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ABSTRACT

WAVE RADIATION FROM A TRUNCATED CYLINDER OF
ARBITRARY CROSS SECTIONS

Wave radiation problem in heaving motion from a vertical cylinder of circular

cross-section and truncated cylinder of an arbitrary cross-section in the water of finite

depth is studied. First, wave radiation from the circular cylinder is summarized which

was solved analytically by Yeung (1981). The water domain is divided into two regions:

the interior region below the cylinder and the exterior region outside the cylinder. The

interior and exterior solutions are matched by the continuity of pressure and normal ve-

locity in both cases. The vertical cylinder of a circular cross-section is solved by using the

separation of variables method in cylindrical coordinates. The coefficients of interior and

exterior solutions are related by the matching conditions. The system of equations formed

by these unknown coefficients has been solved. Then, the non-dimensional z component

of force is calculated by integrated pressure on the floating body. The real part and imag-

inary parts of this force give added mass and damping coefficients in heaving motion,

respectively. These numerical results are used for the verification of asymptotic solutions

of the present thesis. In the second case of this thesis, we treat wave radiation problems

in heaving motion from the non-circular cylinder by using an asymptotic method. The

asymptotic method of this thesis was suggested by Dişibüyük et al. (2017). Dişibüyük

et al. (2017) suggested the non-dimensional maximum deviation of the cylinder cross-

section from a circular one plays the role of a small parameter of the problem. The third-

order asymptotic solution is used. Unknown coefficients of interior and exterior potentials

are solved by using Fourier coefficients at each order of approximation. The advantage of

the method is that the boundary conditions can be solved for different cross-sections by

using the Fourier coefficients. The results are compared with other numerical results.
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ÖZET

EN KESİTİ DAİRESEL OLMAYAN KESİK BİR SİLİNDİRDEN
DALGA RADYASYONU PROBLEMİ

En kesiti dairesel olan bir dik silindir ve dairesel olmayan bir dik silindirden

dalma-çıkma hareketinde dalga radyasyonu problemi çalışıldı. Analitik olarak Yeung

(1981) tarafından çözülen dairesel ara kesitli silindirden dalga radyasyonu problemi ver-

ildi. Su alanı iki bölgeye ayrılmıştır: silindirin altındaki iç bölge ve silindirin dışındaki

dış bölge. İç ve dış bölgelerdeki çözümler basıncın ve normal hızın sürekliliğinden iki

durumda da eşleştirilmiştir. Dairesel kesitli dikey silindir durumunda silindirik koor-

dinatlarda değişkenlerin ayrılması yöntemi kullanılmıştır. İç ve dış bölgedeki çözüm-

ler eşleştirme durumundan dolayı bağlantılıdırlar. Bilinmeyen katsayıların oluşturduğu

denklem sistemi çözülmüştür. Sonra, yüzen cismin üzerindeki basıncın integre edilme-

siyle kuvvetin boyutsuz z bileşeni hesaplanmıştır. Kuvvetin gerçek ve sanal kısımları

dalma-çıkma hareketinde sırasıyla katma kütle ve sönümleme katsayılarını verir. Bulu-

nan sayısal sonuçlar asimptotik çözümle elde edilen sonuçların doğrulanması için kul-

lanılmıştır. Tezin ikinci kısmında, en kesiti dairesel olmayan dik bir silindir durumu

asimptotik bir yaklaşımla çözülür. Bu tezde kullanılan asimptotik yaklaşım Dişibüyük

et al. (2017) tarafından önerilmiştir. Silindirin ara kesitinin, çemberden maksimum boyut-

suz sapması problemin küçük bir parametresidir (Dişibüyük et al. (2017)). Problemin

üçüncü mertebeden çözümü asimptotik yöntemle elde edilmektedir. İç ve dış potansiyel-

lerin bilinmeyen katsayıları her mertebede Fourier katsayıları kullanılarak bulundu. Sınır

koşullarının farklı ara kesitli silindirler için Fourier katsayıları kullanılarak çözülmesi

yöntemin avantajıdır. Sonuçlar farklı en kesitli silindirler için daha önce yapılan nümerik

çalışmalarla karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

The hydrodynamic forces on fixed and floating structures or oscillating bodies

are research interests for researchers and engineers. The prediction of the diffraction

and the radiation forces on the structures is crucial. These structures are often used in

ocean engineering, such as bridge pylons, breakwaters, offshore platforms, wave energy

converters, floating offshore wind turbines and floating airports, etc.

The interaction of the incident waves with the body causes diffraction and deflec-

tion. Radiation forces come from the radiated waves generated because of the motion of

the body. The floating body oscillates time-harmonically in three-dimensional space that

is called six degrees of freedom. The sea waves and the movements in these waves have

nonlinear characteristics. The motions of the body are assumed to have a small amplitude.

The fluid flow around the floating body can be linearized by potential theory. The non-

linear and viscous effects are neglected. The mooring, which is also essential for motion

control, is ignored. Linear wave theory is applied for a vertical cylinder with a constant

water depth and the structure not submerged and extending to the free surface. Trun-

cated cylinders are mostly used in ocean engineering as wave energy converters (Zheng

and Zhang (2018)), spar platforms (Sudhakar and Nallayarasu (2011)), elliptic and quasi-

elliptic sectional bridge’s foundations (Liu et al. (2016), Eidem (2017), Liu et al. (2018)).

Also, Wan et al. (2017) studied numerical models on bridges floating on pontoons that are

the form of multiple elliptical cylinders.

An analytical solution to the problem of wave radiation from the circular cross-

section cylinder was proposed by Yeung (1981). The method was used before by Garrett

(1971) that was discussed the scattering of surface gravity waves by a circular dock. The

radius of the circular section was r=a, and the interior region was defined as r<a and the

exterior region as r>a, respectively. The inner and outer region problems were written

as potential functions in Dirichlet and Neumann types, respectively. Incident waves ex-

panded in Bessel functions. After that unknown coefficients were solved by matching

their normal velocities at r=a. The fact that the geometry was axisymmetric in circular
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shape allowed the problem to be solved more easily. Black et al. (1971) used Haskind’s

theorem (Haskind (1957)) to the wave forces on a stationary body problem. In this case,

the far-field properties were sufficient. The study didn’t include direct calculations for

radiation forces. Yeung (1981) divided region into two parts: interior and exterior regions

to determine velocity potential. Eigenfunctions of these problems were matched and the

separation of variables method was used to find the unknown coefficients. Added mass

and damping for heave motion were computed and presented for the different radius to

depth and the bottom clearance to depth ratios. The velocity potentials were represented

in terms of Bessel and modified Bessel functions. These numerical results are used for the

asymptotic solutions of the present thesis. In another study, Drobyshevski (2004) obtained

hydrodynamic coefficients for a circular truncated cylinder for extremely shallow water

by using asymptotic methods. The distance between the bottom surface of the cylinder

and the seabed was very small and this small distance is used for asymptotic expansions.

Then, asymptotic expansions of potentials in the common region were matched. The au-

thor stated that as the distance under the cylinder decreases, the heave added mass rises

rapidly and is affected depending on the water depth. However, at the same depth, radia-

tion damping was weakly affected. Results were in agreement with Yeung (1981). Later,

Bhatta (2007) studied the effect of water depth and draft on hydrodynamics. The results

showed that the heave added mass was greater for the higher draft for cylinders with the

same water depth.

Studies on structures with non-circular cross-sections were examined by Chen and

Mei (1971), Williams and Darwiche (1990), Lee (1995), Yu et al. (2019). The scattering

and radiation from elliptical cylinder were studied by Chen and Mei (1971) that used the

separation of variables method in the elliptical coordinate system and representing the

velocity potential in terms of infinite series of Mathieu and modified Mathieu functions.

Williams and Darwiche (1990) studied wave radiation from an elliptical cylinder in two

cases: cylinder was submerged or floating on the free surface. In their study, a theoreti-

cal solution was given for the radiation of small-amplitude water waves. The numerical

results are presented for the added mass and damping coefficients for truncated elliptical

cylinders with different eccentricities and drafts. Again, velocity potential in elliptical

coordinates was written as Mathieu functions. Lee (1995) analytically solved the heave

radiation problem for the rectangular structure. But this problem was in two-dimension.
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Lee (1995) also solved the problem with the boundary element method to compare, and

the results were very close. They pointed about that the added mass coefficient increase

if the width of the structure and the water depth increase, the radiation damping increase

if the width of the structure increase. Yu et al. (2019) extended their studies to cylinders

with a different cross-section and, they suggested a semi-analytical solution for radiation

problem. The method for finding unknown hydrodynamic coefficients by matching veloc-

ities in the common region was the same as in other studies. However, the radius function

was defined in cylindrical coordinates and the boundary conditions are solved by writing

the radius function into the Fourier series. Added mass and damping were calculated for

cylinders with circular, cosine, elliptical, and quasi-elliptical cross-sections with the same

depth and same cross-sectional area (Yu et al. (2019)). The numerical results for cosine

type radial perturbation were calculated by using the Boundary Element Method and the

ANSYS AQWA software showed excellent agreement with the semi-analytical method.

Added mass and damping for the quasi-elliptic type were calculated in different drafts.

