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ABSTRACT 

 
MINOR COMPONENTS OF OLIVE OILS AS INDICATORS FOR THE 

AUTHENTICITY OF VIRGIN OLIVE OILS 

 
Adulteration of olive oil is a major problem of olive oil industry and may result 

in health problems as well as unfair earnings. Especially after the update in EU regulations 

about the labelling of olive oils, a need is arisen to detect the mixtures of old and fresh 

olive oils. Improvements in detection methods could fall behind of the inventiveness of 

the fraudsters. Detecting and preventing adulteration could be a challenging task; 

therefore, new methods and solutions are always in demand to solve this problem. First 

purpose of this theses is to characterize Aegean region olive oils with respect to their 

quality parameters such as fatty acid alkyl esters, diacylglycerols, and pigment 

compositions and to investigate differentiation power of these parameters on harvest year 

and geographical origin in comparison with spectroscopic methods. It is also aimed to 

predict these quality parameters by the fast and environmentally friendly ultraviolet-

visible (UV-vis) and mid-infrared (mid-IR) spectroscopic techniques in combination with 

multivariate statistical methods. Finally, the applicability of spectroscopic methods (UV-

vis, mid-IR, fluorescent) to detect adulteration of fresh olive oil with old olive oil is 

investigated. Olive oils were successfully differentiated with respect to geographical 

location by spectroscopic methods, fatty acid alkyl esters and pigments. In general, 

prediction of investigated chemical parameters was achieved robustly with mid-IR 

spectral data except pigments which were estimated better with UV-vis spectral data. 

Fluorescence and mid-IR + UV-vis spectroscopies were successful in detecting old olive 

oils in fresh olive oils.  
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ÖZET 

 
SIZMA ZEYTİNYAĞLARIN OTANTİSİTESİ İÇİN İNDİKATÖR 

OLARAK MİNÖR BİLEŞİKLER 

 
Zeytinyağı endüstrisi için bu ürünün tağşişi hem sağlık problemlerine hem de 

haksız kazanca sebebiyet verebilen önemli bir problemdir. Özellikle Avrupa Birliğinin 

zeytinyağının etiketleme kurallarını güncellemesinden sonra, eski ve taze 

zeytinyağlarının karışımını saptama ihtiyacı oluşmuştur. Tağşiş saptama yöntemlerindeki 

gelişmeler dolandırıcıların yaratıcılığının gerisinde kalabilmektedir. Tağşişi tespit ve 

engelleme zorlu bir konu olabilmektedir; dolayısıyla yeni yöntemlere ve çözümlere her 

zaman ihtiyaç duyulmaktadır. Bu tezin ilk amacı, kalite parametrelerinden yağ asidi alkil 

esterleri, diaçilgliserolleri ve pigment içeriklerine göre Ege Bölgesi zeytinyağlarını 

karakterize etmek ve bu parametrelerin coğrafi konum ve hasat yılı üzerindeki farklılaşma 

gücünü spektroskopik yöntemlerle karşılaştırarak araştırmaktır. Bununla birlikte bu kalite 

parametrelerinin hızlı ve çevre dostu ultraviyole-görünür (UV-vis) ve orta-kızılötesi 

(orta-IR) spektroskopik tekniklerinin çok değişkenli istatistiksel yöntemler ile 

kombinasyon halinde tahminidir. Son olarak, spekstroskopik metotların (ultraviyole-

görünür, orta-kızılötesi ve floresan) taze zeytinyağlarının eski zeytinyağları ile tağşişinin 

saptanmasında uygulanabilirliği araştırılmıştır. Zeytinyağları, spektroskopik yöntemlerle, 

yağ asidi alkil esterleri ve pigmentler ile coğrafi konuma göre başarılı bir şekilde ayırt 

edilmiştir. Genel olarak, UV-vis spektral verilerle daha iyi tahmin edilen pigmentler 

dışında, araştırılan kimyasal parametrelerin tahmini orta-IR spektral verileriyle sağlam 

bir şekilde elde edilmiştir. Floresan ve orta-IR + UV-vis spektroskopileri, taze 

zeytinyağlarında eski zeytinyağlarının tespitinde başarılı olmuştur. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
Redrafted, modified, and extended from:  

 
Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2019. “Use of FTIR and UV–Visible 

spectroscopy in determination of chemical characteristics of olive oils.” Talanta 

201: 65–73. https://doi.org/10.1016/j.talanta.2019.03.116. 

 

Uncu, Oguz, and Banu Ozen. 2019. "A comparative study of mid-infrared, UV–Visible 

and fluorescence spectroscopy in combination with chemometrics for the 

detection of adulteration of fresh olive oils with old olive oils." Food Control 105: 

209-218. https://doi.org/10.1016/j.foodcont.2019.06.013. 

 

Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2020. “Authentication of Turkish Olive Oils 

by using detailed pigment profile and spectroscopic techniques.” Journal of the 

Science of Food and Agriculture 100 (5): 2153–65. 

https://doi.org/10.1002/jsfa.10239. 

 

Uncu, Oguz, and Banu Ozen. 2021. "Fatty acid alkyl ester and wax compositions of olive 

oils as varietal authentication indicators." Journal of Food Measurement and 

Characterization (in press). https://doi.org/10.1007/s11694-021-01184-2. 

 

Olive oil is a high profit food product due to its proven health benefits and its 

unique sensory characteristics. These positive characteristics are mainly associated with 

the unique chemistry of olive oil which is mainly composed of monounsaturated fatty 

acids (mainly oleic acid) and minor components (phenolic compounds, α-tocopherol and 

carotenoids) (Li and Wang 2018). These chemical characteristics of virgin olive oils are 

well preserved during its production, which is based on mechanical extraction without 
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the use of any chemical solvent (Uncu and Ozen 2015). A rise in the price of this product 

due to increasing demand, makes olive oil quite prone to adulteration. Unfortunately, it 

is a very common practice to mix good quality olive oils with other vegetable oils as well 

as low quality olive oils such as pomace or deodorized olive oils in the market to obtain 

extra profit. Quality problems comprising fraudulent representation and mislabeling of 

olive oils cause consumers to lose confidence to this product (Jolayemi et al. 2017).  

Fraudsters continuously update their adulteration techniques as a response to new 

adulteration detection methods. In addition, olive oils have been started to be produced 

outside of traditional growth area of olives and olive oils coming from untraditional olive 

growth areas might have significant compositional differences compared to the limits of 

regulations based on European production area, even without any adulteration (Aparicio 

et al. 2013; Bajoub et al. 2018). Therefore, new chemical parameters have been 

continuously introduced as quality indicators for olive oil. 

Minor compounds could be effective indicators of the authenticity and quality of 

the olive oils since they are hard to mimic in complex matrices (Uncu and Ozen 2020). 

Color pigments (carotenoids, chlorophyll and derivatives), diacylglycerols (DAGs), and 

fatty acid alkyl esters (FAAEs) were proposed as potential quality and adulteration 

detection parameters (European Commission 2013). Ability of these chemical measures 

were tested to differentiate olive oils with respect to olive variety/geographical growth 

location in this study using chemometric methods. 

Some of these constituents in olive oil are present in the highest level immediately 

after the extraction and there could be dramatic changes in their quantity during the 

storage mostly due to oxidative processes. As a result, “best before” date is critical for 

the quality of olive oil (Tena, Aparicio, and García-González 2018). An update in 

European Union regulation was done about olive oil labelling requirements in 2012 

(Commission Implementing Regulation (EU) 2012). According to this regulation, harvest 

year can be placed on the label only if 100% of the product was obtained from the olives 

harvested in the same year. Therefore, mixing of the olive oils from the previous harvest 

with freshly extracted olive oils is regarded as an adulteration if the label indicates harvest 

year and a need arises to determine this type of mixing to prevent unfair profits and to 

protect the consumers. However, detection methods which aim to differentiate old oils in 

fresh oils have not been thoroughly studied in the literature.  

In general, spectroscopic methods provide rapid analysis of the adulterated 

samples; and they require treatment of the data with multivariate statistical analysis tools. 
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There are many examples of successful applications of these methods in determination of 

adulteration of different oils in literature (He et al. 2021; Lohumi et al. 2015).  

As another part of this thesis, spectroscopic methods were also used in detection 

of old olive oils in fresh olive oils by evaluating the data with chemometric techniques. 

In the light of these, this thesis has three main aims which will be covered under 

Chapters 4 to 6 as listed below.  

 In Chapter 4, it was aimed to determine the chemical characteristics and 

authenticity of olive oils from Aegean Region of Turkey. For this purpose, basic quality 

parameters, fatty acid profile, DAGs, FAEEs, FAAEs, waxes and detailed pigment 

contents of Turkish olive oils were studied and their ability as authentication tools have 

been investigated and also compared with spectroscopic methods.  

 In Chapter 5, it was aimed to predict FAAE, wax, DAG and color pigment 

contents of olive oils by using rapid and non-destructive spectroscopic techniques (FTIR 

and UV–vis) individually and in combination. 

 Lastly, in Chapter 6, it was aimed to detect and quantify adulteration of fresh olive 

oils with old olive oils from the previous harvest year by using fluorescence, Fourier 

transform infrared (FT-IR), and ultraviolet–visible (UV–vis) spectroscopic techniques in 

combination with chemometrics.  

 This thesis was based on the publications derived from the present Ph.D. study. 

At the beginning of each chapter, bibliographic information of the publications is given. 

In order to keep the integrity of the thesis structure, these publications were redrafted, 

modified, and extended. 
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CHAPTER 2 

 

 

2. LITERATURE REVIEW 

 

 
Redrafted, modified, and extended from:  

 

Uncu, Oguz, and Banu Ozen. 2019. "Authentication of Olive Oil with Mid-Infrared 

Spectroscopy." in Authentication and Detection of Adulteration of Olive Oil, 

edited by Michael G. Kontominas, 127-152. New York: Nova Science Publishers. 

 

Uncu, Oguz, and Banu Ozen. 2020. “Importance of some minor compounds in olive oil 

authenticity and quality.” Trends in Food Science and Technology 100: 164–76. 

https://doi.org/10.1016/j.tifs.2020.04.013. 

 

 

2.1. Minor Compounds in Olive Oil Authenticity and Quality 

 

 
Well-established health effects and desirable sensory properties of olive oil are 

the major driving forces for the high economical value of this product. Major components 

of olive oil are triacylglycerols and this oil also contains various minor components such 

as chlorophylls, carotenoids, phenolic compounds, and squalene (Yan et al. 2018).  

Minor components of virgin olive oil which does not need to go through refining 

steps are highly preserved during mechanical extraction (Olmo-García et al. 2019). Minor 

compounds are not only significant for physicochemical characteristics of the product, 

but they are also correlated with taste and nutritional value (Olmo-García et al. 2019). In 

addition, they are important markers for olive oil quality, purity and authenticity (Olmo-

García et al. 2018; Tena et al. 2015). Therefore, the concentration and type of minor 

compounds are of great importance for both the consumers and the manufacturers (Olmo-
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García et al. 2018). The quality and quantity of these metabolites are affected by olive 

variety, growth conditions of olives, extraction and refining procedures of oil as well as 

storage conditions (Dais and Hatzakis 2013). 

Besides their health-promoting effects, minor components (volatiles, phenolic 

compounds, terpenoids, sterols, etc.) are also found to be more successful descriptors of 

olive oil compared to major metabolites due to the fact that it is hard to mimic minor 

compounds during preparation of illegal formulations (Dais and Hatzakis 2013). 

Importance of minor compound composition has become even more significant since 

olive fruits have been started to be cultivated outside the Mediterranean zones. Even for 

the same olive type, differences in olive growth locations are also leading to 

compositional differences between oils obtained from relatively new areas and the 

products from traditional olive producer countries (Aparicio et al. 2013). As a result, olive 

oils from new cultivation areas could be out of the limits set by official regulatory 

agencies mainly based on Mediterranean countries (Uncu, Ozen, and Tokatli 2019). In 

addition, some traditional but minor cultivars, even grown in the Mediterranean region 

could still have chemical compounds out of the described limits (García-González, 

Aparicio, and Aparicio-Ruiz 2018). Thus, the data of the minor compounds of olive oils 

have become more valuable for statistical evaluation as a significant part of authentication 

studies (Dais and Hatzakis 2013). 

As a solution to these emerging problems, new chemical parameters mainly 

exploiting minor compounds of olive oil have been put into action as quality and/or 

authenticity indicators (Dais and Hatzakis 2013). If the official and recently proposed 

methods are examined, it could be seen that the methods that determine quality and 

adulteration in general are intertwined with each other. Fatty acid alkyl esters (FAAEs), 

diacylglycerols (DAGs), natural color pigments, particularly pyropheophytins (PPPs) as 

the degradation product of chlorophylls and phenolic compounds are regarded as some 

of the potential quality and authenticity indicators of olive oil (European Commission 

2013). 

Some well-known minor compounds such as sterols, stigmastadienes, aliphatic 

hydrocarbons and phenolic compounds along with major compounds (triacylglycerols, 

fatty acid contents) which have official limits in regulations were evaluated in detail in 

the literature (Aparicio, Conte, and Fiebig 2013; Arvanitoyannis and Vlachos 2007; Ben-

Ayed, Kamoun-Grati, and Rebai 2013; Boskou 2008; García-González, Aparicio, and 

Aparicio-Ruiz 2018; Montealegre, Alegre, and García-Ruiz 2010). In this part, several 
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minor compounds (FAAEs, color compounds with their derivatives (e.g. PPPs), DAGs 

with derivatives (e.g. monochloropropanediol esters (MCPDEs) and glycidyl esters 

(GEs)) that have been studied in recent years will be examined in terms of the authenticity 

and quality of olive oil. 

 

 

2.1.1. Authentication Studies 

 

 
The olive oil industry has several significant problems such as seasonal price 

fluctuations caused by variations in production capacity, waste disposal management and 

authentication issues. Among these problems, adulteration is a major concern and it has 

not only economic consequences but also health implications besides creating a negative 

publicity for the product (Lai, Kemsley, and Wilson 1994). An authentic food product is 

defined as “any food product which has the labeling that represents its actual content in 

accordance with regulations of responsible authorities in the defined territory” (Aparicio 

et al. 2013; Lees 1998). Authenticity problems of olive oil could be grouped under four 

main headings as indicated in the literature (Aparicio et al. 2013):  

 adulteration of high-quality olive oils with different seed oils, and lower quality 

olive oils such as pomace oil or olive oil from previous season,  

 inexact labelling and traceability problems related to geographical origin of olive 

oils,  

 inexact labelling related to cultivation of olives (organic or conventional 

farming), and  

 cultivar related problems such as false labelling of mixture of different olive oil 

cultivars as monovarietal olive oil 

There are various regulations dealing with different food authentication issues. 

Two successive regulations EEC 2081/92 (Council Regulation (EEC) 1992a) and 

2082/92 (Council Regulation (EEC) 1992b) which were replaced with EC 510/2006 

(Council Regulation (EC) 2006b) and 509/2006 (Council Regulation (EC) 2006a), 

respectively were put into action to protect geographical identity and designation of origin 

of food products (Luykx and van Ruth 2008). In EC regulation 510/2006, two slightly 

different concepts were described as “Protected Designation of Origin (PDO)” and 
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“Protected Geographical Indication (PGI)”. According to this regulation, PDO means that 

“qualities or characteristics of a defined foodstuff are attributed to a particular 

geographical environment in which production, processing and preparation steps 

occurred in that specified region” while PGI indicates that “attributed characteristic or 

quality of a food product is due to any steps of the production and/or processing and/or 

preparation taking place in the defined geographical region” (Council Regulation (EC) 

2006b). According to EC 509/2006, “Traditional Specialty Guaranteed (TSG)” regulation 

is related with labelling of ‘any foodstuff that possesses a traditional specific character 

which may be related to either its composition (physical, chemical, microbiological or 

organoleptic features) or production method” (Council Regulation (EC) 2006a). 

Moreover, olive oil chemical and organoleptic characteristics and their measurement 

methods were defined in accordance with International Olive Council (IOC) to ensure 

olive oil authenticity in EU 1348/2013 (Commission Implementing Regulation (EU) 

2013), a revised version of EEC 2568/91 (Commission Regulation (EEC) 1991). In 

addition, regulation EU 432/2012 (Commission Regulation (EU) 2012) prepared through 

the recommendation of European Food Safety Agencies (European Food Safety 

Authority (EFSA) 2011) states that a positive health claim which renders the product a 

candidate for a higher price on the market can be placed on an olive oil label under certain 

conditions (5 mg of hydroxytyrosol and its derivatives per 20 g of olive oil).  

Despite the progresses in analytical methods, developments may still not be 

enough to find absolute solutions to some of the major problems (European Commission 

2013). One of these cases is addition of soft-deodorized virgin olive oil to extra virgin 

olive oil and this type of mixing could not be detected by standard methods (Kulling et 

al. 2019). Some proposed solutions for these problems include the determination of PPPs 

and alkyl esters (Aparicio-Ruiz, Romero, et al. 2017). 

Another problem is related with freshness of olive oils. To obtain an extra profit, 

fraudsters add old olive oils from previous harvest year into the fresh olive oil. This is an 

emerging adulteration case and there is an update in European Union regulation 

(Commission Implementing Regulation (EU) 2012) about olive oil labelling requirements 

indicating the freshness of olive oil. According to the regulation, harvest year could be 

placed on the label only if 100% of the olive oil is from the olives harvested in the same 

year. However, there is not any official method in the literature to determine this type of 

adulteration. It has been proposed that new quality parameters such as FAAEs, pigments 
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(PPPs, carotenoids, etc.) and DAGs have potential for olive oil quality and authenticity 

(European Commission 2013). 

Production of fake extra virgin olive oil mixtures is another type of fraud. A recent 

report on deliberately mislabeling the mixture of olive oil made with refined olive oil as 

extra virgin olive oil was the case occurred in 2018 which was detected by compulsory 

controls (Kulling et al. 2019). Another case was also reported in 2019 by Europol in which 

chlorophyll, β-carotene and soya oil were added to sunflower oil to prepare a fake olive 

oil. The last two adulteration examples were detected easily by existing regulations based 

on methods using chromatographic techniques (Kulling et al. 2019). In order to solve 

emerging issues in olive oil, official methods have been updated regularly as a result of 

new scientific findings about the quality and authenticity of olive oils. Examples of 

several relatively new regulations about minor components of olive oil are provided in 

Table 2.1.  

 

 

Table 2.1. Official regulations about reviewed parameters of olive oil quality and 
authenticity 

Parameters Legislations 

Fatty acid ethyl esters (FAEEs) 
 

Quality criteria defined in IOC (2019) and EU (2016) 
regulations which state that olive oil could be graded 
as extra virgin only if it contains ethyl esters less than 
or equal to 35 mg/kg. 
 

Diacylglycerols (DAGs) 
 

Quality and freshness indicator only found in 
Australian (Standards Australia 2011) and 
Californian (California Department of Food and 
Agriculture 2014) standards to grade olive oil as 
extra virgin under certain conditions. Both standards 
define threshold value for 1,2-DAGs as 35% as the 
ratio between 1,2- to total 1,2- and 1,3- DAGs. 
 

Pyropheophytins (PPPs) 
 

Used in freshness evaluation by both Australian 
(Standards Australia 2011) and Californian 
(California Department of Food and Agriculture 
2014) standards. According to both standards olive 
oils are graded as extra virgin when they contain less 
than or equal to 17% of PPPs. 
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All these regulations related to adulteration limits and/or detection methods for 

olive oil are based on wet chemistry analytical techniques. In general, the analytical 

methods for authentication studies can be divided into two main categories: a) “targeted 

analysis”; based on identification of specific compounds from the fractionation of olive 

oil components, and b) “profiling or non-targeted” analyses which aim to identify 

molecular structures based on pre-defined metabolic pathways (Aparicio et al. 2013). 

Targeted approaches which focus on many individual components of olive oil have been 

used for many years, and new application areas have been brought into practice such as 

the introduction of limits for fatty acid alkyl and ethyl esters (Jabeur et al. 2015), and 

stigmastadiene analyses (Crews, Pye, and Macarthur 2014) to detect adulteration in olive 

oil, and pyropheophytin a and 1,2-diacylglycerol content determination as olive oil 

quality parameters (Guillaume, Gertz, and Ravetti 2014) and methodological 

developments are still in progress. Although these applications might have high precision 

power regarding the determination of the targeted analyte, they still possess some 

drawbacks such as long analysis time, high operation cost, and hazardous waste 

production. As non-targeted analysis approaches, spectroscopic techniques such as mid-

infrared (mid-IR), UV-Vis, and fluorescence spectroscopy, provide speed, low cost and 

environmentally friendly applications for determination of authenticity, overall quality 

and chemical composition of olive oils. 

 

 

2.1.1.1.  Fatty Acid Alkyl Esters 

 

 
Fatty acid alkyl esters (FAAEs) are produced by enzymatic reaction of free fatty 

acids with low molecular weight alcohols, mainly methanol and ethanol under acidic 

conditions yielding methyl (FAME) and ethyl esters (FAEE), respectively (Bajoub et al. 

2018; Pérez-Camino et al. 2002; 2008). Critical levels of FAAEs (sum of FAME and 

FAEE) for olive oil have been defined first by a Commission Regulation (EU) No 

61/2011 (Commission Regulation (EU) 2011) as a quality parameter since the formation 

of these compounds indicates fermentation (mainly ethanol formation) as well as 

degradation processes (mainly methanol formation) occurred during storage (Purcaro, 

Barp, and Conte 2015). In addition, it is not possible to remove FAAEs without leaving 
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by-products such as stigmastadiene in high temperature treatment (Purcaro, Barp, and 

Conte 2015). All of these make FAAEs as suitable markers for olive oil quality as well 

as sensorial assessment (Biedermann et al. 2008). Moreover, storage and processing 

conditions of olive fruit are also other factors for FAAEs formation (Caponio et al. 2018; 

Jabeur et al. 2015; Squeo et al. 2017). It was observed that oil that was produced from 

olives stored in closed plastic bags rather than in perforated plastic containers have higher 

concentrations of FAAEs due to fermentation activity in the closed plastic bags (Jabeur 

et al. 2015).  

Former regulation has been amended by substituting FAAE (sum of FAME and 

FAEE) with only FAEE by EU Commission Implementing Regulation 1348/2013 

(Commission Implementing Regulation (EU) 2013). Reason for this substitution is that 

FAEE presence depends on level of its substrate, ethanol, which is produced chemically 

as a result of fermentative processes. On the other hand, amount of FAMEs depends on 

methanol content, and unlike ethanol, methanol is physiologically formed during pectin 

degradation of cell wall as olive fruit ripens (García-Vico et al. 2018). The concentrations 

of FAEEs depend first on the availability of substrates (ethanol and free fatty acids), and 

then storage time and temperature, agricultural practices (health status of olive fruits) as 

well as manufacturing conditions (Bajoub et al. 2018; Conte et al. 2020; García-Vico et 

al. 2018). In two separate studies, ethanol content of olives being precursor of ethyl ester 

formation in olive oil was investigated with respect to two different parameters as 

maturation stage (Beltrán et al. 2015) and harvest method (Beltrán et al. 2016). It was 

observed that ethanol content of olive fruit increased during the ripening process (Beltrán 

et al. 2015). Furthermore, ground-picked olives were more susceptible to sensory defects 

with increasing level of ethanol content compared to tree-picked fruits (Beltrán et al. 

2016). In another study, FAAE levels of olive oils were investigated during storage 

(Conte et al. 2014). The results indicated that high quality olive oils with initially low 

content of free ethanol and FAAEs did not show any increment of ethyl esters during 

storage in contrast to lower quality ones. Since these findings confirmed the necessity of 

an update based on omission of FAME from the regulation and lowering the limit for 

FAEEs, modifications in regulation were done (Conte et al. 2014). As a result, only the 

amount of FAEEs have been used as a threshold value for virgin olive oil in determination 

of the quality in terms of category after this change. According to the latest EU (2016) 

and IOC (2019) regulations, olive oil could be graded as extra virgin only if it contains 

FAEEs≤35 mg/kg. As an alternative method, GC Electron Ionization Mass Spectroscopy 
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(GC-EI-MS) method has been also used in determination of FAAEs of olive oils as a fast 

way without sample preparation. It was observed that this method was at least as 

successful as official EU method in discrimination of extra virgin and lower quality olive 

oils (Boggia et al. 2014). Moreover, very recently GC-IMS has been used promisingly in 

quantification of ethanol content in olive oils without sample pretreatment and found as 

being faster than the method based on GC-FID/MS (del Mar Contreras, Aparicio, and 

Arce 2020). In addition, spectroscopic methods have been applied to the prediction of 

FAAE content due to their environmentally friendly and easy to use characteristics 

compared to wet chemical methods. Fourier transform infrared (FTIR) spectroscopy was 

used in quantification of FAAEs and ratio of ethyl and methyl esters value successfully 

(Valli et al. 2013). The same type of application was also performed with near infrared 

(NIR) spectroscopy (Cayuela 2017; Garrido-Varo et al. 2017). In addition, FTIR and UV-

visible spectroscopy separately and in combined form were applied to predict FAAE and 

FAEE content of olive oils (Uncu, Ozen, and Tokatli 2019). FTIR spectroscopy also 

achieved discrimination of extra virgin from non-extra virgin olive oils based on FAEEs 

content (Squeo et al. 2019). Dielectric spectroscopy as time domain reflectometry (TDR) 

was another method used in screening of FAMEs, FAEEs, and FAAEs in olive oils 

(Berardinelli et al. 2013). In a review paper, determination of various quality parameters 

of olive oils including FAAEs by different rapid and innovative instrumental approaches 

were discussed (Valli et al. 2016). 

