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December 2021
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ABSTRACT

PERTURBATIVE AND EXACT ANALYSIS OF POINT

INTERACTIONS

In this thesis, a general formulation for the bound state energies of a finite num-

ber of attractive Dirac delta potentials is given in terms of a finite dimensional matrix.

The stationary scattering problem is also studied using the distributional solutions of al-

gebraic equations in momentum space. Finally, the energy gap and splitting for the bound

state energies when the distance between the delta potentials is large is approximately

calculated using a kind of perturbation theory.
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ÖZET

NOKTASAL ETKİLEŞİMLERİN PERTÜRBATİF VE TAM ANALİZİ

Bu tezde, sonlu sayıda çekici Dirac delta potansiyellerinin bağlı durum enerjileri

için genel bir formülasyon sonlu boyutlu bir matris cinsinden ifade edilmiştir. Ayrıca,

durağan saçılma problemi momentum uzayında yazılmış cebirsel denklemlerin dağılımsal

çözümleri kullanılarak çalışılmıştır. Son olarak delta potansiyelleri arasındaki mesafe

büyük olduğunda bağlı durum enerjilerindeki değişim ve ayrışma, bir çesit pertürbasyon

teorisi kullanılarak yaklaşıkça hesaplanmıştır.
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CHAPTER 1

INTRODUCTION

Exact analytical solutions are not in general available for many practical problems

in quantum mechanics. In such cases, we usually consult some approximation methods,

such as time-dependent/ time-independent perturbation theory, semi-classical approxi-

mation (also called WKB approximation, which stands for the initials of the physicists

Wentzel-Kramers-Brillouin and other names can also be included in this list), adiabatic

approximation, sudden approximation, etc. (Landau and Lifshitz, 2013; Shankar, 2012;

Bransden and Joachain, 2000), or we try to find numerical solutions. Each method has

its own advantage in solving the problems. For instance, it is well-known that WKB

method (Landau and Lifshitz, 2013) or instanton calculations (Coleman, 1988), are par-

ticularly useful in studying the formation of bound state or penetration through potential

barrier problems in quantum mechanics. One-dimensional anharmonic potential V (x) =

λ2

8
(x2−a2)2 is a classic example (see e.g., §50 in (Landau and Lifshitz, 2013)), where the

barrier penetration by tunnelling can be analysed through the WKB approximation.

V�x�

xa�a

Figure 1.1. Symmetric Anharmonic Double Well Potential

When the energy scale determined by the natural length scale a of the system is much

smaller than the binding energy of the system, i.e., �2

2ma2
<< EB, the potential separates
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into two symmetrical wells with a very high barrier (see Fig. 1.1). In this extreme limiting

case, as a first approximation, each well (on the right part or left) has separately the same

energy levels and these energy levels are degenerate due to the parity symmetry. How-

ever, if the coupling constant λ is large but finite, the particle initially confined to one well

can tunnel to the other well so that the degeneracy in the energy levels disappears. The

splitting in the resulting energy levels (between the true ground state and the first excited

level due to the tunneling) can be estimated using WKB approximation, see Landau and

Lifshitz (2013). Rigorous bounds for the splitting in the bound state energies of double

well potentials are studied in Harrell (1980). Moreover, the formal aspects of the prob-

lem of calculating the quantum mechanical tunnel splittings in a smooth, symmetric, one

dimensional double-well potential are discussed in (Garg, 2000).

In this thesis, we study the estimation of the energy splitting for a particular sin-

gular potential, namely Dirac delta potentials separated by large distances by using a kind

of perturbation theory, which was first introduced in (Erman and Turgut, 2010, 2019). We

start with finitely many Dirac delta potentials and develop the bound state analysis of this

problem by expressing the problem in terms of a finite dimensional matrix, called princi-

pal matrix. This formulation allows us to analyze the bound state energies qualitatively or

numerically. Indeed, the subject of Dirac delta potentials in one dimension is very old and

there is a large amount of literature, see e.g., the books (Demkov and Ostrovskii, 1988;

Albeverio et al., 1988; Albeverio and Kurasov, 2000). The heuristic approach for a single

Dirac delta potentials is even discussed in many elementary quantum mechanics text-

books, see e.g., (Griffiths and Schroeter, 2018). Such a singular potential is an idealized

potential where the de-Broglie wavelength of the particle is much larger than the range

of the potential. There are many applications of the above type of singular potential in

atomic physics, molecular physics and nuclear physics, and solid state physics (Demkov

and Ostrovskii, 1988; Uncu et al., 2005; Cacciapuoti, 2005; Kronig and Penney, 1931).

The model in higher dimensions is also interesting since it is considered to be a sim-

ple model where the idea of renormalization in quantum field theory is used (Bethe and

Peierls, 1935; Thomas, 1935; Gosdzinsky and Tarrach, 1991; Manuel and Tarrach, 1994;

Mead and Godines, 1991; Perez and Coutinho, 1991; Thorn, 1979; Huang, 1992; Jackiw,

1991; Phillips et al., 1998; Mitra et al., 1998; Nyeo, 2000; Adhikari and Frederico, 1995).

From a purely mathematical point of view, the formal Hamiltonian operator as-
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sociated with delta potentials is not a well defined operator in L2(Rn) due to the fact

that δ does not map square integrable functions to the square integrable functions. A de-

tailed exposition of the subject (in terms of quadratic forms, nonstandard analysis, Von

Neumann’s approach to self-adjoint extensions of symmetric operators are some of the

rigorous approaches to the problem) has been extensively discussed in the monographs

(Albeverio and Kurasov, 2000; Albeverio et al., 1988). There are several thesis about such

singular interactions, e.g., see (Cacciapuoti, 2005; Altunkaynak, 2005; Gopalakrishnan,

2006; Erman, 2010; Surace, 2010; Tunalı, 2014; Kızılkaya, 2020), and they summarize

the subject in very detail, so we shall not review all the aspects of such singular potentials.

Another result in this paper is about the stationary scattering solutions for finitely

many Dirac delta potentials in one dimension. This is achieved in momentum space by

using the distributional solutions (Lieber, 1975; Schmalz et al., 2010) in contrast to the

well-known method, known as iε prescription (Shankar, 2012). The boundary conditions

for the scattering, namely outgoing boundary conditions, are explicitly used within this

method, whereas the boundary conditions are implicit in the iε prescription.

The thesis is organized as follows. In Chapter 2, we shortly review the neces-

sary concepts, important theorems about the distribution theory. Chapter 3 introduces the

methodology for the finite number of Dirac delta potentials and the problem is expressed

in terms of a finite dimensional matrix. Then, the bound state and stationary scattering

problem using the distribution theory is studied. In Chapter 4, we give a brief exposition of

the perturbation theory for symmetric matrices in order to make the thesis self-contained.

Chapter 5 is the main topic of the thesis, where we derive the energy splitting formula

as the distance between the supports of delta potential is large by developing a kind of

perturbation theory applied to the finite dimensional matrix instead of Hamiltonian.
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CHAPTER 2

SOME ELEMENTARY RESULTS IN DISTRIBUTION

THEORY

The Dirac delta function, usually denoted by δ(x) is a very useful and convenient

tool in Quantum mechanics. It was first described as an ordinary function, where its value

is infinite at x = 0 and zero everywhere else. After its heuristic description, its rigorous

formulation was given by Schwartz in terms of so-called distributions. Another advantage

of distributions is the availability of derivatives and this makes them useful in the theory

of partial differential equations. Distributions are defined by the linear functionals of a

suitable space of test functions. This section introduces some elementary concepts and

some useful theorems that we are going to use in this thesis.

The basic idea of the definition of Dirac delta distribution is not difficult. Its

motivation is based on the following question: Can we find a kind of mathematical “filter”

for a given sufficiently smooth function f(x) such that the result of filtering is the value

of the function at any prescribed point x0 ? (Balakrishnan, 2003) For simplicity, let us

choose x0 = 0. In other words, we are looking for this mathematical filter δ such that the

expression below is satisfied:

〈δ, f〉 = f(0) . (2.1)

In order to give a precise definition of delta function, we need to give some definitions

from the theory of distributions (Appel, 2007).

Definition 2.1 (Gustafson and Sigal, 2011)

The support of a function f : R → R is the closure of the set where it is non-zero :

supp(f) := {x ∈ R : f(x) �= 0} . (2.2)
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Definition 2.2 (Appel, 2007)

The test function space, denoted by D(R), is the vector space of functions φ from R into

R, which are class of C∞(R) and have bounded support. A test function is any function

φ ∈ D(R).

Definition 2.3 (Debnath et al., 2005)

A linear functional T on the space D(R) is a rule that we assign to every test function φ

a real number denoted by f 〈T, φ〉 such that

〈T, c1φ1 + c2φ2〉 = c1〈T, φ1〉+ c2〈T, φ2〉 , (2.3)

for arbitrary test functions φ1 and φ2.

Convergence of the sequence of the test function is rather technical since we need to

define a topology on this vector space. The natural definition of convergence in the space

of test functions is given by

Definition 2.4 (Appel, 2007)

A sequence of test functions (φn)n∈N ∈ D converges to a function φ ∈ D if

• the supports of the functions φn are contained in a fixed bounded subset, indepen-

dent of n,

• all the partial derivatives of all order of the φn converge uniformly to the corre-

sponding partial derivative of φ.

Definition 2.5 (Kanwal, 2012)

A linear functional on D is continuous if and only if the sequence of complex numbers

〈T, φn〉 converges 〈T, φ〉 when the sequence of test functions {φn} converges to the test

function φ.

Now we can give the definition of a distribution:

Definition 2.6 (Appel, 2007)

A distribution on R is any continuous linear functional defined on D(R). The distributions

form a vector space called the space of distributions and denoted by D′
(R).

5



The following theorem helps us that any locally integrable function defines a distribution.

Theorem 2.1 (Appel, 2007)

For any locally integrable function f : R → R, there is an associated distribution T ,

defined by

〈T, φ〉 :=
∫
R

f(x)φ(x)dx , (2.4)

for all φ ∈ D(R). This is called a regular distribution associated with the locally inte-

grable function f(x).

The proof of this theorem can be found in (Appel, 2007), where one must show that the

above map is linear and continuous functional.

All the other distributions are called singular distributions. Dirac delta disribution

is just a particular singular distribution, that is,

Definition 2.7 (Appel, 2007)

The Dirac delta distribution is a singular distribution which maps the test functions to the

their values at x = 0, i.e.,

〈δ, φ〉 := φ(0) , (2.5)

for all φ ∈ D(R).

