09 
119 2.55 8 0.382 195.1596 531.04 
120 3.5 5 0.240 114.6010 916.62 
121 3.15 6.5 0.312 148.4546 667.42 
122 3.2 5 0.240 111.6532 926.66 
124 3.05 7 0.335 160.6122 668.79 
125 2.55 7 0.334 169.8920 620.46 
126 2.85 6 0.287 139.7592 766.89 
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127 3.15 6 0.288 135.4476 728.40 
128 3.1 6 0.287 135.5906 761.93 
131 2.9 5 0.239 115.1720 870.20 
132 2.75 7.5 0.358 178.3474 617.10 
133 3.15 5.5 0.264 123.8326 795.67 
135 3 5 0.239 116.2438 940.54 
136 3.3 7 0.336 158.4448 680.26 
138 2.7 5 0.239 117.9100 936.89 
139 3.4 6 0.288 132.9708 805.09 
140 2.95 6.5 0.311 150.5810 733.17 
141 3.2 6 0.288 134.4294 776.03 
142 2.75 6.5 0.311 152.5750 707.95 
144 2.85 7 0.335 163.8770 655.53 
145 3.35 7.5 0.360 168.0420 615.99 
146 2.6 8 0.382 193.2456 550.79 
147 2.85 5.5 0.263 127.7622 837.32 

 

                                      Validation Data 3  
Run R4 E Mass Stiffness  von Mises stress 

4 3.4 6.5 0.312 143.8114 746.29 
17 3.05 7.5 0.359 172.9914 622.02 
33 2.7 6 0.286 141.2240 749.90 
38 3.1 8 0.383 183.4468 583.50 
49 2.6 5 0.238 118.6870 887.59 
70 2.8 8 0.382 188.2700 564.23 
82 2.85 7.5 0.359 176.0798 609.46 
96 3.5 5.5 0.264 119.6324 847.45 
111 2.55 6.5 0.310 157.3218 670.40 
136 3.3 7 0.336 158.4448 680.26 
142 2.75 6.5 0.311 152.5750 707.95 
147 2.85 5.5 0.263 127.7622 837.32 

 

                                        Testing Data 4  
Run R4 E Mass Stiffness  von Mises stress 

5 2.95 6 0.287 138.4258 791.14 
11 3.25 8 0.384 180.6200 565.70 
16 3.35 6.5 0.312 145.5014 727.56 
21 3.3 5 0.240 110.0384 930.75 
23 2.75 5.5 0.263 128.7752 836.18 
33 2.7 6 0.286 141.2240 749.90 
38 3.1 8 0.383 183.4468 583.50 
44 2.5 6 0.286 145.5800 762.25 
49 2.6 5 0.238 118.6870 887.59 
53 2.9 6.5 0.311 150.6446 740.36 
59 3 8 0.383 185.8890 585.05 
67 2.65 5.5 0.262 131.5926 820.30 
75 3.45 8 0.385 179.3320 592.74 
92 2.8 5.5 0.263 127.7550 839.06 
108 2.85 6.5 0.311 151.7378 708.15 
114 3.15 7 0.336 158.8250 671.77 
109 3.4 7 0.336 155.9114 691.56 
104 2.65 6.5 0.310 156.2832 691.61 
126 2.85 6 0.287 139.7592 766.89 
57 3.05 5.5 0.263 126.0264 793.82 
115 2.55 5.5 0.262 132.4640 791.97 
54 2.8 7.5 0.359 176.1000 610.52 
29 3.3 5.5 0.264 122.0708 846.70 
121 3.15 6.5 0.312 148.4546 667.42 
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136 3.3 7 0.336 158.4448 680.26 
85 3.4 5.5 0.264 120.9196 842.07 
144 2.85 7 0.335 163.8770 655.53 
146 2.6 8 0.382 193.2456 550.79 
47 2.65 5 0.239 118.5552 923.91 
140 2.95 6.5 0.311 150.5810 733.17 

 