In addition to their quality determining characteristics, these parameters have been 

also used in detection of mildly refined olive oil which is one of the most recent and 

common way of adulteration of extra-virgin olive oil. It has been very hard to detect this 

type of mixing with any other chemical test (Jabeur et al. 2015). FAAE has been firstly 

proposed as a useful marker to detect soft deodorized olive oils (Pérez-Camino et al. 

2008) since this compound is not affected by mild refining conditions significantly. 

Recent studies are focusing on FAEE contents of olive oils rather than FAAE due to the 

update in the legislations mentioned in the previous paragraph. Later on, the weak side of 

this approach as an authentication tool was also discussed in different studies (Aparicio-

Ruiz, Romero, et al. 2017; García-Vico et al. 2018; Gómez-Coca et al. 2016). In one of 

these investigations, it was proven that FAEE content of olive oil could be related with 

factors other than the quality and health of olives used in olive extraction as opposed to 

prior knowledge and this could be explained by two main factors (Gómez-Coca et al. 

2016). One of these factors is ethanol (precursor of FAEE) formation which had been 
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previously thought to be produced by only fermentation. However, it was found out that 

healthy fruits could also be the sources of ethanol during maturation which contribute to 

aroma development (Beltrán et al. 2015). Other factor is related to technological aspects 

such as addition of water during the extraction process and this could change ethanol 

concentration as well as FAEE formation (Gómez-Coca et al. 2016). As a result, extra 

virgin olive oil could be out of the limits in a few months’ time if FAEE content would 

be measured (Gómez-Coca et al. 2016). Therefore, in a recent study, it was proposed that 

strict regulations should take into account of the presence of ethanol basal levels in the 

oils which were found quite high in many cultivars. As a result, it becomes an important 

point to differentiate physiologically formed and fermentative ethanol contents in the 

olive fruits (García-Vico et al. 2018). In the light of these findings, the latest EU 

regulation about FAEE might need an update for including the initial ethanol content. In 

some cases, deodorized low quality (especially rancid) oils might not have very high 

FAEE content and if this oil is used as an adulterant current critical levels in legislation 

might not be enough to detect the adulteration. Hence, it could be concluded that FAEEs 

are suitable adulteration markers for the oils possessing significantly high content of 

FAEEs compared to virgin olive oils (Conte et al. 2020). Another important factor making 

FAEEs insufficient in detection of adulteration is masking effect of the certain processing 

conditions of the soft deodorization on the oils. It was observed that deodorization at 

100℃ for 60 min is the optimum condition to remove volatiles responsible for sensory 

defects without significant losses of quality parameters such as total phenols, PPPs and 

FAEEs and the critical limits of regulations are still met using these parameters (Aparicio-

Ruiz, Romero, et al. 2017). Therefore, monitoring FAEEs could only be useful in 

detecting highly degraded oils with initial concentration already higher than the threshold 

values of the regulations prior to process. Otherwise, mixture of soft deodorized olive oil 

and extra virgin olive oil could not be detected up to 50% with current standard methods 

(Aparicio-Ruiz, Romero, et al. 2017). 

Another attention-grabbing point is the relationship between FAEEs content and 

sensory defects. First comprehensive effort to reveal a relationship between the FAAEs 

concentration of olive oils and their sensory classification was conducted by Gómez-

Coca, Moreda, and Pérez-Camino (2012) and a connection between the FAAEs and 

fermentative organoleptic defects was determined (Gómez-Coca, Moreda, and Pérez-

Camino 2012). In another study, FAEEs are also correlated with the fermentation 

processes responsible for organoleptic defects and it was concluded that their relations 
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could be used to determine olive oils that have undergone mild refining processes (Di 

Serio et al. 2017). In a recent study, correlation between sensory characteristics and 

various chemical parameters of Brazilian olive oils were investigated (Zago et al. 2019). 

A positive correlation was obtained between concentration of FAEE and vinegary defect. 

Therefore, FAEE amount could be useful not only for authentication but also for quality 

control of olive oils in terms of sensory characteristics. Other examples of recent 

applications of alkyl esters in olive oil authentication are listed in Table 2.2. 
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2.1.1.2.  Diacylglycerols (DAGs) and Derivatives 

 

 
Diacylglycerols (DAGs) have been considered as another quality parameter 

especially by some relatively new olive growing areas, USA (particularly California state) 

and Australia. DAGs are found in virgin olive oil in minor amounts ranging from 1% to 

3% and they are generally produced before or during olive oil extraction process. 1,2-

DAGs are the intermediate products that form as a result of the incomplete biosynthesis 

of triacylglycerols (TAGs) while 1,3-DAGs are the products of enzymatic or chemical 

hydrolysis of TAGs (Pérez-Camino, Moreda, and Cert 2001). Health status of the olive 

fruits is one of the major factors determining the amount, type and ratio (1,2- to 1,3-) of 

DAGs. Olive oils extracted from poor quality olive fruits showed a significant raise of 

1,3-DAGs while the product obtained from healthy olive fruits contains almost 

exclusively 1,2-DAGs (Garcia, Martins, and Cabrita 2013). In addition, storage 

conditions and time as well as extraction process (high temperature and water dilution 

during extraction), presence of macromolecules, and metals had also major effect on 

DAG ratio of olive oils (Circi et al. 2018; Vlahov, Giuliani, and Del Re 2010). During 

storage, the concentration of 1,2-DAGs gradually decreased by isomerization resulting in 

the formation of more stable 1,3-DAGs. Thus, ratio of these isomeric forms was found to 

be reliable markers for the freshness (age) and the quality of virgin olive oils (Bajoub et 

al. 2018). According to both Californian and Australian standards, olive oils are graded 

as extra virgin if it contains 1,2 DAGs ≥35% in terms of C32+C34+C36 and this value 

actually is the ratio between 1,2-DAGs and total DAGs content known as D value. The 

methods used in the determination of DAGs are based on gas chromatography (GC), high 

performance size exclusion chromatography and high-performance liquid 

chromatography (HPLC) all of which requires tedious derivatization steps before 

injection of the sample (Vlahov, Giuliani, and Del Re 2010). GC-FID has been used most 

commonly to determine fractionated isomeric DAGs in olive oil (Gertz and Fiebig 

2006a). GC-EI-MS is another technique applied to characterize and quantify DAGs 

without any requirement for a standard which was reported as a problem for the previous 

method (Zhu et al. 2013). Thin layer chromatography (TLC) coupled with visible (Vis) 

spectrophotometry was also used as a simple method to quantify DAGs in edible oils (Li 

et al. 2018). As a relatively new approach some spectroscopic methods were also used in 
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DAGs determination. Recently, DAG content of olive oils were predicted from Fourier 

transform near infrared (FT-NIR) spectroscopic data (Azizian et al. 2018; Willenberg, 

Matthäus, and Gertz 2019). In addition, a very recent study investigated the use of FTIR 

and UV-vis spectroscopic methods jointly and separately to estimate DAGs composition 

of olive oils (Uncu, Ozen, and Tokatli 2019). Furthermore, NMR spectroscopy in the 

forms of 1H, 13C and 1P NMR has been preferred in determination of acylglycerols of 

olive oil because of its ease of sample handling and rich data generation (several 

metabolites in single spectrum) as an alternative to wet chemical methods (Dais and 

Spyros 2007; Hatzakis et al. 2011; Vlahov, Giuliani, and Del Re 2010).  

Three isomeric classes of DAGs (1,2-, 2,3-, and 1,3-) of extra virgin olive oils 

stored in different temperatures of 15 ℃ and 30 ℃ and time up to 12 months were 

evaluated in order to observe the effect of these parameters on DAGs content in a study 

(Cossignani et al. 2007). The results indicated that significant differences existed in the 

amount of different DAG classes as well as the ratios between the classes. The samples 

inspected just after extraction possessed the highest contents in terms of percentage for 

1,2-DAGs and the lowest for 1,3- and 2,3-DAGs. On the other hand, the samples kept at 

30 ℃ had the highest content of 1,3 DAGs due to isomerization reaction favored mainly 

by temperature. Therefore, it was concluded that storage temperature was the most 

important factor on the DAGs content, and their isomerization provided information 

regarding the storage conditions as well as the preservation status of olive oils. In addition 

to the aforementioned parameters, other possible storage factors for the isomerization of 

DAGs in fresh olive oils were examined for 24 months (Caponio et al. 2013). The results 

showed that storage time was the significant factor in increasing amounts of 1,3-DAGs 

due to isomerization causing higher 1,3/1,2 ratio for oils. Besides, it was found that degree 

of isomerization was also affected by the initial hydrolysis level of the olive oil. However, 

storage conditions such as the bottle glass color, the light, and the air had no effect on 

isomerization of DAGs except the speed of the reaction. Therefore, it was confirmed that 

the DAGs ratio could be used as a freshness index for extra virgin olive oil since 

concentrations of these compounds were not affected by either oil variety or storage 

conditions (glass color, light, and air) (Caponio et al. 2013). In a similar study (Ayyad et 

al. 2015), effects of different conditions of storage at 20°C in darkness and in light, at 4-

6°C in light and at 20°C in light with argon in the headspace were observed for 14 months. 

The results confirmed that not only the storage time but also temperature had effects on 

isomerization of DAGs. Inert gas was not that efficient in the protection of olive oils from 
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isomerization under storage in the light. In another study (Salvo et al. 2017), 1H NMR 

spectroscopy was also used in monitoring of olive oil aging with respect to DAG content. 

The olive oils were stored in the dark and at room temperature for one year. It was already 

known that the isomerization rate was affected by the free fatty acidity, additionally it 

was proven that the presence of specific macromolecules (lipases) had effect on DAG 

content as well (Salvo et al. 2017). 

The studies mentioned so far focused on the investigation of the change in olive 

oil DAGs content with different parameters during storage. However, kinetic studies were 

also performed to correlate the age of olive oil with DAGs concentration (Dais and Spyros 

2007). Kinetics of DAG formation and isomerization in virgin olive oil were formulized 

in terms of the D value and the free fatty acid values by using 31P NMR spectroscopy 

(Spyros, Philippidis, and Dais 2004). Robust prediction models were obtained between 

actual and theoretical storage time up to 10-12 months (Spyros, Philippidis, and Dais 

2004). In another study, a more comprehensive mathematical expression was established 

for the determination of shelf life of olive oils with respect to many parameters such as 

alkyl esters, volatiles and 1,2-DAGs etc. (Di Serio et al. 2018). In a recent study, artificial 

intelligence derived system as adaptive neuro-fuzzy inference predicted the oxidative 

stability of virgin olive oil during storage as a function of time, temperature, DAGs as 

well as other well studied parameters (Arabameri et al. 2019). According to this study, 

minor constituents including DAGs were found as the most important factors influencing 

the preservation status and freshness of olive oils during storage. Furthermore, it was 

concluded that the changes in DAGs content could be a good indicator for olive oil 

oxidative stability. While the direct effect of DAGs concentration on olive oil 

organoleptic characteristics during storage was not observed, they are essential in 

determination of aging. As a result of aging, degradation of various health promoting 

components of olive oil such as tocopherol and phenolic compounds were also observed 

which further decrease the nutritional and organoleptic characteristics by increasing 

rancidity (Dais and Spyros 2007). Therefore, it becomes an important point to know the 

storage history of olive oil to be sure about its actual quality. Relation between DAG 

concentration and storage time could also mean that these compounds can be used in 

detection of adulteration of fresh olive oils with old oils. 

In addition to their applicability in quality determination, DAGs are used as a tool 

in authenticity determination of olive oils. It is known that fresh extra virgin olive oil 

samples do not contain high amounts of total DAGs (1–3% mainly 1,2-DAGs) compared 
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to lower quality olive oils such as refined olive oils (4–5% mainly 1,2-DAGs) and pomace 

olive oils (15-20% mainly 1,2-DAGs). Moreover, the isomerization from 1,2-DAGs to 

1,3-DAGs results an immediate equilibrium state in refined olive oils (Dais and Spyros 

2007). In this respect, adulteration of virgin olive oil with deodorized oils was inspected 

with a study in which 1,2- and 1,3-DAG isomers in olive were determined with solid 

phase extraction followed by GC analysis (Pérez-Camino, Moreda, and Cert 2001). The 

results indicated that the relationship between acidity and total DAGs were not an 

efficient indicator for the genuineness of olive oils. While the 1,3-/1,2-DAGs ratio was 

found useful in authentication of virgin olive oils as well as in determining the oil aging 

and evaluating the storage conditions (Pérez-Camino, Moreda, and Cert 2001). Therefore, 

the studies on olive oil authenticity have been focused on the ratio of DAGs as D value 

rather than total content of these compounds. However, the increase of 1,3-DAG could 

be also due to the long storage of olive oil. Therefore, any change in D value may not 

necessarily be a sign of adulteration (Dais and Hatzakis 2013). Aforementioned studies 

deal with only DAGs and their derivatives. However, NMR metabolic profiling which 

quantifies DAGs as well as many other parameters at the same time and NMR 

fingerprinting were also proposed as an efficient tool in adulteration detection of olive 

oil. In the literature, there are various studies which used NMR spectroscopy to identify 

DAGs content as well as other important authenticity parameters for the determination of 

olive oil adulteration as shown in detail in Table 2.3. In general, DAGs were regarded as 

quality parameters to grade olive oil. However, the methodological approach based on 

investigation of many physicochemical parameters together as in the previous examples 

was also valid for the classification studies of olive oil with respect PDO and variety in 

terms of their DAGs contents. There are several examples of the use of DAGs content in 

classification and/or differentiation as well as adulteration and quality determination of 

olive oils (Table 2.3) 
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More recently, authentication studies have been investigating 

monochloropropanediol esters (MCPDE) as (2- and 3-MCPD) and glycidyl esters (GEs) 

presence in olive oils as well as in other vegetable oils (Kamikata et al. 2019; Yan et al. 

2018). MCPDEs and GEs are the minor compounds derived from DAGs and MAGs, 

respectively through refining processes (Yan et al. 2018). These compounds are formed 

during the deodorization step of the refining process, and they are also known as heat-

induced contaminants. They could be used as an indicator of extra virgin olive oil 

adulterated with refined oils since these compounds were not expected to be present in 

the extra virgin olive oil produced without any chemical treatment from healthy olive 

fruits (Kamikata et al. 2019). Besides temperature, pressure, water activity and other 

processing parameters also speed up the formation of 3-MCPD esters (Weißhaar 2008; 

Yan et al. 2018). In a recent study, it was found that these processing derived 

contaminants could be used to detect lower grade oils in olive oil in varying limits of 

detection as 2% when using 3-MCPD esters, 5% for 2-MCPD esters, and 13–14% for 

GEs (Yan et al. 2018). Especially, quantification of MCPDEs were found to be promising 

with lower limit of detection compared to GEs. In another study, potential of these 

compounds as an adulteration detection tool was also emphasized (Kamikata et al. 2019). 

Determination of these compounds are important not only for adulteration studies but also 

for the health concerns. It was reported that after consumption of highly contaminated 

foods with these derivatives gastrointestinal tract can easily convert these compounds to 

their free forms which are known to have toxicological effects on human (Nguyen and 

Fromberg 2020). 

 

 

2.1.1.3.  Color pigments and derivatives 

 

 
The color of a virgin olive oil is attributed to the lipophilic chlorophyll and 

carotenoid pigments present in the olive fruit (Montealegre, Alegre, and García-Ruiz 

2010). Green olives having high chlorophyll content give greenish color to the oils 

whereas mature olives yield yellowish oils due to their higher carotenoid content. As a 

result, combination as well as proportions of these pigments determine the ultimate color 

of the olive oils (Lazzerini, Cifelli, and Domenici 2016). Olive oils contain comparably 
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rich variety of carotenoids (β-carotene, lutein, violaxanthin, neoxanthin and other 

xanthophylls) and chlorophyll derivatives (chlorophyll a and b, pheophytin a and b, and 

other minor derivatives) (Lazzerini and Domenici 2017). The level of these pigments in 

olive oil could go up to an almost 100 ppm. The major pigments were reported as 

pheophytin a (up to 25 ppm), followed by β‐carotene (up to 15 ppm) and lutein (up to 10 

ppm) (Lazzerini, Cifelli, and Domenici 2016); however, amounts may differ depending 

on various factors. The main factors affecting the concentration of each pigment found in 

olive oils are highly correlated with the physiochemical characteristics of olive fruits and 

they rely on botanical as well as geographical origin, environmental conditions (climate 

and/or irrigation), and also extraction process (mainly malaxation). In addition, the 

storage conditions of olive oil are also important factors in pigment type and 

concentration (Gandul-Rojas, Roca, and Gallardo-Guerrero 2016; Lazzerini, Cifelli, and 

Domenici 2017; Lazzerini and Domenici 2017; Lazzerini, Cifelli, and Domenici 2016). 

In the literature, the pigments have been identified mostly by chromatographic 

techniques and most successfully by HPLC coupled with diode array (DAD), UV‐Vis as 

well as other types of detectors (Lazzerini, Cifelli, and Domenici 2016; Mínguez-

Mosquera, Gandul-Rojas, and Gallardo-Guerrero 1992; Seppanen, Rahmani, and 

Csallany 2003). In addition, total pigment contents of olive oils have been evaluated in 

terms of chlorophylls at 470 nm and carotenoids at 670 nm after dilution with proper 

solvent by UV-vis spectrophotometer (Cerretani et al. 2008; Mínguez-Mosquera et al. 

1991; Reboredo-Rodríguez et al. 2016). 

In the recent years, other spectroscopic techniques are also becoming alternatives 

to the HPLC, and UV-vis spectroscopic methods used in quantification of individual 

(Domenici et al. 2014) and total pigments of olive oil (Cayuela et al. 2014), respectively. 

Direct analysis of olive oils with UV-Vis-NIR spectroscopy was found promising 

compared to timely and waste producing reference analysis of total chlorophylls and 

carotenoids (Cayuela et al. 2014). Absorption spectra in the near UV-vis region were 

mathematically treated by Ayuso, Haro, and Escolar (2004) to reveal its potential uses in 

color characterization. Then, suitability of near-UV-vis region for the determination of 

major pigments of olive oils as two carotenoids (lutein and β-carotene) and two 

chlorophylls (pheophytin a and b) was proposed in another study (Domenici et al. 2014). 

This finding was also confirmed with an investigation in which pigment contents of 

Mediterranean olive oils obtained from UV-vis spectroscopy and HPLC-DAD 

measurements were compared with similar success (Lazzerini, Cifelli, and Domenici 
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2017). Moreover, a very recent study (Borello and Domenici 2019) compared two 

different approaches for determining olive oil pigments using the near UV-Vis 

spectroscopy. First method was the standard method (Mínguez-Mosquera et al. 1991) 

based on absorption spectra at single wavelengths (470 and 670 nm) while mathematical 

deconvolution of the absorption spectra developed in a previous study (Domenici et al. 

2014) was the other approach used in the same type of application. The results indicated 

that overall approach used in standard method was not as effective as newly proposed 

method in determination of total carotenoids’ and chlorophylls’ derivatives in olive oils 

due to the fact that standard method underestimates the contents of both carotenoids and 

the chlorophyll derivatives compared to whole spectrum (Borello and Domenici 2019). 

In another study, use of UV-vis spectroscopy in the whole range of 200-800 nm was found 

promising in prediction of detailed pigment profile of olive oils compared to FTIR 

spectroscopy since pigment profile is highly correlated with UV-vis absorption profile 

(Uncu, Ozen, and Tokatli 2019). Fluorescence spectroscopy was also used in 

determination of major pigments (chlorophylls a and b and pheophytins a and b) of olive 

oils (Galeano Díaz et al. 2003). The recent attempt has been exploiting ultra-fast high-

performance liquid chromatography with fluorescence excitation–emission detection in 

quantification of these pigments directly without previous sample treatment (Lozano et 

al. 2013). 

Measurement of some pigment compounds has been proposed as a way of 

determining the quality and adulteration of olive oils (Tena et al. 2015). They are regarded 

as quality tools due to their relationship with freshness, nutritional and antioxidant 

properties of olive oils (Lazzerini, Cifelli, and Domenici 2017). Natural color pigments 

have also been used in authentication of olive oils (Lazzerini, Cifelli, and Domenici 

2016). According to one of the studies using chlorophyll and carotenoid pigments of 

virgin olive oils as authenticity and quality index, total chlorophylls to total carotenoids 

ratio should be around 1 and also the ratio of minor carotenoids to lutein should be around 

0.5 to indicate the authenticity of olive oils (Gandul-Rojas, Cepero, and Mínguez-

Mosquera 2000). Moreover, it was concluded that these thresholds were valid for olive 

oils in general regardless of fruit variety. In addition, certain pigments such as the 

percentages of lutein, violaxanthin, and total pigment contents could be used as 

discriminatory tools for monovarietal virgin olive oils (Gandul-Rojas, Cepero, and 

Mínguez-Mosquera 2000). Some pigment fractions such as chlorophylls/carotenoids, 

minor carotenoids/lutein, and percentages of violaxanthin and lutein as well as total 
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pigment content were found to be stable during one year of storage irrespective of the 

variety and degree of ripeness of the olive fruit (Roca et al. 2003). It was determined that 

degradation of chlorophylls as pheophytinization started from malaxation and increased 

during storage (Aparicio-Ruiz, Aparicio, and García-González 2014). The chlorophylls a 

and b being naturally present in the olive fruit are irreversibly converted into more stable 

pigments (pheophytins a and b, orderly) as the central Mg+2 ion of the porphyrin ring is 

replaced by two hydrogen atoms, and further to pyropheophytins (PPPs) which are the 

ultimate products of degradation of chlorophyll by the removal of the carboxy-methyl 

group from the pheophytins (Garcia, Martins, and Cabrita 2013; Giuliani, Cerretani, and 

Cichelli 2011). Formation of chlorophyll a derivative (pheophytin a and pyropheophytin 

a (PPP a)) in small amounts were identified as an indication of oil storage (Roca et al. 

2003). This finding was also confirmed in another study in which increasing amounts of 

PPP a as a new compound was observed during the storage (Gallardo-Guerrero et al. 

2005) whereas none or trace amounts existed in fresh olive oils (Anniva et al. 2006). It 

was also indicated that temperature was a significant factor favoring the formation of 

PPPs. Thus, the content and proportion of PPP a in terms of ratio between pheophytin a 

(the precursor pigment) to PPP a could indicate the storage conditions of the olive oils 

(Gallardo-Guerrero et al. 2005). The effect of thermal abuse and lengthy storage on PPP 

formation was also determined in a different study (Anniva et al. 2006). Thermal 

degradation kinetics of carotenoids as well as chlorophylls were analyzed in detail in 

several studies (Aparicio-Ruiz and Gandul-Rojas 2012; Aparicio-Ruiz, Mínguez-

Mosquera, and Gandul-Rojas 2010; 2011). Decoloration kinetics of chlorophylls and 

carotenoids in virgin olive oil triggered by autoxidation were examined under varying 

time and temperature. The results indicated that chlorophylls were more resistant to heat 

treatment due to requirement of higher activation energy compared to carotenoids. 

Additionally, it was concluded that obtained kinetic models could be used to construct a 

mathematical model to predict the decoloration of chlorophyll and carotenoids pigments 

in olive oil in terms of time and temperature (Aparicio-Ruiz and Gandul-Rojas 2014). In 

addition, chemical changes in thermoxidized virgin olive oil with respect to various 

parameters including pigments were monitored by fluorescence spectroscopy (Tena, 

Aparicio, and García-González 2012). Photooxidation reaction of pigments especially 

chlorophyll was followed effectively through UV-visible spectroscopy in combination 

with artificial neutral networks (Torrecilla et al. 2015). In another study, effect of light 

exposure on functional compounds of olive oil such as vitamin E and chlorophyll was 
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evaluated successfully by fluorescence spectroscopy (Díaz et al. 2019). These studies 

were based on investigating the effects of various storage conditions and time on the 

quality of olive oils similar to a study of Guillaume, Gertz, and Ravetti (2014). Effects of 

different factors such as environment, cultivar, storage conditions as well as time on 

several physico-chemical parameters including PPP were determined. The results showed 

that PPP a and 1,2-DAGs were good indicators for overall olive oil quality and freshness 

as well as storage history (Guillaume, Gertz, and Ravetti 2014). Recently, shelf-life 

prediction was also investigated by using induction time, 1,2-DAGs, PPPs, and free fatty 

acids of olive oils (Guillaume and Ravetti 2016). 

The method for determination of the degradation products of the chlorophyll a 

(pheophytin a, a’ and PPP) in olive oil was officially described by the German Society 

for Fat Science (Gertz and Fiebig 2006b). The method was based on HPLC analysis with 

UV detector measurement after solid phase extraction of the olive oil samples and it was 

then adopted by the International Standards Organization (International Organization for 

Standardization (ISO) 2009b) as a quality measurement method (Li, Woodman, and 

Wang 2015). PPPs content, ultimate degradation product of chlorophyll a, was calculated 

as ratio of PPP a to PPP a + pheophytin a + a’ in terms of percentage with a limit up to 

17% to grade an olive oil as extra virgin in official regulations. After official recognition 

of the PPPs content by some official bodies (Table 2.1), rapid determination of pigment 

composition become more important. An alternative method based on HPLC analysis 

with fluorescence detection which is comparably less in cost and time was proposed for 

the same purposes (Li, Woodman, and Wang 2015). In addition, amount of PPP a formed 

in olive oil during storage was tried to be predicted with promising results using a 

mathematical expression (Aparicio-Ruiz, Roca, and Gandul-Rojas 2012). Prediction of 

extra virgin olive oil freshness correlated with PPPs content during storage was 

successfully accomplished using fluorescence spectroscopy (Aparicio-Ruiz, Tena, et al. 