The results were used to compare with the asymptotic approaches obtained in this thesis.

The asymptotic solution of wave diffraction from a bottom-mounted vertical cylin-

der with different cross-sections was presented by Dişibüyük et al. (2017) using the fifth-

order approximation which has good agreement with cosine type cross-section by Liu

et al. (2016). The asymptotic method in their work was proposed by Mei et al. (2005).

The method is useful for structures with arbitrary cross-sections. Mansour et al. (2002)

expressed the diffraction problem for a vertical cylinder with cosine type cross-section

as a series dependent on the perturbation parameter of the velocity potential. The series

expansion of the velocity potential was written in the boundary conditions and the zeroth

and first-order equation systems were obtained. They continued with numerical calcu-

lations such as the integral equation method and the Green functions. The zeroth-order

system was the same as the circular cylinder case. The integral equation method and

the asymptotic method were closed when the perturbation amplitude was small. Liu et al.

(2016) solved the diffraction problem by expanding the radius function and boundary con-

ditions on the surface of the cylinder to the Fourier series of Bessel and Hankel functions.

Dişibüyük et al. (2017) suggested velocity potential and shape function in terms of Fourier

series and applied fifth-order approximation to the diffraction problem for cylinders with

arbitrary cross-section such as elliptic, square, quasi-elliptic, cosine type. Asymptotic
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results are close to other numerical and experimental results. The asymptotic method of

this thesis was suggested by Dişibüyük et al. (2017).

Computational methods were reviewed by Mei (1978) for diffraction and radia-

tion problems. The first method was the method of the integral equation using Green’s

functions. The second method was the Hybrid element method which was based on the

finite element method. The author noted that the calculations are more practical when

compared to the integral equation method. Numerical simulations were also used in the

wave radiation problem. For example, Yu et al. (2019) compared the results obtained with

the semi-analytical method using the boundary element method. In another article, Islam

et al. (2019) used OpenFOAM analysis for box-type oscillating structures. They achieved

very close results with analytical solutions. They noted that CFD for box-type structures

is suitable for interaction problems. Especially, it can be used for wave energy converters.

Wave radiation problem can be also extended to different conditions such as cir-

cular cylinder in a channel (Linton et al. (1992)), a rectangular structure with a sidewall

(Zheng et al. (2004)), rectangular structure over a sill (Shen et al. (2005)), floating rect-

angular structure in oblique seas (Zheng et al. (2006)), cylinder in front of a vertical wall

(Zheng and Zhang (2016)), submerged cylinder in finite water (Jiang et al. (2014)), sub-

merged elliptical disk (Zhang et al. (1995)), etc.

In this thesis, wave radiation problem in heaving motion from a vertical cylinder

of circular cross-section and truncated cylinder of an arbitrary cross-section in the water

of finite depth is studied. First, wave radiation from the circular cylinder is summarized

which is studied before (Yeung (1981)). The water domain is divided into two regions:

the interior region below the cylinder and the exterior region outside the cylinder. The

interior and exterior solutions are matched by the continuity of pressure and normal ve-

locity in both cases. The vertical cylinder of a circular cross-section is solved by using the

separation of variables method in cylindrical coordinates. The coefficients of interior and

exterior solutions are related by the matching conditions. The system of equations formed

by these unknown coefficients has been solved. Then, the non-dimensional z component

of force is calculated by integrated pressure on the floating body. The interior solution

is used to calculate the force. The real part and imaginary parts of this force give added

mass and damping coefficients in heaving motion, respectively. The added mass and the

damping coefficients are proportional to acceleration and the body velocity, respectively.
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These numerical results are used for the verification of asymptotic solutions of the present

thesis. In the second case of this thesis, we treat wave radiation problems in heaving mo-

tion from the non-circular cylinder. We studied by using an asymptotic method which

was suggested by Dişibüyük et al. (2017). The non-dimensional maximum deviation of

the cylinder cross-section from a circular one plays the role of a small parameter of the

problem as in the paper by Dişibüyük et al. (2017). A third-order asymptotic solution of

the problem is obtained as in the paper by Dişibüyük et al. (2017). Unknown coefficients

of interior and exterior potentials are solved by using Fourier series of the shape function

at each order of approximation. The advantage of the method is that the boundary con-

ditions can be solved for different cross-sections by using the Fourier coefficients. The

asymptotic approach is applied for cylinders with different cross-sections such as elliptic,

quasi-elliptic, square, and cosine cross-section. The computational results are compared

with other studies.

The structure of the thesis is as follows:

In Chapter 2, some fundamentals of fluid dynamics such as incompressibility condition,

Euler’s equation, potential flow theory, and Bernoulli’s equation for unsteady irrotational

flow are given. The boundary conditions are presented. The body response in regular

waves are given.

In Chapter 3, the wave radiation problem in heaving motion by a vertical cylinder of the

circular cross-section is solved by separation of variables method in cylindrical coordi-

nates. The coefficients of interior and exterior solutions are related to each other by the

matching conditions which are based on the study of Yeung (1981). The matrix system

formed by these unknown coefficients has been solved. Then, the non-dimensional z

component of force is calculated. Real part and imaginary parts of Fz give added mass

and damping coefficients in heaving motion, respectively. Added mass and damping for

0 < k0a < 4 presented for different values of radius a and the distance d between sea

bottom and cylinder’s bottom surface.

In Chapter 4, the wave radiation problem in heaving motion by a vertical cylinder of an ar-

bitrary cross-section is solved by an asymptotic approach. The radius of the cross-section

of the vertical cylinder is described by the equation r = R[1 + ε f (θ)] where R is the

mean radius of the cylinder and ε be the small non-dimensional parameter of the problem

(Dişibüyük et al. (2017)). Wave radiation in heaving motion from a vertical cylinder is
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studied by the third-order asymptotic method. The interior and exterior potentials, shape

functions are written in terms of the Fourier Series. Non-dimensional added mass and

damping coefficients are compared for cylinders with circular, cosine type, square, el-

liptic, and quasi-elliptic cross-section with the other numerical results. The presented

results compared with the numerical results of Williams and Darwiche (1990) and Yu

et al. (2019).

In Chapter 5, the conclusion is shown.
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CHAPTER 2

FUNDAMENTALS OF HYDRODYNAMICS

2.1. Equations of Motion

In this section, we introduce some elementary equations of fluid dynamics.

The ideal fluid defined as (Acheson (2005))

• The fluid is incompressible,

• The density of the fluid is a constant which is not change with time.

• The force on the surface element n∂S in the fluid is

pn∂S (2.1)

where the pressure p(x, y, z, t) is constant.

Consider a surface S drawn in the fluid which is fixed and closed with unit outward

normal n. Fluid will be entering the enclosed region V on S, and leaving it. The velocity

component along the n is u · n and the volume of fluid leaving through ∂S in unit time is

u · n∂S (Acheson (2005)). The net volume rate of leaving fluid is

∫
S

u · ndS (2.2)

The equation (2.2) should be zero for an ideal fluid and by the divergence theorem, we

have ∫
S
∇ · udS = 0 (2.3)
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The equation is satisfied on the region and incompressibility gives

∇ · u = 0 (2.4)

everywhere in the fluid.

2.2. Euler’s Equation

The equations (2.5) and (2.6) are known as Euler’s equations for an ideal fluid:

Du
Dt

= −
1
ρ
∇p + g (2.5)

∇ · u = 0 (2.6)

where g = (0, 0,−g) is the graviational term and it can be written as

g = −∇χ since χ = gz (2.7)

We can rearrange equation (2.5) and we get

∂u
∂t

+ (u · ∇)u = −∇

(
p
ρ

+ χ

)
(2.8)

since the density ρ is constant. The vector identity can be substituted into equation (2.8),

(u · ∇)u = (∇ ∧ u) ∧ u + ∇

(
1
2
|u|2

)
(2.9)

and we get the momentum equation into the form

∂u
∂t

+ (∇ ∧ u) ∧ u = −∇

(
p
ρ

+
1
2
|u|2 + χ

)
(2.10)
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2.3. Potential Flow

The vorticity equation ω = ∇ ∧ u is zero for an irrotational flow, then we can say

that the velocity potential φ exists and defined at point P by

φ =

∫ P

O
u · x (2.11)

where O is arbitrary point. The potential φ is independent in the simpliy connected fluid

region and the path between the points O and P. The equation (2.11) gives

u = ∇φ (2.12)

If incompressible, inviscid and irrotational flow is assumed, then we can define veloc-

ity potential φ. The incompressibility condition in (2.6) provides the potential φ satisfy

Laplace equation.

∇2φ = 0 (2.13)

2.4. Bernoulli’s Equation

Irrotational flow is assumed and u can be written as gradient of velocity potential,

i.e, u = ∇φ. So, Euler’s equation (2.10) becomes

∂(∇φ)
∂t

= −∇

(
p
ρ

+
1
2
|u|2 + χ

)
since ∇ ∧ ∇φ = 0 (2.14)

After integration of (2.14), we get Bernoulli’s equation for unsteady irrotational flow:

∂φ

∂t
+

p
ρ

+
1
2
|u|2 + χ = G(t) (2.15)

where G is a time-dependent arbitrary function.
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2.5. Boundary Conditions

The fluid motion appears from a deformation of the water surface and free surface

equation can be denoted by

z = η(x, y, t) (2.16)

2.5.1. Kinematic Condition at the Free Surface

Fluid particles on the surface have to stay on the surface. Let assume that F(x, y, z, t)

stays constant for any particular particle on the free surface and F(x, y, z, t) = z−η(x, y, t).