Most of the time in applications, it is convenient to write the above definition by treating

Dirac delta distributions as if it is a regular distribution and we write the left hand side is

expressed in terms of an integral as follows:

∫
R

δ(x)φ(x)dx = φ(0) . (2.6)

Alternatively, Dirac delta distributions can be defined as the limit of some certain se-
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quence of ordinary functions δn(x) in the sense that

lim
n→∞

∫
R

δn(x)φ(x)dx = φ(0) . (2.7)

This formula is known as shifting property or reproducing property of the Dirac delta

distributions (Kanwal, 2012). There are several examples for such sequences and their

general properties are summarized in (Kanwal, 2012).

The motivation for defining some algebraic and analytical operations on distribu-

tions is based on the idea that we somehow convert the expressions that we do not know

to the expressions that we know how to deal with it. Therefore, one can define the product

of distributions by some smooth functions in the following way:

Definition 2.8 (Appel, 2007)

Let T ∈ D′
(R) be a distribution and let ψ be a function in C∞(R). The product ψT ∈

D′
(R) is defined by

〈ψT, φ〉 := 〈T, ψφ〉 , (2.8)

for any φ ∈ D(R).

Notice that the right hand side is well-defined since the product of infinitely differentiable

functions with test functions gives again test functions. That is the reason that we define

the product of distributions with smooth functions. In particular, we have an explicit and

useful formula for the product of Dirac delta distribution with smooth functions:

Lemma 2.1 (Appel, 2007)

Let ψ be a C∞(R) function. Then

ψ(x)δ(x) = ψ(0)δ(x) , (2.9)

in the distributional sense.

The above equation (2.9) should be understood in the distributional sense, i. e. , it makes

7



sense only if they act on some test functions space:

〈ψ(x)δ(x), φ(x)〉 = 〈ψ(0)δ(x), φ(x)〉 , (2.10)

for any test functions φ.

Proof:

〈ψδ, φ〉 := 〈δ, ψφ〉 = ψ(0)φ(0) = ψ(0)〈δ, φ〉 = 〈ψ(0)δ, φ〉 . � (2.11)

In particular, if ψ(x) = x ∈ C∞(R),

xδ(x) = 0 . (2.12)

Theorem 2.2 The equation

xT (x) = 0 (2.13)

with an unknown distribution T , admits the multiples of the Dirac Delta distribution as

solutions, and these are the non-trivial only solutions

x T (x) = 0 ⇐⇒ T = αδ ,with α ∈ C . (2.14)

Proof: (⇐): If T = αδ, then from (2.12) we obtain the equation (2.13).

(⇒) : Suppose xT (x) = 0 for some regular distribution T associated with a

locally integrable function f(x). It means that

〈xT (x), φ(x)〉 = 〈T (x), xφ(x)〉 =
∫
R

f(x)xφ(x)dx = 0 , (2.15)
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for all test functions φ(x). Since xφ(x) is a test function as well, call it as ψ(x), we have

∫
R

f(x)ψ(x)dx = 0 for all ψ(x) in test functions . (2.16)

It implies that f(x) ≡ 0. Actually, there will be no other singular distributions and this is

given in (Appel, 2007), which we are not going to show it here explicitly. In fact, one can

think that there could be other distributional solutions of the equation (2.13). For instance,

T (x) = x2δ(x). But this is a trivial solution. �
Similarly, one can define the derivative of distributions within the same philosophy

mentioned above. Consider first a regular distribution T . Then, we have

〈T ′, φ〉 =
∫
R

f ′(x)φ(x)dx = −
∫
R

f(x)φ′(x)dx = −〈T, φ′〉 , (2.17)

where we have used the integration by parts thanks to the compact support of the test

functions. This motivates us to define

Definition 2.9 (Kanwal, 2012)

The distributional derivative of a distribution T is defined by

〈T ′, φ〉 = −〈T, φ′〉 , (2.18)

for all test functions φ.

As an explicit example, let us consider the regular distribution associated with

Heaviside step function (which is 1 when x > 0 and zero otherwise) defined by 〈H,φ〉 :=∫∞
0

φ(x)dx. Then, the derivative (in the sense of distributions) of H becomes

〈H ′, φ〉 = −〈H,φ′〉 = −
∫ ∞

0

φ′(x)dx = φ(0) = 〈δ, φ〉 , (2.19)

for all test functions φ. This means that H ′ = δ.

9



2.1. Principal Value as a Distribution

Consider the following function 1
x
. It is easy to see that it does not define a regular

distribution since it is not integrable around x = 0. On the other hand, it is well-known

that (Kanwal, 2012) its Cauchy Principal Value is well-defined, that is,

P.V

∫ ∞

−∞

φ(x)

x
dx := lim

ε→0+

[∫ −ε

−∞

φ(x)

x
dx+

∫ ∞

ε

φ(x)

x
dx

]
, (2.20)

the limit on the right hand side always exists. This suggests to define the principal value

as a distribution:

〈P.V (1/x) , φ〉 := P.V

∫ ∞

−∞

1

x
φ(x)dx . (2.21)

Let us now show that P.V (1/x) is a distribution. This can be shown by using the definition

of distribution check that it is continuous linear functional. Alternatively, one can directly

show that it is a distributional derivative of the regular distribution associated with the

function log |x|. This can be done by using the integration by parts formula as follows

(Dijk, 2013):

〈P.V (1/x), φ〉 = − lim
ε→0+

∫
|x|≥ε

log |x|φ′(x)dx = −
∫ ∞

−∞
log |x|φ′(x)dx , (2.22)

or equivalently P.V (1/x) = (log |x|)′.

Theorem 2.3 The principal value of 1/x satisfies

x P.V (1/x) = 1 . (2.23)
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Proof: For any test function φ ∈ D(R), we have by definition of product of a distribution

P.V.(1/x) by a C∞(R) function :

〈x P.V (1/x), φ〉 = 〈P.V (1/x), xφ〉 = lim
ε→0+

∫
|x|>ε

xφ(x)

x
dx

=

∫ ∞

−∞
φ(x)dx = 〈1, φ〉 , (2.24)

for all φ ∈ D(R). �

Theorem 2.4 The solutions in the space of distributions of the equation

xT (x) = 1 (2.25)

are given by

T (x) = P.V (1/x) + αδ(x) where α ∈ C . (2.26)

Proof: If T satisfies xT (x) = 1, then if we define S(x) := T (x)− P.V (1/x) satisfies

xS(x) = 0 . (2.27)

from the theorem (2.3). Then, by the Theorem (2.2) , we get

S(x) = αδ(x) ⇒ T (x) = P.V (1/x) + αδ . � (2.28)

As a consequence of the previous results, one can easily prove the below theorem

(Appel, 2007), which will be used in our calculations later on:
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Theorem 2.5 The distributional solutions of (x2 − a2)T (x) = 1 are given by

T (x) = Aδ(x− a) + Bδ(x+ a) + P.V

(
1

x2 − a2

)
, (2.29)

where a > 0, A,B are arbitrary complex numbers, and

P.V

(
1

x2 − a2

)
:=

1

2a

(
P.V.

(
1

x− a

)
− P.V

(
1

x+ a

))
. (2.30)

2.2. Fourier Transform of Distributions

Let us also give the definition of the Fourier transform of distributions, in particu-

lar, Dirac delta distribution. This is the extension of the definition of Fourier transform of

square integrable function ψ(x), given by

(F(ψ))(p) : ψ̂(p) =

∫
R

e−ipxψ(x)dx , (2.31)

to the larger class “functions”. This can be achieved if we restrict the class of distributions

to the so-called tempered distributions. Let S be the set of infinitely differentiable and

“rapidly decaying functions” together with their derivatives. S is called Schwartz space.

The space of continuous linear functionals on S is known as the tempered distributions.

Here we skip some technical details, such as the convergence of the sequence of functions

in Schwartz space and the technical definition of rapid decays. One can consult for all

these technical details to (Kanwal, 2012; Dijk, 2013; Appel, 2007). Once we define the

tempered distributions, we can define their Fourier transform by following the same spirit

of the above definitions for differentiation and multiplication, that is,

Definition 2.6 The Fourier transform of a tempered distribution T is defined by

〈F(T ), φ〉 := 〈T,F(φ)〉 , (2.32)
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for any φ ∈ S(RD).

Using the above definition, we can find the Fourier transform of Dirac delta dis-

tribution δ(x) as

〈F(δ), φ〉 = 〈δ,Fφ〉 = 〈δ, φ̂〉 := φ̂(0) . (2.33)

From the Fourier transform of φ(x)

φ̂(0) =

∫
R

e−ipxφ(x) dx

∣∣∣∣
p=0

=

∫
R

φ(x) dx = 〈1, φ〉 . (2.34)

Hence we get 〈F(δ), φ〉 = 〈1, φ〉 for all φ, i.e., formally

F(δ) = 1 . (2.35)

As a final remark, the reason why we have to restrict the class of test functions lies in

the fact that the Fourier transform of a compactly supported function is not necessarily

compactly supported. However, the Fourier transform of a Schwartz function is always

Schwartz function (Appel, 2007). All the above definitions and results can be extended to

the higher dimensions.
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CHAPTER 3

FINITELY MANY DIRAC DELTA POTENTIALS IN ONE

DIMENSION

In this thesis, there are two main problems which are bound state problem and

stationary scattering problem.

3.1. Bound State Problem

In one dimension, the time-independent Schrödinger equation with N Dirac delta

potential is formally given by

− �
2

2m

d2ψ(x)

dx2
−

N∑
i=1

λiδ(x− ai)ψ(x) = Eψ(x) , (3.1)

where ai is the location of support of the Dirac delta function. We assume that ai �= aj

for i �= j and λi > 0 for all i, which means that the supports of Dirac delta potentials do

not coincide and they are given fixed points. Since E < 0 for bound states, it is useful to

parametrize the energy as follows

E = −ν2 , (3.2)

where ν > 0. Then, by applying the formal Fourier transform to Equation (3.1), we find

the Fourier transformed wave function:

ψ̂(p) =
1(

p2

2m
+ ν2

) N∑
i=1

λiψ(ai)e
− ipai

� . (3.3)
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This formula includes the unknown quantities ν2 and ψ(ai). Therefore, we first need to

find them. Let us define

Bi := ψ(ai) =

∫ ∞

−∞
ψ̂(p)e

ipai
�

dp

2π�
, (3.4)

where we have used the formal inverse Fourier transformation given by

ψ(x) :=

∫ ∞

−∞
ψ̂(p)e

ipx
�

dp

2π�
. (3.5)

Substituting the equation (3.3) into the equation (3.4), we get

Bi =

∫ ∞

−∞

1(
p2

2m
+ ν2

) N∑
j=1

λjBje
− ipaj

� e
ipai
�

dp

2π�
. (3.6)

Let us split the j = i-th term in the summation

Bi =

∫ ∞

−∞

1(
p2

2m
+ ν2

)λiBi
dp

2π�
+

∫ ∞

−∞

1(
p2

2m
+ ν2

) N∑
j �=i

λjBje
ip(ai−aj)

�

dp

2π�
, (3.7)

or we can rewrite the equation (3.7) as

⎛⎝1− λi

∫ ∞

−∞

1(
p2

2m
+ ν2

) dp

2π�

⎞⎠Bi

−
N∑
j=1
(j �=i)

⎛⎝λj

∫ ∞

−∞
e−

ip(ai−aj)

�

1(
p2

2m
+ ν2

) dp

2π�

⎞⎠Bj = 0 . (3.8)

This equation can be written in a more compact way

N∑
j=1

ΓijBj = 0 , (3.9)
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by defining the following matrix

Γij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− λi

∫ ∞

−∞

1
p2

2m
+ ν2

dp

(2π�)
if i = j ,

−λj

∫ ∞

−∞

e
ip(ai−aj)

�

p2

2m
+ ν2

dp

(2π�)
if i �= j ,

(3.10)

where i = j part is diagonal part and i �= j part is non-diagonal part.