2017). As a result, effectiveness of PPPs in shelf-life determination was indicated. In 

addition, PPPs were recently proposed as adulteration determination criteria along with 

FAAEs, volatiles, and phenols for olive oils passing through deodorization process 

(Aparicio-Ruiz, Romero, et al. 2017). 

Authentication of olive oils with respect to variety and geographical origin was 

also investigated in olive oil studies. Pigment content was useful in this type of application 

because genetic as well as environmental conditions have significant effects on pigment 

content (Montealegre, Alegre, and García-Ruiz 2010). In addition, it was found that 
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pigments could be correlated to other factors such as ripeness stage, geographic origin 

and cultivars (Lazzerini, Cifelli, and Domenici 2017). Varietal characterization and 

differentiation of olive oil was performed by determining the content of some chlorophyll 

and carotenoid compounds (Cichelli and Pertesana 2004). Discrimination based on 

harvest year was also accomplished by using main pigments of Italian olive oils 

(Lazzerini and Domenici 2017). Furthermore, instead of using only the pigment profile, 

there is a trend of combining total chlorophyll and carotenoid contents with other 

chemical parameters for geographical and/or varietal classification (Karabagias et al. 

2013; Karabagias et al. 2019; Taamalli et al. 2010). It could be very hard to characterize 

an olive oil with a unique compositional marker by knowing that compositions of these 

markers are easily affected by the environmental conditions, the fruit ripening, and the 

extraction technology (Montealegre, Alegre, and García-Ruiz 2010). Therefore, bringing 

together different markers to obtain the discriminatory information as much as possible 

by using chemometric tools could provide better results (Montealegre, Alegre, and 

García-Ruiz 2010).  

Pigment content of olive oil could also be susceptible to the alterations and frauds 

(Lazzerini, Cifelli, and Domenici 2016). Illegal addition of artificial pigments to olive oil 

to prevent any color loss due to refining is still a common adulteration method and 

European regulations do not allow the addition of colorants to any oils and/or fats from 

animal or vegetable origin (Roca et al. 2010). Therefore, if any artificial color is detected 

this situation is considered an adulteration. As a greenish colorant, copper complexes of 

chlorophyll known as E-141i, are obtained by solvent extraction from plant sources. The 

additive E-141i is produced by the addition of Cu+2 salts to the pigments in which the 

inner metal ion Mg+2 is replaced with the more stable Cu+2 causing the formation of 

copper–chlorophyll derivatives and it has been mostly used in the fraud of olive oils due 

to its stable color characteristics during the processing and storage (Gandul-Rojas, Roca, 

and Gallardo-Guerrero 2016; Lazzerini, Cifelli, and Domenici 2016; Roca et al. 2010). 

The adulteration studies about color pigments in olive oils showed that Cu–

pyropheophytin a was the major component among copper–chlorophyll derivatives 

(Gandul-Rojas, Roca, and Gallardo-Guerrero 2016). Naturally, almost none of these 

derivatives exist in olive oils; therefore, detection of the presence of any of these 

compounds reveals the adulteration of the oil (Gandul-Rojas, Roca, and Gallardo-

Guerrero 2016). Several techniques are available to determine Cu-chlorophyll derivatives 

in olive oil and the majority of these methods are based on HPLC analysis with different 
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detector systems (Fang et al. 2015; Roca et al. 2010). Capillary electrophoresis was also 

used for the same type of application (Del Giovine and Fabietti 2005). Recently, some 

alternative techniques such as Raman spectroscopy (Lian et al. 2015) and other 

spectrophotometric measurements (Wang, Hou, and Hsieh 2018) were also developed to 

determine these compounds in a fast way without harming the environment. Other 

examples of recent application of pigments usage in olive oil authenticity and/or quality 

determination are presented in Table 2.4.
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2.2. Authentication of Olive Oil with Spectroscopic Methods 

 

 
Although targeted type of approaches might have high precision power regarding 

the determination of the specific analyte(s), they still possess some drawbacks such as 

long analysis time, high operation cost, and hazardous waste production. As non-targeted 

analysis approaches, spectroscopic techniques such as mid-infrared (mid-IR), UV-Vis, 

and fluorescence spectroscopy, provide speed, low cost and environmentally friendly 

applications for determination of authenticity, overall quality and chemical composition 

of olive oils. 

 

 

2.2.1. Mid-Infrared Spectroscopy and Chemometry 

 

 
Mid-IR spectroscopy (4000 - 400 cm-1 in the electromagnetic spectrum) has been 

widely used in the qualitative and quantitative analysis of organic compounds such as 

food products in order to identify specific chemical structure of a food matrix called as 

fingerprint. This spectroscopic technique is based on the fact that bonds of certain atomic 

groups (diatomic or more complex molecules) have specific mode of vibrations (e.g., 

stretching and/or bending) in mid-IR wavelength range which lead to qualitative 

representation of molecular structure at characteristic frequencies. In addition, mid-IR 

spectroscopy has been used to quantify target molecular groups by a correlation explained 

with Lambert’s-Beer law (A = εbc) which indicates that intensity of the absorption bands 

(A) are proportional to the concentration of the functional groups (c) of molecules with 

molar absorptivity (ε) and pathlength (b) (Guillén and Cabo 1997; Karoui, Pierna, and 

Dufour 2008).  

At earlier periods of mid-IR spectroscopy, the technique relied on monochromatic 

dispersion which was difficult to process and evaluate due to problems in sample 

preparation and data acquisitions (Guillén and Cabo 1997; Manning 1972). However, 

development of sampling techniques such as diffuse reflectance (DRIFT), photoacoustic 

(PAS) and attenuated total reflection (ATR) as well as replacement of dispersive mid-IR 
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technology with Fourier transform infrared (FTIR) spectroscopy, provided a wider 

application area for this spectroscopic technique. FTIR spectroscopy, based on an 

interferometer of mostly Michelson type, initially produces a signal called an 

interferogram. This signal is further converted into a frequency domain by a mathematical 

operation named as Fourier transform, leading to an increase in accuracy and speed of 

spectral acquisition (Downey 1998; Karoui, Pierna, and Dufour 2008). FTIR 

spectroscopy possesses superior characteristics over classical dispersive mid-IR 

spectroscopy and some of the prevailing features are simultaneous detection of 

frequencies rather than collection of individual wavelengths, higher signal to noise ratio, 

internal wavelength calibration ability, higher beam intensity, superior wavelength 

resolution and accuracy simultaneously, and reduction in the scan time without any effect 

on the resolution (Guillén and Cabo 1997; Rodriguez-Saona and Allendorf 2011). 

The new technological developments both in data production and sampling 

techniques resulted in an increase also in the use of FTIR spectroscopy in food 

applications especially in olive oil studies. FTIR data could be evaluated in the same way 

as in classical chromatographic data which provide information interpretable both in a 

qualitative and quantitative manner (Szymańska et al. 2015). However, there is a major 

difference between chromatographic and spectroscopic techniques since the data 

generated by spectroscopic measurements are considerably more complex than the 

chromatographic ones due to simultaneous detection of all chemical information at 

molecular level (Ellis et al. 2012). In order to obtain meaningful interpretation from a 

complex data set, chemometric methods are commonly used in data analysis. 

Chemometry could be defined as the science used to extract useful chemical information 

from multidimensional data by reducing the dimension of the data set with multivariate 

statistical methods (Rodriguez-Saona and Allendorf 2011). Besides the complexity of the 

spectroscopic data, there are other factors such as light scattering, instrumental drift, base 

line shifts and slope variation which make the use of chemometric methods inevitable in 

order to extract desirable information from the raw data (Lohumi et al. 2015). Prior to the 

use of multivariate statistical analysis methods, pre-treatment techniques could be applied 

to the data to remove all interferences and variations. These pre-treatment techniques can 

be divided into a) signal correction methods (first or second order derivative, 

multiplicative scattering correction (MSC), standard normal variate (SNV) 

transformation, and orthogonal signal correction (OSC)), and b) signal enhancement 

methods (mean centering and variance scaling) (Moros, Garrigues, and Guardia 2010). 
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Multivariate statistical methods are applied to mid-IR and any other spectroscopic 

data in food studies in different manners as follows:  

 Qualitative approach includes explanatory analysis based on unsupervised 

chemometric methods such as principal component analysis (PCA), parallel factor 

analysis (PARAFAC), independent component analysis (ICA), k-means, projection 

pursuit (PP), and hierarchical cluster analysis (HCA) to summarize and visualize the 

complex data. Classification methods are also used to develop suitable models having the 

ability of distinguishing samples according to their class memberships, based on 

supervised chemometric methods such as partial least squares-discriminant analysis 

(PLS-DA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 

support vector machines (SVM), k-nearest neighbors (k-NN), artificial neural network 

(ANN), and soft-independent modeling of class analogy (SIMCA) (Szymańska et al. 

2015). 

 Quantitative approach covers supervised methods such as partial least squares 

regression (PLSR), and other regression methods (e.g., multiple linear regression (MLR), 

principal component regression (PCR), artificial neural networks (ANNs), and SVM 

regression) which predict compositional parameters and/or properties of food materials 

by maximizing correlation between building blocks of the models (Borràs et al. 2015; 

Moros, Garrigues, and Guardia 2010). 

The use of these statistical techniques requires a medium to large size of data sets. 

Number of the samples for data analysis should be representative of the investigated case 

and chemometric techniques produce more accurate results with increasing number of 

samples. In addition, a sufficient number of samples should be used for validation of the 

chemometric model. Furthermore, ranges of the parameters measured become quite 

important and have an effect on the prediction ability of the models especially for 

quantitative analysis. 

The overall process and strategies of FTIR usage in olive oil studies are illustrated 

in Figure 2.1. Basically, spectroscopic data obtained from mid-IR spectroscopy are 

processed in three steps; 1) pre-processing of the raw data, 2) analysis of the calibration 

data set with suitable multivariate methods, and 3) checking the reliability of the 

calibration data set with another data set obtained independently as external validation 

and dependently as cross-validation (leave-one-out). External validation is based on 

splitting the raw data set into two independent sets as training or calibration (2/3 of data) 

and test or validation sets (1/3 of data) while cross-validation is performed by discarding 
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one observation at a time from the available observation data set and running the rest of 

the data to obtain a suitable model (Defernez and Kemsley 1997). As a last step, the 

correlation coefficient (R2) is used to reveal goodness (expected to be close to 1 for a 

good fit) of the corresponding models (Bauer et al. 2008) together with several other 

statistical parameters. These statistical parameters are related to errors of generated data 

(calibration and prediction) sets such as bias and standard error of performance (SEP) 

which is closely correlated to root mean square error of prediction (RMSEP) for 

independent validation set, root mean square error of calibration (RMSEC), root mean 

square value of cross-validation (RMSECV) and predicted residual error sum of squares 

(PRESS) (Esbensen et al. 2002; Muik et al. 2004). 

Acquired infrared spectra consists of information which can be evaluated both in 

a qualitative and quantitative manner. Various information that could be obtained from 

the spectra is described in Figure 2.2. The next part of this chapter will focus on the 

application of mid-IR spectroscopy for the determination of olive oil authenticity and 

prediction of quality parameters which are used for the authentication of olive oil. 
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2.2.1.1.  Applications of Mid-Infrared Spectroscopy for Detection of 
Adulteration of Olive Oil 

 

 
There are various studies in literature on the use of mid-IR spectroscopy for the 

detection of different categories of olive oil adulteration: detection of mixtures of olive 

oils from different genetic varieties (multi-varietal) and falsely labelled as “monovarietal” 

olive oil (Gurdeniz, Tokatli, and Ozen 2007), detection of mixtures with lower grade olive 

oils such as pomace, refined, and deodorized oils and sold as extra virgin olive oil (Yang 

and Irudayaraj 2001) and detection of mixtures with cheaper seed oils (soybean, corn, 

sunflower, hazelnut, etc.) and commercialized as pure olive oil (Gurdeniz and Ozen 2009; 

Obeidat, Khanfar, and Obeidat 2009; Lerma-García et al. 2010; Rohman and Che Man 

2010; Rohman et al. 2011; Oussama et al. 2012; Rohman and Che Man 2012; Rohman, 

Che Man, and Yusof 2014; Sun et al. 2015; Vasconcelos et al. 2015). Mid-IR 

spectroscopy has been used for discriminating pure olive oils from different sources and 

adulterated vs. pure olive oils. Examples of such studies are given in Table 2.5. Data from 

this spectroscopic technique have been also used in combination with multivariate 

regression techniques such as partial least square (PLS) for the prediction of adulterant 

concentrations in olive oil and Table 2.6 provides the examples of these studies. 
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Olive oil is a high value edible oil compared to many other oils from different 

botanical origins. Therefore, mixing of olive oil with different edible oils (corn, 

sunflower, canola, and etc.) is a common adulteration practice. Classification and 

discrimination of oils from different botanical origins is an important application area of 

mid-IR spectroscopy. Discrimination ability of FTIR spectroscopy for edible oils (corn, 

canola, sunflower, soya, and olive) and butter by different class modelling techniques 

such as PLS-DA, interval PLS-DA (iPLS-DA), extended canonical variates analysis 

(ECVA), and iECVA was investigated. It was observed that PLS-DA and iPLS-DA were 

not as successful as ECVA and especially iECVA which was able to discriminate oil 

samples perfectly (Javidnia et al. 2013). In mid-IR authentication studies, detection limit 

of adulterants and validity of generated statistical models determine the success of the 

method. Detection limit is quite important since fraudsters could make enormous gross 

profits on sales even with addition of small amounts of adulterants. FTIR spectroscopy 

was used to detect and quantify the adulteration of extra virgin olive oil mixed with 

different seed oils (corn, sunflower, rapeseed and cottonseed as a binary mixture, and 

corn–sunflower as a ternary mixture) (Gurdeniz and Ozen 2009). As a result of this study, 

successful prediction on adulterant level of 5% for both binary and ternary mixtures with 

tolerable error limits was obtained with PLS regression. There is limited number of 

adulteration studies in the literature dealing with ternary (Rohman and Che Man 2011b) 

and quaternary (Rohman and Che Man 2011a) mixtures. Moreover, detecting the 

presence of adulterants could be generally more important than identifying the adulterant 

type for the industry; therefore, the same study also investigated adulteration detection 

regardless of the type of adulterants and a detection limit of 10% was determined for this 

case (Gurdeniz and Ozen 2009). Another study (Lerma-García et al. 2010) revealed that 

different statistical approaches such as linear discriminant analysis (LDA) and MLR with 

suitable wavelength division and selection were able to successfully differentiate oils 

from different botanical origins such as extra virgin olive oil (EVOO), sunflower oil, corn 

oil, soybean oil and hazelnut oil, and also to detect binary mixtures of low cost oils with 

EVOO (<5%) in quantities as close to the findings of Gurdeniz and Ozen (2009). In 

addition, the presence of commonly used cheap adulterants such as palm oil (Rohman 

and Che Man 2010), canola oil (Rohman, Che Man, and Yusof 2014), peanut oil 

(Vasconcelos et al. 2015), camellia oil (Sun et al. 2015) and lard (Rohman et al. 2011) in 

olive oil was also detected and quantified by FTIR spectroscopy in recent studies. A study 

on the quantitative determination ability of FTIR spectroscopy on virgin coconut oil in 



 

42 
 

binary mixtures with olive oil and palm oil by PLS and PCR analyses was also performed 

(Rohman et al. 2010). The results indicated that frequency regions between 1,120–1,105 

and 965–960 cm-1 were the most suitable spectral ranges to predict virgin coconut oil 

percentages in olive oil supported by higher R2 and lower RMSEC values when compared 

to full spectral range (Rohman et al. 2010). Due to the multivariate nature of IR 

spectroscopy, many variables could be measured simultaneously which comprises 

informative variables, uninformative variables, and interferential variables. Therefore, 

there is a need of elimination of unnecessary variables (uninformative and interferential 

ones) by different variable selection methods such as Monte Carlo uninformative variable 

elimination (MC-UVE), the competitive adaptive reweighted sampling method (CARS), 

and successive projection algorithm (SPA). Application of these methods to discriminate 

adulterated olive oil from peanut oil (5-90% with 5% increment, w/w) samples was 

investigated and higher discriminating ability of modified MC-UVE than the other pre-

process methods were shown (Li et al. 2016). Legal oil blends which are in demand due 

to economical and nutritional reasons are also available in the market. The rules for oil 

blends are regulated by legal authorities such as The European Union as highlighted by 

de la Mata et al. (2012). According to this legislation (Commission Regulation (EC) 

2002a) presence of olive oil in an oil blend could be indicated with images or graphics 

only when it contains more than 50% (w/w) olive oil. In a related study, classification of 

oil blends containing olive oil higher or lower than 50% (w/w) by PLS-DA of FTIR data 

was possible as required by the regulation (de la Mata et al. 2012). Also, semi-

quantification (only blends with olive oil content up to 50%) could be achieved relatively 

successfully by PLS regression. 

Another category of olive oil authenticity issue is related to geographical origin 

and cultivar/variety of olives used for oil production. Monovarietal olive oil demand is in 

the rise in the market due to superior sensorial and organoleptic properties of these oils 

coming from certain regions and these properties are protected by PDO labelling, PGI 

and TSG designations of European Union. As a result, monovarietal olive oils are 

generally marketed at higher prices which make them targets for mixing with other oils; 

therefore, there are various studies in the literature aiming at discriminating oils coming 

from different olive varieties and also geographical origin by mid-IR spectroscopy. FTIR 

discriminatory power on differentiation of different Spanish olive oil varieties was 

studied by Concha-Herrera et al. (2009). 
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2.2.2. UV-Vis and Fluorescence Spectroscopies 

 

 
Both UV-Vis and fluorescence spectroscopies are commonly used in olive oil 

authentication since they have easy to use, environmentally friendly and informative 

characteristics. They could also provide qualitative and quantitative information about 

the analyzed samples (Valli et al. 2016). However, these techniques are not thoroughly 

studied in olive oil authenticity and quality as opposed to vibrational spectroscopy 

techniques. UV-Vis spectroscopy exploits quantitative information obtained from 

chromophores which is relying on Beer’s law while the fluorescence intensity depends 

directly on concentration of fluorophore molecules (Gaigalas et al. 2001). Fluorescence 

characteristics of each molecule are defined by two types of spectra: excitation and 

emission. However, not all of the absorbing molecules have fluorescent characteristics, 

and fluorescent emitting and non-emitting properties of molecules contribute to higher 

selectivity of fluorescence as opposed to absorption spectra (Sikorska, Khmelinskii, and 

Sikorski 2012). The same chemometric techniques explained for FTIR analysis are also 

valid for both spectroscopic methods. 

UV-Vis spectroscopy was used in identification of possible adulterants in olive 

oil as well as in discrimination of olive oils with respect to their geographical and/or 

botanical origin (Valli et al. 2016). It was also utilized in prediction (Torrecilla et al. 

2010b) and classification (Torrecilla et al. 2013) of lower quality oils in virgin olive oil. 

Data fusion was also applied to UV-Vis spectra to enhance its classification and 

discrimination power. In the literature, UV-Vis spectral data were combined with NIR 

spectroscopy to determine adulteration made with sunflower oil (Downey, McIntyre, and 

Davies 2002) and to predict basic quality and purity parameters such as free fatty acids, 

peroxide value, phenolic compounds, oxidative stability, total chlorophyll content and 

fatty acid profile (Mailer 2004). In addition, it was applied to geographical classification 

of olive oils (Casale et al. 2010; Downey, McIntyre, and Davies 2003). 230-270 nm band 

shows high absorption in the presence of conjugated dienes and trienes of unsaturated 

fatty acids and also 300-400 nm band correlates with polyphenol contents in UV-Vis 

spectra of olive oil (Mignani et al. 2012).  

Fluorescence spectroscopy have some advantages due to its high sensitivity, 

selectivity and simplicity of use (Gaigalas et al. 2001; Sikorska, Khmelinskii, and 
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Sikorski 2012). Fluorescence spectra of the olive oils were also promisingly used in 

discrimination of quality grades, in adulteration detection, in authentication with respect 

to geographical origin, in quantification of fluorescent components, in monitoring thermal 

and photo-oxidation, as well as in assessing the quality changes during storage (Sikorska, 

Khmelinskii, and Sikorski 2012; Valli et al. 2016). This technique owes its capabilities to 

fluorescence properties of olive oil components such as vitamins (excitation:290-297 nm 

and emission: 320-324 nm), chlorophylls (excitation:405-458 nm and emission:648-673 

nm), and phenolic compounds (excitation:270 and emission:310-457 nm) (Sikorska, 

Khmelinskii, and Sikorski 2012).  
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3.1. Materials 

 

 
Three different olive oil sets were used for three different investigations as 

explained in detail in the following parts 

 

 

3.1.1. Olive Oil Samples Used in Characterization and Authentication 

 

 
Ninety-one olive oil samples extracted with two-phase decanters from various 

parts of the Aegean Region of Turkey were collected from trusted sources for two 

consecutive harvest years in 2015-16 and 2016-17. The olive oil samples, belonging to 

38 different places, as shown in Figure 3.1, were scattered in three main cultivation area 

of the Aegean Region as North (N=29 samples), South (S=36 samples) and Middle 

(M=26 samples). In the first harvest year, 19, 25, and 10 samples and in the second harvest 

year 10, 11, 16 samples were analyzed from North, South and Middle, respectively as 

shown in detail in Table 3.1. The North and South Aegean Regions are the designated 

areas for PDO labeling of olive oils on national scale, whereas the Middle Aegean Region 

could be a candidate for this type of labeling due to the unique characteristics of olive oils 

from this region. Ayvalik/Edremit is the olive variety cultivated in the northern part of 

the Aegean Region, whereas Memecik variety is the predominant variety of the South 

Aegean Region. Erkence is the unique variety of the Middle Aegean Region. All the olive 

oils obtained from North and South regions for two successive harvest years were graded 

as extra virgin according to the European regulations, whereas 70% of Middle region 

olive oils were in a lower grade due to varietal characteristics of Erkence olives. The 

maturity index of the commercial oil samples was in the range of 6–7 (purple to black). 

The samples were kept in the dark at refrigeration temperature (4 °C) before analysis, and 

the headspace of the samples was flushed with inert gas (nitrogen) before storage. 

Samples were analyzed shortly after they were received. 
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Figure 3.1 Map showing the approximate locations of olive oil samples (red spotted) 

obtained from various places of the Aegean Region of Turkey (Source: 
Google Map (2019)) 
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3.1.2. Olive Oil Samples Used in Prediction Studies 

 

 
Two outlier samples (S1-17 and S1-5) were omitted from the data set. As a result, 

total of 89 samples from two consecutive harvest years (52 samples from 2015 and 37 

samples from 2016) were used for the prediction of chemical characteristics of olive oils 

from spectral data. 

 

 

3.1.3. Olive Oil Samples Used in Adulteration Studies 

 

 
Fresh olive oil samples obtained in 2016 harvest year were analyzed immediately 

after the production whereas olive oils from 2015 harvest year were used as old olive oil 

samples after one year of storage. Olive oils were from the different parts of Aegean 

Region (14 different locations for fresh olive oils and 5 different locations for old olive 

oils) (Table 3.1). Twenty different fresh and 5 different old oils were used in the analyses 

and 4 fresh, and 5 old olive oils were mixed with each other in cross combinations and 

the rest of the fresh samples (16 samples) were independently used. As a result, 100 

adulterated samples in five different concentrations from 10% to 50% level with 10% 

increments (20 samples for each level) were prepared with a total volume of 10 mL by 

mixing samples with a vortex.  

 

 

3.1.4. Chemical Reagents 

 

 
All reagents used in the analyses were analytical grade and obtained from Sigma-

Aldrich (Germany) and Merck (Germany) unless otherwise stated. 
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3.2. Wet Chemical Methods 

 

 
All wet chemical methods are grouped under four subtopics as in the following. 

 

 

3.2.1. Determination of Free Fatty Acid Content, K Values and Fatty 

Acid Profile 

 

 
Basic quality parameters, free fatty acid (FFA) and specific extinction coefficients 

(K232 and K270) and fatty acid profile of the olive oil samples were determined 

according to European Official Methods of Analysis (Commission Regulation (EEC) 

1991). 

FFA value was determined by first dissolving 20 g of olive oil sample in 150 mL 

diethyl ether-ethanol solution (1:1) and then titrating this solution with a standardized 0.1 

mol L-1 solution of potassium hydroxide until a change in indicator color 

(phenolphthalein). Results were expressed in terms of % oleic acid.  