                 Training Data 4  
Run  R4 E  Mass  Stiffness  von Mises stress 

1 2.8 7 0.335 163.8864 656.70 
2 3.4 5 0.240 110.0294 925.58 
3 2.5 6.5 0.310 159.7752 706.14 
4 3.4 6.5 0.312 143.8114 746.29 
6 2.75 5 0.239 116.4776 920.33 
7 2.5 5 0.238 120.3282 888.90 
8 2.85 8 0.383 187.6808 563.18 
9 3.45 7 0.336 156.9286 689.38 
10 3.5 6 0.289 124.6784 771.73 
12 2.55 7.5 0.358 182.9608 576.77 
13 3.2 8 0.384 180.2974 567.21 
14 3.45 6 0.288 133.1316 801.93 
15 2.95 5 0.239 115.7516 896.07 
17 3.05 7.5 0.359 172.9914 622.02 
18 3.35 7 0.336 156.6476 662.24 
19 2.6 5.5 0.263 130.2302 806.98 
20 3.4 8 0.385 179.1174 594.38 
22 2.5 5.5 0.262 134.3876 832.41 
24 2.55 6 0.287 144.8926 725.11 
25 3.15 5 0.240 112.3314 875.60 
26 3.25 6.5 0.312 145.1746 711.84 
27 3.35 6 0.288 133.3600 771.91 
28 2.65 6 0.286 143.9418 750.72 
30 3.25 5 0.240 110.8990 940.20 
31 3.1 7 0.335 159.6730 669.58 
32 2.9 7.5 0.359 174.8248 638.09 
34 3 7.5 0.360 174.3716 633.74 
35 2.65 7.5 0.358 181.4718 594.36 
36 3.1 6.5 0.312 147.2514 693.58 
37 3.45 7.5 0.360 166.1648 641.64 
39 3 6 0.287 138.0014 793.47 
40 3.1 7.5 0.359 171.5622 622.79 
41 2.5 7 0.334 170.1458 629.84 
42 2.55 5 0.238 120.1334 871.34 
43 2.7 7 0.334 165.5972 639.49 
45 3.05 8 0.383 184.5366 582.77 
46 2.5 8 0.382 195.5856 540.94 
48 3 7 0.335 161.8184 681.16 
50 2.9 6 0.287 138.7382 798.88 
51 3.35 5.5 0.264 121.9244 842.39 
52 3.5 8 0.385 176.1510 565.61 
55 2.9 7 0.335 162.6884 685.83 
56 2.85 5 0.239 116.2382 960.24 
58 2.75 8 0.382 190.7252 570.41 
60 3.15 7.5 0.360 170.7166 624.83 
61 3.5 7 0.337 153.3310 658.83 
62 2.95 5.5 0.263 127.4184 814.65 
63 3.15 8 0.384 182.4752 585.42 
64 2.75 7 0.334 165.9786 664.18 
65 3.25 5.5 0.264 122.0390 854.90 
66 2.8 6.5 0.311 151.7436 709.46 
68 2.7 8 0.382 190.2286 547.63 
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69 3.35 5 0.240 110.7192 930.13 
70 2.8 8 0.382 188.2700 564.23 
71 3.1 5.5 0.263 123.9622 831.88 
72 3.05 5 0.239 113.5320 949.97 
73 2.9 8 0.383 186.8866 589.10 
74 2.65 7 0.334 168.7762 639.72 
76 2.6 6.5 0.310 155.7388 683.51 
77 3.35 8 0.384 179.6684 568.45 
78 2.8 5 0.239 117.0556 936.57 
79 2.6 6 0.286 143.4202 750.97 
80 3.3 7.5 0.361 170.2522 632.74 
81 3.1 5 0.239 112.8802 950.84 
82 2.85 7.5 0.359 176.0798 609.46 
83 3.45 5.5 0.264 121.6964 874.99 
84 3.2 7.5 0.360 169.6968 605.81 
86 3.25 6 0.288 127.4910 867.76 
87 2.65 8 0.382 193.8756 549.98 
88 3.2 6.5 0.312 145.9830 708.69 
89 3.3 6.5 0.312 144.1444 707.61 
90 2.6 7 0.334 168.1842 632.6 
91 2.5 7.5 0.358 182.3114 585.19 
93 3.5 7.5 0.361 166.8786 631.00 
94 3.25 7 0.336 156.7768 659.22 
95 2.7 7.5 0.358 177.9256 594.08 
96 3.5 5.5 0.264 119.6324 847.45 
97 3.25 7.5 0.360 168.4784 613.11 
98 2.95 8 0.383 187.7454 547.73 
99 3.2 7 0.336 157.9402 651.55 