Since we would like to formulate our problem in terms of a symmetric matrix, let us scale

Bj by

Bj =
1

λj

Aj , (3.11)

so that the equation (3.9) becomes

N∑
j=1

ΦijAj = 0 , (3.12)

where

Φij(ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

λi

−
∫ ∞

−∞

1
p2

2m
+ ν2

dp

(2π�)
if i = j ,

−
∫ ∞

−∞

e
ip(ai−aj)

�

p2

2m
+ ν2

dp

(2π�)
if i �= j .

(3.13)

All the nontrivial solutions to the equation (3.12) give us the bound state energies of the

system. Firstly, let us calculate the integrals in the definition of the matrix Φ. Let us call

the indefinite integral in the diagonal part of Φ by I1 :

I1 :=

∫ ∞

−∞

1
p2

2m
+ ν2

dp

2π�
=

2m

2π�

∫ ∞

−∞

dp

p2 + 2mν2
. (3.14)
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By making a change of variables, p = ν
√
2m tan(θ) , it is easy to find

I1 =

√
m

2

1

�ν
. (3.15)

Let us also define the improper integral in the off-diagonal part of Φ as I2 :

I2 :=

(
m

π�

)∫ ∞

−∞

e
ip(ai−aj)

�

p2 + 2mν2
dp

=
m

π�

∫ ∞

−∞

e
ip(ai−aj)

�

p2 + 2mν2
dp =

(
m

π�

)
lim
R→∞

∫ R

−R

e
ip(ai−aj)

�

p2 + 2mν2
dp . (3.16)

Since the above improper integral is convergent which is easy to check, we have consid-

ered the Cauchy principal value (P.V) of the integral I2, see e.g.; (Brown et al., 2009).

Notice that the poles appear on the imaginary axis given by p = ±i
√
2mν, so that we can

easily evaluate the integral by Residue theorem, (Brown et al., 2009). By choosing the

Figure 3.1. The choice of the contour for I2 for (ai − aj) > 0.

contour as shown in Figure (3.1) for (ai − aj) > 0, the Residue theorem tells us

m

π�

∮
e

ip(ai−aj)

�

p2 + 2mν2
dp = 2πi

(m

π�

)
Res(p=iν

√
2m)

[
e

ip(ai−aj)

�

p2 + 2mν2

]
. (3.17)
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The left-hand side can be decomposed as

(m

π�

)[∫ R1

−R1

e
ip(ai−aj)

�

p2 + 2mν2
dp+

∫
CR1

e
ip(ai−aj)

�

p2 + 2mν2
dp

]
. (3.18)

As R1 → ∞, the first integral is the one we are looking for and the second one goes to

zero thanks to the Jordan lemma. The right-hand side of the equation (3.17) becomes

√
m

2

1

�ν
e−

√
2mν(ai−aj)

� . (3.19)

On CR1 , p = R1e
iθ where 0 ≤ θ ≤ π

2
and dp = R1ie

iθdθ. Then ,

∣∣∣∣∣
∫ π/2

0

(m

�π

) e
iR1e

iθ(ai−aj)

�

R2
1e

2iθ + 2mν2
R1ie

iθdθ

∣∣∣∣∣
≤

(m

�π

)∫ π/2

0

∣∣∣∣∣e−R1sin(θ)(ai−aj)

�

∣∣∣∣∣ |R1|
|R2

1e
2iθ + 2mν2| (3.20)

as R1 → ∞.

Figure 3.2. The choice of the contour for I2 for (ai − aj) < 0.

18



Similarly, for (ai − aj) < 0, we choose the contour as shown in the figure (3.2)

(
m

π�

)∮
e

ip(ai−aj)

�

p2 + 2mν2
dp =

√
m

2

1

�ν
e

√
2mν(ai−aj)

� . (3.21)

Combining all these results (3.15), (3.19) and (3.21), we finally obtain

Φij(ν) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

λi

−
√

m

2

1

�ν
if i = j ,

−
√

m

2

1

�ν
e−

√
2mν|ai−aj |

� if i �= j .

(3.22)

The matrix Φ is called principal matrix. This terminology is first introduced by S. G.

Rajeev when he discussed the many-body version of these potentials, (Rajeev, 1999). We

have non-trivial solution of

∑
j

ΦijAj = 0 , (3.23)

if and only if

det(Φij(ν)) = 0 . (3.24)

If we solve (3.24), we will find bound state energies from E = −ν2.

Let us summarize our results by the following theorem:

Theorem 3.1 Bound state energies E = −ν2 of N attractive Dirac delta potentials in

one dimension are given by the solutions of det(Φij(ν)) = 0, where Φ is the N × N

matrix given by (3.22).

In general, this equation is difficult to solve analytically since it is a transcendental

equation. For this reason, we consider particular cases.
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3.1.1. One Center Case

For N = 1 and a = 0 we have always one bound state and the bound state energy

can be found from the solution of

1

λ
−

√
m

2

1

�ν
= 0 . (3.25)

Hence, we obtain the well-known result in the literature (Griffiths and Schroeter, 2018)

E = −mλ2

2�2
. (3.26)

One can also find the bound state wave function by taking the inverse Fourier transforma-

tion of the solution (3.3),

ψ(x) =

√
mλ

�2
e−

mλ
�2

|x| , (3.27)

which is also consistent with the result in (Griffiths and Schroeter, 2018). The most

common approach for this single Dirac delta potential is to solve the Schrödinger equation

in cooridnate space separately for the regions x < 0 and x > 0, and then apply the

continuity and jump discontunity conditions for the wave function at x = 0. This will

give exactly the same result given above.

3.1.2. Two Center Case

Theorem 3.2 For N = 2, we have at most two bound states. In order to have exactly two

bound states, then the distance d = |a1 − a2| between the delta centers must satisfy

d >
�
2

2m

(
1

λ1

+
1

λ2

)
= dcritical . (3.28)
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Proof: For N = 2, the equation (3.22) is reduced to

Φ(ν) =

⎛⎜⎝ 1
λ1

−√
m
2

1
�ν

−√
m
2

e−
√

2mν|a1−a2|
�

�ν

−√
m
2

e−
√

2mν|a1−a2|
�

�ν
1
λ2

−√
m
2

1
�ν

⎞⎟⎠ . (3.29)

Then, the bound state condition (3.24) turns out to be

(
1

λ1

−
√

m

2

1

�ν

)(
1

λ2

−
√

m

2

1

�ν

)
=

(
m

2�2ν2
e−

2
√

2mν|a1−a2|
�

)
. (3.30)

By multiplying both sides with λ1λ2ν
2, we obtain

(
ν −

√
m

2

λ1

�

)(
ν −

√
m

2

λ2

�

)
=

mλ1λ2

2�2
e−

2
√

2mν|a1−a2|
� . (3.31)

Let us denote ν = x > 0,
√

m
2

λ1

�
= c1,

√
m
2

λ2

�
= c2 and

2
√
2m|a1−a2|

�
= β, then the above

equation (3.31) reads

(x− c1)(x− c2) = c1c2e
−βx , (3.32)

which is a transcendental equation and it is hard to solve analytically. Instead of finding

explicit analytical solutions, let us analyze whether there exist solutions or not by simply

plotting the graph of functions in both sides of the equation (3.32). We have always at

least one root. First, let us analyze the number of positive roots of the equation (3.32).

Since the right-hand side is a positive monotonically decreasing function of x whereas

the parabola in the left-hand side is increasing function of x when x is sufficiently large,

as shown in the figure (3.3). Now, as it is easy to see from the figure (3.3), we may not

have the 2nd root always. However, we have the 2nd root if the slope of the left hand side

exceeds the slope of the left hand side near the origin in magnitude:

c1 + c2 < βc1c2 . (3.33)
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Figure 3.3. (a) Graph of (x−c1)(x−c2) and c1c2e
−βx for c1 = 5, c2 = 20 and β = 0.1

(b) Graph of (x−c1)(x−c2) and c1c2e
−βx for c1 = 1, c2 = 1.7 and β = 2.5

By going back to the original variables, we obtain the desired condition. The meaning

of the equations is that if the distance between centers is larger than the above mentioned

critical distance, then we have exactly two bound states. �
Let us consider the following particular case, where the strengths of each Dirac

delta potential are the same :

Theorem 3.3 For N = 2 and c1 = c2 = c, the bound state energies of the system in the

presence of two point interactions are explicitly given by

E± = −
[√

m

2

λ

�
+

�√
2m|a1 − a2|

W

(
±mλ|a1 − a2|

�2
e−

mλ|a1−a2|
�2

)]2
, (3.34)

where W (z) is the Lambert W function.