Absorbance values of 0.25 g of the olive oil samples diluted to 25 mL with 

cyclohexane were measured at 232 and 270 nm with a spectrophotometer (Shimadzu UV-

2450 Spectrophotometer, Japan) using the pure cyclohexane as the blank. 

Fatty acid profile of the methyl esterified olive oil samples was determined by a 

GC with flame-ionization detector (FID) (Agilent 6890, Agilent Technologies, USA) 

possessing an auto-sampler (Agilent 7863) with a split/splitless inlet. As a capillary 

column, HP-88 with dimensions of 100 m × 0.25 mm ID × 0.2 mm (Agilent, USA) was 

used. Experimental conditions were as follows; 1 μL eluent was injected with a split ratio 

1/50, helium was used as a carrier gas at constant 2 mL m-1 flow, injection and detector 

temperatures were set to 250 ℃ and 280 ℃, respectively. Temperature program of oven 

was kept at 120 ℃ for 10 min and then increased to 220 ℃ with a rate of 3 ℃ m-1 and 

maintained at the same temperature for 5 min. The sample chromatogram peaks were 

compared with the retention times of fatty acid methyl ester (FAME) 37 components mix 

standards (Supelco-CRM47885). The results including major individual fatty acids, total 



 

51 
 

saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA), and total 

polyunsaturated fatty acids (PUFA) were given as the relative percentage of FAME. 

Three replicates of each measurement were recorded and then averaged. This method was 

used to determine the basic quality parameters of olive oil samples used in authentication 

and characterization as well as in prediction and adulteration studies. 

 

 

3.2.2. Determination of Fatty Acid Alkyl Ester and Wax Contents 

 

 
Fatty acid alkyl esters (FAAEs) as sum of ethyl (FAEEs) and methyl esters 

(FAMEs) are defined as a family of natural neutral lipids present in olive oils (Jabeur et 

al. 2015). FAME and FAEE and wax contents of olive oil samples were determined 

according to a method by International Olive Council (2010). This method is based on 

fractionation of olive oil with addition of suitable internal standards then direct analysis 

of the eluent by capillary gas chromatography (GC). Briefly, 15 g of silica gel suspended 

in n-hexane was placed into a glass column and was percolated with n-hexane to remove 

any impurities. Then, about 0.5 g of the olive oil sample was placed into a flask with 

addition of internal standards as dodecyl arachidate solution (Sigma-Aldrich-A8671) for 

waxes and methyl heptadecanoate solution (Sigma-Aldrich- 51633) for alkyl esters 

together by mixing with sudan 1 indicator dye. Then, prepared sample was transferred to 

the chromatography column with the aid of n-hexane. Sample was percolated further with 

n-hexane/ethyl ether mixture (99:1) continuously until the sudan 1 color reached to the 

bottom of the column. Resultant fractions were evaporated in a rotary evaporator 

(Heidolph Laborota-4000, Germany) at 20 ℃. Fraction containing the methyl and ethyl 

esters and waxes was collected and diluted with 2 mL n-heptane. Diluted sample was 

filtered into a deep brown vial and then injected into GC.  

GC analyses were conducted with Agilent 7890A GC-FID (USA). An HP-5 (30 

m × 0.32 mm ID, 0.25 μm film, Agilent, USA) column was used in analyses. The 

analytical conditions were as follows; on column inlet temperature was set to 70 ℃ and 

injection volume was 1 μL carried with hydrogen. The oven temperature was 

programmed as 80 °C (1 min), 20 °C/min to 140 °C (0 min), 5 °C/min to 335 °C (20 min). 

Detector temperature was 350 ℃. Obtained peaks were further identified with GC-MS 
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(Agilent 6890 N / 5973 N Network GC / MSD System, USA) at the same conditions. The 

results were expressed in terms of mg/kg. The target compounds were determined as sum 

of ethyl of C16:0, C18:0, C18:1 and C18:2 in official method (Figure 3.2). This method 

was used in both authentication as well as prediction studies. 

 

 

 
Figure 3.2. Sample GC chromatogram of alkyl esters of an olive oil according to 

International Olive Council method (International Olive Council (IOC) 
2010) 

 

 

3.2.3. Determination of Diacylglycerol Content 

 

 
A miniaturized column chromatography on a silica gel column was used to 

separate the isomeric DAGs as 1,2- and 1,3-isomers of C32-, C34- and C36- according 

to International Organization for Standardization method (International Organization for 

Standardization (ISO) 2009a). Firstly, olive oil sample was weighted and dissolved in 1 

mL toluene. Then, it was transferred on to the prepared column with wetted silica gel 

while purging the flask with solvent mixture (isooctane/diisopropyl ether). Column was 

washed with 2x3.5 mL portions of the solvent mixture. DAGs were eluted with diethyl 

ether two times and eluate was collected in a pointed flask. Solvent was removed from 

the eluate with a rotary evaporator (Heidolph Laborota-4000, Germany) at 20 ℃. Then, 
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silylation reagent as 50 μl 1-methylimidazole (Sigma-Aldrich-M50834) in 1 ml of N-

Methyl-N-(trimethyl-silyl) heptafluorobutyramide (MSHFBA) (Supelco-69484) was 

added to the reaction vial containing the DAGs, and mixture was sealed and allowed to 

react for 20 min. at room temperature. After silylation, 1 mL acetone was added into the 

mixture and 2 μL of the solution was used for the GC analysis. DAG isomers were 

identified with a GC by comparing the retention times of silylated reference standards 

composed of dipalmitin (Sigma-Aldrich-D2636) and distearin (Sigma-Aldrich-D9019).  

GC analysis was carried with Agilent 7890A GC-FID (USA). The column was 

capillary GC column as Rtx-5MS (60 m × 0.25 mm ID, 0.1 μm film, Restek, USA). 

Injection volume was 2 μL having 1:20 split ratio carried with hydrogen. The oven 

temperature was programmed to 240 °C (1 min) followed by 10 °C/min to 320 °C (16 

min). Both injector and detector temperatures were set to 340 ℃. The results were 

expressed in terms of percentage. A typical DAG profile for an olive oil sample obtained 

with GC-FID analysis are shown in Figure 3.3. Data obtained from this analysis was used 

in both authentication as well as prediction studies. 

 

 

 
Figure 3.3. Typical GC chromatogram of an olive oil showing individual DAG peaks 

obtained by analysis according to International Organization for 
Standardization method (2009a) 
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3.2.4. Quantification of Individual Chlorophylls and Carotenoids 

 

 
The method adapted from Mateos and García-Mesa (2006) was used to determine 

the pigment profiles of olive oils. Samples were extracted by the solid-phase extraction 

(SPE) using octadecyl (C18) disposable extraction columns (Agilent, USA). SPE column 

was conditioned first with methanol and then with hexane. One g of oil dissolved in 4 mL 

of n-hexane was injected to column and then washed with n-hexane. Firstly, hexanic 

phase containing β-carotene was collected and evaluated with UV-vis spectroscopy 

(Shimadzu UV-2450 Spectrophotometer, Japan). Then, the remaining pigments were 

eluted with 5 mL acetone. The acetone phase was taken to dryness and collected in 0.3 

mL of acetone for HPLC (Agilent 1200 HPLC, USA) analysis. The sample dissolved in 

acetone injected into HPLC-DAD system. Separation was performed on a column packed 

with Waters Spherisorb S5ODS2 (25 cm × 4.6 mm ID, 5 μm particle size, Supelco, 

Germany) protected with a guard cartridge (3.2-4.6 mm ID, Supelco, Germany) packed 

with the same material as the column.  

The pigments were eluted at a rate of 1 mL/min. The eluents were water + ion pair 

reagent as mobile phase (A) and acetone-methanol as mobile phase (B) (Mínguez-

Mosquera, Gandul-Rojas, and Gallardo-Guerrero 1992). The gradient scheme for eluents 

indicated at Mateos and García-Mesa (Mateos and García-Mesa 2006)(2006) were as 

follows; initial composition as 75% (A) and 25% (B) and then (A) was decreased to 50% 

while (B) was increased to 50% in 10 min simultaneously and both maintained for 2.5 

min. Then, (A) was further decreased to 20% in 1.5 min., (B) was increased to 80% at the 

same time and both maintained for 2 min. After that, (A) was lowered to 0% in 5 min 

while (B) was raised to 100% and both were kept constant for 14 min. After that, 

concentrations were turned back to the initial conditions in 5 min. The pigments were 

identified simultaneously at varying wavelengths by comparing the retention times of 

external standards. Pheophytins a and b standards were prepared with acid treatment of 

chlorophyll a and b solutions, respectively (Sievers and Hynninen 1977). The rest of the 

standards were obtained commercially for chlorophyll a (Sigma-Aldrich-C5753), 

chlorophyll b (Sigma-Aldrich-C5878), and lutein (Supelco-07168). 5-point calibration 

curves at distinct wavelengths were obtained for each standard as follows: 410 nm for 

pheophytin a and its derivative, 430 nm for chlorophyll a and its derivative, 435 nm for 
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pheophytin b and its derivative, 446 nm for lutein and its derivatives and other 

xanthophylls (as total xanthophylls), and 466 nm for chlorophyll b and derivative 

(Appendix A). The results were expressed in terms of mg/kg. A sample HPLC 

chromatogram of olive oil pigments were shown in Figure 3.4. This method was used 

determining the pigment contents of the samples in both authentication and prediction 

studies. 

 

 

 
Figure 3.4. Pigment chromatogram of an olive oil sample obtained with HPLC analysis 

described in the literature (Mateos and García-Mesa 2006) 
 

 

3.3 Spectroscopic Methods 

 

 
Various spectroscopic methods were also used in the analysis of each olive oil as 

explained in the following sections. 
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3.3.1. FT-IR Analysis 

 

 
Mid-infrared spectra between 4000-650 cm-1 of the olive oil samples were 

recorded by using Perkin Elmer Spectrum 100 FT-IR spectrometer (Perkin Elmer Inc., 

USA) equipped with a deuterated tri-glycine sulphate detector (DTGS). As a sampling 

technique horizontal attenuated total reflectance (HATR) accessory with ZnSe crystal 

was used. Scan speed, resolution, and number of scans for each spectrum were adjusted 

as 1 cm s-1, 4 cm-1, and 64 respectively. The spectrum for each sample was taken twice. 

After each analysis, the sampling crystal was cleaned with hexane, ethanol and deionized 

water. This method was applied to all olive oils. 

 

 

3.3.2. UV-Vis Spectroscopy 

 

 
UV-visible spectrophotometer (Shimadzu UV-2450 Spectrophotometer, Japan) 

was used to obtain the spectra of olive oil samples between 200-800 nm. Absorbance was 

measured with fast scan speed in a macro type polystyrene cuvette (12.5 x 12.5 x 45 mm) 

having 10 mm light path by using air as the blank. Sampling interval and slit width were 

set to 2.0 nm and 5.0 nm, respectively. Duplicated spectra were obtained for each olive 

oil sample. This method was applied to all olive oil data sets. 

 

 

3.3.3. Fluorescence Spectroscopy  

 

 
Fluorescence spectra of the olive oil samples were acquired with the LS-55 

fluorescence spectrometer (Perkin Elmer Inc., USA) equipped with a pulsed xenon lamp. 

The slit width was adjusted to 5 nm for both excitation and emission. Data interval for 
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scan and integration time was set to 0.5 nm and 0.2 s, respectively. These parameters were 

selected to obtain the best resolution with optimal signal-to-noise ratio. 

For each excitation wavelength (320, 330, 340 and 350 nm) fluorescence emission 

spectra were recorded twice for each sample between 300-800 nm simultaneously by 

using a quartz cell. By using trial and error method, an excitation wavelength at 350 nm 

was selected in the construction of both classification and prediction models. 

 

 

3.4 Multivariate Statistical Analysis  

 

 
In order to handle the large data clusters obtained from the spectroscopic 

measurements and wet chemical analysis, multivariate statistical tools were utilized in 

both classification and prediction studies. SIMCA 14.0 software (Umetrics, Sweden) was 

used for all the data analyses. Different multivariate approaches were used in each part of 

the study. Hence, this section was divided into three parts in order to clearly show each 

statistical strategy, and Table 3.2 provides a summary of overall investigation.  

 

 

3.4.1. Adulteration Study 

 

 
The whole spectra from FTIR (4000-650 cm-1), UV-vis (200-800 nm), and 

fluorescence (300-800 nm) spectroscopy measurements were used in the analyses. In 

addition, low level data fusion was applied to FTIR and UV-vis spectroscopic data to 

obtain a single matrix and this combined form was also used in both classification and 

prediction models. Low level data fusion is a basic combination method relied on 

concatenating data sets obtained from different instruments into a large single matrix and 

could be used in generating classification or prediction models. Rows and colons of the 

matrix correspond to samples and signals (variables), respectively (Borràs et al. 2015).  
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Prior to the model development, replicated spectroscopic data were averaged and 

then appropriate pre-processing techniques were used to remove the undesirable 

instrumental and experimental variations (Engel et al. 2013). Pre-processing techniques 

could be divided into two main categories as signal enhancement and signal correction 

methods (Moros, Garrigues, and Guardia 2010). Mean-centering and unit variance 

scaling were applied as a signal enhancement strategy in the construction of all models. 

Advanced signal correction algorithms such as first derivative (FD), second derivative 

(SD), Savitzky-Golay (S-G), wavelet denoising techniques (WDTs), multiplicative 

scatter correction (MSC), and orthogonal signal correction (OSC) were used individually 

and in appropriate combinations (S-G:MSC, FD:S-G:MSC, and WDTs:OSC) for the 

development of the specific models. FD and SD of the spectroscopic data were calculated 

from moving quadratic sub-models with 15 data point long and the distance between each 

data point is set to 1 excluding the edge effects. As a wavelet function Daubechies-10 was 

chosen, and confidence interval was selected as 99.5%. Selection of the suitable pre-

processing technique was accomplished with the trial and error method. For this purpose, 

different pre-processing techniques were applied and the best performing one was 

selected with respect to their classification and prediction efficiencies in terms of the 

statistical parameters provided in the next section (Engel et al. 2013). 

For the classification and quantification, pre-treated data set of each spectroscopic 

technique was randomly divided into calibration and validation sets comprising 2/3 and 

1/3 number of the data set, respectively. The calibration data set was used to generate the 

corresponding model. An optimal model with respect to the latent variables (LVs) was 

chosen by internal validation (cross validation) which was applied as leave-one-out cross 

validation (LOO-CV) to avoid over and/or under fitting of the model (Riedl, Esslinger, 

and Fauhl-Hassek 2015). The optimal number of LVs obtained from 7-fold cross 

validation revealed the model complexity, and the percentage of correct classification for 

the optimized number of LVs provided the classification accuracy (Engel et al. 2013). 

In classification studies, orthogonal partial least square-discriminant analysis 

(OPLS-DA) was used to visualize the separation of adulterated and fresh olive oil samples 

by using pre-treated data. In OPLS-DA analysis, a dummy Y matrix (variable vector) 

consisting of class 1 and class 2 (adulterated and non-adulterated (fresh) samples, 

respectively) was correlated with X matrix (spectral data) (Sen and Tokatli 2016). The 

results of the OPLS-DA analysis are given in the form of a misclassification table. Both 

cross and external validation techniques were used to determine correct classification and 
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misclassification (known as rejection or error) rate (Riedl, Esslinger, and Fauhl-Hassek 

2015). The correct classification rate (%CC) was determined when an examined oil 

sample from a defined olive oil class (as adulterated or non-adulterated) have a prediction 

value between 0.5 and 1.5; otherwise, it was considered as a misclassification (Hirri et al. 

2016). In addition, other performance parameters such as number of LVs, regression 

coefficient for calibration (R2
cal) and Q2 (regression coefficient for cross-validation 

(R2
cv)) were determined for each classification model constructed with different 

spectroscopic data. These values were evaluated by automatic fitting function available 

in the SIMCA software.  

Prediction for the quantification of the varying levels of adulteration (0–50% v/v) 

were conducted with PLS regression analysis. Basically, PLS regression was used to 

correlate spectroscopic absorbance of each adulterated and non-adulterated sample (X 

block) with the percentages of adulterant and non-adulterant olive oil (Y block) (Gurdeniz 

and Ozen 2009). The prediction ability of the generated PLS models were investigated 

with several performance parameters such as R2
cal, R2

cv, and regression coefficient for 

prediction (R2
pred) Error values as RMSEP/C/CV were also used in the performance 

evaluation. R2 values should be close to 1 while error values should be small and close to 

each other in order to minimize error as low as possible by sustaining balance between 

generated error values in terms of magnitude and to obtain a robust prediction model 

(Uncu and Ozen 2015). Additional parameters such as RPD for external validation and 

slope of the calibration models were also used to evaluate the model. The RPD value 

stands for the ratio of standard deviation of predicted values to RMSEP values revealing 

the predictive ability of the corresponding model (Riedl, Esslinger, and Fauhl-Hassek 

2015). The RPD values were calculated according to formula provided in the literature 

(Ozturk, Yucesoy, and Ozen 2012). In RPD evaluation, values lower than 2.0 are 

considered to be insufficient for prediction while values between 2.0-2.5 are used for 

approximate quantitative predictions. Values between 2.5-3.0 and values higher than 3.0, 

on the other hand, indicate good and excellent predictions, respectively (Tamaki and 

Mazza 2011). 
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3.4.2. Characterization and Authentication 

 

 
A set of basic quality parameters (free fatty acid and K values) including 91 rows 

(samples) and 3 columns (parameters) was obtained with titrimetric analyses, and a fatty 

acid profile matrix with 91 rows (samples) and 11 columns (individual fatty acids), and a 

DAGs matrix possessing 91 rows and 9 columns (individual DAGs including ratio), 

FAAEs and wax contents with their components in terms of 91 rows and 16 columns were 

determined with GC analysis. Finally, a pigment matrix having 91 rows (samples) and 13 

columns (pigments) were generated with the results from HPLC analysis. In the spectral 

part, the whole spectra of FTIR (4000-650 cm-1) and UV-visible (200-800 nm) 

measurements were used to create data matrices with dimensions of 91×3351 and 

91×301, respectively. In addition, combination of FTIR+UV-visible spectra (650-4 000 

cm-1+12 500-50 000 cm-1) in low-level fused form of 91×3652 dimensions were also used 

in the analysis.  

Prior to construction of discrimination models, raw pigment data were 

standardized and regularized simply by applying unit variance scaling and mean-

centering without any further pre-processing techniques. Whereas, spectroscopic data as 

FTIR and fused form were additionally pre-treated with second-order derivative (SD) to 

minimize baseline effect and random-noise contributions (Moros, Garrigues, and Guardia 

2010). The SD data were treated with moving quadratic sub-models with 15 data point 

long including distance between them as 1 while excluding the edge effects. In addition 

to these spectral pre-processing techniques, SNV transformation was applied to UV-

visible spectra to enhance the classification power by eliminating major effects of light 

scattering from the spectra (Moros, Garrigues, and Guardia 2010). 

For the discrimination purposes, pre-treated data set of each matrix 

(chromatographic and spectral) was randomly divided into calibration and validation sets 

comprising 2/3 and 1/3 number of the samples, respectively. Orthogonal partial least 

square-discriminant analysis (OPLS-DA) was used to visualize the separation of olive oil 

samples according to geographical origin and harvest year by using the pre-treated data. 

In geographical discrimination, a calibration data set of total of 60 samples were divided 

into three classes as 17 Middle (class M), 19 North (class N), and 24 South (class S) 

samples while 31 samples (9 M, 10 N, and 12 S) were used as a validation set. In 
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differentiation of harvest year, a calibration data set (60 samples) belonging to two 

consecutive years (36 samples for the first harvest year (class 1) and 24 samples for the 

second harvest year (class 2)) and a validation set (31 samples) from the same harvest 

years (18 and 13 samples for class 1 and 2, respectively) were used.  

Classification performance of the generated models were checked with several 

parameters as number of LVs and regression coefficients for both calibration (R2
cal) and 

validation (R2
cv) models as well as correct classification rate (CC%) for the same models. 

Cross-validation was also performed for the OPLS-DA models by applying 7-fold LVs 

built-in function of SIMCA software to avoid overfitting. As a last parameter, variable 

importance for the projection (VIP) values for geographical origin and harvest year, 

generated with SIMCA software, were used to determine the most influential variables of 

pigment, wavelength and/or wavenumber in chromatographic and spectral analysis, 

respectively. Variables having VIP values greater or close to 1 were considered as 

important variable in classification (Uncu and Ozen 2015).  

 

 

3.4.3. Prediction Study 

 

 
Partial least squares (PLS) regression was used to construct the prediction models 

of the chemical parameters from FTIR and UV-vis spectra. Moreover, data fusion 

approach was also used to enhance the prediction ability of the PLS models by combining 

FTIR and converted UV-vis spectra (650-4 000 cm-1 + 12 500-50 000 cm-1) in a low-level 

fusion. In low-level fusion, all the data from different sources were simply concatenated 

into a single matrix (Borràs et al. 2015). 

Prior to construction of calibration models by PLS regression, spectroscopic data 

were pre-processed to increase the prediction ability of the models by eliminating spectral 

variation. Mean-centering and UV-scaling were used in all of the model construction to 

enhance spectral signal. As pre-processing methods, first- or second-order derivative, 

MSC, and SNV transformation were used in specific model construction (Moros, 

Garrigues, and Guardia 2010). The first- and second-order derivative of the spectroscopic 

data were calculated from moving quadratic sub-models with 15 data point long and the 

distance between each data point is set to 1 excluding the edge effects.  



 

62 
 

After obtaining pre-processed calibration model by splitting 2/3 of the raw data 

(59 samples), reliability of the proposed models was checked with randomly selected 

external validation data set (1/3) (30 samples) as well as cross-validation. Performance of 

constructed models were checked by several performance parameters. R2 was used to 

reveal robustness of the corresponding models as R2
cal, R2

cv, and R2
pred for external 

validation (Ozturk, Yucesoy, and Ozen 2012). Parameters related with error such as root 

mean square error of prediction (RMSEP), root mean square error of calibration 

(RMSEC), root mean square value of cross-validation (RMSECV) were also evaluated. 

As another useful parameter, number of latent variables (LVs) were also used in the model 

performance assessment. To obtain a robust model without overfitting, it was expected to 

use as few numbers of LVs as possible with high value of R2 and low value of 

RMSEC/RMSEP (Özdemir, Dağ, Özinanç, et al. 2018). 

In addition to these parameters, residual predictive deviation (RPD) and slope of 

the models were calculated. The RPD value for external validation models was defined 

as the ratio of the standard deviation of the external validation variables to RMSEP and 

high value indicates a better model (Sinelli et al. 2008). All the statistical parameters 

except RPD values were calculated with SIMCA software while the RPD values were 

calculated according to Ozturk, Yucesoy, and Ozen (2012). Summary of this section is 

provided in the Table 3.2. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4. CHARACTERIZATION AND AUTHENTICATION OF 

OLIVE OILS 

 

 
Redrafted, modified, and extended from:  

 

Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2020. “Authentication of Turkish Olive Oils 

by using detailed pigment profile and spectroscopic techniques.” Journal of the 

Science of Food and Agriculture 100 (5): 2153–65. 

https://doi.org/10.1002/jsfa.10239. 

 

Uncu, Oguz, and Banu Ozen. 2021. "Fatty acid alkyl ester and wax compositions of olive 

oils as varietal authentication indicators." Journal of Food Measurement and 

Characterization (in press). https://doi.org/10.1007/s11694-021-01184-2. 

 

 

4.1. Chemical Characterization and Authentication of Olive Oils from 
Aegean Region 

 

 
Aegean Region is one of the most important olive oil producing areas in Turkey. 

Several important quality and purity parameters as free fatty acid (FFA) value, K values, 

fatty acid profile, fatty acid alkyl esters (FAAEs) and fatty acid ethyl esters (FAEEs) and 
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waxes were measured to investigate the chemical characteristics of olive oils from this 

region and to evaluate their importance in authenticity and quality determination. 

Moreover, chemical parameters recently proposed as quality indicators, chlorophyll and 

carotenoid profiles and DAG content were determined to study their effect on olive oil 

authentication. Ultraviolet-Visible (UV-VIS), and Fourier Transform Infrared (FTIR) 

spectroscopic profiles of the samples were also evaluated. Samples were obtained from 

North (N), Middle (M) and South (S) parts of Aegean Region for two consecutive harvest 

year. The origins of these oils are listed in the previous section (Table 3.1). Number of 

samples for 2015-16 and 2016-17 harvest year is 54 and 37, respectively. All data were 

analyzed with multivariate statistical methods. 

 

 

4.1.1 Basic Quality Parameters 

 

 
As basic quality parameters, FFA and K values were determined for the studied 

olive oil samples. It could be seen from Table 4.1 that M region samples were in lower 

quality in terms of all measured parameters when compared with the other two regions 

(N and S). N and S region samples had extra virgin oil grade in average. 

These parameters are strict quality parameters for grading olive oils according to 

European Legislations. In this part of the study, it was aimed to investigate the differences 

in quality characteristics of the oil samples with respect to their geographical locations 

(varietal origins) and harvest year. Therefore, OPLS-DA classification models were 

constructed with the quality data set (FFA and K values) as shown in Figure 4.1 and 

Figure 4.2 and statistical parameters of these models could be found in Table 4.2 and 

Table 4.3. Geographical differentiation model was built with 2 predictive components 

and these LVs explained 31% of the total variance. 42% of the total variance of harvest 

year model was explained by 1 predictive and 1 orthogonal components l.  

As far as the varietal origins are concerned it could be seen that N and S samples 

were not generally separated from each other while most of M region samples were 

grouped distantly from the others with respect to LV1 in the score plot (Figure 4.1). 

Moreover, Table 4.2 shows the details about the correct classification rates in calibration 

and external validation sets for the geographical origin model. It is clear that M region 
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samples were apart from the other two regions due to their lower quality characteristics. 

In detail, only three samples were misclassified for both external and calibration data sets 

of M region whereas other regions (N and S) were mostly placed together (Table 4.1). 