In other words, DF/Dt = 0 on the free surface, i.e.

∂F
∂t

+ (u · ∇)F = 0 on z = η(x, y, t) (2.17)

2.5.2. The Pressure Condition at the Free Surface

Inviscid flow is assumed and pressure p at free surface is equal to atmospheric

pressure P0 at z = η(x, y, t). If we assume that the P0 and density are constant and choose

G(t) accordingly, we can rewrite equation (2.15) to simplify it, i.e.

∂φ

∂t
+

1
2
|u|2 + gη = 0 on z = η(x, y, t) (2.18)

2.5.3. Linearization of the Surface Waves

Suppose that both free surface displacement η and fluid velocities u are small.

We can linearize the problem ignoring quadratic and higher terms. Moreover, expanding

equation (2.17) in a Taylor series at z = η and ignoring quadratic and higher terms, we

have

∂φ

∂z
=
∂η

∂t
on z = h (2.19)
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Similarly, the pressure condition (2.18) gives

∂φ

∂t
+ gη = 0 on z = h (2.20)

2.5.4. Body Boundary Conditions

The boundary can be fixed and rigid. Let rigid body moving with velocity u

through the fluid, the velocity of this surface is nonzero. The normal compenent of fluid

velocity must be equal to the normal velocity of the boundary surface itself. The fluid can-

not flow through the boundary surface (Newman (2018)). Boundary condition becomes

∂φ

∂n
= u · n (2.21)

where n is the unit normal vector directed out of the fluid.

2.6. Body Response in Waves: Added Mass and Damping

The interaction of the incident waves with the body causes diffraction and deflec-

tion. Radiation forces come from the radiated waves generated because of the motion

of the body. The floating body oscillates time-harmonically in three-dimensional space

that is called six degrees of freedom. We define three translational motions parallel to

(x, y, z) = (x1, x2, x3) as surge, sway, and heave, and three rotational motions about the

same axes as roll, pitch, and yaw, respectively (Newman (2018)). The velocity will be

sinusodial in time, we get

U j(t) = Re[iσξ jeiσt], j = 1, 2, . . . , 6. (2.22)

where ξ j is the amplitude. The wave amplitude is small to justify linearization. The

velocity potential can be written in the form

Φ(x, y, z, t) = Re

 6∑
j=1

(ξ jφ j(x, y, z) + AφA)eiσt

 (2.23)
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where φ j is the potential of a rigid body motion with unit amplitude and it is the solutions

of the radiation problem for j = 1, 2, . . . , 6.

∂φ j

∂n
= iσn j, j = 1, 2, 3. (2.24)

∂φ j

∂n
= iσ(r × n) j−3, j = 4, 5, 6. (2.25)

on the body surface S. The unit normal vector is n and the position vector is r.

∂φA

∂n
= 0, on S (2.26)

φA = φ0 + φ7 (2.27)

where φ0 is the incident wave potential and φ7 is the scattering potential. This problem

defined as diffraction problem. Also, each potential satisfy Laplace’s equation.

∇2φ j = 0, j = 0, 1, 2, . . . , 7. (2.28)

The linearized boundary condition gives

−
σ2

g
φ j +

∂φ j

∂z
= 0, on z = h, j = 0, 1, 2, . . . , 7. (2.29)

The radiation condition gives

φ j ∝ (x2 + y2)1/2e−ikR, as (x2 + y2)1/2 → ∞, j = 1, 2, . . . , 7. (2.30)
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The equation (2.23) is substituted into unsteady Bernoulli’s equation. The quadratic and

higher terms are ignored. The total pressure is given by

p = − ρ

(
∂φ

∂t
+ gz

)
= − ρRe

 6∑
j=1

(ξ jφ j + A(φ0 + φ7))iσeiσt

 − ρgz (2.31)

The force F and moment M can be determined by integrating the fluid pressure over the

wetted surface S (Newman (2018)).

 F

M

 = − ρg
"

S

 n

r × n

 zdS − ρRe
6∑

j=1

iσξ jφ jeiσt
"

S

 n

r × n

 φ jdS

− ρReiσAeiσt
"

S

 n

r × n

 (φ0 + φ7)dS (2.32)

The hydrostatic force in the form

F = −ρg
"

S

nzdS (2.33)

and moment in the form

M = −ρg
"

S

(r × n)zdS (2.34)

The components of force and moment can be written as

Fi = Re
6∑

j=1

iσξ jeiσt fi j, i = 1, 2, . . . , 6. (2.35)

where

fi j = −ρ

"
S

∂φi

∂n
φ jdS (2.36)
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The coefficient fi j is the complex force in the direction i, due to a sinusodial motion of

unit amplitude in the direction j.

fi j = σ2ai j − iσbi j (2.37)

The added mass coefficient is ai j which gives the force component proportional to the

acceleration. The damping coefficient is bi j which gives the force component proportional

to the body velocity. These boundary conditions, real and imaginary parts of the force are

required for the radiation problem.
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CHAPTER 3

WAVE RADIATION IN HEAVING MOTION FROM

A VERTICAL CYLINDER OF CIRCULAR CROSS

SECTION

Wave radiation from a floating vertical circular cylinder in finite-depth water is

studied analytically by Yeung (1981). The region is divided into two regions by Yeung

(1981): interior and exterior regions to determine velocity potential. Solutions for interior

and exterior problems are obtained by the separation of variables method. Eigenfunctions

of these problems are matched to find the unknown coefficients. Added mass and damping

for heave motion are computed and presented for the different radius to depth and the

bottom clearance to depth ratios. The velocity potentials were represented in terms of

Bessel and modified Bessel functions. These numerical results are used for the asymptotic

solutions of the present thesis.

3.1. Mathematical Formulation

In this problem, we formulated boundary value problem for heaving of a vertical

cylinder with circular cross-section in finite depth water h̄. Seabed is horizontal and fixed.

Let the Oxy plane be the sea bottom, (r̄, θ) be polar coordinates, and the z-axis point up-

wards. Gravitational acceleration g is in z direction. The cylinder extends from d̄ to the

free surface. The floating body oscillates time-harmonically along the z-axis. If incom-

pressible, irrotational and inviscid fluid flow is assumed, the velocity potential Φ(r̄, θ, z̄, t)

as given:

Φ = U3φ̄3 (3.1)

U3(t) =
dX3

dt
= Re[−iσξ̄3e−iσt] , where X3 = ξ̄3 cos(σt) (3.2)

Φ = Re[−iσξ̄3e−iσtφ̄3(r̄, θ, z̄)] (3.3)
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where σ is the angular frequency, ξ̄3 the heave amplitude, X3 the displacement function,

U3 the heave velocity, and i =
√
−1. Note that the dimensions of Φ, U3, σ, ξ̄3, and φ̄3 are

L2/T , L/T , 1/T , L and L, respectively. Velocity potential satisfies Laplace equation and

Figure 3.1. Coordinate system and notations

boundary conditions on free surface, sea bottom and body:

∇2Φ = 0

∂Φ

∂z
=
∂η

∂t
on z̄ = h̄ (Kinematic Condition)

∂Φ

∂t
+ gη = 0 on z̄ = h̄ (Dynamic Condition at p = P0)

∂Φ

∂z
+

1
g
∂2Φ

∂t2 = 0 on z̄ = h̄ (Combined D.C. and K.C.)

∂Φ

∂z
= 0 at z̄ = 0

∂Φ

∂n
= ∇Φ · n = U3(t) · nz on z̄ = d̄, 0 ≤ r̄ ≤ ā

∂Φ

∂n
= ∇Φ · n = 0 at r̄ = ā, d̄ ≤ z̄ ≤ h̄

Φ→ 0 as r̄ → ∞ (Radiation Condition)

η(r̄, θ, t) defines free surface function, P0 athmospheric pressure. The potential Φ

is finite at r̄ = 0.
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In this case, fluid motion has axisymmetric behaviour. In the paper Yeung (1981),

all space variables are non-dimensionalized by water depth h̄. For example, a represents

the radius to water-depth ratio (ā/h̄); d the bottom clearance to water-depth ratio (d̄/h̄).

The non-dimensional form of potential φ̄3(= h̄φ) provides

Φ(r, θ, z, t) = h̄Re[−iσξ̄3e−iσtφ(r, z)] (3.4)

∇2φ = 0 (3.5)
∂φ

∂z
− vφ = 0 on z = 1, v =

σ2

g
h̄ (3.6)

∂φ

∂z
= 0 at z = 0 (3.7)

∂φ

∂z
= 1 on z = d, 0 ≤ r ≤ a (3.8)

∂φ

∂r
= 0 at r = a, d ≤ z ≤ 1 (3.9)

φ→ 0 as r → ∞ (3.10)

The potential φ is finite at r = 0.