100 3.3 8 0.384 179.7242 592.71 
101 3.3 6 0.289 132.7306 775.78 
102 3.05 6 0.287 137.8424 726.61 
103 3 5.5 0.263 128.1936 855.21 
105 2.9 5.5 0.263 126.8298 872.15 
106 3.45 5 0.240 110.3502 961.80 
107 2.95 7 0.335 163.4206 639.06 
110 3.5 6.5 0.312 142.1230 710.70 
111 2.55 6.5 0.310 157.3218 670.40 
112 3.4 7.5 0.360 167.5320 643.57 
113 2.7 5.5 0.263 129.0918 819.55 
116 3.45 6.5 0.312 142.5400 743.79 
117 2.75 6 0.287 140.5116 765.33 
118 2.95 7.5 0.359 175.5990 594.09 
119 2.55 8 0.382 195.1596 531.04 
120 3.5 5 0.240 114.6010 916.62 
122 3.2 5 0.240 111.6532 926.66 
123 2.8 6 0.287 139.7514 768.44 
124 3.05 7 0.335 160.6122 668.79 
125 2.55 7 0.334 169.8920 620.46 
127 3.15 6 0.288 135.4476 728.40 
128 3.1 6 0.287 135.5906 761.93 
129 3 6.5 0.311 149.7670 735.31 
130 2.6 7.5 0.358 182.8158 588.19 
131 2.9 5 0.239 115.1720 870.20 
132 2.75 7.5 0.358 178.3474 617.10 
133 3.15 5.5 0.264 123.8326 795.67 
134 3.2 5.5 0.264 122.8984 847.08 
135 3 5 0.239 116.2438 940.54 
137 2.7 6.5 0.310 153.3264 691.45 
138 2.7 5 0.239 117.9100 936.89 
139 3.4 6 0.288 132.9708 805.09 
141 3.2 6 0.288 134.4294 776.03 
142 2.75 6.5 0.311 152.5750 707.95 
143 3.05 6.5 0.312 149.6866 665.70 
145 3.35 7.5 0.360 168.0420 615.99 



 

86 
 

147 2.85 5.5 0.263 127.7622 837.32 

 

                                    Validation Data 4  
Run R4 E Mass Stiffness  von Mises stress 

2 3.40 5 0.240 110.0294 925.58 
9 3.45 7 0.336 156.9286 689.38 
24 2.55 6 0.287 144.8926 725.11 
77 3.35 8 0.384 179.6684 568.45 
88 3.20 6.5 0.312 145.9830 708.69 
95 2.70 7.5 0.358 177.9256 594.08 

123 2.80 6 0.287 139.7514 768.44 
131 2.90 5 0.239 115.1720 870.20 
133 3.15 5.5 0.264 123.8326 795.67 
135 3.00 5 0.239 116.2438 940.54 
137 2.70 6.5 0.310 153.3264 691.45 
102 3.05 6 0.287 137.8424 726.61 

 

 

 

 
 

                                       Testing Data 5  
  R4 E Mass Stiffness  von Mises stress 

6 2.75 5 0.239 116.4776 920.33 
14 3.45 6 0.288 133.1316 801.93 
17 3.05 7.5 0.359 172.9914 622.02 
18 3.35 7 0.336 156.6476 662.24 
26 3.25 6.5 0.312 145.1746 711.84 
30 3.25 5 0.240 110.8990 940.20 
36 3.1 6.5 0.312 147.2514 693.58 
40 3.1 7.5 0.359 171.5622 622.79 
43 2.7 7 0.334 165.5972 639.49 
48 3 7 0.335 161.8184 681.16 
52 3.5 8 0.385 176.1510 565.61 
58 2.75 8 0.382 190.7252 570.41 
61 3.5 7 0.337 153.3310 658.83 
71 3.1 5.5 0.263 123.9622 831.88 
72 3.05 5 0.239 113.5320 949.97 
77 3.35 8 0.384 179.6684 568.45 
91 2.5 7.5 0.358 182.3114 585.19 
96 3.5 5.5 0.264 119.6324 847.45 