This could be explained by the fact that N and S samples were similar to each other in 

terms of their basic quality parameters having smaller ranges as it can be seen from Table 

4.1. 
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Figure 4.1. OPLS-DA score plot constructed with basic quality parameters showing their 

effects on geographical location  
 

 

Table 4.2. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location 

Model  Number of 
samples 

 Basic quality parameters 
Pre-treatment: none, LVs: 2+0, R2

cal: 0.31, R2
cv: 0.28 

    M N S %CC 
Calibration        
M  17  14 0 3 82 
N  19  1 9 9 47 
S  24  0 5 19 79 
Total  60  15 14 31 70 
Validation        
M  9  6 1 2 67 
N  10  1 3 6 30 
S  12  1 5 6 50 
Total  31  8 9 14 48 

 

 

 It was also aimed to investigate harvest year effect on the same quality parameters. 

OPLS-DA score plot (Figure 4.2) was constructed to observe the clustering with respect 

to harvest year. The first harvest year samples were mostly grouped in the left side 

according to LV1 whereas the second harvest year samples were located at the opposite 

side with some misclassification between each group (Figure 4.2). According to 
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misclassification table, first harvest year samples were classified with 94% success for 

both calibration and external validation sets, while the second harvest year samples were 

correctly classified at a lower rate. The basic quality parameters of the first harvest year 

samples were similar while the second harvest year samples had wider ranges of the 

measured variables compared to the previous harvest year (Table 4.1). 

 

 

 
Figure 4.2. OPLS-DA score plot constructed with basic quality parameters showing their 

effects on harvest year 
 

 

Table 4.3. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year 

Model  Number of 
samples 

 Basic quality parameters 
  Pre-treatment: none, LVs: 1+1, R2

cal: 0.42, R2
cv: 0.37 

  2015/16 2016/17 %CC 
Calibration       

2015/16  36  34 2 94 

2016/17  24  11 13 54 

Total  60  45 15 78 

Validation       

2015/16  18  17 1 94 

2016/17  13  5 8 62 

Total  31  22 9 81 
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4.1.2. Fatty Acid Profile 
 

 
Fatty acid profiles of the olive oil samples are presented in Table 4.4 and they 

were all in the ranges of European Standard for Olive Oils and Olive Pomace Oils 

(Commission Regulation (EC) 2002b). Individual fatty acid contents of the samples from 

different areas and harvest years were quite close to each other. Differences in oleic and 

linoleic acid contents were observed between consecutive harvest years as well as 

geographical regions in this study (Table 4.4) which is consistent with a previous report 

in literature (Gurdeniz, Ozen, and Tokatli 2008). Linoleic acid percentages were 

determined as 14.95% and 16.89% in two different harvest seasons in the same study 

while lower level of linoleic acid was found for all regions in the present study (Table 

4.4). Linoleic acid contents of the olive oils from South regions were higher than the other 

two regions whereas the opposite is true for oleic acid content (Table 4.4). Except these 

major fatty acids, variations in other fatty acid compounds were not that significant. All 

the fluctuations observed between the years and regions could be attributed to the climatic 

conditions at different harvest years and differences in geographical locations of extracted 

oils. 
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A multivariate data set of 11 fatty acid variables from 91 olive oil samples were 

used to examine the geographical location and harvest year effect on fatty acid profile. 

This data set was examined with OPLS-DA to observe the differences between locations 

as well as harvest year and statistical parameters for the constructed models could be 

found in Table 4.5 and Table 4.6. Model for geographical classification was constructed 

with 2 predictive and 1 orthogonal components and the first two LVs explained 67% of 

the total variance while 1 predictive and 2 orthogonal components were used in harvest 

year model in which the first two significant LVs explained 69% of the total variance. 

From the OPLS-DA score plot presented in Figure 4.3, it could be seen that all regions 

were separated well from each other except three specific samples from M region. These 

three oil samples were obtained from Ayvalik variety which is predominant in the north 

(N); hence, these samples were not well separated from the N samples. Therefore, these 

results reflected the effect of the cultivar in the olive oil classification based on the fatty 

acid composition, and they also confirm other reports in literature (D’Imperio et al. 2007). 

Rest of the samples were placed together with the characteristic varieties of the specified 

regions. Loading plot is presented in Figure 4.4 and this plot shows which fatty acids are 

responsible for differentiation. For this case, C16:1, C18:1n9c and C18:3n3c are the most 

effective variables on the separation of S region. Oils from M region are separated with 

respect to C18:0, C20:1, C22:0, C18:2n6c, while C16:0, C17:0, C17:1, and C20:0 are the 

fatty acids responsible for differentiation of N region. In the literature, three fatty acids 

as oleic, linoleic and palmitic were indicated as the fatty acids with high differentiation 

power (D’Imperio et al. 2007) and these three-fatty acids are also found effective in 

discrimination of S, M, and N regions in the present case. Parameters having variable 

importance projection (VIP) values greater than 1 are considered as the significant 

variables in the construction of the statistical models. From the VIP values (Figure 4.5), 

heptadecenoic and linolenic acids were also found effective in the discrimination of the 

olive oils in terms of growing locations besides the aforementioned fatty acids. Correct 

classification rates also proved the clear discrimination between each region with high 

success rates of 95% and 84% for calibration and validation data sets, respectively (Table 

4.5). The details about misclassified samples in the external validation set is given in 

Figure 4.6 which explains how close the misclassified samples to the right classification 

in terms of percent probability difference. According to this plot, there are 15% and 7% 

differences between the right and wrong classification of 2 M samples as N samples while 

two other S samples are misclassified as N with 11-13 % difference.  
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Figure 4.3. OPLS-DA score plot constructed with fatty acid profile for geographical 

location differentiation 
 

 

 
Figure 4.4. OPLS-DA loading plot constructed with fatty acid profiles for geographical 

location differentiation 
 

 



 

74 
 

 
Figure 4.5. VIP values of OPLS-DA models with respect to geographical location 

 

 

Table 4.5. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location 

Model  Number of 
samples 

 Fatty acid profile 
Pre-treatment: none, LVs: 2+4, R2

cal: 0.72, R2
cv: 0.62 

    M N S %CC 
Calibration        
M  17  14 3 0 82 
N  19  0 19 0 100 
S  24  0 0 24 100 
Total  60  14 22 24 95 
Validation        
M  9  7 2 0 78 
N  10  0 9 0 90 
S  12  0 2 10 83 
Total  31  7 13 10 84 
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Figure 4.6. Percent probability differences between wrong and right classifications for 

the misclassified samples in the external validation set for geographical class 
model 

 

 

Effect of harvest year was also investigated, and it was concluded that 

discriminatory power of harvest year was also successful up to an extent (Figure 4.7). It 

was observed that only two samples from the first harvest year were misclassified as the 

second harvest year, whereas the rest of the samples were correctly classified in the 

calibration set (Table 4.6). Details about misclassified samples in the external validation 

are given in Figure 4.10. From the loading plot (Figure 4.8), it was concluded that C16:0, 

C16:1, and C18:1n9c were successful in discrimination of the first-year samples, while 

the rest of the fatty acids were effective in the second harvest year differentiation. 

According to VIP values shown in Figure 4.9, C20:0, C18:0, and C18:2n6c were the most 

effective parameters in classification of the present models. In the literature, evaluation 

of fatty acid composition of olive oils obtained from M and N parts of Aegean region 

with principal component analysis revealed clear differentiation with respect to variety, 

geographical origin and harvest year (Gurdeniz, Ozen, and Tokatli 2008). In a similar 

study, a clear separation was obtained with fatty acid profile belonging to olive oils from 

N and S parts of Aegean Region (Gurdeniz, Ozen, and Tokatli 2010). In another study, 
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olive oil samples from very close geographical areas in the middle part of Aegean Region 

were discriminated with respect to their fatty acid profiles (Uncu and Ozen 2016).  

 

 

 
Figure 4.7. OPLS-DA score plot constructed with fatty acid profiles for harvest year 

differentiation 
 

 
Figure 4.8. OPLS-DA loading plot constructed with fatty acid profiles for harvest year 

differentiation 
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Figure 4.9. VIP values of OPLS-DA models with respect to harvest year 

 

 

Table 4.6. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year 

Model  Number of 
samples 

 Fatty acid profile 
  Pre-treatment: none, LVs: 1+2, R2

cal: 0.69, R2
cv: 0.61 

  2015/16 2016/17 %CC 
Calibration       

2015/16  36  34 2 94 

2016/17  24  0 24 100 

Total  60  34 26 97 

Validation       

2015/16  18  17 1 94 

2016/17  13  5 8 62 

Total  31  22 9 81 
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Figure 4.10. Percent probability differences between wrong and right classifications for 

the misclassified samples in the external validation set for harvest year 
classification 

 

 

4.1.3. Diacylglycerols  
 

 
Diacylglycerols (DAG) are found in virgin olive oils in low amounts (between 

1% and 3%) in the forms of intermediate products of the biosynthesis of triacylglycerols 

(1,2-isomers), or as products of enzymatic or chemical hydrolysis of triacylglycerols (1,3-

isomers) which produced before or during the oil extraction process (Caponio et al. 2013). 

Healthy olive fruits yield oils containing almost exclusively 1,2-isomers whereas poor-

quality ones produce oils with consistent amounts of 1,3-isomers and FFAs (Caponio et 

al. 2013). It is a known fact that during the storage 1,2-isomers undergo isomerization, 

yielding 1,3-isomers, that are thermodynamically more stable. Therefore, determination 

of the amounts of these isomeric forms could give information about the age and the 

freshness of virgin olive oils (Caponio et al. 2013). Therefore, DAG content could be an 

indicator of the quality of an olive oil. Some countries such as Australia, New Zealand, 

and California State of USA consider 1,2-DAGs and chlorophyll derivatives, as 

pyropheophytins (PPPs), as indicators of olive oil freshness (Bajoub et al. 2018). 
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There is a limited amount of study in the literature about DAG contents of Turkish 

olive oils. In one of these studies, 4 olive cultivars (Edremit, Gemlik, Domat and Sarıulak) 

from various locations in Turkey were characterized with regard to their composition of 

1,2- and 1,3 DAGs (Matthäus and Musa Özcan 2011). 1,2- and 1,3-DAGs in olive oils 

varied between 27.5% to 49.2% and 50.8% to 72.5%, respectively. In the present study, 

1,2 and 1,3 isomers of C32, C34 and C36 DAGs and total of 1,2 and 1,3 DAGs and their 

ratios were examined (Table 4.7). The results indicated that DAG composition was not 

constant and varying according to harvest year and geographical location. Olive oils from 

N region belonging to 2015 harvest year had average 43.37% total 1,2 DAG and 1,2 DAG 

content increased to 47.56% in 2016 harvest year. South region DAG composition did 

not change much between the years. On the other hand, total 1,2 DAG content of M region 

oils changed dramatically from 41.63% to 34.11% in consecutive harvest years. Effect of 

each parameter on classification are examined in detail in the following parts. 

Correlation between free fatty acid content and DAG content was also 

investigated in this part of the study. According to Figure 4.11a there is no strong relation 

between olive oil acidity and DAG content as also indicated by Pérez-Camino et al. 

(2001). However, olive oil which possesses higher acidity value (≥1.0%) showed a better 

correlation with DAG content as the degradation reaction cause formation of more free 

fatty acid content (Figure 4.11b) 
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(a) 

 

 

 
(b) 

Figure 4.11. Correlation between free fatty acid content and diacylglycerol content of (a) 
all olive oil samples and (b) only samples with FFA ≥1.0  
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There is not any report about any relation between DAG content of olive oils and 

olive variety and geographical origin of olives in literature. OPLS-DA model generated 

using DAGs profile have LVs= 2+1+0, R2 = 0.31 and Q2= 0.23. It was found that 

classification using DAG content alone was not successful with respect to geographical 

location (Figure 4.12). Also, there was no clear separation with respect to harvest year 

(Figure 4.13) according to OPLS-DA model with LVs= 1+3+0, R2 = 0.32 and Q2= 0.22. 

DAG is a quality parameter which could be associated with the oil extraction and storage 

conditions and it does not contain any markers to differentiate geographical location 

and/or harvest year. Therefore, it is confirmed that there is no direct correlation between 

the DAG content and the mentioned parameters. However, DAG content was used only 

in few discrimination studies which involved the use of combination of several 

parameters together rather than the individual form. DAGs combined with fatty acids, 

phenolics, total free sterols, free acidity, and iodine for geographical characterization of 

olive oils (Petrakis et al. 2008) and DAGs were also used together with aldehydes, 

phenolic compounds and terpenes for cultivar characterization (Özdemir, Dağ, Makuc, et 

al. 2018). 

 

 

 
Figure 4.12. OPLS-DA score plot constructed using DAG profiles for geographical 

location differentiation 
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Figure 4.13. OPLS-DA loading plot of olive oil samples with respect to harvest year 

differentiation 
 

 

4.1.4. Fatty Acid Alkyl and Ethyl Esters and Waxes 
 

 
Fatty acid alkyl esters (FAAEs) as ethyl (FAEEs) and methyl esters (FAMEs) are 

a family of natural neutral lipids present in olive oils and formed by the esterification of 

FFAs with low molecular weight alcohols such as methanol and ethanol (Jabeur et al. 

2015). They can easily form in an acid medium and their formation is catalyzed by certain 

enzymes (Jabeur et al. 2015). According to an early European Union regulation for FAAE 

content the limit was set at 75 mg/kg, but higher concentrations were allowed if they did 

not exceed 150 mg/kg and that the FAEE/FAME ratio was 1.5 at the maximum 

(Commission Regulation (EU) 2011; Gómez-Coca et al. 2016; International Olive 

Council (IOC) 2010). The knowledge that ethanol was produced as a metabolic by-

product after alcoholic fermentation (Conte et al. 2014) drove to a conclusion that the 

presence of high concentration of both FAEE and ethanol could mean the use of sub-

standard quality materials such as fermented olive fruits for oil extraction (Gómez-Coca 

et al. 2016).Therefore, new limits were officially published by the olive oil authorities 

due to the fact that FAEEs presence depended on the level of its substrate, ethanol, which 
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is produced chemically whereas FAMEs are associated with methanol content produced 

physiologically (Uncu and Ozen 2020; García-Vico et al. 2018). Moreover, only C16 

FAEE and C18 FAEE were taken into consideration in the regulation to decide if a certain 

olive oil could be classified as extra virgin (Gómez-Coca et al. 2016). This decision was 

accompanied by a reduction of the maximum allowed limit to 40 mg/kg (2013–14 crop 

year) (Gómez-Coca et al. 2016). Limits regarding the fatty acid ethyl ester (FAEE) 

presence in extra virgin olive oil were further lowered to ≤ 35 mg/kg after 2016 harvest 

year (Uncu and Ozen 2020). 

Other investigated quality parameter is wax content of olive oil. The straight chain 

wax esters are also shown to be useful indicators for the quality of olive oil. They are in 

the waxy surface layer of the olive and are poorly extracted by the oil derived from fruit 

pressing (Jabeur et al. 2015). Wax content has been also defined as a quality indicator and 

extra virgin olive oil wax content must not exceed 150 mg/kg according to the existing 

regulations (Commission Delegated Regulation (EU) 2016; International Olive Council 

(IOC) 2019). 

There is not any study in the literature about FAAE, FAEE and wax contents of 

Turkish olive oils. In the present study, it was observed that olive oils from N and S region 

were within the set limit of FAEE in average for both harvest years while the samples 

from M region were not (Table 4.8). On the other hand, samples from all regions are 

below the limit of wax content for both harvest years. FAEE values of oils from all regions 

in 2016-17 harvest year increased compared to 2015-16.  

It was found that there is a strong relationship between FFA value and alkyl ester 

formation as shown in Figure 4.14 (a) (b) (c) (R2>0.80). This could be explained by the 

fact that FFAs promote ester formations (Biedermann et al. 2008). However, FFA content 

correlation with wax content is weak (Figure 4.14 (d)). 
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Olive oil industry is facing strict demands regarding the fatty acid ethyl ester 

(FAEE) presence in extra virgin olive oil (≤35 mg/kg limit must be applied after 2016 

harvest year). In a recent study, a relationship between the FAAEs concentration of olive 

oils and their sensory classification was evaluated. The results showed that there was a 

strong connection between the presence of high amounts of FAAEs and fermentative 

organoleptic defects (Gómez-Coca et al. 2016). FAAE has also been used for adulteration 

detection of olive oil with mild deodorized olive oil (Pérez-Camino et al. 2008; Jabeur et 

al. 2015). In addition to the fermentative effect of unhealthy olive fruits, it was revealed 

that ethanol formation is also triggered by the metabolism of the olive fruit itself which 

is highly related with cultivar (genotype) of the fruit (Beltrán et al. 2015). Accumulation 

is continued during fruit maturation on the olive tree (Beltrán et al. 2015). All of these 

make usage of FAEEs more complex since this parameter is affected by both quality and 

variety (Boudebouz et al. 2020). A different study also confirmed that ethanol is naturally 

found in the olive fruits, and it passes to the oils during extraction. As a result, it was 

detemined that concentration of the ethanol in the oil was a function of the cultivar, 

ripening stage and climate as well as growing conditions of the olives (García-Vico et al. 

2018). Therefore, it was suggested that legislations on FAEEs should consider the basal 

levels of ethanol in the oils as it is quite high in many olive cultivars (García-Vico et al. 

2018). Hence, it is not appropriate to use unique FAEE values for all olive varieties 

(Boudebouz et al. 2020). In a recent study, it was determined that not only ethanol but 

also methanol content and acetaldehyde as well as the ratio between them are 

characteristic to each olive variety (Boudebouz et al. 2020). Hence, it could be concluded 

that individual FAAEs and their specific ratio which have not been studied for the varietal 

determination before could possess a potential as an authentication tool for olive oils. In 

a literature study, Fourier transform infrared (FTIR) spectroscopy was used to separate 

virgin and non-virgin olive oils according to the FAEEs content (Squeo et al. 2019). In 

another recent work, alkyl esters content of Sicilian extra virgin olive oils having 

Protected Designation of Origin (PDO) was investigated from quality perspective only 

(Costa et al. 2017). However, there is not any authentication study in the literature 

focusing on alkyl esters alone from varietal point of view. 

In the literature, composition of wax esters generally used for quality 

determination (Jabeur et al. 2015) and detection of adulteration made with lower quality 

olive oil or pomace oil (Jabeur et al. 2017). Individual and total wax esters of Spanish 

monovarietal olive oils with PDO were determined and it was found that significant 
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differences existed in C40, C44, C46 and total wax esters content (Aragón et al. 2011). 

These findings were also supported by a study performed with Italian cultivars and it was 

proven that wax ester content was influenced by cultivar and harvest year (Giuffrè 2013) 

as well as ripening (Giuffrè 2014). Results of these studies were also confirmed by a 

research in which wax esters, DAGs, TAGs, triterpenic acids, and aldehydes were shown 

to be strongly dependent on the olive cultivar (Vichi et al. 2016).  

However, there is no study in the literature that aims at determining the effect of 

FAAEs and wax content of olive oils on differentiation based on geographical origin 

and/or harvest year. In the present study, OPLS-DA statistical model (Figure 4.15 with 

LVs: 2+1, R2
cal: 0.67, R2

cv: 0.62) indicates that M, N, and S samples were correctly 

classified according to the geographical location with some exceptions as explained in 

the misclassification table (Table 4.9). Model was built with 2 predictive and 1 orthogonal 

components and particularly the first two significant LVs explained 67% of the total 

variance. According to the score plot (Figure 4.15), M region samples were successfully 

separated in the right (positive) side of LV1 whereas N and S region samples were located 

on the opposite side. Moreover, these two regions (N and S) were separated from each 

other in the upper side (positive) of the first quarter and the lower side (negative) of the 

fourth quarter of LV2, respectively. Loading plot (Figure 4.16) showed that M region was 

placed apart from the rest in terms of the higher amounts of all the studied parameters. It 

can be concluded that S and N regions were more similar in terms of alkyl ester and wax 

profile while M region was more apart than the rest (Table 4.8). N and S region olive oils 

contain lower amounts of FAAEs, and wax esters compared to M region olive oils. 

Considering only N and S regions, S region samples had slightly higher amounts of 

individual alkyl esters. However, still there is an obvious separation between N and S 

region (Figure 4.15) oils although they have quite similar basic quality parameters (Table 

4.1). Although FAAEs are quite related with the quality of the oil, a strong relation 

between these parameters and varietal factors are also well established with the recent 

study (Boudebouz et al. 2020). This differentiation between oils of these two regions 

could be also related to the effect of olive variety since Ayvalik is the olive type in N part 

while Memecik is the dominant variety in S part.  
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Figure 4.15. OPLS-DA score plot constructed using alkyl esters and wax profiles for 

geographical location differentiation 
 

 

 
Figure 4.16. OPLS-DA loading plot of olive oil samples with respect to geographical 

location differentiation 
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In the present study, FAEE/FAME (total E/M), total wax as well as individual 

C42 and C44, C16E, total FAEEs and FAAEs (total of FAME + FAEE), having VIP 

values larger than 1 were found significant in discrimination of oils (Figure 4.17). Lastly, 

the classification model efficiency was determined with calibration and external 

validation data sets. As it could be seen from Table 4.9, OPLS-DA model revealed good 

discrimination ability with the average correct classification rate of 92% (out of 60 

samples; 4 samples misclassified as S and 1 sample misclassified as N) and 74% (out of 

31 samples; 3 samples were misclassified as S and 5 samples were misclassified as N) in 

calibration and validation data sets, respectively. Probability of misclassification was 

lower than 50% for the misclassified samples in the external set (Figure 4.18).  

 

 

 
Figure 4.17. VIP values of OPLS-DA models with respect to geographical origin 
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Table 4.9. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location 

Model  Number of 
samples 

 FAAEs and waxes 
Pre-treatment: none, LVs: 2+1, R2

cal: 0.67, R2
cv: 0.62 

    M N S %CC 
Calibration        
M  17  14 0 3 82 
N  19  0 18 1 95 
S  24  0 1 23 96 
Total  60  14 19 27 92 
Validation        
M  9  7 1 1 78 
N  10  0 8 2 80 
S  12  0 4 8 67 
Total  31  7 13 11 74 

 

 

 
Figure 4.18. Percent probability differences between wrong and right classifications for 

the misclassified samples in the external validation set for geographical 
region 

 

 

Finally, the effect of harvest year on the classification of olive oils in terms of 

individual alkyl ester profiles and waxes was also examined. It was observed that the first 

year samples were clearly differentiated from the second year (Figure 4.19) since 2015 

harvest year olive oils from all three region contained lower amounts of alkyl ester and 

wax compared to 2016 harvest year samples (Table 4.8). This observation was also 
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supported with loading plot (Figure 4.20) in which all the components except C48 were 

grouped opposite of 2015 harvest year meaning that they were differentiated from the 

second harvest year in terms of lower alkyl and wax esters. Fly attacks reported for 2016 

harvest year might have led to defects in fruit quality which was ultimately causing higher 

amounts of alkyl ester formation. In the literature, clear effects of climatic conditions of 

harvest year on the ethanol content of two main olive cultivars grown in Spain was shown 

(García-Vico et al. 2018). In the present study, the same situation also holds true for 

Turkish olive oils. Average correct classification rates of 97% for calibration (out of 60 

samples; 2 samples misclassified as first harvest year) and 90% for validation data sets 

(out of 31 samples; 1 sample was misclassified as first harvest year and 2 samples was 

misclassified as second harvest year) further confirmed the robustness of the OPLS-DA 

model (Table 4.10). Model was generated with 1 predictive and 2 orthogonal components 

and particularly the first two significant LVs explained 69% of the total variance. The 

VIP values were found significant for FAEEs, C18:2E, C18:0E, C16:0 E, total E/M, total 

E, total M+E and wax, C44 (Figure 4.21). Difference between right and wrong 

classification for misclassified samples was found lower than 20% for external validation 

(Figure 4.22).  

 

 

 
Figure 4.19. OPLS-DA score plot constructed using alkyl esters and wax profiles for 

harvest year differentiation 
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Figure 4.20. OPLS-DA loading plot of olive oil samples with respect to harvest year 

differentiation 
 

 

 
Figure 4.21. VIP values of OPLS-DA models with respect to harvest year 
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Table 4.10. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year 

Model  Number of 
samples 

 FAAEs and waxes 
  Pre-treatment: none, LVs: 1+2, R2

cal: 0.69, R2
cv: 0.61 

  2015/16 2016/17 %CC 
Calibration       

2015/16  36  36 0 100 

2016/17  24  2 22 92 

Total  60  38 22 97 

Validation       

2015/16  18  16 2 89 

2016/17  13  1 12 92 

Total  31  17 14 90 

 

 

 
Figure 4.22. Percent probability differences between wrong and right classifications for 

the misclassified samples in the external validation set for harvest year 
 

 

 It was seen that alkyl esters along with wax content have a potential in olive oil 

authentication with respect to geographical location and harvest year. Moreover, the 

results obtained from the correct classification tables (Table 4.9 and Table 4.10) was 

comparable with fatty acid profile results (Table 4.5 and Table 4.6). Therefore, the fatty 
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acid esters and waxes could be a promising alternative in authentication purposes of olive 

oils. 