Proof: For c1 = c2 = c (λ1 = λ2 = λ), equation (3.32) becomes

(x− c)e
βx
2 = ±c . (3.35)

Rewriting this equation in the following form

β

2
(x− c)e

β(x−c)
2 = ±βc

2
e−

βc
2 . (3.36)
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x

W x

Figure 3.4. The graph of Lambert W (x) function

Solutions of this equation can be expressed in terms of the Lambert W function. There are

many applications about the Lambert W function such as enumeration of trees in com-

binatorics, in the solution of iterated exponentiation, a jet fuel problem and an enzyme

kinetics problem, capacitor fields, conformal mapping, and also in Wien’s displacement

law,(Corless et al., 1996) (Valluri et al., 2000). The definition of the function is given by

the solution of the transcendental equation below :

y ey = x ⇒ y ≡ W (x) . (3.37)

Therefore, the solution to equation (3.36) becomes

β

2
(x± − c) = W

(
±βc

2
e−

βc
2

)
, (3.38)

and

x± = c+
2

β
W

(
±βc

2
e−

βc
2

)
. (3.39)
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Back to our original variables, we have

ν =

√
m

2

λ

�
+

�√
2m|a1 − a2|

W

(
±mλ|a1 − a2|

�2
e−

mλ|a1−a2|
�2

)
. (3.40)

Since E = −ν2, we can easily find the desired result. �

Corollary 3.4 (Special Case)

For N = 2, λ1 = λ2 = λ and also a1 = −a and a2 = a, we have at most two bound

states. The critical distance is

d = 2a >
�
2

mλ
= dcritical . (3.41)

3.2. Stationary Scattering Problem

Actual time-dependent physical scattering problem can be described in the context

of stationary Schrödinger equation if the wave function of the incoming particle to the

potential center is sharply peaked around p = k (Faddeev and Yakubovskii, 2009). For

this reason, it is sufficient to study the time-independent Schrödinger equation where

E = �2k2

2m
:

− �
2

2m

d2ψ

dx2
−

N∑
j=1

λjδ(x− aj)ψ(x) =
�
2k2

2m
ψ(x) . (3.42)

Suppose that a1 < a2 < · · · < aN without loss of generality. Here λj are real numbers.

As we did for the bound states, let us solve the scattering problem in momentum space in

the same spirit discussed in (Lieber, 1975) for the single delta center.

Let us first rewrite the above equation in the following form :

ψ
′′
(x) + k2ψ(x) = −2m

�2

N∑
j=1

λjδ(x− aj)ψ(x) . (3.43)
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The solution of the inhomogeneous equation (3.43) can be written in terms of Green’s

function :

ψk(x) = eikx +

∫ ∞

−∞
G0(x− x′, Ek)ρ(x

′)dx′ , (3.44)

where ρ(x) = −2m
�2

∑N
j=1 λjδ(x − aj)ψ(x), and eikx is the solution of the homogeneous

part and (which physically represent wave function of the incoming particle), and G0

satisfies the following differential equation together with the outgoing boundary condi-

tion G0(y;Ek) ∼ eik|y| as y → ±∞ (also called Sommerfeld radiation condition in one

dimension):

( d2

dy2
+ k2

)
G0(y, Ek) = δ(y) . (3.45)

This is indeed the Green’s function for the Helmholtz equation under the outgoing bound-

ary condition in one dimension. By taking formal Fourier transformation of this equation,

we get

(
− p2

�2
+ k2

)
Ĝ0(p;Ek) = 1 . (3.46)

Our goal is to solve the equation (3.46). The solution is

Ĝ0(p) =
1

k2 − p2

�2

=
�
2

�2k2 − p2
, (3.47)

if we are looking for solution in function space that are square integrable. Here we require

the distributional solutions for scattering problem, so we need to include them. The dis-

tributional solutions to algebraic equations was discussed in previous Chapter. Therefore,

using the Theorem (2.5), we have the following general solution

Ĝ0(p) = Aδ(p− �k) + Bδ(p+ �k)− �
2 P.V

(
1

p2 − �2k2

)
. (3.48)
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One can also solve this using iε prescription method (Shankar, 2012), where the boundary

conditions are implicitly used. With this distributional solution approach, we will explic-

itly impose the boundary conditions. This was also discussed in (Lieber, 1975; Schmalz

et al., 2010). The formal inverse Fourier transformation is then

Ĝ0(y) =

∫ ∞

−∞
e

ipy
� Ĝ0(p)

dp

2π�
. (3.49)

Substituting the equation (3.48) into the equation (3.49) , we have

G0(y) =

∫ ∞

−∞
e

ipy
�

[
Aδ(p− �k) + Bδ(p+ �k)

]
dp

2π�

−�
2 P.V

∫ ∞

−∞

e
ipy
�

p2 − �2k2

dp

2π�
. (3.50)

Firstly, we need to compute the principal values

P.V

∫ ∞

−∞

e
ipy
�

p2 − �2k2

dp

2π�

=
1

4π�2k

(
P.V

∫ ∞

−∞

e
ipy
�

p− �k
dp− P.V

∫ ∞

−∞

e
ipy
�

p+ �k
dp

)
, (3.51)

for y > 0. Consider the first principal value

I(k) := P.V

∫ ∞

−∞

e
ipy
�

p− �k
dp . (3.52)

It has a simple pole at p = �k on the real axis. Let us choose the contour C on the

complex p plane, consisting of 3 pieces:

C1: The clockwise semi-circle contour around the pole p = �k
C2: The contour along real axis with removed ε neighborhood of the poles.

CR: The counterclockwise semi-circle contour with radius R on the upper half plane .
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Then, we have

∫
C1

e
ipy
�

p− �k
dp+

∫
C2

e
ipy
�

p− �k
dp+

∫
CR

e
ipy
�

p− �k
dp = 0 , (3.53)

where we have used the Residue theorem (Brown et al., 2009) and the fact that integrand

is analytic inside the closed contour C = C1 ∪ C2 ∪ CR. The following theorem will be

useful in evaluating the contour integral over C1 and C2:

Theorem 3.5 (Ablowitz et al., 2003) Consider the following contour shown in Figure 3.5

below and suppose f(z) has a simple pole at z = z0 with residue Res(f(z); z0) = c.

Figure 3.5. Small Contour arc Cε

Then, we have

lim
ε→0

∫
Cε

f(z)dz = iφ c . (3.54)

Proof: If f(z) has a simple pole with Res(f(z); z0) = c, then from the Laurent expansion

of f(z) in the neighborhood of z = z0

f(z) =
c

z − z0
+ g(z) , (3.55)

where g(z) is analytic in the neighborhood of z = z0. Thus,

lim
ε→0

∫
Cε

f(z)dz = lim
ε→0

c

∫
Cε

dz

z − z0
+ lim

ε→0

∫
Cε

g(z)dz . (3.56)
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Along the contour Cε, we have z = z0 + εeiθ. Hence, the first integral on the right-hand

side gives

∫
Cε

dz

z − z0
=

∫ φ

0

iεeiθdθ

εeiθ
= iφ . (3.57)

As for the second integral, |g(z)| ≤ constant around the neighborhood of z = z0 since

g(z) is analytic function there. This implies that the second integral vanishes in the limit

of ε → 0 and we obtain the desired result (3.54). �
The contour integration over CR in the equation (3.53) vanishes as R → ∞ thanks

to the Jordan Lemma (Brown et al., 2009). Then, as ε → 0+ and R → ∞, we obtain the

expression for the principal value

I(k) = iπ lim
p→�k

(p− �k)e
ipy
�

(p− �k)
= iπeiky , (3.58)

for y > 0. Similarly, for y < 0 we must choose the contour CR on the lower half plane,

and C1 as the counterclockwise small contour around the pole. In this case, we have no

simple poles inside the closed contour so we get

I(k) = −iπ lim
p→�k

(p− �k)e
ipy
�

(p− �k)
= −iπeiky , (3.59)

for y < 0. Hence, we obtain the expression for the principal value

P.V

∫ ∞

−∞

e
ipy
�

p2 − �2k2

dp

2π�
=

1

4π�2k

(
I(k)− I(−k)

)

=
i

4�2k

⎧⎪⎨⎪⎩
(−eiky + e−iky

)
y < 0 ,(

eiky − e−iky
)

y > 0 .

(3.60)

Consequently, the equation (3.50) for y > 0 becomes

G0(y) = eiky
( A

2π�
− i

4k

)
+ e−iky

( B

2π�
+

i

4k

)
. (3.61)

28



By applying the boundary conditions for Green’s functions (we do not expect reflections

in the positive axis if we assume that the particle is sent from the far left region), we have

B

2π�
= − i

4k
. (3.62)

For y < 0,

G0(y) = eiky
( A

2π�
+

i

4k

)
+ e−iky

( B

2π�
− i

4k

)
. (3.63)

By the outgoing boundary condition mentioned before, the first term on the right hand

side of above equation must be zero. Then, we have

G0(y) = e−iky
( B

2π�
− i

4k

)
. (3.64)

Since B
2π�

= − i
4k

, we find

G0(y) = −
(

i

2k

)
eik|y| . (3.65)

Finally, we can find the scattering wave function ψ+
k (x) satisfying outgoing boundary

condition after inserting G0(y) obtained above:

ψ+
k (x) = eikx +

im

�2k

N∑
j=1

λje
ik|x−aj |ψ+

k (aj) . (3.66)

Actually, this is not the final result since we have an unknown expression ψk(aj) on the

right hand side of the equation. To find this, let us consider the consistency conditions.
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For x = ai :

ψ+
k (ai) = eikai +

im

k�2
λiψ

+
k (ai) +

im

k�2

N∑
j=1
(j �=i)

λje
ik|ai−aj |ψ+

k (aj) , (3.67)

where we have splitted the j = ith term in the summation. Then, we arrange the equation

(3.67) as

(
1− im

k�2
λi

)
ψ+
k (ai)−

im

k�2

N∑
j=1
(j �=i)

λje
ik|ai−aj |ψ+

k (aj) = eikai . (3.68)

If we define the following matrix,

Γij(k) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− im

k�2
λi if i = j ,

− im

k�2
λje

ik|ai−aj | if i �= j .

(3.69)

The above consistency condition can be reexpressed in a matrix form :

N∑
j=1

Γijψ
+
k (aj) = eikai . (3.70)

Let us scale the functions as ψ+
k (aj) :=

φ+
k (aj)

λj
. Then,

N∑
j=1

Γijψ
+
k (aj) = Γii

φ+
k (ai)

λi

+
N∑
j=1
(i �=j)

Γij
φ+
k (aj)

λj

= eikai . (3.71)
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Let

Φij :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γii

λi

if i = j

Γij

λj
if i �= j

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

λi

− im

k�2
if i = j ,

− im

k�2
eik|ai−aj | if i �= j .

(3.72)

Hence, we get

N∑
j=1

Φijφ
+
k (aj) = eikai , (3.73)

or

φ+
k (aj) =

N∑
j=1

(Φ−1)jle
ikal . (3.74)

Substituting this into the solution of (3.66), we prove that

Theorem 3.6 The scattering wave function in the presence of N attractive Dirac delta

potentials is given by

ψ+
k = eikx +

N∑
j,l=1

im

k�2
eik|x−aj |(Φ−1)jle

ikal . (3.75)

where the matrix Φjl is given by (3.73).