101 3.3 6 0.289 132.7306 775.78 
106 3.45 5 0.240 110.3502 961.80 
112 3.4 7.5 0.360 167.5320 643.57 
118 2.95 7.5 0.359 175.5990 594.09 
119 2.55 8 0.382 195.1596 531.04 
125 2.55 7 0.334 169.8920 620.46 
127 3.15 6 0.288 135.4476 728.40 
131 2.9 5 0.239 115.1720 870.20 
138 2.7 5 0.239 117.9100 936.89 
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                                     Training Data 5  
  R4 E  Mass  Stiffness  von Mises stress 

1 2.8 7 0.335 163.8864 656.70 
2 3.4 5 0.240 110.0294 925.58 
3 2.5 6.5 0.310 159.7752 706.14 
4 3.4 6.5 0.312 143.8114 746.29 
5 2.95 6 0.287 138.4258 791.14 
7 2.5 5 0.238 120.3282 888.90 
8 2.85 8 0.383 187.6808 563.18 
9 3.45 7 0.336 156.9286 689.38 
10 3.5 6 0.289 124.6784 771.73 
11 3.25 8 0.384 180.6200 565.70 
12 2.55 7.5 0.358 182.9608 576.77 
13 3.2 8 0.384 180.2974 567.21 
15 2.95 5 0.239 115.7516 896.07 
16 3.35 6.5 0.312 145.5014 727.56 
19 2.6 5.5 0.263 130.2302 806.98 
20 3.4 8 0.385 179.1174 594.38 
21 3.3 5 0.240 110.0384 930.75 
22 2.5 5.5 0.262 134.3876 832.41 
23 2.75 5.5 0.263 128.7752 836.18 
24 2.55 6 0.287 144.8926 725.11 
25 3.15 5 0.240 112.3314 875.60 
27 3.35 6 0.288 133.3600 771.91 
28 2.65 6 0.286 143.9418 750.72 
29 3.3 5.5 0.264 122.0708 846.70 
31 3.1 7 0.335 159.6730 669.58 
32 2.9 7.5 0.359 174.8248 638.09 
33 2.7 6 0.286 141.2240 749.90 
34 3 7.5 0.360 174.3716 633.74 
35 2.65 7.5 0.358 181.4718 594.36 
37 3.45 7.5 0.360 166.1648 641.64 
38 3.1 8 0.383 183.4468 583.50 
39 3 6 0.287 138.0014 793.47 
41 2.5 7 0.334 170.1458 629.84 
42 2.55 5 0.238 120.1334 871.34 
44 2.5 6 0.286 145.5800 762.25 
45 3.05 8 0.383 184.5366 582.77 
46 2.5 8 0.382 195.5856 540.94 
47 2.65 5 0.239 118.5552 923.91 
49 2.6 5 0.238 118.6870 887.59 
50 2.9 6 0.287 138.7382 798.88 
51 3.35 5.5 0.264 121.9244 842.39 
53 2.9 6.5 0.311 150.6446 740.36 
54 2.8 7.5 0.359 176.1000 610.52 
55 2.9 7 0.335 162.6884 685.83 
56 2.85 5 0.239 116.2382 960.24 
57 3.05 5.5 0.263 126.0264 793.82 
59 3 8 0.383 185.8890 585.05 
60 3.15 7.5 0.360 170.7166 624.83 
62 2.95 5.5 0.263 127.4184 814.65 
63 3.15 8 0.384 182.4752 585.42 
64 2.75 7 0.334 165.9786 664.18 
65 3.25 5.5 0.264 122.0390 854.90 
66 2.8 6.5 0.311 151.7436 709.46 
67 2.65 5.5 0.262 131.5926 820.30 
68 2.7 8 0.382 190.2286 547.63 
69 3.35 5 0.240 110.7192 930.13 
70 2.8 8 0.382 188.2700 564.23 
73 2.9 8 0.383 186.8866 589.10 
74 2.65 7 0.334 168.7762 639.72 
75 3.45 8 0.385 179.3320 592.74 
76 2.6 6.5 0.310 155.7388 683.51 
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78 2.8 5 0.239 117.0556 936.57 
79 2.6 6 0.286 143.4202 750.97 
80 3.3 7.5 0.361 170.2522 632.74 
81 3.1 5 0.239 112.8802 950.84 
82 2.85 7.5 0.359 176.0798 609.46 
83 3.45 5.5 0.264 121.6964 874.99 
84 3.2 7.5 0.360 169.6968 605.81 
85 3.4 5.5 0.264 120.9196 842.07 
86 3.25 6 0.288 127.4910 867.76 
87 2.65 8 0.382 193.8756 549.98 
88 3.2 6.5 0.312 145.9830 708.69 
89 3.3 6.5 0.312 144.1444 707.61 
90 2.6 7 0.334 168.1842 632.6 
92 2.8 5.5 0.263 127.7550 839.06 
93 3.5 7.5 0.361 166.8786 631.00 
94 3.25 7 0.336 156.7768 659.22 
95 2.7 7.5 0.358 177.9256 594.08 
97 3.25 7.5 0.360 168.4784 613.11 
98 2.95 8 0.383 187.7454 547.73 
99 3.2 7 0.336 157.9402 651.55 