 

 

4.1.5. Pigment Content 

 

 
Well known minor compounds such as polyphenols (Alkan, Tokatli, and Ozen 

2012; Bajoub et al. 2016; Nescatelli et al. 2014; Mohamed et al. 2018), sterols (Mohamed 

et al. 2018; Giacalone et al. 2015) and volatiles (Pouliarekou et al. 2011) have already 

been used successfully in many PDO studies. However, a limited number of studies in 

the literature deal with the classification of olive oil by using the pigment profile. Varietal 

discrimination of olive oil was accomplished by determining the content of some 

chlorophyll and carotenoid compounds (Cichelli and Pertesana 2004). The effect of 

harvest year on the main pigments of Italian olive oils was investigated in a recent study 

(Lazzerini and Domenici 2017). There are also studies based on the determination of total 

chlorophyll and carotenoid contents (Uncu and Ozen 2016) and/or overall color features 

(Becerra-Herrera et al. 2018; Borges et al. 2017) in combination with other chemical 

parameters for geographical classification. However, there are no reports in the literature 

about using detailed major pigment fractions along with their derivatives in the 

classification of olive oils with respect to geographical location and/or harvest year. 

Nineteen different pigment compounds (11 from carotenoids and 8 from 

chlorophyll group) including their derivatives were identified and quantified for each 

olive oil samples from 3 geographical areas in 2 harvest years. A representative pigment 

profile for an olive oil sample obtained from HPLC analysis is provided before in Figure 

3.4 in Materials and Methods section and this profile does not have a peak for β-carotene 

since it was determined spectrophotometrically. The qualitative pigment profile was the 

same for all samples, whereas quantitative differences were observed with respect to 

geographical origin and harvest year. Amounts of the pigments for the samples with 

respect to their geographical origin and harvest year are listed in Table 4.11.  
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There are limited number of studies in the literature about Turkish olive oil 

pigment profiles, and existing studies only focused on total color pigment concentrations 

as total chlorophyll and/or total carotenoid contents rather than single pigments (Uncu 

and Ozen 2016; Dıraman and Dibeklioğlu 2009). Turkey is one of the major olive oil 

producer countries in the world, and the locations where the olive oils were obtained in 

this study are the areas where most of the production is done. North and South Aegean 

Regions have national designated origin specifications, and Middle Aegean Region oils 

have unique characteristics. The PDO area might have oils obtained from a single olive 

cultivar or various cultivars might exist in the same region (Becerra-Herrera et al. 2018). 

Whereas North and Middle Region oils were from a single variety, South region oils were 

produced predominately from a particular variety along with some local cultivars. In the 

present study, it was observed that the averages of total chlorophyll concentrations 

(mg/kg) of South region olive oils for the first (11.81 mg/kg) and the second harvest year 

(11.03 mg kg−1) were higher than both harvest years of North (6.14 and 7.63 mg/kg) and 

Middle region oils (7.00 and 4.18 mg/kg) (Table 4.11). The same observation is also true 

for average total carotenoids amounts. Whereas South region oils have 9.12 and 9.79 

mg/kg total carotenoids in two harvest years, samples belonging to North region have 

6.45 and 6.29 mg/kg and the Middle region have 5.45 and 6.34 mg/kg total carotenoids 

in the consecutive harvest periods, respectively. The average total chlorophyll (4.18-

11.81 mg/kg) and carotenoid (5.45-9.79 mg/kg) concentrations in the present study were 

found to be lower than two different studies investigating Italian olive oil samples. In the 

first study, the amounts determined were 24.95-31.97 mg/kg chlorophyll and 18.32-27.44 

mg/kg carotenoids (Giuffrida et al. 2007), whereas the other study reported 1.00-26.64 

mg/kg chlorophyll and 4.19-16.12 mg/kg carotenoids (Giuffrida et al. 2011).  

Pheophytin a (2.78-8.98 mg/kg) was determined as the major chlorophyll pigment 

for all regions, followed by lutein (1.19-4.07 mg/kg), β-carotene (2.40-3.56 mg/kg), total 

xanthophylls (0.61-1.45 mg/kg) and pheophytin a′ (0.49-1.22 mg/kg) whereas the 

concentrations of the other components were minor in the current research. A study from 

Sicilian region of Italy (Giuffrida et al. 2007) revealed a similar trend, except there were 

higher concentrations of pheophytin a as the major pigment (19.36–25.04 ppm) and β-

carotene (8.06–16.27 ppm). Pheophytin a′ (2.92–4.17 ppm) and lutein (2.28–4.49 ppm) 

concentrations were close to the findings of the current study. The quantitative differences 

could be attributed to the harvest periods in each season rather than weather conditions 
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(Criado et al. 2008) as well as genetic factors and/or geographical differences (Giuffrida 

et al. 2007). 

Multivariate analyses of chromatographic and spectral data were conducted with 

OPLS-DA rather than PLS-DA due to the proven efficiency of this method in the previous 

classification studies (Mohamed et al. 2018). First, the olive oil samples were classified 

with OPLS-DA models (Figure 4.23a-b) according to their geographical location as 

Middle (M), North (N), and South (S) regardless of the harvest year to observe the effect 

of individual pigment concentrations on geographical origin determination. Then, the 

changes in the amounts of the pigments in the first and second harvest years were also 

investigated by grouping the samples as the first and the second harvest year in OPLS-

DA (Figure 4.23c-d) analysis regardless of geographical location. 
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Table 4.12 and Table 4.13 present the statistical parameters of pretreatment type, 

correct classification rates (%), number of LVs used, and coefficients of determination 

R2 for OPLS-DA classification models with respect to both geographical origin and 

harvest year for individual pigments. Also, percent differences between right and wrong 

classification for misclassified samples are given in Figure 4.24 and Figure 4.25 for 

geographical origin and harvest year, respectively. 

 

 

Table 4.12. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location by using individual pigments 

Model  Number of 
samples 

 Individual pigments 
Pre-treatment: none, LVs: 2+2, R2

cal: 0.63, R2
cv: 0.53 

    M N S %CC 
Calibration        
M  17  16 0 1 94 
N  19  0 19 0 100 
S  24  0 1 23 96 
Total  60  16 20 24 97 
Validation        
M  9  6 2 1 67 
N  10  1 7 2 70 
S  12  2 1 9 75 
Total  31  9 10 12 71 
        

 

 

 

 

 



 

101 
 

 
Figure 4.24. Percent probability differences between wrong and right classifications for 

the misclassified samples in the external validation set for geographical 
location 

 
 
Table 4.13. Statistical parameters of OPLS-DA calibration and validation models of olive 

oils with respect to harvest year by using individual pigments 
Model  Number of 

samples 
 Individual pigment 

  Pre-treatment: none, LVs: 1+5, R2
cal: 0.74, R2

cv: 0.54 
  2015/16 2016/17 %CC 

Calibration       

2015/16  36  34 2 94 

2016/17  24  0 24 100 

Total  60  34 26 97 

Validation       

2015/16  18  18 0 100 

2016/17  13  1 12 92 

Total  31  19 12 97 
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Figure 4.25. Percent probability difference between wrong and right classification for the 

misclassified samples in the external validation set for harvest year 
 

 

OPLS-DA score plot (Figure 4.23a), which is generated with raw pigment data 

only treated with univariate scaling and mean centering, indicated complete 

discriminations between olive oil samples from S, N, and M regions. OPLS-DA analysis 

resulted in the classification model with 2 predictive and 2 orthogonal components; in 

particular, the first two significant LVs explained 63% of the total variance (Table 4.12). 

As can be seen from the score plot (Figure 4.23a), the S region samples were successfully 

separated in the left (negative) side of LV1, explaining 53% of the total variation, whereas 

the N and M region samples were located on the opposite side. Moreover, the latter two 

regions were separated from each other, with the N region scattered in upper side 

(positive) of the first quarter of LV2 and the M region in the lower side (negative) of the 

fourth quarter of LV2. The loading plot (Figure 4.23b) showed that S region was placed 

apart from the rest in terms of the higher amounts of all pigments except chlorophyll a, 

which is responsible for scattering of the samples of the N region. It can be concluded 

that M and N regions were more similar in terms of pigment profile while S region was 

more apart than the rest (Table 4.11).  

Furthermore, VIP values were determined to reveal the most significant pigments 

in differentiation with respect to geographic origin. In multivariate analysis, the VIP 
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scores are used to summarize the contribution of any variable making the OPLS-DA 

model, and are based on a weighted sum of the squared correlations between the OPLS-

DA components and the original variables (Mohamed et al. 2018). Moreover, VIP values 

are the most compact model interpretation alternatives in OPLS and PLS evaluation 

(Galindo-Prieto, Eriksson, and Trygg 2015). In the present study, VIP values of total 

xanthophylls (1.18), chlorophyll b (1.11), pheophytin a (1.10), chlorophyll a and b 

derivatives (1.08), lutein (1.07), and pheophytin a derivative (1.01), which are > 1, were 

found effective. Lastly, the classification model efficiency was determined with 

calibration and external validation datasets. As it could be seen from Table 4.12, OPLS-

DA model revealed good discrimination ability, with an average correct classification rate 

of 97% (out of 60 samples; 1 sample was misclassified as S and 1 sample was 

misclassified as N) and 71% (out of 31 samples; 3 samples for each region were 

misclassified as N, S, and M) in the calibration and validation datasets, respectively. 

There are limited number of studies in the literature about the classification and/or 

differentiation of olive oils with respect to harvest year and/or geographical location by 

using pigment profile. Most of the studies are based on overall approach which aims at 

determining the effect of total chlorophyll and carotenoid contents combined with some 

other minor and major compounds (acidity, peroxide value, K232, K270, ΔK indices, 

trace elements, fatty acids) on classification (Karabagias et al. 2013). In only one study 

there were a limited number of components (chlorophylls, pheophytin a, pheophytin b, 

lutein) used to observe the discrimination of olive oils according to variety, and some 

success was obtained with these variables (Cichelli and Pertesana 2004). There is no 

comparable study about the use of detailed pigment profiles on the determination of 

geographical origin.  

Lastly, the effect of harvest year on the classification of olive oils was also 

examined. As seen from the OPLS-DA score plot (Figure 4.23c), samples were 

differentiated clearly with respect to the first LV (except 2 misclassified samples), 

explaining about 74% of the total variance (LVs= 1+5, R2
cal: 0.74, R2

cv: 0.54) (Table 

4.13). From the loading plot (Figure 4.23d), it was observed that the first harvest year 

samples were separated according to their higher content of β-carotene, chlorophyll b and 

its derivative, pheophytin a and its derivative, and total xanthophylls located in the 

negative side of LV1, whereas the second harvest year samples were differentiated with 

respect to higher amounts of chlorophyll a and its derivative, lutein and its derivatives, 

pheophytin b and its derivative, which are  scattered in the positive side of LV1. In Table 
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4.13, average correct classification rates of 97% for both calibration (out of 60 samples; 

2 samples misclassified as second harvest year) and validation datasets (out of 31 

samples; 1 sample was misclassified as first harvest year), further confirming the 

robustness of the OPLS-DA model. The VIP values were found notable for lutein second 

derivative (1.55), chlorophyll a (1.28), lutein derivative (1.15), total xanthophyll (1.07), 

and lutein (1.00). In the literature, there is only one recent study that focused on the major 

pigments β-carotene, lutein, pheophytin a and b to investigate the effect of harvest year 

(2012, 2013, and 2014) on pigment concentration (Lazzerini and Domenici 2017). The 

findings of that study showed that olive oils harvested in 2014 could be distinguished 

successfully with respect to the previous years. 

 

 

4.1.6. FTIR and UV-Visible Spectroscopic Methods  
 

 

As an alternative to methods based on wet chemistry (Esteki, Shahsavari, and 

Simal-Gandara 2019; 2020), UV-visible spectroscopy has been preferred in measuring 

the amounts of absorbing species in food analysis due to its ease of use and non-

destructive nature as well as its good sensitivity and accuracy (Esteki, Shahsavari, and 

Simal-Gandara 2018; Torrecilla et al. 2010a; 2015). However, this technique has been 

rarely used in geographical classification (Lazzerini, Cifelli, and Domenici 2017) and in 

harvest year differentiation of olive oils (Lazzerini and Domenici 2017). In a very recent 

study, fatty acid profiling was compared with UV-visible fingerprints for classification 

of Moroccan Argan oils (Kharbach et al. 2019), and another study used visible 

spectroscopy fused with basic quality parameters in classification of Spanish extra virgin 

olive oils (Pizarro et al. 2013). In addition, as a fast and robust application, FTIR 

spectroscopy in mid-IR (MIR) region was also compared (Bevilacqua et al. 2012) and 

combined (Dupuy et al. 2010) with near-IR (NIR) spectroscopy to determine the origin 

of virgin olive oils. These spectroscopic methods in individual and combined forms were 

compared with fatty acid profile in characterization of Italian PDO olive oils (Casale et 

al. 2012). However, FTIR spectroscopy was not directly compared with UV-visible 

spectroscopy to classify olive oil samples according to harvest year.  
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Raw UV-visible spectra of the studied samples are shown in Figure 4.26a. 

Absorption spectra are known to be highly correlated with the mainly pigment profile and 

the polyphenol content of olive oil. The bands between 300-400 nm are associated with 

polyphenol contents (Mignani et al. 2012). In addition, maximum absorption for 

carotenoids were found at 486, 455, and 432 nm for lutein; and 490 and 462 nm for β-

carotene. Absorptions at 670 and 414 nm; 657 and 437 nm were correlated with 

pheophytin a and b, respectively (Domenici et al. 2014). 

Raw FTIR spectra of all the studied olive oil samples are presented in Figure 

4.26b. Major peaks at distinct wavenumbers 2924, 2852, 1743, 1463, 1377, 1238, 1163, 

1114, 1099 and 721 cm-1 are correlated with certain vibration modes of the molecular 

bonds. Absorbances at 2924 cm-1 and 2852 cm-1 wavelengths are the result of -CH2 

asymmetric and symmetric stretching vibrations, respectively (Sinelli et al. 2007). A 

sharp peak around 1745 cm−1 is associated with C=O stretching vibration of carbonyl 

groups of the triacylglycerols and known as ester peak (de la Mata et al. 2012) while 

smaller peaks at 1463 cm−1 and 1377 cm-1 are known for CH2 and CH3 scissoring 

vibrations, respectively (Sinelli et al. 2007). The rest of the peaks are mainly correlated 

with C-O stretching vibration. 
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(a) 

 
 
 

 
(b) 

Figure 4.26. Average raw spectra of olive oil samples obtained from M: Middle, N: North, 
S: South regions by using (a) UV-visible and (b) FTIR spectroscopy. 
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The classification power of FTIR and UV-visible spectroscopy separately and in 

combined form with regard to geographical origin and harvest year differentiation of olive 

oil samples was also investigated. OPLS-DA models (Figure 4.30) were constructed to 

see the success of each of these techniques for the differentiation. Statistical parameters 

of each spectroscopic technique for geographic location and harvest year are given in 

Table 4.14-Table 4.16 and Table 4.17-Table 4.19, respectively. Also, percent differences 

between right and wrong classification for the misclassified samples for external 

validation sets were given in Figure 4.27-Figure 4.29. 

 

 

Table 4.14. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location by using UV-visible spectroscopy 

Model  Number of 
samples 

 UV-visible 
Pre-treatment: SD:SNV, LVs: 2+3, R2

cal:0.77, R2
cv: 0.61 

    M N S %CC 
Calibration        
M  17  14 2 1 82 
N  19  1 18 0 95 
S  24  0 0 24 100 
Total  60  15 20 25 93 
Validation        
M  9  6 2 1 67 
N  10  1 8 1 80 
S  12  0 3 9 75 
Total  31  7 13 11 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

108 
 

 
Figure 4.27. Percent probability differences between the wrong and right classifications 

for the misclassified samples in the external validation set of UV-vis data 
for geographical location 

 

 

Table 4.15. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location by using FTIR 

Model  Number of 
samples 

 FTIR 
Pre-treatment: SD, LVs: 2+1, R2

cal: 0.90, R2
cv: 0.55 

    M N S %CC 
Calibration        
M  17  17 0 0 100 
N  19  0 19 0 100 
S  24  0 0 24 100 
Total  60  17 19 24 100 
Validation        
M  9  7 1 1 78 
N  10  0 7 3 70 
S  12  0 1 11 92 
Total  31  7 9 15 81 
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Figure 4.28. Percent probability differences between the wrong and right classifications 

for the misclassified samples in the external validation set of FTIR data for 
geographical location 

 

 

Table 4.16. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to geographical location by using FTIR+UV-visible 

Model  Number of 
samples 

FTIR+UV-visible 
Pre-treatment: SD, LVs: 2+2, R2

cal: 0.91, R2
cv: 0.57 

   M N S %CC 
Calibration       
M  17 17 0 0 100 
N  19 0 19 0 100 
S  24 0 0 24 100 
Total  60 17 19 24 100 
Validation       
M  9 8 1 0 89 
N  10 0 9 1 90 
S  12 1 0 11 92 
Total  31 9 10 12 90 
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Figure 4.29. Percent probability differences between the wrong and right classifications 

for the misclassified samples in the external validation set of UV-vis+FTIR 
data for geographical location 

 

 

Table 4.17. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year by using UV-visible 

Model  Number of 
samples 

UV-visible 
 Pre-treatment: SD:SNV, LVs: 1+4, R2

cal: 0.99, R2
cv: 0.95 

 2015/16 2016/17 %CC 
Calibration      

2015/16  36 36 0 100 

2016/17  24 0 24 100 

Total  60 36 24 100 

Validation      

2015/16  18 18 0 100 

2016/17  13 0 13 100 

Total  31 18 13 100 
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Table 4.18. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year by using FTIR 

Model  Number of 
samples 

 FTIR 
  Pre-treatment: SD, LVs: 1+2, R2

cal: 0.99, R2
cv: 0.76 

    2015/16 2016/17 %CC 
Calibration       

2015/16  36  36 0 100 

2016/17  24  0 24 100 

Total  60  36 24 100 

Validation       

2015/16  18  18 0 100 

2016/17  13  0 13 100 

Total  31  18 13 100 

 

 

Table 4.19. Statistical parameters of OPLS-DA calibration and validation models of olive 
oils with respect to harvest year by using FTIR+UV-visible 

Model  Number of 
samples 

FTIR+UV-visible 
 Pre-treatment: SD, LVs: 1+2, R2

cal: 0.99, R2
cv: 0.85 

   2015/16 2016/17 %CC 
Calibration      

2015/16  36 36 0 100 

2016/17  24 0 24 100 

Total  60 36 24 100 

Validation      

2015/16  18 18 0 100 

2016/17  13 0 13 100 

Total  31 18 13 100 

 

 

Derivatized and transformed (SD:SNV) spectra of the olive oil samples were used 

in UV-visible spectroscopic data evaluation. As OPLS-DA models created for geographic 

origin (LVs= 2+3, R2
cal = 0.77, and R2

cv = 0.61, Table 4.14) and harvest year (LVs= 1+4, 

R2
cal = 0.99, and R2

cv = 0.95, Table 4.17) indicated, this spectroscopic technique was 

found successful in the classification of olive oils using these variables.  

The first two LVs of OPLS-DA model from UV-visible data (Figure 4.30a) used 

in the geographical origin differentiation explained 77% of the total variance, with 93% 

and 74% correct classification for calibration and external validation, respectively, and 

this classification pattern was found very similar to one with the pigment profile (Figure 
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4.23a). This could be attributed to high correlation between UV-visible data and the 

pigment profile. Table 4.14 showed 93% (out of 60 samples; 1 sample misclassified as S, 

2 sample misclassified as N, and 1 sample misclassified as M) and 74% (out of 31 

samples; 2 sample misclassified as S, 5 sample misclassified as N, and 1 sample 

misclassified as M) correct classification for calibration and external validation datasets, 

respectively. In detail, according to the score plot (Figure 4.30a), all S samples were 

correctly classified (100%) in the left (negative) side of LV1, whereas the N samples were 

successfully scattered (95%) in the first quartile with respect to positive LV2 except one 

misclassified sample. The M samples were also correctly classified up to an extent (82%) 

and they are placed on the fourth quartile of negative LV2, and 2 samples and 1 sample 

being misclassified as N and S, respectively (Table 4.14).  
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 4.30. OPLS-DA score plots of olive oil samples with respect to geographical 
location ((a), (b), and (c)) as ●M: Middle, ■N: North, ▲S: South and harvest 
year ((d), (e), and (f)) as ●1: 2015/16, ■2: 2016/17 by using UV-visible, 
FTIR and FTIR+UV-visible spectroscopy, respectively. 

 

 

It is also important to figure out which wavenumbers and/or wavelengths are 

important in classification. Therefore, VIP values for the corresponding spectral data 

were also investigated. Owing to the clustered information in the OPLS-DA loading plots 

of the spectral data, it was not easy to interpret results by visual inspection of the plot. 
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Hence, VIP values of the corresponding spectra were evaluated. The highest VIP values 

were observed at some specific bands between 300-400 and 430-460 nm and also the 

peak at 670 nm. These bands were correlated with a variety of polyphenols (300-400nm), 

color pigments, carotenoids (430-460 nm), and chlorophylls and their derivatives (670 

nm) (Mignani et al. 2012).  

The ability of UV-visible spectra to differentiate olive oils with respect to harvest 

year was also investigated. Clear separation was observed for the first and the second 

harvest year samples according to LV1 scattered in the left (negative) and right (positive) 

side of the OPLS-DA plot (Figure 4.30d), respectively. The first two LVs explained 91% 

of the total variance. There were no misclassified samples from each geographical region 

in either the calibration or validation datasets; therefore, a 100% correct classification rate 

is achieved (Table 4.17). Examination of the VIP values resulted in the same spectral 

region described in the above geographical classification. In the literature, UV-visible 

spectroscopy has been used in harvest year classification of olive oils only in few studies 

(Lazzerini and Domenici 2017), and there is no comparison of it with pigment profile in 

terms of differentiation power for geographical origin and/or harvest year. 

The second derivative (SD) of FTIR spectroscopic data was also used in 

geographical classification of the samples. Score plot presented in Figure 4.30b explained 

90% of the total variance with perfect separation (100%) for all of the regions studied 

according to the third quartile (lower) of negative LV2 for S, second quartile (upper) of 

positive LV2 for N, and right side of positive LV1 for M regions. The model was 

constructed with 2 predictive and 1 orthogonal component having R2 of 0.90 and 0.55 for 

calibration and cross validation, respectively (Table 4.15). Statistical values of OPLS-DA 

models (Table 4.15) indicated robust discrimination ability with an average correct 

classification rate of 100% (out of 60 samples; none of the samples were misclassified) 

and 81% (out of 31 samples; 2 samples misclassified as N and 4 samples misclassified as 

S) in the calibration and validation data sets, respectively. The highest VIP values, which 

are >1 in the fingerprint region (1464–983 cm−1), are attributed to the common bending 

and rocking vibrations of functional groups (Jolayemi et al. 2017) as well as C=O double 

bond stretching (≈1700 cm−1), C-H bending (650–750 cm−1), and C-H stretching (2800–

3100 cm−1) (Bevilacqua et al. 2012).  

FTIR spectroscopy was also studied and found successful in the differentiation of 

olive oils with respect to harvest year. The first two variables of the OPLS-DA model 

explained 94% of the variance with clear separation of the first and the second harvest 
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years, which are placed on the left (negative) and the right side (positive) of LV1, 

respectively (Figure 4.30e). Both calibration and external validation models confirmed 

the differentiation clearly at 100% correct classification with LVs: 1+2, R2
cal: 0.99, R2

cv: 

0.76 (Table 4.18). The same VIP values explained above were applicable also in harvest 

year differentiation. As a result, FTIR spectroscopy was better at discriminating olive oils 

with respect to geographical origin and similar in harvest year differentiation when 

compared with pigment profile and UV-visible spectroscopy. In the literature, this 

technique was also successfully used in classification of North and South Aegean olive 

oils according to harvest year and geographical location (Gurdeniz, Ozen, and Tokatli 

2010) and, high discriminatory power of FTIR was also proven for smaller regions (Uncu 

and Ozen 2016). However, it has never been compared with UV-visible spectroscopy 

and/or pigment profile before. 

It is also useful to couple several spectroscopic methods as a simple unique model 

to get as much information as possible from each model. This technique is called as low-

level data fusion (Borràs et al. 2015). In the present study, UV-visible and FTIR 

spectroscopic data were combined after the application of SD. When compared to the 

previous results, efficiency of models in classification according to geographical location 

(Figure 4.30c with LVs: 2+2, R2
cal: 0.91, R2

cv: 0.57) and harvest year (Figure 4.30f with 

LVs: 1+2, R2
cal: 0.99, R2

cv: 0.85) increased with fused data as indicated in Table 4.16 and 

Table 4.19, respectively.  

The findings were further confirmed with the first two LVs used in the OPLS-DA 

model for geographical differentiation (Figure 4.30c). Two LVs explained 91% of the 

total variance, and samples belonging to M, N, and S regions were flawlessly classified 

with respect to the right (positive) of LV1, the second quartile (positive) of upper LV2, 

and the third quartile (negative) of lower of LV2, respectively. In addition, robust average 

correct classification rates supporting the clear separation in both calibration (100%) and 

external validation (90%) were obtained, as shown in Table 4.16.  

The effect of harvest year was also investigated with combined spectroscopic data. 