31



3.2.1. Reflection and Transmission Coefficients

Assume that the incoming particles are sent from the left. Then, the coefficient of

e−ikx in the solution of ψ+
k (x) when x < aj for all j gives us the reflection coefficient:

r(k) =
N∑

j,l=1

im

k�2
eikaj(Φ−1)jle

ikal . (3.76)

Similarly, the coefficient of eikx in the solution of ψ+
k when x > aj for all j gives us the

transmission coefficient :

t(k) = 1 +
N∑

j,l=1

im

k�2
e−ikaj(Φ−1)jle

ikal . (3.77)

For N = 1 and λ1 = λ, we get the well-known results, (Griffiths and Schroeter,

2018) :

R(k) = |r(k)|2 = m2λ2

�4k2 +m2λ2
, (3.78)

and

T (k) = |t(k)|2 = �
4k2

�4k2 +m2λ2
. (3.79)

It is easy to see that T → 1 as k → ∞. We plot the transmission coefficient as a function

of k for different values of λ in Fig. 3.6.

For N = 2 and if we choose λ1 = λ2 = λ, a1 = −a and a2 = a without loss of

generality, we find

Φij(k) =

⎛⎝ 1
λ
− im

k�2
− im

k�2
e2ika

− im
k�2

e2ika 1
λ
− im

k�2

⎞⎠ , (3.80)
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Figure 3.6. Transmission coefficients T (k) versus k for λ = 0.5 (Dashed curve), λ = 2
(Dotted curve), and λ = 10 (Black curve).

and its inverse is given by

Φ−1
ij (k) =

1

detΦ

⎛⎝ 1
λ
− im

k�2
− im

k�2
e2ika

− im
k�2

e2ika 1
λ
− im

k�2

⎞⎠ , (3.81)

where

det(Φ) =
(1
λ
− im

k�2

)2

+
m2

k2�4
e4ika. (3.82)

Then, from the formula for the reflection coefficient (3.76) we have

r(k) =
im

k�2

[
eika1Φ−1

11 e
ika1 + eika1Φ−1

12 e
ika2 + eika2Φ−1

21 e
ika1 + eika2Φ−1

22 e
ika2

]
. (3.83)

Since a1 = −a, a2 = a, we obtain the explicit formula of the reflection coefficient as

r(k) =
1

detΦ

im

k�2

[
e−2ika

(
1

λ
− im

k�2

)
+

2im

k�2
e2ika + e2ika

(
1

λ
− im

k�2

)]

=
1

detΦ

im

k�2

[(1
λ
− im

k�2

)(
e2ika + e−2ika

)
+

2imλ

k�2
e2ika

]
. (3.84)
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Then, one can find R(k) = |r(k)|2 and similarly T (k) = 1 − R(k). One can also plot

Figure 3.7. Transmission coefficient versus k for particular values of the parameters

a = 2 and λ = 1 units.

the transmission coefficients as a function of k for larger number of delta potentials, see

Fig. 3.8. It is interesting to notice that the transmission coefficients form zero bands as

we increase the number of Dirac delta potentials periodically. This is one way to show

the energy band gaps for a periodic delta lattice (Rorres, 1974). The values of k for which

T (k) = 1 are known as the transmission resonances (Erman et al., 2018).

Figure 3.8. Transmission coefficient for N = 5 versus k for particular values of the

parameters a = 2 and λ = 1 units.
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CHAPTER 4

PERTURBATION THEORY

We would like to review very basic results in perturbation theory in this chapter

so that we can use them in the next chapter.

4.1. Basic Idea of Perturbation Theory in a Simple Example

Perturbation theory was first introduced for studying the motion of planets in ce-

lestial mechanics originally studied by Poincaré (Poincaré, 1893). In order to give the

motivation of the method, let us consider the simplest situation, where we are looking for

a solution to some polynomial equations. Suppose the problem is to find the roots of

x2 − 3.99x+ 3.02 = 0 . (4.1)

Certainly, it can be solved by the quadratic formula. However, suppose that we can not

obtain an analytical formula (which could be the case for transcendental or higher order

polynomial equations). Let us illustrate the idea of the perturbation theory within this

simple example (Murdock, 1999). There are essentially four steps:

1. Since −3.99 = −4 + 0.01 and 3.02 = 3 + 0.02, the above equation (4.1) can be

approximated by x2 − 4x + 3 = 0 and this can be solved easily (or we sometimes

obtain exact solutions) by factorizing it as (x− 1)(x− 3) = 0. We have two roots:

x1 = 1, x2 = 3.

2. In the second step, we define a family of problems depending on a small parameter

ε. For instance, if we choose ε = 0.01, then (4.1) can be rewritten as

x2 + (ε− 4)x+ (3 + 2ε) = 0 . (4.2)
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The above equation (4.2) is an example of a perturbation family, a family of prob-

lems of problems depending on the small parameter ε which is solvable when ε = 0,

that is, When ε = 0.01, the above equation becomes the target equation.

3. In the third step, we will look for approximate solutions of (4.2), in the form of

polynomials (truncated power series) in the small parameter ε, that is,

x1 = 1 + εx
(1)
1 + ε2x

(2)
1 +O(ε3) , (4.3)

x2 = 3 + εx
(1)
2 + ε2x

(2)
2 +O(ε3) . (4.4)

Substituting these into equation (4.2) and multiplying the terms out and arranging

it in the same powers of ε, the resulting equation must be true for all ε. By keeping

only terms of the order O(ε3), we obtain

x1 = 1 +
3

2
ε+

15

8
ε2 +O(ε3) , (4.5)

x2 = 3− 5

2
ε− 15

8
ε2 +O(ε3) . (4.6)

Evaluating of these solutions for ε = 0.01 up to order O(ε3) gives an approximate

solution of our original problem (4.1):

x1 ≈ 1.0121875 , (4.7)

x2 ≈ 2.9748125 . (4.8)

4. The last step is to check the amount of error in these approximations. In this exam-

ple, x1 = 1.0151913452107089 and x2 = 2.974808654789291.

This example already reveals a lot about perturbation theory. The scope of pertur-

bation theory is in general much broader, but the main idea is the same, (Murdock, 1999).

They can include more complicated functions and even differential equations. If the small
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parameter is in front of the term with the highest power or order, then the method fails,

and one must extend the method in this case, see singular perturbation theory in (Mur-

dock, 1999; Bender and Orszag, 2013). The perturbation theory in finite dimensional

matrices is extensively studied in the book (Kato, 2013) and the extension of the method

to operators in Hilbert spaces is much complicated due to the domain issues of unbounded

operators (Reed and Simon, 1978).

4.2. Perturbation Theory for Hermitian Matrices

Since we shall later consider the Dirac delta potentials in a perturbative way, and

their spectral properties are described by some N × N Hermitian matrix, we would like

to first review the subject of perturbation theory for Hermitian matrices. There are several

interesting problems in quantum mechanics that is exactly solvable. However, the num-

ber of such exactly solvable cases are limited. For this reason, approximation methods are

key for understanding physical systems. Approximation theories are frequently more un-

derstandable for physical phenomena rather than solving them based on exact numerical

solutions of the corresponding equations. One of the main approximation methods used

in quantum mechanics is the so-called perturbation theory. We will review the subject

from the textbook (Faddeev and Yakubovskii, 2009) in order to be self-contained.

Assume that Φ0 is a given self-adjoint operator defined on complete finite dimensional

Hilbert space Cn whose spectrum (its eigenvalues) is known. Suppose that δΦ is an an-

other self-adjoint operator on Cn which is “small” in some sense and consider the sum

Φ = Φ0 + δΦ . (4.9)

Here, we do not specify what is meant by the smallness of δΦ in general. Since we are

going to study the perturbation theory of matrices, we will assume that all the terms of

δΦ are much smaller than the terms of Φ0. In general, the perturbation theory in infinite

dimensional spaces is rather technical and the detailed analysis is more difficult (see e. g.,

(Rellich and Berkowitz, 1969; Reed and Simon, 1978; Kato, 2013)).
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4.2.1. Non-Degenerate Case (Simple Eigenvalues)

We begin with the problem of perturbation of a simple eigenvalue (No degeneracy

or no geometric/algebraic multiplicity). Consider the one-parameter family of operators

Φ(ε) = Φ0 + εδΦ. (4.10)

Clearly, we see Φ(0) = Φ0 and Φ(1) = Φ. Suppose that the eigenvectors and the eigen-

values of Φ0 are A(0) and ω(0), respectively, i.e. ,

Φ0A
(0) = ω(0)A(0) . (4.11)

The spectrum of Φ0 is simple which means that to each ω(0) there corresponds only one

eigenvector A(0). The eigenvalue equation for the operator Φ(ε) is

Φ(ε)A(ε) = ω(ε)A(ε) . (4.12)

Our aim is to solve the above eigenvalue problem. Suppose that A(ε) and ω(ε) are analytic

functions of ε, that is, they can be represented in the following form:

ω(ε) = ω(0) + ε ω(1) + ε2 ω(2) + . . . (4.13)

A(ε) = A(0) + ε A(1) + ε2 A(2) + . . . (4.14)

Actually, one can show that the eigenvalues and the eigenvectors of an analytic regular

matrix as a function of ε are analytic for small ε.

Theorem 4.1 Suppose that a Hermitian matrix Φij(ε) for real ε (Φij(ε) = Φji(ε)) has a

convergent power series expansion for small ε. Then, its eigenvalues are analytic function

of ε for small ε.
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Proof: Since the eigenvalues of Φ are just the roots of the characteristic equation

det

⎛⎜⎜⎜⎜⎜⎜⎝
Φ11 − ω Φ12 · · · Φ1n

Φ21 Φ21 − ω · · · Φ2n

...
. . .

...
...

· · · · · · · · · Φnn − ω

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 . (4.15)

This determinant is a polynomial of degree n in ω, that is,

ωn + c1ω
n−1 + c2ω

n−2 + . . .+ cn−1ω + cn = 0 , (4.16)

where the coefficients ci are functions of the matrix elements Φij = Φ0(ij) + εδΦij . Given

the matrix Φ, they are considered to be polynomial in ε. According to The Newton-

Puiseux Theorem (Puiseux, 1850), which states that, if f(x, y) is a polynomial in two

variables with complex coefficients, then the solutions y as functions of x for the equation

f(x, y) = 0 can be expanded as a Puiseux series y =
∑∞

k=k0
dkx

k/n where n is a positive

integer and k0 is an integer. This series is convergent in a neighbourhood of the origin

x = 0, we may now write the solution of (4.16) as

ω(ε) = ω + β1ε
1
h + β2ε

2
h + . . . (4.17)

Here h is not Planck constant. This series is known as Puiseux’s expansion and it is

convergent for small |ε|. Let βn denote the first non-zero coefficient, i.e.,

β1 = . . . = βn−1 = 0 , βn �= 0 . (4.18)

Let’s rewrite the equation (4.17) in the following way :

ω(ε) = ω + β1ε
1
h + β2ε

2
h + . . .+ βn−1ε

n−1
h + βnε

n
h + βn+1ε

n+1
h + . . . (4.19)
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The above equation is lined up as

βn =
ω(ε)− ω − ε

n
h

[
βn+1ε

1
h + βn+2ε

2
h + . . .