100 3.3 8 0.384 179.7242 592.71 
102 3.05 6 0.287 137.8424 726.61 
103 3 5.5 0.263 128.1936 855.21 
104 2.65 6.5 0.310 156.2832 691.61 
105 2.9 5.5 0.263 126.8298 872.15 
107 2.95 7 0.335 163.4206 639.06 
108 2.85 6.5 0.311 151.7378 708.15 
109 3.4 7 0.336 155.9114 691.56 
110 3.5 6.5 0.312 142.1230 710.70 
111 2.55 6.5 0.310 157.3218 670.40 
113 2.7 5.5 0.263 129.0918 819.55 
114 3.15 7 0.336 158.8250 671.77 
115 2.55 5.5 0.262 132.4640 791.97 
116 3.45 6.5 0.312 142.5400 743.79 
117 2.75 6 0.287 140.5116 765.33 
120 3.5 5 0.240 114.6010 916.62 
121 3.15 6.5 0.312 148.4546 667.42 
122 3.2 5 0.240 111.6532 926.66 
123 2.8 6 0.287 139.7514 768.44 
124 3.05 7 0.335 160.6122 668.79 
126 2.85 6 0.287 139.7592 766.89 
128 3.1 6 0.287 135.5906 761.93 
129 3 6.5 0.311 149.7670 735.31 
130 2.6 7.5 0.358 182.8158 588.19 
132 2.75 7.5 0.358 178.3474 617.10 
133 3.15 5.5 0.264 123.8326 795.67 
134 3.2 5.5 0.264 122.8984 847.08 
135 3 5 0.239 116.2438 940.54 
136 3.3 7 0.336 158.4448 680.26 
137 2.7 6.5 0.310 153.3264 691.45 
139 3.4 6 0.288 132.9708 805.09 
140 2.95 6.5 0.311 150.5810 733.17 
141 3.2 6 0.288 134.4294 776.03 
142 2.75 6.5 0.311 152.5750 707.95 
143 3.05 6.5 0.312 149.6866 665.70 
144 2.85 7 0.335 163.8770 655.53 
145 3.35 7.5 0.360 168.0420 615.99 
146 2.6 8 0.382 193.2456 550.79 
147 2.85 5.5 0.263 127.7622 837.32 
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Validation Data 5  
  R4 E Mass Stiffness  von Mises stress 