We will separate the region into two parts: interior and exterior regions. The

solution φ(i)(r, z) in the interior region (r ≤ a) is below the cylinder (0 ≤ z ≤ d) and the

solution φ(e)(r, z) in the exterior region (r ≥ a) is outside of the cylinder (0 ≤ z ≤ 1) as in

the paper by Yeung (1981).

3.1.1. Inner Solution

The interior solution satisfies the equations (3.5), (3.7), and (3.8). It can be ex-

pressed as a sum of homogeneous and particular solutions to solve the inhomogeneous

boundary value problem which comes from the cylinder’s bottom surface.

φ(i) = φ(i)
h + φ(i)

p (3.11)

where φ(i)
h and φ(i)

p satisfy the following boundary conditions:

∂φ(i)
h

∂z

∣∣∣∣∣
z=0

= 0,
∂φ(i)

h

∂z

∣∣∣∣∣
z=d

= 0 (3.12)
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∂φ(i)
p

∂z

∣∣∣∣∣
z=0

= 0,
∂φ(i)

p

∂z

∣∣∣∣∣
z=d

= 1 (3.13)

Separation of variables method is applied to get the solution of the differential

equation. We have homogeneous and inhomogeneous parts. The potential φ(i)
h satisfies

the Helmholtz equation,

φ(i)
h,rr +

1
r
φ(i)

h,r − λ
2
jφ

(i)
h = 0, λ j =

jπ
d

(3.14)

Then we have:

φ(i)
p =

1
2d

(
z2 −

r2

2

)
(3.15)

φ(i)
h =

α0

2
+

∞∑
j=1

α j
I0(λ jr)
I0(λ ja)

cos(λ jz), λ j =
jπ
d

(3.16)

where α j are Fourier coefficients and I0 is the modified Bessel function of the first kind

order zero since the interior potential φ is finite at r = 0. Hence interior solution is

φ(i)(r, z) =
1

2d

(
z2 −

r2

2

)
+
α0

2
+

∞∑
j=1

α j
I0(λ jr)
I0(λ ja)

cos(λ jz), λ j =
jπ
d

(3.17)

where r ≤ a and 0 ≤ z ≤ d.

The coefficients α j are not known at the moment. We need the exterior solution and

matching conditions which are given in Sections 3.1.2 and 3.1.3.

3.1.2. Exterior Solution

The exterior solution satisfies equations (3.5), (3.6), (3.7), (3.9) and (3.10). We

used separation of variables method to obtain the exterior solution φ(e). The exterior

solution can be written as

φ(e)(r, z) =

∞∑
`=0

A`R`(k`r)Z`(k`z) (3.18)
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where r ≥ a and 0 ≤ z ≤ 1. The coefficients A` are unknown coefficients and k` are

solutions of the relations k0tanh(k0) = v and k`tan(k`) = −v, ` ≥ 1. The potential φ(e)(r, z)

satisfies Helmholtz equation,

φ(e)
rr +

1
r
φ(e)

r + k2φ(e) = 0, (3.19)

φ(e)
rr +

1
r
φ(e)

r − k2φ(e) = 0, (3.20)

The functions R` given by

R`(k`r) =


H(1)

0 (k0r), for ` = 0

K0(k`r), for ` ≥ 1
(3.21)

where H(1)
0 is the Hankel function of order zero, and K0 is the Macdonald function

of order zero since the radiation condition.

Z`(k`z) =


cosh(k0z)/N1/2

0 , N0 = 1
2

(
1 +

sinh(2k0)
2k0

)
cos(k`z)/N1/2

` , N` = 1
2

(
1 +

sin(2k`)
2k`

) (3.22)

The function Z` is normalized orthogonal set in [0,1] (see Appendix A).

3.1.3. Matching Conditions

The potentials φ(i)(r, z) and φ(e)(r, z) are matched at r = a by the continuity of

pressure and their normal velocities are same at r = a and 0 ≤ z ≤ d by the continuity of

normal velocity between interior and exterior regions.

φ(e)(a, z) = φ(i)(a, z) (3.23)

∂φ(e)

∂r

∣∣∣∣∣
r=a

=
∂φ(i)

∂r

∣∣∣∣∣
r=a

(3.24)

Using the body boundary condition (3.9) and matching the velocities of φ(e) and

φ(i) at r = a (3.24) gives:
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∞∑
`=0

k`A`R
′

`(k`a)Z`(k`z) =


0, d ≤ z ≤ 1

φ(i)
r (a, z), 0 ≤ z ≤ d

(3.25)

where the prime and the subscript r denote the differentiation with respect to r. We can

multiply given piecewise function with Z`(k`z), ` = 0, 1, 2, ... then integrate from 0 to 1:

∫ 1

0
k`A`R

′

`(k`a)[Z`(k`z)]2dz =

∫ d

0

∂

∂r
φ(i)(a, z)Z`(k`z)dz (3.26)

Using the orthonormal properties of the Z` (see Appendix A), we obtain:

k`A`R
′

`(k`a) =

∫ d

0

∂

∂r
φ(i)(a, z)Z`(k`z)dz (3.27)

After some calculations, we get:

A` =

A∗` +

∞∑
j=0

α jS jE j`

 /k`R′` ` = 0, 1, 2, ... (3.28)

The quantity S j is given by:

S j =
jπ
2

I
′

0(λ ja)
I0(λ ja)

, λ j =
jπ
d

(3.29)

The unknown coefficient A∗` comes from integration of inhomogeneous boundary condi-

tion of interior solution. The integrals A∗` and E j`, j = 0, 1, 2..., ` = 0, 1, 2... are defined

by:

A∗` =

∫ d

0

∂

∂r
φ(i)

p (a, z)Z`(k`z)dz =


−a sinh(k0d)

2dk0N1/2
0

, ` = 0

−a sin(k`d)
2dk`N

1/2
`

, ` ≥ 1
(3.30)

E j` =
2
d

∫ d

0
cos(λ jz)Z`(k`z)dz =


2(−1) j sinh(k0d)

k0d
[
1+

(
jπ

dk0

)2
]
N1/2

0

, ` = 0

2 sin(k`d− jπ)
(k`d− jπ)N1/2

`

k`d
(k`d+ jπ) , ` ≥ 1

(3.31)

20



Using equality of potentials φ(e) and φ(i) at r=a (3.23) we have:

α0

2
+

∞∑
j=1

α j cos(λ jz) = φ(e)(a, z) −
1

2d

(
z2 −

a2

2

)
, λ j =

jπ
d

(3.32)

Now, find Fourier coefficients α j. Integrate equation (3.32) from 0 to d with respect to z

to calculate α0:

α0 =

 ∞∑
`=0

A`R`(k`a)E0`

 − (
d
3
−

a2

2d

)
(3.33)

Multiply (3.32) with cos(λ jz) and integrate from 0 to d with respect to z to calculate α j:

α j =
2
d

[∫ d

0
φ(e)(a, z) cos(λ jz)dz −

1
2d

∫ d

0

(
z2 −

a2

2

)
cos(λ jz)dz

]

After calculations of the integrals,

α j =

 ∞∑
`=0

A`R`(k`a)E j`

 − (−1) j 2d
j2π2 j = 1, 2, ... (3.34)

We can rewrite infinite system for α j:

α j =

 ∞∑
`=0

A`R`(k`a)E j`

 − α∗j j = 0, 1, ... (3.35)

where

α∗j =


d
3 −

a2

2d , j = 0

(−1) j 2d
j2π2 , j ≥ 1

(3.36)

The coefficient systems of α j and A` are related. We can substitude one system to the

other to eliminate the unknowns. We need the potential φ(i) for the calculation of added

mass and damping coefficients in heave motion. So, substitude equation (3.28) into (3.35)

and we get:

α j =

∞∑
`=0

(
A∗` +

∑∞
s=0 αsS sEs`

)
R`E j`

k`R
′

`

− α∗j, j = 0, 1, . . . (3.37)
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α j −

∞∑
`=0

R`E j`

∑∞
s=0 αsS sEs`

k`R
′

`

=

∞∑
`=0

A∗`R`E j`

k`R
′

`

− α∗j, j = 0, 1, . . .

α j −

∞∑
s=0

αsS s

∞∑
`=0

R`E j`Es`

k`R
′

`

= g j, j = 0, 1, . . .

We can replace α j with the identity

α j =

∞∑
s=0

δ jsαs, j = 0, 1, . . .

where δ js is the Kronecker delta. Hence,

∞∑
s=0

[δ js − e js]αs = g j, j = 0, 1, . . . (3.38)

where

e js =

 ∞∑
`=0

R`E j`Es`

k`R
′

`

 S s (3.39)

g j =

∞∑
`=0

A∗`R`E j`

k`R
′

`

− α∗j (3.40)

The system of equations can be represented in matrix form:



1 −e01 . . . −e0n

0 1 − e11 . . . −e1n

...
...

...
...

0 −en1 . . . 1 − enn

︸                            ︷︷                            ︸
A



α0

α1
...