]
ε
n
h

=
ω(ε)− ω

ε
n
h

−
[
βn+1ε

1
h + βn+2ε

2
h + . . .

]
. (4.20)

When we take the limit as ε −→ 0+, then we find

lim
ε−→0+

ω(ε)− ω

ε
n
h

(4.21)

is real since all eigenvalues of Hermitian matrix Φ are real. On the other hand, letting

ε −→ 0−.

βn = lim
ε−→0−

ω(ε)− ω

ε
n
h

=
ω(ε)− ω

((−1)(−1)ε)
n
h

= lim
ε−→0−

1

(−1)
n
h

ω(ε)− ω

(−ε)
n
h

. (4.22)

Hence, (−1)
n
h must be real, therefore n must be a multiple of h as

n = kh , k ∈ Z . (4.23)

We can continue this argument to show that only integer powers of ε can have nonzero

coefficients. �
Similarly, one can also prove that eigenvectors can be expanded as integer power

series of ε but the proof is more complicated, see e.g., (Rellich and Berkowitz, 1969) for

the details.

Now, substituting (4.13) and (4.14) into (4.12), we obtain

(Φ0 + εδΦ)(A(0) + εA(1) + ε2A(2) + . . . )

= (ω(0) + εω(1) + ε2ω(2) + . . . )(A(0) + εA(1) + ε2A(2) + . . . ) , (4.24)
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for all ε. Since all the terms with the same powers of ε should be equal, we get the system

of equations

ε0 : Φ0A
(0) = ω(0)A(0) ,

ε1 : Φ0A
(1) + δΦA(0) = ω(0)A(1) + ω(1)A(0) ,

...

εk : Φ0A
(k) + δΦA(k−1) = ω(0)A(k) + ω(1)A(k−1) + · · ·+ ω(k)A(0) . (4.25)

These equations can be written in a more convenient way :

Φ0A
(0) = ω(0)A(0)

(Φ0 − ω(0))A(1) = (ω(1) − δΦ)A(0) ,

(Φ0 − ω(0))A(2) = (ω(1) − δΦ)A(1) + ω(2)A(0) ,

...

(Φ0 − ω(0))A(k) = (ω(1) − δΦ)A(k−1) + . . .+ ω(k)A(0) , (4.26)

where the expressions of the form Φ0 − ω(0) refer to Φ0 − ω(0)I for simplicity. By the

first equation (4.26), A(0) is an eigenvector of Φ0, and from the assumption about non-

degeneracy of the spectrum, let

A(0) = An and ω(0) = ωn , (4.27)

where we use the index n to label the n th eigenvalue/eigenvector of Φ0. Before returning

to the subsequent equations in (4.26), we select a normalization condition for the vector

A(ε). The following normalization condition

〈A(ε), A(0)〉 = 1 (4.28)
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is the most convenient choice and we have used the inner product of two vectors A and B

on C
N

(
〈A,B〉 := ∑N

n=1 AnBn

)
. Our assumption is that A(0) is normalized in the sense

that
(∑N

n=1 |A(0)
n |2

) 1
2
= 1 and the condition (4.28) is equivalent to

〈A(1), A(0)〉 = 0, . . . , 〈A(k), A(0)〉 = 0, . . . , (4.29)

for all k. Therefore, we can find the corrections A(1), A(2) . . . , A(k), . . . in the subspace

orthogonal to the vector A(0) = An. Now, we consider the second equation in (4.26). This

is an equation of the second kind with a Hermitian matrix Φ0, and ω(0) is an eigenvalue

of Φ0. This equation

(Φ0 − ω(0))A(1) = (ω(1) − δΦ)A(0) (4.30)

has a solution if and only if the right-hand side is orthogonal to the vector A(0). Let us

show this explicitly. For this, we take the inner product of both sides of the equation with

A(0) to get

〈A(0), (ω(1) − δΦ)A(0)〉 = 〈A(0), (Φ0 − ω(0))A(1)〉
= 〈Φ0A

(0), A(1)〉 − 〈A(0), ω(0)A(1)〉
= ω(0)〈A(0), A(1)〉 − ω(0)〈A(0), A(1)〉 = 0 ,

(4.31)

where we have used the equation Φ0A
(0) = ω(0)A(0) and Hermiticity of the matrix Φ0 (in

this case, ω(0) is real). Then, we obtain

(ω(1) − δΦ)A(0) ⊥ A(0) . (4.32)

Conversely, if the right-hand side of the equation (4.30) is orthogonal to A(0)

〈A(0), (ω(1) − δΦ)A(0)〉 = 0 , (4.33)
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we get more explicitly the condition

ω(1)
n = 〈δΦAn, An〉 = 〈An, δΦAn〉 . (4.34)

This result has a very simple interpretation. The first order correction ω
(1)
n to the eigen-

value ωn is just the mean value of the perturbation δΦ in the unperturbed state An.

Since the solution of the second equation in (4.26) exists under the above condi-

tion, we can formally write the solution A(1) as

A(1) = (Φ0 − ω(0))−1(ω(1) − δΦ)A(0). (4.35)

However, the above formal solution needs to be written in a more precise way. To under-

stand the problem, we must study the matrices of the form (A − λ)−1. This operator is

called the resolvent of A at λ (Kreyszig, 1978). By the spectral theorem for self-adjoint

operators A (Hermitian matrices in finite dimensional vector spaces), we have

A =
∑
m

λmPm, (4.36)

where Pm is the orthogonal projection operator onto the m th eigenvector xm associated

with the eigenvalue λm, that is the action of the projection operator on any vector y ∈ C
N

Pmy = 〈xm, y〉xm . (4.37)

Then, since the functions of matrices (A−λ)−1 for real λ is defined via spectral theorem,

we can write

(A− λ)−1 =
∑
m

Pm

λm − λ
. (4.38)
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From equation (4.38), it is easy to see that the resolvent become singular when λ coincides

with one of the eigenvalues of A, that is, when λ = λn. Let us recall that the right-hand

side of the second equation in (4.26) is orthogonal to A(0) = An and 〈A(0), A(1)〉 = 0.

Therefore, we actually need not the operator (A− λI)−1 itself, but instead (A− λI)−1
P

acting in the subspace orthogonal to the vector An, where P is the projection I − Pn onto

that subspace. Let us rewrite the operator (A− λI)−1
P in the following way now

(A− λI)−1
P = (A− λI)−1(I − Pn) = (A− λI)−1 − (A− λI)−1

Pn . (4.39)

By the spectral theorem, we obtain

(A− λI)−1
P =

∑
m

Pm

λm − λ
−

∑
m

PmPn

λm − λ
=

∑
m �=n

Pm

λm − λ
, (4.40)

where we have used the orthogonality of the projection operators PnPm = δnmPn. This

expression now makes sense and it is well-defined for λ = λn. Therefore, the precise way

of writing the solution 4.35 should be

A(1) = (Φ0 − ω(0))−1
P (ω(1) − δΦ)A(0). (4.41)

Substituting the first order correction result for the eigenvalues (4.34) into the above equa-

tion, we find

A(1) = −(Φ0 − ωn)
−1
P (Pn − I)δΦAn . (4.42)

Since P acts on the subspace orthogonal to An, that is, PPn = 0, so that

A(1) = −(Φ0 − ωn)
−1
P δΦAn . (4.43)
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Using the equation (4.40), we can express the first order correction to the eigenvectors An

as

A(1) =
N∑

m=1
(m �=n)

〈δΦAn, Am〉
ωn − ωm

Am . (4.44)

We can similarly find all the corrections of subsequent orders. By the orthogonality to

A(0) of the right-hand side of the third equation in (4.26), we get

〈(Φ0 − ω(0))A(2), A(0)〉 = 〈(ω(1) − δΦ)A(1) + ω(2)A(0), A(0)〉 = 0 , (4.45)

where we have used

〈(Φ0 − ω(0))A(2), A(0)〉 = ω(0)〈A(2), A(0)〉 − ω(0)〈A(2), A(0)〉 = 0 . (4.46)

Therefore, we find

ω(2) = 〈δΦA(1), A(0)〉 . (4.47)

Using the first order result for the eigenvector given by (4.44), we have an explicit formula

for the second correction to the eigenvalue ωn :

ω(2) =
N∑

m=1
(m �=n)

|〈δΦAn, Am〉|2
(ωn − ωm)

. (4.48)

The higher order corrections can be formally found by the repeated applications of the

above procedure to the formulas ω(k) = 〈δΦA(k−1), A(0)〉 and A(k) = (Φ0 − ω(0))−1
P ×

(the right-hand side of the corresponding equation in (4.26)). Let us summarize the results

for the non-degenerate case as a theorem:
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Theorem 4.2 Suppose that a Hermitian matrix Φ is decomposed as Φ = Φ0 + εδΦ and

all the eigenvalues ω(0) of Φ0 are explicitly known and non-degenerate (simple) and its

eigenvector associated with this simple eigenvalue is A(0). Then, the first order and second

order perturbation results of the n th eigenvalue and its associated eigenvector for Φ are

given by

ωn(ε) = ω(0)
n + ε〈An, δΦAn〉+ ε2

N∑
m=1
(m �=n)

|〈δΦAn, Am〉|2
(ωn − ωm)

+O(ε3) , (4.49)

An(ε) = An + ε

N∑
m=1
(m �=n)

〈δΦAn, Am〉
ωn − ωm

Am +O(ε2) . (4.50)

In general, we do not calculate all the terms in the perturbation theory and the series is

actually a divergent one, and they are known as asymptotic series. Nevertheless, it is

usually sufficient to truncate the series after a few terms.

The above formulation of the perturbation theory has the advantage that we can

easily extend it to the case where there are multiple eigenvalues (with multiplicity greater

than one) or also known as the degenerate case in the physics literature.

4.2.2. Degenerate Case

Now, we discuss the theory of perturbation of an eigenvalue with multiplicity

greater than one (degenerate case), and restrict ourselves to the discussion of only the first

order correction ω(1) to the eigenvalue ω(0) since it will be sufficient for our purposes. Let

ωn = ω be an eigenvalue of the matrix Φ0 with multiplicity q, that is,

Φ0Ai = ωAi , (4.51)

where i = 1, 2, 3, . . . , q. Let us denote the eigenspace of Φ0 corresponding to the eigen-

value ω by Hω and the projection operator onto this subspace spanned by the eigenvectors

Ai by Q.