3 2.5 6.5 0.310 159.7752 706.14 
8 2.85 8 0.383 187.6808 563.18 

15 2.95 5 0.239 115.7516 896.07 
25 3.15 5 0.240 112.3314 875.60 
35 2.65 7.5 0.358 181.4718 594.36 
39 3 6 0.287 138.0014 793.47 
51 3.35 5.5 0.264 121.9244 842.39 
94 3.25 7 0.336 156.7768 659.22 
105 2.9 5.5 0.263 126.8298 872.15 
117 2.75 6 0.287 140.5116 765.33 
120 3.5 5 0.240 114.6010 916.62 
144 2.85 7 0.335 163.8770 655.53 
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APPENDIX B 

K-FOLD CROSS VALIDATION RESULTS OF THE 

NEURO-REGRESSION MODEL FOR MASS 

Models R2 training  R2 training 
Adjusted 

R2 testing  R2 validation Maximum  Minimum  

L1 0.999999 0.999999 0.999942 0.999917 0.384793 0.237745 
L2 0.999999 0.999999 0.999933 0.999941 0.385148 0.237448 
L3 0.999999 0.999999 0.999942 0.999938 0.384804 0.237737 
L4 0.999999 0.999999 0.99995 0.999926 0.385172 0.237456 
L5 0.999999 0.999999 0.999942 0.999968 0.384796 0.237731 

LR1 0.999999 0.999999 0.999995 0.999925 0.385649 0.238027 
LR2 0.999999 0.999999 0.999945 0.999932 0.385883 0.238074 
LR3 0.999999 0.999999 0.999936 0.999943 0.385086 0.238157 
LR4 0.999999 0.999999 0.999951 0.99993 0.386165 0.237987 
LR5 0.999999 0.999999 0.999943 0.999976 0.386625 0.23805 

SON1 0.999999 0.999999 0.999941 0.999914 0.400630 0.235062 
SON2 0.999999 0.999999 0.999994 0.999922 0.399337 0.235338 
SON3 0.999999 0.999999 0.999941 0.999952 0.395234 0.237626 
SON4 0.999999 0.999999 0.999958 0.999938 0.394482 0.236526 
SON5 0.99999 0.99999 0.999933 0.999977 0.389162 0.236269 

SONR1 0.999999 0.999999 0.999921 0.999922 0.398438 0.225608 
SONR2 0.999999 0.999999 0.999931 0.999965 3.4617*106 0.23662 
SONR3 0.999999 0.999999 0.999942 0.999948 6.82006*107 -5.61*107 
SONR4 0.999999 0.999999 0.999947 0.999955 6.01127*106 -61440.6 
SONR5 0.999999 0.999999 0.999948 0.999979 6.37747 *108 0.234656 
FOTN1 0.999587 0.999512 0.981026 0.97782 0.384420 0.239835 
FOTN2 0.999579 0.999503 0.981347 0.977508 0.383857 0.239658 
FOTN3 0.999582 0.999506 0.978664 0.984523 0.386688 0.238188  
FOTN4 0.999582 0.999505 0.980025 0.979306 0.384452 0.235742 
FOTN5 0.999595 0.999523 0.97872 0.97805 0.387336 0.233994 

FOTNR1 0.999999 0.999999 0.999934 0.999916 0.38917 0.229502 
FOTNR2 0.999999 0.999999 0.999942 0.999907 0.387093 0.231509 
FOTNR3 0.991208 0.989609 0.658886 0.55314 180.696 0.22007 
FOTNR4 0.999999 0.999999 0.999941 0.999927 0.38798 0.232181 
FOTNR5 0.999999 0.999999 0.999908 0.999967 0.38796 0.230908 
SOTN1 0.999996 0.999981 0.999513 0.99973 5.6729 -4.68107 
SOTN2 0.999995 0.999979 0.999714 0.999047 5.39699 -4.28576 
SOTN3 0.999996 0.999982 0.999552 0.999776 9.50243 -8.46073 
SOTN4 0.999995 0.99998 0.999597 0.999801 5.50219 -0.75209 
SOTN5 0.999995 0.999982 -12.2377 0.999759 2.69464 -3.24823 