It was seen that perfect separation was achieved according to the OPLS-DA plot (Figure 

4.30f), in which the first two LVs explained 96% of the total variance and the samples 

from the first and the second harvest year are located at the left (negative) and the right 

(positive) of LV1, respectively. 100% of the samples were classified correctly in both 

calibration and external validation sets (Table 4.19). 
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In the literature, there are few classification studies using combination of 

spectroscopic methods as well as their comparison with wet chemical data. Recently, the 

potentials of fused FT-NIR and FTIR spectroscopy, and electronic nose (e-nose) on 

varietal classification of Turkish olive oils were demonstrated (Jolayemi et al. 2017). In 

another study, MIR, NIR and UV–visible spectroscopic data were used to classify olive 

oils from Italy in comparison with their gas chromatographic fatty acid profile (Casale et 

al. 2012). Nevertheless, FTIR and UV-visible spectroscopies were not fused and/or 

compared with pigment data before in literature. 

To sum up, FTIR as a fingerprinting technique has a slightly better differentiation 

ability than the wet chemical method in classification studies. The same type of 

conclusion was also reached by Dais and Hatzakis (2013) and it was indicated that 

metabolic fingerprinting of the unsaponifiable fraction of olive oils had better 

discriminatory characteristics than metabolic profiling of the same fraction of the olive 

oils.  

 

 

4.2 Conclusions 

 

 
 In this part, basic quality parameters, fatty acid profile, DAGs, FAAEs and waxes, 

pigments and spectroscopic profiles were used to characterize and differentiate Aegean 

region olive oil samples in terms of geographic location and harvest year. Results revealed 

that FTIR+UV-vis spectroscopy was the most successful tool in both types of 

classification. Whereas pigment profile has comparable results with fatty acid profile and 

alkyl esters including wax content in differentiation of olive oils with respect to 

geographical origin and harvest year. Therefore, it could be concluded that spectroscopic 

methods offer advantages over wet chemical techniques in authentication purposes. 

However, the classification power of wet chemical techniques in combination form 

should not still be underestimated. 
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CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

 

 

5. PREDICTION OF OLIVE OIL CHEMICAL 

PARAMETERS WITH SPECTROSCOPIC METHODS 

 

 
Redrafted and modified from:  

 

Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2019. “Use of FTIR and UV–Visible 

spectroscopy in determination of chemical characteristics of olive oils.” Talanta 

201: 65–73. https://doi.org/10.1016/j.talanta.2019.03.116. 

 

 

5.1. Prediction of Chemical Parameters 

 

 
The standard analysis methods used in determination of the measured chemical 

parameters in the previous chapter were based on high-cost wet chemistry techniques 

which produce waste and have long analysis time. Rapid, environmentally friendly and 

non-destructive spectroscopic analysis techniques such as mid-infrared (mid-IR) 

spectroscopy have been used to determine various important quality and/or purity 

parameters of olive oils such as fatty acid profile (Gurdeniz, Ozen, and Tokatli 2010; 

Uncu and Ozen 2015), oxidative stability, phenolic profile and total color pigments (Uncu 

and Ozen 2015). UV-visible (UV-vis) spectroscopy has been also used in authentication 
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studies of olive oil (Casale et al. 2007) while there are quite limited studies about its 

application as a quality tool for olive oil (Gonçalves et al. 2018).  

Mid-IR spectroscopy was used in the prediction of the total chlorophyll and 

carotenoid contents of olive oils rather than individual color pigments (Uncu and Ozen 

2015). A recent study successfully correlated near UV-vis spectroscopy measurements 

with chromatographic results of main color pigments of olive oil (Lazzerini, Cifelli, and 

Domenici 2017). However, there is no study in the literature that predicts the individual 

color pigment profile of olive oil with FTIR and/or UV-vis spectroscopy. A preliminary 

study that successfully quantified FAAE content and the ratio between ethyl and methyl 

esters of olive oil using mid-IR spectroscopy with limited number of samples was also 

conducted (Valli et al. 2013). Techniques such as near-infrared spectroscopy (Garrido-

Varo et al. 2017; Cayuela 2017) and time domain reflectometry (Berardinelli et al. 2013) 

were used to predict FAEE and FAME content in some recent studies. However, no 

studies found in the literature regarding the estimation of 1,2 DAGs in oils with mid-IR 

and UV-vis spectroscopic techniques.  

Aim of the present part is to predict several measured chemical parameters 

(DAGs, FAEEs, wax and individual pigment profile) of olive oil from UV-vis and mid-

IR spectroscopic data as well as their fused form in combination with multivariate 

statistical methods. As a result, these chemical parameters could be determined 

simultaneously with a single measurement by using the developed methodology. 

 

 

5.1.1. Chemical Interpretation of Spectral Data 

 

 
Raw and transformed forms of FTIR spectra of olive oil samples are shown in 

Figure 5.1a-c. Major peaks in the spectra and vibration modes of corresponding functional 

groups could be summarized as follows; band at 3009 cm-1 is due to C-H stretching of 

olefinic double bonds attributed to unsaturated fatty acids, while bands centered at 2924 

and 2854 cm-1 known as methylene absorbance peaks are associated with antisymmetric 

and symmetric stretching vibrations of aliphatic C-H in -CH2 and terminal -CH3 groups, 

respectively (Niu et al. 2017). In addition, sharp peak at about 1745 cm-1 is an ester peak 

because of C=O stretching vibration of carbonyl groups of the triacylglcerols while weak 
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band at 1654 cm-1 is attributed to stretching vibration of the C=C group of cis-olefins (de 

la Mata et al. 2012). Bands in fingerprint region of 1464–983 cm-1 are assigned to bending 

vibrations of -CH2 and -CH3 aliphatic groups as well as rocking vibrations (de la Mata et 

al. 2012; Jolayemi et al. 2017). Symmetric H-C-H bending at 1377 cm-1 could be 

attributed to glycerol group, O-CH2 (mono-, di- and triglycerides) (Rabelo et al. 2015). 

CH2 scissoring are observed at 1462 cm-1 whereas band between 1125 and 1095 cm-1 

wavenumber is due to the stretching vibration of C=O ester groups and -CH2 wag (de la 

Mata et al. 2012). The last major peak located near 723 cm-1 could be associated with 

overlapping of the (CH2) n rocking vibration and out of plane vibration (-CH wag) of cis-

di-substituted olefins (de la Mata et al. 2012). 

Typical UV-vis spectra of olive oil and their transformed forms are shown in 

Figure 5.2 and they are highly correlated with pigment profile. Especially, pigments 

(chlorophyll and carotenoid) of olive oil dominate the light absorption between 390−720 

nm. Maximum absorption for lutein, β-carotene, pheophytin a and pheophytin b were 

detected in the following wavelengths: 486, 455, and 432 nm; 490 and 462 nm; 670 and 

414; 657 and 437 nm, respectively (Domenici et al. 2014).  
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(a) 

 
(b) 

 
(c) 

Figure 5.1 (a) Raw, (b) first derivative and (c) second derivative of FTIR spectra of olive 
oil samples. 
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5.1.2. Prediction of FAMEs, FAEEs, FAAEs and Waxes by PLS 
regression 

 

 
FAAE and wax contents of the olive oil samples were quantified with the 

reference methods. Then, PLS regression analysis of FTIR, UV-vis, and fused spectral 

data was performed to predict FAAEs including FAMEs and FAEEs as well as wax 

content of olive oils. Ranges and means of reference data are presented in Table 5.1. 

These values are comparable with the ranges found in the literature (Cayuela 2017; 

Garrido-Varo et al. 2017). Second-order derivative of FTIR spectra is shown in Figure 

5.1c and, second order derivative + MSC + SNV were used in alkyl ester and wax 

prediction from UV-vis (Figure 5.2d) and FTIR+UV-vis spectral data since they resulted 

in the development of the best models. 

 

 

Table 5.1. Range and mean of fatty acid alkyl esters and wax (mg/kg) of olive oil samples. 

Measured 
parameters 

Range Mean Standard 
deviation 

FAMEs 3.14-539.04 46.44 68.89 

FAEEs 1.66-243.59 48.45 62.14 

FAAEs 6.94-659.00 94.88 120.42 

Waxes 5.26-89.59 26.96 17.84 

 

 

Statistical parameters of regression models for each spectroscopic approach are 

listed in Table 5.2. FTIR spectral data were found successful in quantification of FAMEs 

(3.14–539.04 mg/kg) with 3 LVs explaining 99.4% and 92.6% of the total variance in the 

calibration and prediction data set, respectively. In addition, R2
cal and R2

pred have high 

values of 0.99 and 0.93, respectively also with a high RPD value (3.1) required for a 

successful prediction model. Moreover, RMSEC and RMSEP values (6.06 and 16.97, 

respectively) were reasonable when compared with the range and magnitude of FAMEs.  

UV-vis spectra of olive oil samples were also used to predict FAMEs. The 

regression models showed that UV-vis spectra were not that successful compared to FTIR 

spectral data in prediction with lower statistical values (R2
cal =0.72, R2

cv=0.60, R2
pred= 
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0.47, and RPD=1.3) including 2 LVs which explains 71.8% and 46.8% of calibration and 

prediction sets, respectively. 
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Combination of FTIR and UV-vis spectra were also used to investigate if there 

was any improvement of the constructed models. It was observed that FTIR+ UV-vis data 

provided similar prediction ability on determination of FAMEs content of olive oils 

compared to FTIR spectroscopy alone (Table 5.2). FAMEs could be predicted well with 

robust model parameters (R2
pred= 0.91 and RPD = 2.9). There is no study in the literature 

related with direct determination of total methyl ester content of olive oils with FTIR 

and/or UV-vis spectroscopy while some other studies applied other methods such as near-

infrared (NIR) spectroscopy and time domain reflectometry (TDR). A recent study 

showed that NIR spectroscopy in combination with PLS regression could predict FAMEs 

content of olive oils quite successfully with high R2 value for both calibration (0.95) and 

validation (0.92) set (Cayuela 2017). Also, TDR was found as a promising method in 

quantification of FAMEs content of olive oils with PLS regression model having good R2 

value for both calibration (0.996) and external validation (0.905) (Berardinelli et al. 

2013).  

FAEE is a chemical parameter that is used in regulations about the quality of olive 

oil (Commission Delegated Regulation (EU) 2016) and it was also predicted using 

different spectral techniques. It was found that FTIR was successful in predicting total 

ethyl esters (1.66–243.59 mg/kg) found in olive oil samples with 4 LVs explaining 99.4% 

and 87.7% of calibration and prediction models, respectively. R2
cal of 0.99, R2

cv of 0.85 

and R2
pred of 0.88 were determined and these values indicate good prediction ability 

(Table 5.2). The model performance was also supported by tolerable error values of 

RMSE for calibration (4.92), cross validation (27.43), and prediction (23.64) with robust 

RPD of 2.8 and slope of 0.99 values. 

The regression models developed using UV-vis spectra for the prediction of 

FAEEs content have average statistical values (R2
cal =0.77, R2

pred= 0.78, and RPD=2.1) 

with 3 LVs which explains 76.8% and 77.7% of calibration and prediction sets, orderly 

(Table 5.2).  

Combination of FTIR+UV-vis spectral data performs well and is slightly better 

than FTIR in quantification of FAEEs with higher R2
pred= 0.90 and RPD=3.0 as well as 

lower RMSEP value of 21.98 (Table 5.2). The FTIR and fused data findings were 

comparable with the literature in which NIR spectroscopy and TDR were used. Two 

different studies conducted by NIR spectroscopy reveals that NIR could be used in FAEEs 

prediction promisingly (Cayuela 2017; Garrido-Varo et al. 2017). PLS model parameters 

in a study using NIR spectroscopy (Cayuela 2017) resulted in R2
pred=0.88 and 0.89 values 
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and generated models in another study with NIR spectroscopy had R2
cv=0.73 and 

RPD=1.92 (Garrido-Varo et al. 2017). TDR provided a robust PLS regression model for 

alkyl ester determination (R2
pred= 0.923) with very limited number of samples 

(Berardinelli et al. 2013).  

Total alkyl ester (FAMEs + FAEEs) content of olive oils was also determined by 

FTIR spectroscopy in combination with PLS regression. Oil samples used in this study 

has a wide range of FAAE content (6.94–659.00 mg/kg). As in other parameters FTIR 

provided successful quantification of FAAEs. Constructed PLS model contains 3 LVs 

explaining 98.9%, 87.3%, and 95.7% of the total variation of calibration, cross validation, 

prediction sets, respectively. Additionally, the model possesses quite high regression 

coefficients (0.99, 0.87, 0.96) and RPD (4.1) value with a very reliable slope (0.99) (Table 

5.2). Obtained results are in accordance with the finding of a study in literature in which 

FTIR spectroscopy was applied to the limited number of olive oil samples with narrow 

FAAE range but still good R2
cal of 0.98 was obtained in the prediction of FAMEs + 

FAEEs (Valli et al. 2013). However, UV-vis spectroscopy was not as good as FTIR 

spectroscopy for FAAEs determination, and it only provided average prediction power 

with R2
cal =0.78, R2

pred= 0.74, and RPD=1.9 values. On the other hand, combination of 

FTIR and UV-vis data resulted in a robust prediction model (R2
cal=0.96, R2

pred= 0.96, and 

RPD=3.4). NIR spectroscopy (Cayuela 2017; Garrido-Varo et al. 2017) and TDR 

(Berardinelli et al. 2013) have been also used in quantification of total alkyl esters with 

promising results. In the present study, variable importance for the projection (VIP) 

values were determined for FTIR and UV-vis models to see the importance of variable 

effect on methyl, ethyl and alkyl esters prediction model explanation. It was observed that 

in FTIR related models the bands between 1700-1800 cm-1 and fingerprint region (1464–

983 cm-1) have the highest VIP values and the observed peaks could be attributed to the 

stretching of C=O as typical of esters and contain distinct peaks correlated with the 

amount of methyl ester and ethyl ester, respectively (Rabelo et al. 2015; Niu et al. 2017). 

Also, VIP values of the constructed models with UV-vis data revealed that peaks between 

200-300 nm comprising absorption of conjugated dienes and trienes were important. 

Total wax content (5.26–89.59 mg/kg) was also estimated with FTIR and the 

obtained PLS model possessed average quantification power with R2
cal =0.99, R2

pred= 

0.71, and RPD=1.7 (Table 5.2). UV-vis spectral data were not good enough to estimate 

total wax content because of low R2 and other statistical parameters (Table 5.2). However, 

FTIR+UV-vis data allowed better prediction of wax content of olive oils compared to 
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only FTIR spectral data. FTIR+UV-vis spectra have average prediction power for total 

wax quantification with tolerable statistical parameters (R2
cal=0.95, R2

pred= 0.75, and 

RPD=1.9) (Table 5.2). Despite low prediction ability of the proposed model, it could still 

be used for screening purposes of olive oil quality to distinguish low, medium and high 

values of waxes. To the best of our knowledge there is no comparable literature that 

predicts wax content of olive oils with any spectroscopic techniques. However, TDR was 

used unsuccessfully in the same type of investigation (Berardinelli et al. 2013). 

  

 

5.1.3. Prediction of DAGs content by PLS regression 

 

 
Ranges and means of DAG content of the olive oil samples are shown in Table 

5.3. C32 values for 1,2 and 1,3 DAG isomers were also quantified but they were in 

negligible amounts (data not shown). Similar ranges of DAG content of Turkish olive oils 

obtained from 4 distinct olive cultivars were reported (Matthäus and Musa Özcan 2011). 

 

 

Table 5.3. Range and mean of diacylglycerols (%) (mg/kg) of olive oil samples. 

Measured 
parameters 

Range Mean Standard 
deviation 

C34 1,2 6.33-12.57 8.89 1.50 

C34 1,3 5.97-18.65 11.71 2.51 

C36 1,2 20.77-55.72 34.96 7.52 

C36 1,3 25.40-55.37 44.21 6.44 

Total 1,2 28.14-68.39 43.90 8.77 

Total 1,3 31.61-71.86 56.10 8.77 

Ratio 0.39-2.16 0.83 0.33 

 

 

According to the Australian and Californian standards, total 1,2% DAG content 

is a representative parameter for the quality of olive oil. Consequently, it was focused on 

total 1,2 DAG% (28.14-68.39%) in this investigation rather than other individual DAGs. 
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Model parameters for each spectroscopic technique and their combination are given in 

Table 5.4. PLS model developed with the first order derivative of FTIR spectral data (b) 

for the prediction of total 1,2 DAG content have 5 LVs which explains 98.6%, 79.2%, 

and 70.9% of total variations with respect to calibration, cross-validation and external 

validation models. R2
cal (0.99), R2

cv (0.79) and R2
pred (0.71) values further confirmed the 

goodness of the models for 1,2% DAGs from chemical data. Close RMSEC (1.13), 

RMSECV (5.09), and RMSEP (4.29) values indicate a robust model with no over fitting. 

Slope of the calibration curve (0.99) is good for high reliability with RPD value of 1.9. 

For the other individual DAG parameters similar performance values were obtained 

(R2
cal=0.88-0.99, R2

cv=0.62-0.83, R2
pred= 0.40-0.80, and RPD=1.3-2.2). The highest VIP 

value of the corresponding model is around 1360 cm-1 accompanied with 3500 cm-1 which 

are highly correlated with diglyceryl compounds. Thus, FTIR spectroscopy could be used 

for screening of olive oil quality according to a threshold value of 35 mg/kg for 1,2 DAGs.  

However, first order derivative of UV-vis spectroscopy (Figure 5.2b) and 

FTIR+UV-vis combinations were not successful compared to FTIR spectral data alone in 

predicting total 1,2 DAGs content with lower performance parameters, R2
pred=0.51 and 

RPD=1.4 for UV-vis and R2
pred=0.64 and RPD=1.7 for fused data. Negligible 

contribution of UV-vis spectrum to the generated models of DAGs could be because of 

no relation of pigmented compounds with DAG content (Cayuela 2017). 

In the literature, there is no study about quantification of DAGs by FTIR 

spectroscopy. However, NMR spectroscopy have been used in qualitative and 

quantitative analysis of the diglyceride content (Hatzakis et al. 2011). Neverthless, NMR 

study was based on direct determination of target compounds rather than prediction of 

them.  
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5.1.4. Prediction of chlorophyll and carotenoid content by PLS 

regression 

 

 
Details about the concentration ranges of the pigments in olive oil samples are 

provided in Table 5.5. However, it might not be very easy to compare the results with the 

literature since pigment concentration is variable depending on cultivar, geographic 

origin, maturity of olives, climate and storage conditions (Lazzerini, Cifelli, and 

Domenici 2017). In the present study, pheophytin a (0.16-19.21 mg/kg), total 

xanthophylls (0.24-3.35 mg/kg), lutein (0.60-6.29 mg/kg), and β-carotene (0.66-6.79 

mg/kg) were determined as the major pigments while the rest of the pigments have lower 

quantities (Table 5.5).  

 

 

Table 5.5. Range and mean of color pigments (mg/kg) of olive oil samples 

Measured 
parameters 

Range Mean Standard 
deviation 

Pheophytin a 0.16-19.21 5.89 3.53 

Pheophytin a der. 0.03-2.59 0.80 0.49 

Chlorophyll a 0.01-0.26 0.04 0.04 

Chlorophyll a der. 0.00-0.12 0.04 0.03 

Pheophytin b 0.04-0.65 0.17 0.12 

Pheophytin b der. 0.02-0.73 0.17 0.14 

Total Xanthophyll 0.24-3.35 0.98 0.57 

Lutein 0.60-6.29 2.28 1.25 

Lutein der. 0.06-1.35 0.39 0.28 

Lutein second der. 0.05-1.38 0.26 0.18 

Chlorophyll b 0.10-1.70 0.51 0.36 

Chlorophyll b der. 0.03-0.39 0.12 0.09 

β-carotene 0.66-6.79 3.18 1.29 
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Statistical parameters for prediction models developed for chlorophylls and 

carotenoids using FTIR, UV-vis and their combination data are listed in Table 5.6. 

Second-order derivative of each spectroscopic data was used in individual chlorophyll 

and carotenoid predictions. Second derivative of UV-vis spectroscopy (Figure 5.2c) was 

more successful compared to the second derivative of FTIR (Figure 5.1c) in prediction of 

individual color pigments. FTIR measurement might not be sensitive enough to small 

amounts of pigments present in olive oil; therefore, predictive power of the models 

developed with the data from this spectroscopic technique might be low. However, data 

fusion improves the prediction ability of UV-vis spectroscopy. In addition, reliable 

prediction models for β-carotene with any studied spectroscopic techniques could not be 

obtained. The range of β-carotene concentrations for the studied samples was very limited 

and multivariate regression techniques generally provide better models with samples 

having wider concentration ranges.  

UV-vis spectroscopy provided relatively promising results in prediction of 

individual pigments. The best regression models were obtained for the pigments with the 

highest concentrations, lutein and its derivative, pheophytin a and its derivative, and total 

xanthophylls. As can be seen from Table 5.6, regression coefficients R2
cal, R2

pred and RPD 

values were found in the range of (0.62-0.86), (0.65-0.84), and (1.7-2.5), respectively 

indicating successful prediction. In addition, constructed models were not overfitted since 

they have close and low error values for each parameter. According to a study in the 

literature near-UV-vis spectra of olive oils were also highly correlated with the main 

pigments of olive oil (Domenici et al. 2014). The highest VIP values of the proposed 

models for the present study were around 450 and 480 nm for lutein and its derivative 

and also around 670 nm for pheophytin a and its derivative which are comparable with 

the previous study.  

UV-vis spectral data provided moderate prediction for the rest of the pigments. 

The reason for lower prediction ability than that of major pigments could be because of 

the lower amount of these pigments in olive oil. These pigments include chlorophyll a 

and its derivative (R2
pred=0.66 and 0.46, RPD=1.1 and 1.3, respectively), pheophytin b 

and its derivative (R2
pred=0.55 and 0.61, RPD=1.5 and 1.2, respectively), lutein second 

derivative (R2
pred=0.66 and RPD=1.5), chlorophyll b and its derivative (R2

pred=0.67 and 

0.60, RPD=1.4 and 1.6, respectively). One recent study in the literature successfully 

correlated four main pigments of olive oil, β-carotene, lutein, pheophytin a and 

pheophytin b with near-UV-vis spectroscopy using very limited number of samples 
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(Lazzerini, Cifelli, and Domenici 2017). Fluorescence spectroscopy was also used in 

successful determination of chlorophyll a and b and pheophytins a and b content of 42 

olive oil samples in combination with PLS regression (Galeano Díaz et al. 2003). 

Data fusion approach was found slightly better, in general, on prediction of major 

pigments compared to UV-vis alone. The statistics presented in Table 5.6 showed that 

major pigments (pheophytin a, total xanthophyll, and lutein) including their derivatives 

(pheophytin a der., lutein der., and lutein second der.) were successfully predicted with 

higher R2
cal≥0.96 and higher in range of R2

cv=0.71-0.85 and R2
pred=0.70-0.84 compared 

to UV-vis. However, minor pigments (chlorophyll a, pheophytin b, and chlorophyll b) 

with their derivatives were not predicted that successfully with lower model performance 

parameters (R2
cv=0.60-0.76, R2

pred=0.42-0.62). 
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5.2 Conclusions 

 

 
Several chemical quality parameters of olive oils including FAEE, DAGs and 

chlorophyll and carotenoid pigments were predicted from FTIR and UV-vis spectral data 

as well as their combination using multivariate regression. The results showed that 

FTIR+UV-vis and FTIR could be used to predict not only FAAEs but also FAMEs and 

FAAEs content of olive oil successfully. FTIR+UV-vis spectroscopy could quantify wax 

esters less accurately. FTIR spectroscopy was found as a promising alternative to a wet 

chemical method based on tedious and expensive extraction as well as derivatization steps 

for determination of DAG content of olive oils. The other examined parameters were 

individual pigment contents of olive oil which are especially important for authenticity 

studies. Both UV-vis and FTIR+UV-vis spectroscopy had good prediction ability for 

quantification of major pigments along with their derivatives while moderate prediction 

was obtained for minor pigments and their derivatives.  

This part of the study showed that spectroscopic techniques offered advantages 

over classical methods in determination of several chemical quality parameters of olive 

oils since they are faster, relatively cheaper and environmentally friendly compared to 

wet chemical methods. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

6. ADULTERATION DETECTION OF FRESH OLIVE OILS 

WITH OLD OLIVE OILS 

 

 
Redrafted and modified, from:  

 

Uncu, Oguz, and Banu Ozen. 2019. "A comparative study of mid-infrared, UV–Visible 

and fluorescence spectroscopy in combination with chemometrics for the 

detection of adulteration of fresh olive oils with old olive oils." Food Control 105: 

209-218. https://doi.org/10.1016/j.foodcont.2019.06.013. 

 

 

6.1. Adulteration Study 

  

 
Although there are several successful examples of olive oil adulteration detection 

studies using different spectroscopic methods, differentiation of mixtures of olive oils 

such as mixtures from different olive varieties, mixtures of refined and extra virgin olive 

oils or mixtures of fresh and old olive oils is generally a more challenging task. Therefore, 

it is important to test the capabilities of these techniques for these cases. To the best of 

our knowledge, there is a few preliminary studies in the literature about the detection of 

adulteration concerning mixing of old olive oils with fresh olive oils. FTIR was used to 

detect limited number of adulterated samples in one study (Hirri et al. 2015) and laser 
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diode-based fluorescence spectroscopy was also used in another research (Torreblanca-

Zanca et al. 2019). In addition, a recent study employed different classification methods 

in analyzing fluorescence spectra to determine freshness of olive oils as expired or non-

expired (Dankowska and Kowalewski 2019). However, there is not any study which 

compares the performances of different spectroscopic approaches about this emerging 

issue.  