αn

︸︷︷︸
x

=



g0

g1
...

gn

︸︷︷︸
b

α0 = g0 +

n∑
i=1

e0iαi (3.41)

First, the matrix system is solved for α j, j = 1, 2, ... since S 0 vanishes. Then, we

can calculate α0 in case of j = 0 in the equation (3.41) and unknown coefficients A` in the

equation (3.28). Mostly, 12 equations are enough. In Appendix D, behaviour of α j and

A` for variying number of equations are given.
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3.2. Added Mass and Damping Coefficients

The velocity potential Φ(r, θ, z, t) for a vertical cylinder with circular cross-section

is defined as follows:

Φ(r, θ, z, t) = h̄Re[−iσξ̄3e−iσtφ(r, z)] (3.42)

The force can be determined by integrating the fluid pressure, p = −ρ∂Φ
∂t , over the wetted

surface of the cylinder S . The real and imaginary parts of Fz are defined heave added

mass and damping coefficients (Newman (2018)). The added mass coefficient represents

the force component proportional to the acceleration and the damping coefficient gives a

force proportional to the body velocity.

Fz =

"
S

pndS = −ρ

"
S

∂Φ

∂t
.1dS

Note that, nz = 1 and r̄/h̄ = r.

dS = r̄dr̄dθ

dS = h̄2rdrdθ

Fz = +ρ

∫ 2π

0

∫ a

0
h̄3σ2ξ̄3e−iσtφ(r, z)rdrdθ (3.43)

Fz = ρh̄3σ2ξ̄3

∫ 2π

0

∫ a

0
φ(r, z).1rdrdθ since max(e−iσt) = 1 (3.44)

Body boundary condition ∂φ(i)

∂z = 1 at z = d, r ≤ a can be substituted into equation (3.42).

Fz = ρh̄3σ2ξ̄3

∫ 2π

0

∫ a

0
φ(i)(r, d)

∂φ(i)(r, d)
∂z

rdrdθ (3.45)

Fz = ρh̄3σ2ξ̄3

∫ 2π

0

∫ a

0

 1
2d

(
z2 −

r2

2

)
+
α0

2
+

∞∑
j=1

α j
I0(λ jr)
I0(λ ja)

cos(λ jd)

 rdrdθ (3.46)
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where λ j =
jπ
d , j ≥ 1. Integration of modified Bessel function of the first kind I0 is given

in Appendix B.

Fz = ρh̄3σ2ξ̄32π

da2

4
−

a4

16d
+
α0a2

4
+

∞∑
j=1

(−1) jα j
aI1(λ ja)
λ jI0(λ ja)

 (3.47)

The non-dimensional added mass and damping coefficients in the paper Yeung (1981) are

given by the relation

µ33 + iλ33 =
Fz

σ2ξ̄3ρπā3
(3.48)

µ33 + iλ33 =
d
2a
−

a
8d

+
α0

2a
+

4d
a2

∞∑
j=1

α j(−1) j S j

( jπ)2 (3.49)

where

S j =
jπ
2

I
′

0(λ ja)
I0(λ ja)

, λ j =
jπ
d

(3.50)

3.3. Computational Results

The process start with calculation of v for different values of k0 which satisfies

k0tanh(k0) = v. If v is known, then we can find k` from the relation k`tan(k`) = −v by

using the Newton-Raphson method. The first four terms of k`a are presented in the Table

3.1 for various k0a where a = 1.0. First five coefficiens α j, A` and the result of added

mass and damping for different number of equations is shown in Appendix D.

Table 3.1. Solutions of k`a for various k0a and a = 1.0

k0a = 0.5 k0a = 1.0 k0a = 1.5 k0a = 2.0 k0a = 2.5 k0a = 3.0
k1a 3.0664 2.8834 2.6714 2.4809 2.3271 2.2075
k2a 6.2462 6.1602 6.0629 5.9708 5.8864 5.8085
k3a 9.4002 9.3434 9.2795 9.2186 9.1618 9.1081
k4a 12.5480 12.5055 12.4578 12.4123 12.3695 12.3288
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Figure 3.2 and 3.3 show the non-dimensional added mass and damping for differ-

ent non-dimensionalized radius a with parameter d. Added mass coefficients for a=5.0

and a=1.0 are close. Damping coefficients are approaching to zero and added mass coef-

ficients are approaching to a constant (approximately k0a > 1) for all the cases. Added

mass coefficients decrease, whenever d increases. Also, damping coefficients increase

whenever d increases (whenever k0a approaches to zero). However, at the same depth,

damping was weakly affected. Note that, these numerical results are important for the

asymptotic solutions of the present thesis. Because of the zeroth-order system of asymp-

totic approach is the same as the circular cylinder case.
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Figure 3.2. Added mass and damping coefficients for heaving motion: a = 5.0 and
a = 1.0
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Figure 3.3. Added mass and damping coefficients for heaving motion: a = 0.5 and
a = 0.2
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CHAPTER 4

WAVE RADIATION IN HEAVING MOTION FROM

A VERTICAL CYLINDER OF ARBITRARY CROSS

SECTION

The wave radiation problem in heaving motion by a vertical cylinder of an arbi-

trary cross-section is solved by an asymptotic approach. We can note that the asymp-

totic solution of wave diffraction from a bottom-mounted vertical cylinder with different

cross-sections was presented by Dişibüyük et al. (2017) using the fifth-order approxima-

tion which has good agreement with numerical and experimental results. The asymptotic

method of this thesis was suggested by Dişibüyük et al. (2017). The non-dimensional

maximum deviation of the cylinder cross-section from a circular one is assumed the small

parameter of the problem by Dişibüyük et al. (2017). In this chapter, we studied a third-

order asymptotic solution. Unknown coefficients of interior and exterior potentials are

solved by using Fourier series of the shape function at each order of approximation.

The advantage of the method is that the boundary conditions can be solved for different

cross-sections by using the Fourier coefficients. The asymptotic approach is applied for

cylinders with different cross-sections such as elliptic, quasi-elliptic, square, and cosine

cross-section. The computatonal results are compared with other studies.

Yu et al. (2019) extended their studies to cylinders with a different cross-section

and, they suggested a semi-analytical solution to this problem. The method for finding

unknown hydrodynamic coefficients by matching velocities in the common region was

the same as in other studies. However, the radius function was defined in cylindrical co-

ordinates and the boundary conditions are solved by writing the radius function into the

Fourier series. Added mass and damping were calculated for cylinders with circular, co-

sine, elliptical, and quasi-elliptical cross-sections where same depth and cross-sectional

area is assumed. Added mass and damping coefficients for the quasi-elliptic type were

calculated in different drafts. The results were used to compare with the asymptotic ap-

proaches obtained in this thesis.
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4.1. Mathematical Formulation

We deal with a vertical cylinder with arbitrary cross-section of finite draft in finite

depth water. Seabed is horizontal and fixed. The bottom surface of the water is Oxy plane,

(r, θ) is polar coordinates, and z-axis point upwards. Gravitational acceleration g is in z

direction. The floating body oscillates time-harmonically along the z-axis. The cylinder

extends from d to the free surface (Figure 4.1). The radius of the cross-section is described

by the equation r = R[1+ε f (θ)] where R is the mean radius of the cylinder, ε be the small

non-dimensional parameter of the problem and f (θ) is the smooth, bounded and periodic,

f (θ) = f (θ + 2π), function which is the deviation of the shape of the cross-section from

the circular one (Dişibüyük et al. (2017)).

Figure 4.1. Coordinate system and notations

If inviscid fluid flow is assumed, we can define the velocity potential as follows:

Φ(r, θ, z, t) = h̄Re[−iσξ3e−iσtφ(r, θ, z)] (4.1)

where σ is the angular frequency, ξ3 the heave amplitude, and i =
√
−1. The potential

φ(r, θ, z) satisfy the following equations:

∇2φ = 0 (4.2)

∂φ

∂z
− vφ = 0 on z = 1, v =

σ2

g
h̄ (4.3)

29



∂φ

∂z
= 0 at z=0 (4.4)

∂φ

∂z
= 1 on z = d, 0 ≤ r ≤ R[1 + ε f (θ)] (4.5)

∂φ

∂n
= ∇φ · n = 0 on r = R[1 + ε f (θ)], d ≤ z ≤ 1 (4.6)

φ→ 0 as r → ∞ (4.7)

where the normal vector n is the pointing out. The potential φ is finite at r = 0.

4.2. Vertical Cylinder with Nearly Circular Cross Section

If we expand equation (4.6), we get

∇φ = (
∂φ

∂r
,

1
r
∂φ

∂θ
,
∂φ

∂z
) (4.8)

n =
∇ f
|∇ f |

, f = r − R[1 + ε f (θ)] (4.9)

n =
1√

1 +
[Rε f ′(θ)]2

r2

(
1,
−Rε f ′(θ)

r

)
(4.10)

∇φ · n =
1√

1 +
[Rε f ′(θ)]2

R2[1+ε f (θ)]2

(
∂φ

∂r
−

ε f ′(θ)
R[1 + ε f (θ)]2

∂φ

∂θ

)
= 0 (4.11)

on r = R[1 + ε f (θ)].

As in the cylinder with circular cross-section, we must divide the region into two

parts: interior and exterior. Then we will write the asymptotic expansions of the boundary

conditions provided by the interior and exterior potentials and calculate the unknown

coefficients while the leading order ε→ 0.