We did not assume anything about the degeneracy of the eigenvalues of Φ0 until
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the equations (4.26). Therefore we can safely go back to the system of equations (4.26),

and conclude from first equation that ω(0) = ω even in the degenerate case. However,

we can not conclude the same for the eigenvector, i.e., we have A(0) �= Ai. Nevertheless,

we can only deduce that A(0) ∈ Hω. Now, we illustrate that additional restrictions are

imposed on the vector A(0) so that they do not coincide with the eigenvectors Ai in the

general case. Actually, the second equation in (4.26) has solutions if its right-hand side is

orthogonal to the subspace Hω:

Q(ω(1) − δΦ)A(0) = 0 . (4.52)

Since QA(0) = A(0), we can write this as

QδΦQA(0) = ω(1)A(0) . (4.53)

This equation tells us that A(0) are eigenvectors of the matrix QδΦQ on C
q, and the ω(1)

are eigenvalues of it. Practically, the problem reduces to the diagonalization of a matrix

of order q. Substituting A(0) =
∑q

i=1 ciAi in (4.53) and using QB =
∑q

j=1〈Aj, B〉Aj ,

we get

QδΦQA(0) = QδΦQ(

q∑
i=1

ciAi)

= QδΦ

q∑
j=1

q∑
i=1

ci〈Aj, Ai〉Aj

= Q

q∑
i,j=1

ci〈Aj, Ai〉δΦAj = Q

q∑
i=1

ciδΦAi =

q∑
i=1

q∑
j=1

ci〈Aj, δΦAi〉Aj .

(4.54)

Hence, the equation (4.53) becomes

q∑
j=1

(
q∑

i=1

ci〈Aj, δΦAi〉 − ω(1)cj

)
Aj = 0 (4.55)
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so that

∑
i=1

δΦjici = ω(1)cj , (4.56)

where δΦji = 〈Aj, δΦAi〉 are the matrix elements of the perturbed matrix δΦ. The matrix

δΦji is Hermitian and thus can always be diagonalized (Meyer, 2000). The result (4.56)

can be interpreted as

∑
j=1

(
δΦji − ω(1)δij

)
cj = 0 . (4.57)

We have nontrivial solutions if and only if

det
(
δΦij − ω(1)δij

)
= 0 , (4.58)

from which we can find the first order corrections to the eigenvalue ω.

If we list the eigenvalues of this matrix by ω
(1)
j , j = 1, 2, . . . , q, the first order

perturbation theory gives the eigenvaules of the perturbed problem is given by ω + ω
(1)
j ,

j = 1, 2, . . . , q by setting ε = 1. Generally, one says that the perturbation removes

the degeneracy, (Griffiths and Schroeter, 2018). The removal of the degeneracy can turn

out to be imcomplete if there are duplicates among the numbers ω
(1)
j , i.e, if the operator

QδΦQ has still multiple eigenvalues.

The perturbation theory for unbounded operators in Hilbert spaces is, in general,

a difficult subject and it is outside of the scope of this thesis. This is a generic situation

in quantum mechanics, where we split the Hamiltonian operator H into two parts H0

(its eigenvalues and eigenvectors are assumed to be exactly solved) and the extra term

V . However, due to the unboundedness of the Hamiltonian operator the analysis is rather

involved. In this case, one must check all the technical issues about how the perturbation

term deforms the spectrum of the operator that includes the discrete as well as continuous

part. One can find all the details about the subject in (Kato, 2013; Reed and Simon,

1978). As a final remark in this chapter, one must be careful enough even in these finite
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dimensional problems since the series that we find does not necessarily converge and they

are not in general and they are known as asymptotic series. In this case, it would be

sufficient to take a few terms in the expansion for practical problems, see (Bender and

Orszag, 2013) for the details.
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CHAPTER 5

THE GAP AND SPLITTING IN THE BOUND STATE

ENERGIES THROUGH PERTURBATION THEORY

The main aim of this chapter is to find approximately the splitting in the bound

state energy by applying the perturbation methods to the principal matrix rather than the

Hamiltonian itself.

Let us first rewrite the principal matrix Φ given by (3.22) as a function E = −ν2

with ν > 0, that is

Φij(E) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

λi

−
√

m

2

1

�
√−E

if i = j ,

−
√

m

2

e−
√

2m
√−E|ai−aj |

�

�
√−E

if i �= j .

(5.1)

For N = 2, we have analytically found the bound state energies for λ1 = λ2 in Chapter 2.

Unfortunately, the bound state energies for an arbitrary number of delta potentials can not

be found in terms of elementary functions. For this reason, we would like to develop a

kind of approximation for which we can estimate the bound state energy. Let us consider

the following family of matrices depending on the parameter ε:

Φ(E) = Φ0(E) + εδΦ(E) , (5.2)

where Φ0 is the diagonal part of the principal matrix; it means that zeros of its eigen-

values can be exactly computed, and δΦ is the off-diagonal part, this is assumed to be

”small” perturbation to the diagonal part. We introduce a parameter ε to keep track of the

perturbation expansion. We will take ε to be 1 at the end of our calculations.
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5.1. Non-degenerate Case

Assume that Φ0 is non-degenerate. We can interpret the original problem for

which we look for nontrivial solutions of Φ(E)A(E) = 0 as an eigenvalue problem

Φ(E)A(E) = w(E)A(E) , (5.3)

where the zeros of w(E) corresponds to the nontrivial solution of Φ(E)A(E) = 0. Since

Φ(E) is a symmetric matrix, we can apply the standard perturbation techniques to the

principal matrix, developed in Chapter 3. In accordance with this purpose, assume that

wk = w(0)k + εw(1)k + ε2w(2)k + . . . (5.4)

Ak = A(0)k + εA(1)k + ε2A(2)k + . . . (5.5)

Here we drop writing E dependence of the functions for simplicity. The solution to the

related unperturbed eigenvalue problem

Φ0A
(0)k = w(0)kA(0)k (5.6)

is given by

w(0)k =
1

λk

−
√

m

2

1

�
√−E

= [Φ0]kk , (5.7)
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where [Φ0]kk is the kth diagonal element of Φ. It is easy to show that the eigenvectors

associated with the eigenvalue w(0)k is

A(0)k = ek =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.8)

where 1 is located in the kth position of the column and other elements of it are zero. In

summary, we find

Φ0A
(0)k = Φ0e

k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

(Φ0)kk

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (Φ0)kk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (Φ0)kke

k = w(0)kA(0)k . (5.9)

Notice that eki forms a complete orthonormal set of basis :

∑
i=1

eki e
l
i = δkl . (5.10)

Once we have found the eigenvalues and eigenvectors of the diagonal part of the principal

matrix or unperturbed eigenvalue problem, we can perturbatively solve the full problem.

Now, we will apply the first order w(1)k perturbation results. Using the equation (4.34) in
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Chapter 3, we get

w(1)k = 〈δΦA(0)k, A(0)k〉 = 〈δΦek, ek〉 = 〈ek, δΦek〉

=
N∑
i=1

(ek)i(δΦe
k)i =

N∑
i=1

(ek)i(δΦe
k)i

=
N∑

i,j=1

(ek)iδΦij(e
k)j , (5.11)

where we have used the self-adjointness of δΦ . Then, we can simplify the above result

as

w(1)k =
N∑
i=1

N∑
j=1

δki (δΦ)ijδ
k
j = (δΦ)kk = 0 . (5.12)

Similarly, using the result given in the equation (4.48) in Chapter 3, the formula of the

second order perturbation for the eigenvalues of the principal matrix Φ is given by

w(2)k =
N∑
l=1
(l �=k)

|〈δΦA(0)k, A(0)l〉|2
w(0)k − w(0)l

. (5.13)

Then,

|〈δΦA(0)k, A(0)l〉|2 = |〈A(0)k, δΦA(0)l〉|2 = |〈ek, δΦel〉|2

= 〈ek, δΦel〉〈δΦel, ek〉 = (δΦ)kl(δΦ)lk . (5.14)

When using the symmetry of δΦ, we find

w(2)k =
N∑
l=1
(l �=k)

(δΦ)kl(δΦ)kl
w(0)k − w(0)l

. (5.15)
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Since Φkl = (δΦ)kl for k �= l,

w(2)k =
N∑
l=1
(l �=k)

Φ2
kl

w(0)k − w(0)l
. (5.16)

The first order correction to the eigenvectors A(1)k is given by

A(1)k =
N∑
j=1
(j �=k)

δΦjk

w(0)k − w(0)j
A(0)j . (5.17)

The bound state energies can be found from the solution of the equation wk(E) = 0. The

zeroth order approximation is the solution of

w(0)k(E) =
1

λk

−
√

m

2

1

�
√−E

= 0 , (5.18)

and the result is

E(0)k = −mλ2
k

2�2
(5.19)

is bound state energy of kth delta center where there is no other delta center. Furthermore,

assume that

Ek = E(0)k + εE(1)k + ε2E(2)k + . . . (5.20)

Let δEk = εE(1)k+ ε2E(2)k+ . . . for simplicity. Evaluating wk(E) for E = Ek and using

(5.20), we find

wk(E) = w(0)k(E(0)k + δEk) + εw(1)k(E(0)k + δEk)

+ε2w(2)k(E(0)k + δEk) + . . . (5.21)
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Since w(1)k(E) = (δΦ)kk = 0 for any E, the equation (5.21) becomes

wk(E) = w(0)k(E(0)k + δEk) + ε2w(2)k(E(0)k + δEk) + . . . (5.22)

Using Taylor expansion of w(0)k around E(0)k, and the fact w(0)k(E(0)k) = 0, we obtain

0 =
∂w(0)k

∂E(0)k
(δEk) + ε2

N∑
l=1
(l �=k)

Φ2
kl(E

(0)k + δEk)

w(0)k(E(0)k + δEk)− w(0)l(E(0)k + δEk)
+ . . . , (5.23)

where we have substituted the second order perturbation result (5.16). Moreover, since

Φ is an analytic function for E < 0 from explicit formula (5.1), we can use the Taylor

expansion of the principal matrix Φ around E = E
(0)
k

Φkl(E) = Φkl(E
(0)k + δEk) = Φkl(E

(0)k) +
∂Φkl

∂E(0)k
δEk +O((δEk)2) , (5.24)

where

∂Φkk

∂E(0)k
=

∂Φkk

∂E

∣∣∣∣∣
E=E(0)k

.