SOTNR1 1 0.999999 0.999789 0.99995 2.35075*106 -3.05*107 
SOTNR2 1 0.999998 0.999895 0.999964 2.4691*108 -1.18*109 
SOTNR3 1 0.999999 0.989102 0.999992 1.0058*107 -4.4*107 
SOTNR4 1 0.999998 0.997525 0.999985 1.59807*109 -1.42*109 
SOTNR5 1 0.999998 0.997483 0.999989 0.402975 -7.62*108 
FOLN1 0.999894 0.999884 0.995201 0.994795 0.383486 0.230465 
FOLN2 0.999891 0.999881 0.99531 0.995809 0.380905 0.232341 
FOLN3 0.999892 0.999882 0.994632 0.995418 0.380084 0.232210 
FOLN4 0.999897 0.999887 0.994261 0.994775 0.382104 0.231715 
FOLN5 0.999894 0.999885 0.995481 0.994894 0.383315 0.230110 

FOLNR1 0.999999 0.999999 0.999947 0.999924 0.385488 0.237966 
FOLNR2 0.999999 0.999999 0.999945 0.999932 0.385849 0.238023 
FOLNR3 0.999999 0.999999 0.99994 0.999933 0.385040 0.238075 
FOLNR4 0.999999 0.999999 0.999946 0.999937 0.386026 0.23800 
FOLNR5 0.999999 0.999999 0.999943 0.999976 0.386625 0.23805 
SOLN1 0.999999 0.999998 0.999924 0.999909 0.399425 0.235905 
SOLN2 0.999999 0.999998 0.999928 0.999908 0.396206 0.235799 
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SOLN3 0.999999 0.999998 0.99992 0.999955 0.393494 0.238034 
SOLN4 0.999999 0.999998 0.999949 0.999919 0.392505 0.236782 
SOLN5 0.999999 0.999998 0.999914 0.999965 0.390886 0.237346 

SOLNR1 0.999999 0.999999 0.999909 0.999925 1.70795*106 0.236077 
SOLNR2 0.999999 0.999999 0.999942 0.999933 0.388172 0.233767 
SOLNR3 0.999999 0.999999 0.999934 0.999952 69793.2 -230245 
SOLNR4 0.999999 0.999999 0.999934 0.999949 0.384861 -114978 
SOLNR5 0.999999 0.999999 0.999295 0.999977 684111 0.229529 
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APPENDIX C 

K-FOLD CROSS VALIDATION RESULTS OF THE 

NEURO-REGRESSION MODEL FOR STIFFNESS 

Models R2 training  R2 training 
Adjusted 

R2 testing  R2 validation Maximum  Minimum  

L1 0.999937 0.999931 0.992763 0.997713 194.749 106.052 
L2 0.999912 0.999904 0.995187 0.991430 193.979 106.807 
L3 0.999900 0.999891 0.997358 0.998608 193.933 106.689 
L4 0.999894 0.999884 0.998327 0.997175 194.122 106.833 
L5 0.999907 0.999899 0.996349 0.990546 196.138 105.961 

LR1 0.999961 0.999957 0.994454 0.999048 196.019 107.559 
LR2 0.999944 0.999938 0.996320 0.991364 199.157 109.12 
LR3 0.999933 0.999927 0.998143 0.998914 199.017 109.069 
LR4 0.999931 0.999924 0.998543 0.997308 199.128 109.265 
LR5 0.999931 0.999925 0.998265 0.994745 198.989 108.216 

SON1 0.999969 0.999959 0.994417 0.999011 201.566 61.6211 
SON2 0.999948 0.99993 0.996656 0.991199 210.14 88.7842 
SON3 0.999940 0.99992 0.998398 0.998792 199.801 72.5332 
SON4 0.999937 0.999916 0.998765 0.998245 201.777 80.3779 
SON5 0.999937 0.999916 0.995514 0.995368 201.052 79.6734 