Purpose of this part of the study is to differentiate fresh olive oil from old olive 

oil in a mixture by using fluorescence, FTIR and UV-vis and the combination of FTIR 

and UV-vis spectroscopies; moreover, quantification of different levels of adulterant is 

also possible with these spectroscopic methods when they are used along with 

multivariate statistical approaches. Therefore, it was also aimed to investigate the 

effectiveness of different spectroscopic techniques individually and also in combination 

to detect this type of fraud in a fast way with minimal chemical waste. 

 

 

6.1.1. Chemical Characteristics of Olive Oil 

 

 
Free fatty acid and specific extinction (K232 and K270) values of the olive oil 

samples were determined to evaluate the general quality of the samples. Average acidity 

(%), K232, and K270 values of fresh olive oil samples used in mixing studies were 

0.40±0.12, 2.18±0.21, and 0.20±0.01, respectively while the same parameters for the old 

olive oil samples were 0.92±0.29, 2.30±0.32, and 0.19±0.10, orderly. 

Average major fatty acids values (%) of fresh olive oil samples were determined 

as follows; palmitic acid 13.79±0.97, stearic acid 3.04±0.34, oleic acid 69.63±1.83, 

linoleic acid 10.74±1.46, linolenic acid 0.76±0.11, SFA 17.56±1.46, MUFA 70.94±2.10, 

and PUFA 11.50±1.57. While the same parameters for old olive oil samples were 

determined as 14.09±2.05% palmitic acid, 2.68±0.13% stearic acid, 68.94±3.16% oleic 

acid, 11.56±3.24% linoleic acid, 0.74±0.07% linolenic acid, 17.41±2.30% SFA, 

70.29±3.39% MUFA, and 12.30±3.31% PUFA. 

All the studied samples were in the limits of quality standards of European Union 

regulation on olive oil (Commission Delegated Regulation (EU) 2016). Fresh olive oil 
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samples were graded as extra virgin olive oils while old olive oil samples were at lower 

grades. 

 

 

6.1.2. Spectral Evaluation 

 

 
Typical spectra of all the studied olive oil samples obtained with different 

spectroscopic techniques are shown in Figure 6.1. The FTIR spectra of the samples 

(Figure 6.1a) are dominated by the peaks at distinct wavelengths of 2924, 2852, 1743, 

1463, 1377, 1238, 1163, 1114, 1099 and 721 cm−1 (Sinelli et al. 2007). Absorbances at 

2924 and 2852 cm−1 wavelengths are due to -CH2 asymmetric and symmetric stretching 

vibrations, respectively. The major peaks at 1743 cm−1 followed by 1463 and 1377 cm−1 

are associated with C=O stretching, CH2 and CH3 scissoring vibrations, respectively. The 

rest of the peaks at 1238, 1163, 1114, 1099 cm−1 are relevant with C-O stretching 

vibration while a small peak at 721 cm−1 are correlated with CH2 rocking mode (Sinelli 

et al. 2007).  

UV-vis spectra of the olive oil samples are shown in Figure 6.1b. Absorption 

spectra of the olive oil samples have specific peaks around 230-270 nm indicating the 

presence of conjugated dienes and trienes of unsaturated fatty acids. Moreover, 300-400 

nm band was correlated with a variety of polyphenols (Mignani et al. 2012). A shift in 

the positions of the peaks and/or the absence of the peaks in the current study compared 

to above assignments could be related to differences in the quality, varietal and 

geographical differences of olive oil samples with respect to investigated samples in the 

literature as well as measurement parameters. In addition, carotenoids as one of the color 

pigments are responsible for the absorption between 430–460 nm and peak at 670 nm is 

attributed to chlorophylls and their derivatives (Mignani et al. 2012).  

Fluorescence emission spectra of the olive oil samples are shown in Figure 6.1c 

and these spectra reveal three regions of interest around 350 nm due to specific excitation 

together with 400-600 nm, and 650-750 nm. Bands between 600-700 nm in emission 

possessed well known relationship with chlorophylls a and b and pheophytins a and b. 

Bands at 250-400 nm are correlated with α-tocopherol and phenolic compounds while 

400-600 nm emission spectral range could be attributed to vitamin B2 and carotenoids as 
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well as oxidation products of fatty acids, especially conjugated hydroperoxides, are found 

in the range of 440–470 nm (Dupuy et al. 2005; Ali et al. 2018).  

Spectra obtained from each of these spectroscopic methods were further 

investigated to observe for any visual differences between a fresh sample and adulterated 

ones. The differences in FTIR spectra were not easy to recognize visually. On the other 

hand, visual inspection revealed noticeable differences between the spectra of adulterated 

and fresh olive oil samples obtained with UV-vis and fluorescence spectroscopy.  

Main differences in UV-vis spectra are observed in the peaks attributed to 

carotenoids (400-500 nm) and chlorophylls (670 nm) (Figure 6.1b). Both chlorophylls 

and carotenoids are pigments which are affected from environmental conditions such as 

light and temperature and are converted into other forms and/or degraded during storage. 

Therefore, differences in UV-vis spectra of old oil containing samples could be associated 

with the changes in the pigment composition of the samples. The changes in pigment 

composition could be attributed to the oxidation of these compounds during storage (Ali 

et al. 2018). 

Fluorescence emission spectra of the olive oil samples at varying adulteration 

levels are provided in Figure 6.1c. Fluorescence intensity at distinct wavelengths (400-

500 nm) increased with increasing adulteration level and this could be correlated with the 

formation of oxidation products of fatty acids such as hydroperoxides emitted around 450 

nm (Lleó et al. 2016). However, fresh olive oil samples have higher intensity at 650-750 

nm compared to adulterated ones and this difference could be attributed to change in 

chlorophyll content having negative linear relationship with oxidation products 

(Hernández-Sánchez et al. 2017).  
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(a) 

 

(b) 

 

(c) 

Figure 6.1. (a) FT-IR, (b) UV-vis and (c) fluorescence spectra of the olive oil samples 
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6.1.3. Discrimination of Fresh Olive Oils from Adulterated Oils 

 

 
OPLS-DA models were created with the data from each spectroscopic technique 

and with the combination of FTIR and UV-vis spectral data and Table 6.1 shows the 

results of statistical parameters for the models obtained with the application of various 

spectral pre-treatments. The best models were obtained with the first derivative (FD) of 

FTIR, FTIR+UV-vis and fluorescence spectroscopy data while the second derivative 

(SD) of UV-vis spectral data resulted in the most successful differentiation. Each model 

was comprising a calibration and external validation set and the number of the samples 

in calibration and validation is 80 and 40 out of total 120 samples (100 adulterated and 

20 fresh samples), respectively (Table 6.1). Although it might look like there is an 

unbalance between the numbers of adulterated (100) and non-adulterated (20) samples 

there is still enough number of non-adulterated samples to form a class in OPLS-DA 

model. Classification could be also performed by using each adulteration percentages as 

a different class. However, it was thought that assigning all adulteration levels to a single 

class is a more realistic approach. This is because of that it is generally impossible to 

know the adulteration concentrations of external samples that are brought to the control 

laboratories and constructed model allows detection of mixing regardless of adulteration 

percentages. OPLS-DA score plots of each calibration model are provided in Figure 6.2 

which shows the scattering of two classes as adulterated and fresh samples (non-

adulterated). 

As it could be seen from Table 6.1, OPLS-DA model of FD of FTIR spectra 

provided the best differentiation of fresh olive oil samples from adulterated ones with the 

average correct classification rate of 100% and 93% (out of 40 sample; 1 sample 

misclassified as adulterated and 2 samples misclassified as fresh samples) in calibration 

and validation sets, respectively. The OPLS-DA model was built with 1 predictive and 3 

orthogonal components. Other statistical parameters such as high R2 values for calibration 

and cross-validation sets further confirm the classification ability of the model (Table 

6.1). According to the score plot (Figure 6.2a), fresh samples located on the right side of 

this plot are separated from adulterated samples with respect to the first latent variable 

(LV1) explaining 49% of the total variation. Furthermore, variable importance for the 

projection (VIP) values are also evaluated to determine the most significant wavelengths 
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in differentiation of adulteration. VIP parameter is increasingly preferred in the model 

evaluation since it provides the most compact model interpretation compared to loading 

weights and regression coefficients (Galindo-Prieto, Eriksson, and Trygg 2015). VIP 

values greater or close to 1 are considered as influential in the explanation of classification 

and prediction models (Uncu and Ozen 2015). The highest VIP values are obtained at 

around 1723 cm−1 which could be associated with stretching of C=O (free fatty acids) 

groups (Hirri et al. 2016) as well as fingerprint region (1464–983 cm−1) and around 723 

cm-1 (Jolayemi et al. 2017). In the literature, there is only one study in which limited 

number of old olive oil samples (lampante) were separated from fresh (extra virgin) 

samples by using discriminant analysis (PLS-DA) of FTIR data (Hirri et al. 2015). 

 

 

Table 6.1. OPLS-DA models of different spectroscopic methods in classification of 
adulterated and fresh samples (the number of samples are shown in 
parenthesis) 

Method Pre-treatmenta LVs R2cal R2cv %CCcalb 

(n=80) 

%CCpredc 

(n=40) 

 FD 1+3 0.98 0.53 100 93 

FTIR WDTs:FD 1+3 0.97 0.58 100 85 

 SD 1+2 0.97 0.42 100 90 

 FD 1+3 0.98 0.98 100 83 

UV-vis WDTs:FD 1+3 0.98 0.97 100 83 

 SD 1+4 0.99 0.98 100 100 

 FD 1+4 0.99 0.66 100 98 

FTIR+UV-vis WDTs:FD 1+3 0.98 0.65 100 85 

 SD 1+2 0.97 0.58 100 88 

 FD 1+8 0.95 0.70 100 90 

Fluorescence WDTs:FD 1+8 0.98 0.71 100 95 

 SD 1+7 0.90 0.68 100 89 
aFD: first derivative, SD: second derivative, WDTs:FD combination of wavelet denoising 
techniques and first derivative, baverage correct classification rate for calibration, 
caverage correct classification rate for prediction (external validation) 
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Score plot of OPLS-DA model constructed with SD of UV-vis absorbance spectra 

is shown in Figure 6.2b. A clear separation was obtained between fresh and adulterated 

samples in the calibration set (100%) as well as in the external validation set with correct 

prediction rate of 100% (Table 6.1). LV1 was effective in the classification by separating 

each class of olive oil samples to the left and the right of the score plot (Figure 6.2b). The 

highest VIP values for the constructed model are found as around 260-290, 470 and 680 

nm and these values correspond to the presence of conjugated dienes and trienes 

(oxidation products), carotenoids and chlorophyll derivatives, respectively. To the best of 

our knowledge, there is no comparable literature about the differentiation of old and fresh 

olive oil samples by using UV-vis spectroscopy. Until so far, studies with UV-vis 

spectroscopy have been based on the quantification of the adulteration of extra virgin 

olive oil with lower grade olive oils (Torrecilla et al. 2010a) as well as binary and ternary 

mixtures of monovarietal extra virgin olive oils (Aroca-Santos et al. 2016). 

Combination of two spectroscopic methods as FTIR+UV-vis is also investigated 

for any improvement that could be attributable to the data fusion in the classification of 

the samples. Prior to combining the data, FD of both spectra were taken individually and 

then they were fused. The fused data set provided the best OPLS-DA model and score 

plot of this model is shown in Figure 6.2c. According to the statistical results listed in 

Table 6.1, combined data have higher classification power than the model of FTIR 

spectroscopic data and also have comparable success with UV-vis data. The model was 

built with 1 predictive and 4 orthogonal components explaining 56% of the overall model 

according to LV1. The measure of fit for calibration and cross validation are 99% and 

66%, respectively. The OPLS-DA model correctly separated all samples from two classes 

in the calibration set (100%) and also correctly predicted all samples for each class in the 

external validation set except one misclassified sample from the adulterated set (98%) 

(Table 6.1).  

Fluorescence spectroscopy was also used in the differentiation of adulterated 

samples. De-noised fluorescence spectra were further pre-treated with FD transformation 

prior to model construction. The OPLS-DA score plots (Figure 6.2d) revealed a good 

separation between adulterated and fresh olive oil samples which are scattered in the 

negative and positive sides of the LV1, respectively. The correct classification rates for 

both calibration and validation sets are satisfactorily high as 100% and 95% (2 samples 

misclassified as fresh samples), respectively. Certain wavenumbers around 435-500 nm 

and 670 nm could be correlated with higher VIP values in comparison to the rest of the 
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wavelengths. These bands could be attributed to conjugated hydroperoxides and 

chlorophyll content, respectively (Ali et al. 2018); therefore, these compounds are most 

likely responsible for the differentiation of fresh olive oil from adulterated ones. As far 

as we know, there was only two very recent studies in the literature using laser diode 

induced excitation to differentiate fresh and old olive oil samples successfully 

(Torreblanca-Zanca et al. 2019; Lastra-Mejías et al. 2019). Most of the fluorescence 

studies have been focused on the detection of lower grade olive oil (Durán Merás et al. 

2018) and authenticity confirmation and geographical origin determination (Jiménez-

Carvelo, Lozano, and Olivieri 2019). 

To sum up, all of the studied models are found to be quite successful in 

differentiation of adulteration with old olive oil samples. All the calibration models built 

with different spectroscopic techniques are 100% successful in adulteration detection 

while external validation models are also promising with decreasing order of correct 

classification rate for UV-vis, FTIR+UV-vis, fluorescence, and FTIR as 100%, 98%, 

95%, and 93%, respectively. Presence of oxidation products and change in the pigment 

content caused differentiation of fresh olive oils adulterated with old olive oil from fresh 

olive oils.  
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6.1.4. Prediction Studies 

 

 
Quantification of adulterant level (0-50% v/v) in fresh olive oil samples was 

conducted by applying PLS algorithm to the calibration and external validation data sets 

from each spectroscopic technique. Statistical results of each spectroscopic method as 

well as the combination of FTIR and UV-vis are provided in Table 6.2. Different pre-

processing techniques and appropriate combinations were used in model development, 

and it was found out that OSC: WDTs provided better results compared with the rest of 

the transformations (Table 6.2). OSC was also reported as a more successful pre-

processing technique compared to the other methods in the literature (Cen and He 2007). 

Therefore, models developed by the OSC in combination with WDTs will be explained 

in more detail. Prediction performance of the models were evaluated by some critical 

internal and external as well as cross validation parameters such as regression coefficients 

(R2) and error values (RMSE) (Table 6.2). A model must have high R2 values and low 

RMSE values to have high predictive ability (Gurdeniz and Ozen 2009).  

First approach was using FTIR data set to quantify adulteration level. The model 

was constructed using 9 LVs with relatively high R2 values for calibration (0.96), cross 

validation (0.77) and prediction, (0.84) and comparably low error values of 3.45% for 

calibration, 10.19% for cross validation, and 7.01% for prediction as well as robust RPD 

value of 2.5 were also obtained for this model (Table 6.2). There is only one preliminary 

study in the literature predicting limited number of lower quality olive oil (lampante) in 

fresh olive oil by FTIR spectroscopy successfully with R2 of 0.999 and error values lower 

than 1% (Hirri et al. 2015). Results of the present study have lower performance due to 

higher prediction error compared to the previous study. In the former study, smaller 

number of samples (n=45) were used, and the old olive oil samples were in a more 

degraded condition as lampante virgin oil with free fatty acidity of 3.28% compared to 

the samples having an average 0.92% of free fatty acid value in the present study. 

PLS model of UV-vis spectral data have moderate prediction power including 6 

LVs along with acceptable R2≥0.80 and close error values with approximate RPD value 

of 2.2 (levels of RPD are defined in section 3.4.1) (Table 6.2). UV-vis spectroscopy had 

similar prediction power with FTIR spectroscopy. In the literature, there is not any study 

which used UV-vis spectral data in prediction of this type of adulteration. UV-vis studies 
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were performed for determining the level of adulteration of extra virgin olive oil with 

refined olive oil and refined olive-pomace oil (Torrecilla et al. 2010a) and also for the 

quantification of binary and ternary mixtures of monovarietal extra virgin olive oils 

(Aroca-Santos et al. 2016).  

FTIR+UV-vis data are quite successful in the prediction of varying levels of old 

olive oil samples in fresh ones with robust statistical parameters (R2
cal=0.94, R2

pred=0.91, 

RMSEC=4.22%, RMSEP=5.20%, and RPD=3.2) (Table 6.2). For better visualization of 

the prediction model, PLS regression plot is presented in Figure 6.3a. It is clear that the 

data fusion approach is more successful in the quantification of adulteration compared to 

individual methods (FTIR or UV-vis) (Table 6.2). In a recent study, it was also reached 

to a similar conclusion about the prominent improvement in the model prediction power 

for the quantification of rapeseed oil in olive oil blends by near infrared (NIR) and mid 

infrared (MIR) spectroscopy (Li, Xiong, and Min 2019). 

PLS regression plot of fluorescence spectroscopic data for the prediction model 

built with 9 LVs was presented in Figure 6.3b. High R2 values for both calibration (0.98) 

and external validation (0.97) sets as well as lower error values for the same data sets 

(2.68% and 2.82%, respectively) showed that fluorescence spectroscopy is a promising 

tool in the detection of old olive oils mixed with fresh olive oils (Table 6.2). Results of 

the present study is in accordance with two very recent study, both of which used laser 

diode induced excitation. These studies were able to detect expired extra virgin olive oil 

with error values around 1.5% and lower than 10% by using different statistical 

approaches of intelligent non-linear model based on a supervised artificial neural network 

(Torreblanca-Zanca et al. 2019) and a linear model relying on chaotic parameters (Lastra-

Mejías et al. 2019), respectively. 

In summary, fluorescence and combination of FTIR and UV-vis spectroscopic 

data provided better results in the quantification of adulteration than two other individual 

spectroscopic data. Therefore, it is recommended to use combined data rather than 

individual UV-vis and FTIR methods alone to determine this type of adulteration. In 

addition, fluorescence spectroscopic data also resulted in robust prediction models with 

similar statistical parameters as fused data. Detection errors for both techniques were 

lower than 10%. Moreover, fluorescence spectroscopy performed slightly better than 

combined spectroscopy in terms of determination limit as well as other statistical 

parameters. It was found that 10% detection limit is satisfactory for this type of 
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adulteration since fraudsters could make little profit lower than that ratio as also indicated 

in a different type of adulteration study (Li et al. 2015) 
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(a) 

 
(b) 

Figure 6.3. Actual versus predicted percentages of old olive oil adulteration (0% to 50% 
v/v) determined by (a) FTIR + UV–vis and (b) fluorescence spectroscopy 
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6.2. Conclusions 

 

 
In the present part, it was aimed to develop reliable analytical tools to detect and 

quantify adulteration made with mixing fresh olive oils with old olive oil samples. 

Different spectroscopic approaches individually and as a combination are compared with 

each other using multivariate statistical techniques. The results indicated that both 

fluorescence and combination of FTIR and UV-vis spectral data are better than FTIR and 

UV-vis spectroscopy alone in the determination of adulteration due to their lower error 

values for prediction (2.82% and 5.20%, respectively) as well as their higher regression 

coefficients of prediction (0.97 and 0.91, orderly). Both UV-vis and FTIR are rapid 

methods; however, collecting and analyzing the data statistically would require a longer 

time. However, even in this condition, using combined spectroscopy would have 

advantages over wet chemical analysis methods due to its minimal waste generating, no 

sample preparation and easy to use nature. Differentiation of adulterated samples are due 

to the presence of oxidation products and change in the pigment concentration of the oils. 

These methods could be used as reliable, fast, non-destructive, and environmentally 

friendly tools in both detection and quantification of adulteration as well as screening of 

olive oil quality, simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

153 
 

CHAPTER 7 

 

 

CONCLUSIONS 

 

 
Redrafted, modified, and extended from:  

 

Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2019. “Use of FTIR and UV–Visible 

spectroscopy in determination of chemical characteristics of olive oils.” Talanta 

201: 65–73. https://doi.org/10.1016/j.talanta.2019.03.116. 

 

Uncu, Oguz, and Banu Ozen. 2019. "A comparative study of mid-infrared, UV–Visible 

and fluorescence spectroscopy in combination with chemometrics for the 

detection of adulteration of fresh olive oils with old olive oils." Food Control 105: 

209-218. https://doi.org/10.1016/j.foodcont.2019.06.013. 

 

Uncu, Oguz, Banu Ozen, and Figen Tokatli. 2020. “Authentication of Turkish Olive Oils 

by using detailed pigment profile and spectroscopic techniques.” Journal of the 

Science of Food and Agriculture 100 (5): 2153–65. 

https://doi.org/10.1002/jsfa.10239. 

 

Uncu, Oguz, and Banu Ozen. 2021. "Fatty acid alkyl ester and wax compositions of olive 

oils as varietal authentication indicators." Journal of Food Measurement and 

Characterization (in press). https://doi.org/10.1007/s11694-021-01184-2. 

 

Olive oil samples obtained from different cultivars and various parts of Aegean 

Region had different fatty acid profiles and two of these varieties had similar quality 

parameters. According to orthogonal partial least squares discriminant analysis (OPLS-

DA) use of individual fatty acid alkyl esters (FAAE) profile resulted in 80% correct 

classification rate while waxes alone was 67% successful in classifying the olive oils 

according to variety. It was found that alkyl esters in combination with waxes were more 
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effective in discrimination of olive oils with respect to cultivar compared to their 

individual forms and the correct classification rate for the generated model is 92%. Since 

FAAEs along with waxes have effect on cultivar differentiation, they could have a 

potential as authentication tools for olive oil besides their known quality characteristics. 

It was also found that use of detailed pigment profiles is quite promising in authentication 

of olive oils. However, UV–visible and Fourier transform infrared (FTIR) spectroscopic 

techniques could be reliable alternatives for the same purposes. All of the studied 

techniques have potentials in identification of ‘protected designation of origin’ 

certification of the products. 

Due to the importance of these chemical measures for olive oil, they were tried to 

be predicted from spectroscopic data for their rapid and simultaneous determination. 

Prediction models were constructed by using partial least squares regression with cross 

and external validation. Fatty acid ethyl esters (FAEEs) were estimated best with FTIR + 

UV–Vis spectroscopy (R2
cv=0.84, R2

pred=0.90, and RPD=3.0). An average PLS model 

(R2
cv=0.79, R2

pred=0.71, and RPD=1.9) was obtained for the estimation of 1,2 DAG using 

FTIR spectral data. Major pigments, lutein, pheophytin a and their derivatives and total 

xanthophylls were quantified successfully by FTIR + UV–Vis (a range of R2
cv of 0.71–

0.85, R2
pred of 0.70–0.84, and RPD=1.5–2.5 values) but the prediction of the rest of the 

pigments were poor (R2cv=0.60–0.76, R2
pred:0.42–0.62, and RPD=1.2–1.5). Combination 

of two spectral data resulted in average prediction of wax content of oils (R2
cal=0.95, 

R2
pred=0.75, and RPD=1.9). FTIR and UV–vis spectroscopic techniques in combination 

with PLS regression provided promising results for the prediction of several chemical 

parameters of olive oils; therefore, they could be alternatives to traditional analysis 

methods. 

Three spectroscopic methods were tested to investigate their ability in detecting 

old olive oils in fresh oils. After the application of various pre-treatment methods, all of 

the OPLS-DA classification models generated for every spectroscopic technique 

successfully differentiated adulterated and non-adulterated oils with over 90% correct 

classification rate. FT-IR + UV–vis and fluorescence spectral data were also successfully 

used to predict adulteration levels with high coefficient of determinations for both 

calibration (0.94 and 0.98) and prediction (0.91 and 0.97) models and low error values 

for calibration (4.22% and 2.68%), and prediction (5.20% and 2.82%), compared to 

individual FT-IR and UV–vis spectroscopy. Therefore, FT-IR + UV–vis and fluorescence 
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spectroscopy as being fast and environmentally friendly tools have great potential for 

both classification and quantification of adulteration practices involving old olive oil. 

Although FAAEs and pigment profile have potential in discrimination of olive 

oils, rapid spectroscopic methods have several advantages over wet chemical methods. 

They not only provide differentiation of olive oils with respect to olive variety but also 

allow prediction of different chemical measurements. They can also detect and quantify 

mixtures of old and fresh olive oils.  

As a future study, these chemical parameters could be measured for olive oils 

obtained from other regions of Turkey. In this way, a larger database in terms of these 

parameters for Turkish olive oils could be obtained. As a result, some of these potential 

parameters for future legislations could be considered for stricter regulations.  
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APPENDIX A 

 

STANDARD CALIBRATION CURVES FOR PIGMENTS 

 

 
Figure A.1. Standard calibration curve for pheophytin a and its derivatives 

 

 

 
Figure A.2. Standard calibration curve for chlorophyll a and its derivative 
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Figure A.3. Standard calibration curve for pheophytin b and its derivative 

 

 

 
Figure A.4. Standard calibration curve for lutein and its derivatives and other 

xanthophylls 

 

 

 

 

 

 

 

y = 53,38x
R² = 1

0

50

100

150

200

250

300

0 1 2 3 4 5 6

Ar
ea

 ra
tio

 (m
AU

*s
)

Amount ratio (mg/kg)

y = 183,05x
R² = 0,9993

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45

Ar
ea

 ra
tio

 (m
AU

*s
)

Amount ratio (mg/kg)



 

192 
 

 
Figure A.5. Standard calibration curve for chlorophyll b and derivative 
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