Using (5.24) in the numerator of the second term in (5.23) :

Φ2
kl(E

(0)k + δEk) = Φ2
kl(E

(0)k) + 2Φkl(E
(0)k)

∂Φkl

∂E(0)k
δEk +O((δEk)2) . (5.25)
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Similarly, using the Taylor expansion of the eigenvalues, the denominator of the second

term in (5.23) gives rise to

w(0)k(E(0)k + δEk)− w(0)l(E(0)k + δEk)

= w(0)k(E(0)k) +
∂w(0)k

∂E(0)k
δEk −

[
w(0)l(E(0)k) +

∂w(0)l

∂E(0)k

]
+O((δEk)2) (5.26)

=
[∂w(0)k

∂E(0)k
− ∂w(0)l

∂E(0)k

]
δEk − w(0)l(E(0)k) ,

or by equation (5.7)

w(0)k(E(0)k + δEk)− w(0)l(E(0)k + δEk) =
( ∂Φkk

∂E(0)k
− ∂Φll

∂E(0)k

)
− Φll(E

(0)k) . (5.27)

Substituting all the results in the equation (5.23), we get

0 = ∂Φkk

∂E(0)k δE
k + ε2

∑N
l=1
(l �=k)

[
Φ2

kl(E
(0)k) + 2Φkl(E

(0)k) ∂Φkl

∂E(0)k δE
k
]

×
[(

∂Φkk

∂E(0)k − ∂Φll

∂E(0)k

)
δEk − Φll(E

(0)k)
]−1

+O((δEk)2) . (5.28)

Since we have assumed that |Φkl| << Φll, we can rewrite the following term in the

equation (5.28) as

[( ∂Φkk

∂E(0)k
− ∂Φll

∂E(0)k

)
δEk − Φll(E

(0)k)
]−1

= − 1

Φll(E(0)k)

[
1 +

1

Φll(E(0)k)

( ∂Φkk

∂E(0)k
− ∂Φll

∂E(0)k

)
δEk

]
. (5.29)
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Substituting the equation (5.29) in the equation (5.28) and set ε = 1, we obtain

δEk
[ ∂Φkk

∂E(0)k

]
−

N∑
l=1
(l �=k)

[
Φ2

kl(E
(0)k) + 2Φkl(E

(0)k)
∂Φkl

∂E(0)k
δEk

]

×
[ 1

Φll(E(0)k)

][
1 +

1

Φll(E(0)k)

( ∂Φkk

∂E(0)k
− ∂Φll

∂E(0)k

)]
= 0 .

(5.30)

Keeping only terms of up to the order δEk :

N∑
l=1
(l �=k)

Φ2
kl(E

(0)k)

Φ2
ll(E

(0)k)

= δEk
[ ∂Φkk

∂E(0)k
+

∑
l �=k

Φ2
kl

Φ2
ll

( ∂Φll

∂E(0)k
− ∂Φkk

∂E(0)k

)
− 2

Φkl(E
(0)k)

Φll(E(0)k)

∂Φkk

∂E(0)k

]
. (5.31)

Then, we can solve δEk

δEk =

∑N
l=1
(l �=k)

(
Φ2

kl

Φ2
ll

)
[

∂Φkk

∂E(0)k +
∑

l �=k

Φ2
kl

Φ2
ll

(
∂Φll

∂E(0)k − ∂Φkk

∂E(0)k

)
− 2Φkl(E(0)k)

Φll(E(0)k)
∂Φkk

∂E(0)k

] . (5.32)

Since Φll is large, we may even ignore the second and third terms in the denominator so

we get

δEk ∼= 1
∂Φkk

∂E(0)k

N∑
l=1
(l �=k)

Φ2
kl(E

(0)k)

Φ2
ll(E

(0)k)
. (5.33)

The equation (5.33) is our main result in this thesis. It is interesting that it contains

information about the tunnelling regime.

The diagonal part is derivative with respect to E = E(0)k :

∂Φkk

∂E
= −

√
m

2

1

2�
(−E)−

3
2 . (5.34)
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Figure 5.1. Energy Gap between the energy levels for N = 2 as a function of a > 3/4.

Here � = 2m = 1 and λ1 = 1, λ2 = 2.

Since E = −mλ2
k

2�2
, the equation (5.34) becomes ;

∂Φkk

∂E
= − �

2

mλ3
k

. (5.35)

Hence, substituting (5.35) and Φjk into (5.33), we get

δEk = −mλk

�2

N∑
l=1
(l �=k)

exp
[
− 2m

�2
|ak − al|λk

]
1
λl
− 1

λk

. (5.36)

For N = 2, we can find the energy gaps between the two levels perturbatively and com-

pare the results with the numerical computations by Mathematica. We plot the results as

shown in Figure below.
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5.2. Degenerate Case

For simplicity, let us consider N = 2, λ1 = λ2 = λ and a1 = −a, a2 = a. By the

equation (5.1), we have

Φ(E) =

⎛⎜⎝ 1
λ
−√

m
2

1
�
√−E

−√
m
2

e−
√
2m

√−E(2a)
�

�
√−E

−√
m
2

e−
√

2m
√−E(2a)
�

�
√−E

1
λ
−√

m
2

1
�
√−E

⎞⎟⎠ . (5.37)

Let us split the principal matrix as Φ(E) = Φ0(E) + δΦ(E), where

Φ0(E) =

⎛⎝ 1
λ
−√

m
2

1
�
√−E

0

0 1
λ
−√

m
2

1
�
√−E

⎞⎠ , (5.38)

and

δΦ(E) =

⎛⎜⎝ 0 −√
m
2

e−
√

2m
√−E(2a)
�

�
√−E

−√
m
2

e−
√

2m
√−E(2a)
�

�
√−E

0

⎞⎟⎠ . (5.39)

There is only one eigenvalue of Φ0, namely

w(0)(E) =
1

λ
−

√
m

2

1

�
√−E

. (5.40)

Recall that the bound states energies are the zeros of the eigenvalues of principal matrix

Φ so, we have

E(0) = −mλ2

2�2
, (5.41)
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in other words w(0)(E(0)) = 0. We have two steps to find the corrections to the eigenvalue

E(0) when we add perturbation term δΦ. We first need to find solve the equation (4.58)

det

⎛⎝ −w1 δΦ12

δΦ21 −w1

⎞⎠ = 0 . (5.42)

After our calculation, we find

w1(E) = ±|δΦ12(E)| = ±
√

m

2

1

�
√−E

e−
√

2m
√−E(2a)
� , (5.43)

where we have used δΦ12 = δΦ21. Let us define

w1
1(E) = −

√
m

2

1

�
√−E

e−
√

2m
√−E(2a)
� , (5.44)

and

w1
2(E) = +

√
m

2

1

�
√−E

e−
√
2m

√−E(2a)
� . (5.45)

Next, our goal is to find how the bound state energies change under this perturbation. To

do this, we need to find the zeros of eigenvalues of Φ, that is

w(E) = w(0) + εw(1)(E) + ε2w(2)(E) + · · · = 0 . (5.46)

Since the first order correction w1 �= 0, we expand w up to first order in ε,

w(E) = w(0)(E) + εw(1)(E) +O(ε2) . (5.47)
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Now, let us assume that

E = E(0) + εE(1) + . . . (5.48)

Substituting this ansatz into above equation (5.48), we have

w(0)(E(0) + εE(1) +O(ε2)) + εw(1)(E(0) + εE(1) +O(ε2)) +O(ε2) = 0 . (5.49)

Let us expand w(0) and w(1) around E(0) :

w(0)(E(0) + εE(1) +O(ε2)) = w(0)(E(0)) + (εE(1) +O(ε2))
∂w(0)

∂E

∣∣∣∣∣
E=E(0)

+O(ε2) . (5.50)

Similarly,

w(1)(E(0) + εE(1) +O(ε2)) = w(1)(E(0)) + (εE(1) +O(ε2))
∂w(1)

∂E

∣∣∣∣∣
E=E(0)

+O(ε2)

= w(1)(E(0))εE(1)∂w
(1)

∂E

∣∣∣∣∣
E=E(0)

+O(ε2) . (5.51)

Putting equations (5.50) and (5.51) into (5.49), we get

εE(1)∂w
(0)

∂E

∣∣∣∣∣
E=E(0)

+ ε

[
w(1)(E(0)) + εE(1)∂w

(1)

∂E

∣∣∣∣∣
E=E(0)

]
+O(ε2) = 0 . (5.52)

We only consider terms up to order O(ε) :

E1 = − w(1)(E(0))

∂w(0)

∂E

∣∣∣
E=E(0)

. (5.53)
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Since we have two eigenvalues w
(1)
1 and w

(1)
2 , we have

E
(1)
1 = − w

(1)
1 (E(0))

∂w(0)

∂E

∣∣∣
E=E(0)

= −
[(− 1

λ

)
exp

(
− 2mλa

�2

)
�2

mλ3

]
, (5.54)

and

E
(1)
2 = − w

(1)
2 (E(0))

∂w(0)

∂E

∣∣∣
E=E(0)

=

[(− 1
λ

)
exp

(
− 2mλa

�2

)
�2

mλ3

]
. (5.55)

Hence, we can find the energy splitting using the perturbation theory

δEperturbation = E
(1)
1 − E

(1)
2 =

2mλ2

�2
e−

2mλa
�2 . (5.56)

Using the exact explicit solutions for the bound state energies for this degenerate two

center problem given in (3.34), the exact splitting in the bound state energies is given by

δEexact = −
[√

m

2

λ

�
+

�√
2m(2a)

W

(
mλ(2a)

�2
e−

mλ(2a)

�2

)]2
+

[√
m

2

λ

�
+

�√
2m(2a)

W

(
−mλ(2a)

�2
e−

mλ(2a)

�2

)]2
. (5.57)

We are not going to study the general error analysis in a rigorous way but we can find

show the error between the exact and the perturbative result for this special case. This can

be illustrated by simply plotting the exact energy splitting formula and energy splitting

formula obtained by perturbative approach as a function of a with fixed λ (See Fig. 5.2).

The error is getting smaller as the distance between the centers increases, as ex-

pected.
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Figure 5.2. The comparison of exact and perturbative results for the energy splitting as

a function of a for λ = 1 in the units � = 2m = 1.
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CHAPTER 6

CONCLUSION

An estimate for the gap and the splitting in the bound state energies for the suffi-

ciently separated multiple Dirac delta potentials is given by using the perturbation theory,

which is applied to a finite dimensional matrix. Moreover, the solution to the stationary

scattering problem for the same system is obtained using the distributional solution of the

Schrödinger equation in momentum space. All the necessary tools, e.g., some elemen-

tary definitions and results in distribution theory, first order and second order perturbation

formulas for symmetric matrices, are also summarized for the completeness of the thesis.

The methodology discussed in this thesis can be generalized to the more general singular

interactions, such as point interactions in higher dimensions, delta potentials supported

by curves and surfaces.
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