4.2.1. Interior and Exterior Solutions

The interior solution φ(i)(r, θ, z) satisfy the equations (4.2), (4.4), (4.5) and the

exterior solution φ(e)(r, θ, z) satisfy the equations (4.2), (4.3), (4.4), (4.6) and (4.7). The
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potentials are given by the asymptotic expansions up to O(ε4) for a small parameter ε.

φ(i)(r, θ, z) = φ(i)
0 (r, θ, z) + εφ(i)

1 (r, θ, z) + ε2φ(i)
2 (r, θ, z) + ε3φ(i)

3 (r, θ, z) + O(ε4) (4.12)

φ(e)(r, θ, z) = φ(e)
0 (r, θ, z) + εφ(e)

1 (r, θ, z) + ε2φ(e)
2 (r, θ, z) + ε3φ(e)

3 (r, θ, z) + O(ε4) (4.13)

The potentials φ(i)(r, θ, z) and φ(e)(r, θ, z) are matched at r = R[1 + ε f (θ)] and

0 ≤ z ≤ d by the continuity of pressure and the continuity of normal velocity between

interior and exterior regions.

φ(e)(R[1 + ε f (θ)], θ, z) = φ(i)(R[1 + ε f (θ)], θ, z) (4.14)

∂φ(e)

∂n

∣∣∣∣∣
r=R[1+ε f (θ)]

=
∂φ(i)

∂n

∣∣∣∣∣
r=R[1+ε f (θ)]

(4.15)

The partial derivatives ∂φ/∂θ and ∂φ/∂r on the R[1 + ε f (θ)] are approximated by their

Taylor series up to O(ε4) at r = R. Then substitute asymptotic expansions of φ(i) and φ(e)

at r = R into conditions (4.11), (4.14) and (4.15).

The condition (4.11) gives:

φ(e)
0,r + ε

[
φ(e)

1,r + R f (θ)φ(e)
0,rr −

f ′(θ)
R

φ(e)
0,θ

]
+ ε2

[
φ(e)

2,r + R f (θ)φ(e)
1,rr −

f ′(θ)
R

φ(e)
1,θ +

R2 f 2(θ)
2

φ(e)
0,rrr +

2 f (θ) f ′(θ)
R

φ(e)
0,θ − f (θ) f ′(θ)φ(e)

0,rθ

]

+ ε3


φ(e)

3,r +
1
6

R3 f (θ)3φ(e)
0,rrrr +

1
2

R2 f (θ)2φ(e)
1,rrr + 2 f (θ)2 f ′(θ)φ(e)

0,rθ −
1
2

R f (θ)2 f ′(θ)φ(e)
0,rrθ

−
3 f (θ)2 f ′(θ)φ(e)

0,θ

R
+

2 f (θ) f ′(θ)φ(e)
1,θ

R
− f (θ) f ′(θ)φ(e)

1,rθ −
f ′(θ)φ(e)

2,θ

R
+ R f (θ)φ(e)

2,rr


= O(ε4) where r = R, d ≤ z ≤ 1.
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The condition (4.14) gives:

φ(e)
0 +ε

[
φ(e)

1 + R f (θ)φ(e)
0,r

]
+ ε2

[
φ(e)

2 + R f (θ)φ(e)
1,r +

R2 f 2(θ)
2

φ(e)
0,rr

]
+ ε3

[
φ(e)

3 +
1
6

R3 f (θ)3φ(e)
0,rrr +

1
2

R2 f (θ)2φ(e)
1,rr + R f (θ)φ(e)

2,r

]
=φ(i)

0 + ε
[
φ(i)

1 + R f (θ)φ(i)
0,r

]
+ ε2

[
φ(i)

2 + R f (θ)φ(i)
1,r +

R2 f 2(θ)
2

φ(i)
0,rr

]
+ ε3

[
φ(i)

3 +
1
6

R3 f (θ)3φ(i)
0,rrr +

1
2

R2 f (θ)2φ(i)
1,rr + R f (θ)φ(i)

2,r

]
+ O(ε4) where r = R, 0 ≤ z ≤ d.

The condition (4.15) gives:

φ(e)
0,r+ε

[
φ(e)

1,r + R f (θ)φ(e)
0,rr −

f ′(θ)
R

φ(e)
0,θ

]
+ ε2

[
φ(e)

2,r + R f (θ)φ(e)
1,rr −

f ′(θ)
R

φ(e)
1,θ +

R2 f 2(θ)
2

φ(e)
0,rrr +

2 f (θ) f ′(θ)
R

φ(e)
0,θ − f (θ) f ′(θ)φ(e)

0,rθ

]

+ ε3


φ(e)

3,r +
1
6

R3 f (θ)3φ(e)
0,rrrr +

1
2

R2 f (θ)2φ(e)
1,rrr + 2 f (θ)2 f ′(θ)φ(e)

0,rθ −
1
2

R f (θ)2 f ′(θ)φ(e)
0,rrθ

−
3 f (θ)2 f ′(θ)φ(e)

0,θ

R
+

2 f (θ) f ′(θ)φ(e)
1,θ

R
− f (θ) f ′(θ)φ(e)

1,rθ −
f ′(θ)φ(e)

2,θ

R
+ R f (θ)φ(e)

2,rr


=φ(i)

0,r + ε

[
φ(i)

1,r + R f (θ)φ(i)
0,rr −

f ′(θ)
R

φ(i)
0,θ

]
+ ε2

[
φ(i)

2,r + R f (θ)φ(i)
1,rr −

f ′(θ)
R

φ(i)
1,θ +

R2 f 2(θ)
2

φ(i)
0,rrr +

2 f (θ) f ′(θ)
R

φ(i)
0,θ − f (θ) f ′(θ)φ(i)

0,rθ

]

+ ε3


φ(i)

3,r +
1
6

R3 f (θ)3φ(i)
0,rrrr +

1
2

R2 f (θ)2φ(i)
1,rrr + 2 f (θ)2 f ′(θ)φ(i)

0,rθ −
1
2

R f (θ)2 f ′(θ)φ(i)
0,rrθ

−
3 f (θ)2 f ′(θ)φ(i)

0,θ

R
+

2 f (θ) f ′(θ)φ(i)
1,θ

R
− f (θ) f ′(θ)φ(i)

1,rθ −
f ′(θ)φ(i)

2,θ

R
+ R f (θ)φ(i)

2,rr


+ O(ε4) where r = R, 0 ≤ z ≤ d.
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At the leading order as ε→ 0,

φ(e)
0,r(R, θ, z) =


0, d ≤ z ≤ 1

φ(i)
0,r, 0 ≤ z ≤ d

(4.16)

φ(i)
0 (R, θ, z) = φ(e)

0 (R, θ, z), 0 ≤ z ≤ d (4.17)

We can say that φ(i)
0 and φ(e)

0 are the velocity potentials of heave motion for the circular

cylinder. The problem for circular cylinder, r = R, is shown in Chapter 3.

φ(i)
0 =

1
2d

(
z2 −

r2

2

)
+
α0

2
+

∞∑
j=1

αn
I0(λ jr)
I0(λ jR)

cos(λ jz), λ j =
jπ
d

(4.18)

φ(e)
0 = A0H(1)

0 (k0r)Z0(k0z) +

∞∑
l=1

AlK0(klr)Zl(klz) (4.19)

where Z0 = cosh(k0z)/N1/2
0 and Zl = cos(klz)/N1/2

l since Z` is orthonormal set in [0,1] (see

Appendix A). From the free surface conditions, k0 satisfies k0tanh(k0) = v and kl satisfies

kltan(kl) = −v.

At the first order, we get

φ(e)
1,r(R, θ, z) =


−R f (θ)φ(e)

0,rr +
f ′(θ)φ(e)

0,θ

R , d ≤ z ≤ 1

φ(i)
1,r − R f (θ)φ(e)

0,rr +
f ′(θ)φ(e)

0,θ

R −
f ′(θ)φ(i)

0,θ

R + R f (θ)φ(i)
0,rr, 0 ≤ z ≤ d

(4.20)

φ(i)
1 (R, θ, z) = φ(e)

1 + R f (θ)φ(e)
0,r − R f (θ)φ(i)

0,r, 0 ≤ z ≤ d (4.21)
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At the second and higher orders, we get

φ(e)
2,r(R, θ, z) =



−1
2R2 f (θ)2φ(e)

0,rrr −
2 f (θ) f ′(θ)φ(e)

0,θ

R + f (θ) f ′(θ)φ(e)
0,rθ

+
f ′(θ)φ(e)

1,θ

R − R f (θ)φ(e)
1,rr, d ≤ z ≤ 1

φ(i)
2,r −

1
2R2 f (θ)2φ(e)

0,rrr −
2 f (θ) f ′(θ)φ(e)

0,θ

R + f (θ) f ′(θ)φ(e)
0,rθ

+R f (θ)φ(e)
1,rr + 1

2R2 f (θ)2φ(i)
0,rrr +

2 f (θ) f ′(θ)φ(i)
0,θ

R

− f (θ) f ′(θ)φ(i)
0,rθ −

f ′(θ)φ(i)
1,θ

R + R f (θ)φ(i)
1,rr, 0 ≤ z ≤ d

(4.22)