SONR1 0.999976 0.999967 0.994678 0.99913 1.1991*107 -3.4124*108 
SONR2 0.999978 0.99997 0.968899 0.999329 200.891 -1.5082*108 
SONR3 0.999972 0.999963 0.991636 0.999238 1.07212*109 -4.317*1010 
SONR4 0.999968 0.999956 0.996834 0.999051 2.2644*1010 -1.7984*109 
SONR5 0.999961 0.999949 0.910433 0.999323 200.896 -2.5931*108 
FOTN1 0.999546 0.999464 0.983277 0.968752 201.518 102.459 
FOTN2 0.999535 0.999451 0.980785 0.97756 200.37 103.853 
FOTN3 0.999554 0.999473 0.97805 0.983021 201.396 103.309 
FOTN4 0.999549 0.999467 0.977797 0.983653 200.609 103.458 
FOTN5 0.999563 0.999486 0.975739 0.985449 199.358 102.294 

FOTNR1 0.999945 0.999934 0.992463 0.997256 203.540 80.1590 
FOTNR2 0.999922 0.999908 0.994731 0.988181 202.456 88.4577 
FOTNR3 0.999910 0.999844 0.99665 0.998141 205.021 79.9946 
FOTNR4 0.976531 0.972264 0.186057 0.109471 26460.6 -5.812*1011 

FOTNR5 0.999908 0.999892 0.997039 0.995671 198.4430 46.2563 
SOTN1 0.999974 0.999887 0.966364 0.999678 33548.3 -10402.8 
SOTN2 0.999962 0.999835 0.996938 0.989484 13569 -20055.1 
SOTN3 0.999962 0.999835 0.996891 0.999133 18829.2 -23916.7 
SOTN4 0.999956 0.999809 0.998225 0.998597 11331.9 -16770.4 
SOTN5 0.999958 0.999833 -161.548 0.998321 9665.02 -2425.93 

SOTNR1 0.999993 0.999968 0.986052 0.999602 2.08035*109 -2.126*1011 
SOTNR2 0.999981 0.999918 0.994054 0.999314 269.098 -3.40837 
SOTNR3 0.999993 0.999968 0.970092 0.999292 1.93599*1011 -7.6815*109 
SOTNR4 0.999989 0.999953 0.993240 0.999292 7.41799*1011 -3.0239*109 
SOTNR5 0.999989 0.999954 -2.334101 0.999797 201.991 -1.0579*109 
FOLN1 0.999809 0.999792 0.98443 0.994508 193.534 103.392 
FOLN2 0.999767 0.999745 0.987697 0.985022 191.972 104.597 
FOLN3 0.999746 0.999722 0.991532 0.994622 191.298 104.677 



 

93 
 

FOLN4 0.999736 0.999711 0.992996 0.988297 193.005 104.011 
FOLN5 0.999758 0.999736 0.991266 0.979791 0.194.463 103.179 

FOLNR1 0.999961 0.999958 0.994242 0.999033 196.409 107.244 
FOLNR2 0.999942 0.999937 0.996316 0.991230 198.949 109.002 
FOLNR3 0.999932    0.999926 0.998171 0.998907 198.563 108.684 
FOLNR4 0.999929 0.999922 0.998636 0.997517 198.494 108.851 
FOLNR5 0.99993 0.999923 0.998451 0.994337 198.495 107.792 
SOLN1 0.99997 0.99996 0.994691 0.998992 201.42 61.2381 
SOLN2 0.99995 0.999932 0.996816 0.991521 209.902 94.0656 
SOLN3 0.999943 0.999923 0.998395 0.998909 199.36 73.0173 
SOLN4 0.999941 0.99992 0.998706 0.998232 200.622 81.2128 
SOLN5 0.999994 0.99992 0.996905 0.996107 190.068 89.3166 

SOLNR1 0.999976 0.999968 0.994701 0.999168 2.66892*107 -1.6384*108 

SOLNR2 0.999978 0.99997 0.957503 0.999317 8.6615*107 -8.8411*106 

SOLNR3 0.999977 0.999969 0.990501 0.999239 4.35845*108 108.286 
SOLNR4 0.999968 0.999956 0.998956 0.998742 2.03025*107 -1.3808*108 

SOLNR5 0.99996 0.999946 0.993389 0.999218 205.671 70.6748 

 

 

 

 

 

 

 

 

 

 

 

 