φ(i)
2 (R, θ, z) =φ(e)

2 +

(
1
2

R2 f (θ)2φ(e)
0,rr + R f (θ)φ(e)

1,r

)
−

(
1
2

R2 f (θ)2φ(i)
0,rr + R f (θ)φ(i)

1,r

)
, 0 ≤ z ≤ d (4.23)

φ(e)
3,r(R, θ, z) =



−1
6R3 f (θ)3φ(e)

0,rrrr −
1
2R2 f (θ)2φ(e)

1,rrr − 2 f (θ)2 f ′(θ)φ(e)
0,rθ

+1
2R f (θ)2 f ′(θ)φ(e)

0,rrθ +
3 f (θ)2 f ′(θ)φ(e)

0,θ

R −
2 f (θ) f ′(θ)φ(e)

1,θ

R

+ f (θ) f ′(θ)φ(e)
1,rθ +

f ′(θ)φ(e)
2,θ

R − R f (θ)φ(e)
2,rr, d ≤ z ≤ 1

φ(i)
3,r −

1
6R3 f (θ)3φ(e)

0,rrrr −
1
2R2 f (θ)2φ(e)

1,rrr

−2 f (θ)2 f ′(θ)φ(e)
0,rθ + 1

2R f (θ)2 f ′(θ)φ(e)
0,rrθ +

3 f (θ)2 f ′(θ)φ(e)
0,θ

R

−
2 f (θ) f ′(θ)φ(e)

1,θ

R + f (θ) f ′(θ)φ(e)
1,rθ +

f ′(θ)φ(e)
2,θ

R

−R f (θ)φ(e)
2,rr + 1

6R3φ(i)
0,rrrr f (θ)3 + 2 f ′(θ)φ(i)

0,rθ f (θ)2

−1
2R f ′(θ)φ(i)

0,rrθ f (θ)2 + 1
2R2φ(i)

1,rrr f (θ)2 −
3 f ′(θ)φ(i)

0,θ f (θ)2

R

+
2 f ′(θ)φ(i)

1,θ f (θ)

R − f ′(θ)φ(i)
1,rθ f (θ) + Rφ(i)

2,rr f (θ)

−
f ′(θ)φ(i)

2,θ

R , 0 ≤ z ≤ d

(4.24)

φ(i)
3 (R, θ, z) =φ(e)

3 +
1
6

R3 f (θ)3φ(e)
0,rrr +

1
2

R2 f (θ)2φ(e)
1,rr + R f (θ)φ(e)

2,r

−
1
6

R3 f (θ)3φ(i)
0,rrr −

1
2

R2 f (θ)2φ(i)
1,rr + R f (θ)φ(i)

2,r, 0 ≤ z ≤ d (4.25)
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where the portentials φ(i)
n (r, θ, z), φ(e)

n (r, θ, z) and their derivatives calculated at r = R. The

subnotation after comma represents the partial derivative of the function such as

φ(i)
0,r =

∂φ(i)
0
∂r .

The potentials φ(e)
n and φ(i)

n , n=1,2,3 can be written in terms of Fourier coefficients

as

φ(e)
n =

∞∑
m=0

[An,m,0cos(mθ) + Bn,m,0sin(mθ)]H(1)
m (k0r)Z0(k0z)

+

∞∑
l=1

∞∑
m=0

[
An,m,lcos(mθ) + Bn,m,lsin(mθ)

]
Km(klr)Zl(klz) (4.26)

φ(i)
n =

∞∑
j=0

∞∑
m=0

[Cn,m, jcos(mθ) + Dn,m, jsin(mθ)]
Im(λ jr)
Im(λ jR)

cos(λ jz) (4.27)

The coefficients An,m,l, Bn,m,l, Cn,m, j and Dn,m, j are unknowns at the moment. They

are found by using the boundary conditions (4.20)-(4.25). If the Fourier coefficients of

f (θ) are known, we have

f (θ) =
f (c)
0

2
+

∞∑
m=1

f (c)
m cos(mθ) + f (s)

m sin(mθ) (4.28)

The derivatives of potenatials φ(i)
0 (r, z), φ(e)

0 (r, z) at r = R (see equations (4.18) and (4.19))

and the Fourier series of the function f (θ) are substituted into (4.20) and (4.21) to find

the solution of φ(i)
1 (r, θ, z) and φ(e)

1 (r, θ, z). First, we should eliminate the z dependence

in system of equations by using the function Z` is normalized orthogonal set in [0,1]

(see Appendix A). As in the circular cylinder, the coefficients in the interior and exterior

potentials are dependent. So, we have to use these matching conditions to eliminate the

coefficients A and B to find the coefficients C and D. In Subsection 4.3, the potentials φ(i)
n ,

n = 0, 1, 2, 3 is used to find force in z direction. Similarly, higher-order problems for φ(i)
2 ,

φ(e)
2 , φ(i)

3 , and φ(e)
3 can be solved. The identity for product of Fourier series are given in

Appendix C is required.
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In case the shape function depend on the small parameter ε (r = R[1 + ε f (θ, ε)]),

f (θ, ε) can be approximated as

f (θ, ε) = f0(θ) + ε f1(θ) + ε2 f2(θ) + ε3 f3(θ) + O(ε4) (4.29)

φ(e)
0,r(R, θ, z) =


0, d ≤ z ≤ 1

φ(i)
0,r, 0 ≤ z ≤ d

(4.30)

φ(i)
0 (R, θ, z) = φ(e)

0 (R, θ, z), 0 ≤ z ≤ d (4.31)

φ(e)
1,r(R, θ, z) =


−R f0(θ)φ(e)

0,rr +
f ′0(θ)φ(e)

0,θ

R , d ≤ z ≤ 1

φ(i)
1,r − R f0(θ)φ(e)

0,rr +
f ′0(θ)φ(e)

0,θ

R −
f ′0(θ)φ(i)

0,θ

R + R f0(θ)φ(i)
0,rr, 0 ≤ z ≤ d

(4.32)

φ(i)
1 (R, θ, z) = φ(e)

1 + R f0(θ)φ(e)
0,r − R f0(θ)φ(i)

0,r, 0 ≤ z ≤ d (4.33)

φ(e)
2,r(R, θ, z) =



−1
2R2 f0(θ)2φ(e)

0,rrr −
2 f0(θ) f ′0(θ)φ(e)

0,θ

R + f0(θ) f ′0(θ)φ(e)
0,rθ +

f ′1(θ)φ(e)
0,θ

R

+
f ′0(θ)φ(e)

1,θ

R − R f0(θ)φ(e)
1,rr − R f1(θ)φ(e)

0,rr, d ≤ z ≤ 1

φ(i)
2,r −

1
2R2 f0(θ)2φ(e)

0,rrr −
2 f0(θ) f ′0(θ)φ(e)

0,θ

R + f0(θ) f ′0(θ)φ(e)
0,rθ +

f ′1(θ)φ(e)
0,θ

R

+R f0(θ)φ(e)
1,rr + R f1(θ)φ(e)

0,rr + 1
2R2 f0(θ)2φ(i)

0,rrr +
2 f0(θ) f ′0(θ)φ(i)

0,θ

R

− f0(θ) f ′0(θ)φ(i)
0,rθ −

f ′1(θ)φ(i)
0,θ

R −
f ′0(θ)φ(i)

1,θ

R + R f0(θ)φ(i)
1,rr + R f1(θ)φ(i)

0,rr, 0 ≤ z ≤ d

(4.34)

φ(i)
2 (R, θ, z) =φ(e)

2 +

(
1
2

R2 f0(θ)2φ(e)
0,rr + R f0(θ)φ(e)

1,r + R f1(θ)φ(e)
0,r

)
−

(
1
2

R2 f0(θ)2φ(i)
0,rr + R f0(θ)φ(i)

1,r + R f1(θ)φ(i)
0,r

)
, 0 ≤ z ≤ d (4.35)
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φ(e)
3,r(R, θ, z) =



−1
6R3 f0(θ)3φ(e)

0,rrrr −
1
2R2 f0(θ)2φ(e)

1,rrr − R2 f1(θ) f0(θ)φ(e)
0,rrr

−2 f0(θ)2 f ′0(θ)φ(e)
0,rθ + 1

2R f0(θ)2 f ′0(θ)φ(e)
0,rrθ +

3 f0(θ)2 f ′0(θ)φ(e)
0,θ

R

−
2 f0(θ) f ′1(θ)φ(e)

0,θ

R −
2 f0(θ) f ′0(θ)φ(e)

1,θ

R + f0(θ) f ′1(θ)φ(e)
0,rθ

+ f0(θ) f ′0(θ)φ(e)
1,rθ −

2 f1(θ) f ′0(θ)φ(e)
0,θ

R + f1(θ) f ′0(θ)φ(e)
0,rθ

+
f ′2(θ)φ(e)

0,θ

R +
f ′1(θ)φ(e)

1,rθ

R +
f ′0(θ)φ(e)

2,θ

R − R f0(θ)φ(e)
2,rr

−R f2(θ)φ(e)
0,rr − R f1(θ)φ(e)

1,rr, d ≤ z ≤ 1

φ(i)
3,r −

1
6R3 f0(θ)3φ(e)

0,rrrr −
1
2R2 f0(θ)2φ(e)

1,rrr

−R2 f1(θ) f0(θ)φ(e)
0,rrr − 2 f0(θ)2 f ′0(θ)φ(e)

0,rθ

+1
2R f0(θ)2 f ′0(θ)φ(e)

0,rrθ

+
3 f0(θ)2 f ′0(θ)φ(e)

0,θ

R −
2 f0(θ) f ′1(θ)φ(e)

0,θ

R −
2 f0(θ) f ′0(θ)φ(e)

1,θ

R

+ f0(θ) f ′1(θ)φ(e)
0,rθ + f0(θ) f ′0(θ)φ(e)

1,rθ −
2 f1(θ) f ′0(θ)φ(e)

0,θ

R

+ f1(θ) f ′0(θ)φ(e)
0,rθ +

f ′2(θ)φ(e)
0,θ

R +
f ′1(θ)φ(e)

1,rθ

R

+
f ′0(θ)φ(e)

2,θ

R − R f0(θ)φ(e)
2,rr − R f2(θ)φ(e)

0,rr − R f1(θ)φ(e)
1,rr

+1
6R3φ(i)

0,rrrr f0(θ)3 + 2 f ′0(θ)φ(i)
0,rθ f0(θ)2

−1
2R f ′0(θ)φ(i)

0,rrθ f0(θ)2

+1
2R2φ(i)

1,rrr f0(θ)2 −
3 f ′0(θ)φ(i)

0,θ f0(θ)2

R +
2 f ′1(θ)φ(i)

0,θ f0(θ)

R

+
2 f ′0(θ)φ(i)

1,θ f0(θ)

R

− f ′1(θ)φ(i)
0,rθ f0(θ) − f ′0(θ)φ(i)

1,rθ f0(θ) + Rφ(i)
2,rr f0(θ)

+R2 f1(θ)φ(i)
0,rrr f0(θ) +

2 f1(θ) f ′0(θ)φ(i)
0,θ

R − f1(θ) f ′0(θ)φ(i)
0,rθ

+R f2(θ)φ(i)
0,rr + R f1(θ)φ(i)

1,rr −
f ′2(θ)φ(i)

0,θ

R −
f ′1(θ)φ(i)

1,θ

R −
f ′0(θ)φ(i)

2,θ

R , 0 ≤ z ≤ d

(4.36)

φ(i)
3 (R, θ, z) =φ(e)

3 +
1
6

R3 f0(θ)3φ(e)
0,rrr +

1
2

R2 f0(θ)2φ(e)
1,rr + R2 f1(θ) f0(θ)φ(e)

0,rr + R f0(θ)φ(e)
2,r

+ R f2(θ)φ(e)
0,r + R f1(θ)φ(e)

1,r −
1
6

R3 f0(θ)3φ(i)
0,rrr −

1
2

R2 f0(θ)2φ(i)
1,rr (4.37)

− R2 f1(θ) f0(θ)φ(i)
0,rr + R f0(θ)φ(i)

2,r − R f2(θ)φ(i)
0,r − R f1(θ)φ(i)

1,r, 0 ≤ z ≤ d
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4.3. Added Mass and Damping

The velocity potential Φ(r, θ, z, t) for a vertical cylinder with circular cross-section

is defined as follows:

Φ(r, θ, z, t) = h̄Re[−iσξ̄3e−iσtφ(r, θ, z)] (4.38)

The force can be determined by integrating the fluid pressure, p = −ρ∂Φ
∂t , over the wetted

surface of the cylinder S . The real and imaginary parts of Fz are defined added mass

and damping coefficients (Newman (2018)). The added mass coefficient represents the

force component proportional to the acceleration and the damping coefficient gives a force

proportional to the body velocity.

Fz =

"
S

pndS = −ρ

"
S

∂Φ

∂t
.1dS

Note that, nz = 1 and r̄/h̄ = r.

dS = r̄dr̄dθ

dS = h̄2rdrdθ

Fz = +ρ

∫ 2π

0

∫ R[1+ε f (θ)]

0
h̄3σ2ξ̄3e−iσtφ(r, θ, z)rdrdθ

where max(e−iσt) = 1.

Fz = σ2ξ̄3ρh̄3
∫ 2π

0

∫ R[1+ε f (θ)]

0
φ(r, θ, z).1rdrdθ
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Note that, ∂φ(i)

∂z = 1 at z = d, r ≤ R[1 + ε f (θ)].

Fz = σ2ξ̄3ρh̄3
∫ 2π

0

∫ R[1+ε f (θ)]

0
φ(i)(r, θ, d)

∂φ(i)(r, θ, d)
∂z

rdrdθ

= σ2ξ̄3ρh̄3
∫ 2π

0

∫ R[1+ε f (θ)]

0
φ(i)(r, θ, d)rdrdθ (4.39)

The added mass and damping coefficients are related with mass of cylinder. The non-

dimensionalized added mass and damping coefficients are

µ33 + iλ33 =
Fz

σ2ξ̄3ρπR̄2(h̄ − d̄)

=
1

πR2(h − d)

∫ 2π

0

∫ R[1+ε f (θ)]

0
φ(i)(r, θ, d)rdrdθ (4.40)

The asmyptotic expansion of φ(i) in (4.11) substituted into (4.39) and the integration of

φ(i)
n r (with respect to r) are calculated which is denoted by φ̃(i)

n , n = 0, 1, 2. The limits of

the integral are 0 and R[1 + ε f (θ)]. The result of this integral should be approximated by

its Taylor series up to O(ε3) at r = R. Because we have a problem about dealing with

the result Im(λ jR[1 + ε f (θ)]). Then, the Fourier series expansion of f (θ) is substituted.

Again, the identity for product of Fourier series in Appendix C is required. The remaining

numerical calculations are completed using Mathematica and Matlab.

∫ R[1+ε f (θ)]

0
φ(i)(r, θ, d)rdr =

∫ R[1+ε f (θ)]

0
[φ(i)

0 (r, θ, d) + εφ(i)
1 (r, θ, d) + ε2φ(i)

2 (r, θ, d) + O(ε3)]rdr

=φ̃(i)
0 (R[1 + ε f (θ)], θ, d) − φ̃(i)

0 (0, θ, d) + εφ̃(i)
1 (R[1 + ε f (θ)], θ, d)

− εφ̃(i)
1 (0, θ, d) + ε2φ̃(i)

2 (R[1 + ε f (θ)], θ, d) − ε2φ̃(i)
2 (0, θ, d) + O(ε3)

=

2∑
n=0

εnS n(θ) + O(ε3),

where

S n(θ) =
1
2

S (c)
n0 +

∞∑
m=1

S (c)
nm cos(mθ) + S (s)

nm sin(mθ)
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The equation (4.40) gives

µ33 + iλ33 =
1

πR2(h − d)
(S (c)

00 + εS (c)
10 + ε2S (c)

20 ) + O(ε3), (4.41)

where S (c)
00 is the force on the circular case. As a result of symbolic calculations, we can

conclude that S (c)
00 , S (c)

10 and S (c)
20 consist of the coefficients α j, C1,m, j and C2,m, j, respectively.

The Fourier series of the shape function is necessary for finding the unknown coefficients

of interior and exterior potentials in Section 4.2.1. The results of the third-order approxi-

mation in equation (4.41) are compared with the previous studies in Section 4.4.

4.4. Added Mass and Damping Coefficients for Vertical Cylinder

with Different Cross Section

In this section, non-dimensional added mass and damping coefficients are pre-

sented. The asymptotic formulations and the Fourier series are used to calculate radia-

tion force in z direction from a truncated cylinder with elliptic, quasi-elliptic, cosine and

square cross-sections in finite water depth.

4.4.1. Added Mass and Damping for Vertical Cylinder with Elliptic

Cross Section

The scattering and radiation of gravity waves by an elliptical cylinder is studied

by Chen and Mei (1971) that used separation of variables method in elliptical coordinate

system and representing the velocity potential in terms of infinite series of Mathieu and

modified Mathieu functions. Williams and Darwiche (1990) studied wave radiation from

a elliptical cylinder in two cases: cylinder was submerged or floating on the free surface.

In their study, a theoretical solution is given for radiation of small amplitude water waves.

The numerical results are presented for the added mass and damping coefficients for trun-

cated elliptical cylinders with different eccentricity and drafts. Again, velocity potantial

in elliptical coordinates were written in terms of Mathieu and modified Mathieu func-
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tions. Yu et al. (2019) studied a semi-analytical model for wave radiation problem from

a truncated cylinder with a elliptical cross-section with eccentricity e = 1/2 and the non-

dimensional area of the elliptic cross-section was 0.25π. Separation of variables method

in cylindrical coordinates were used and the velocity potentials were represented in terms

of Bessel and modified Bessel functions. In their paper, the potentials were written in

terms of Fourier series.

On the other hand, the asymptotic solution of wave diffraction from a bottom-

mounted vertical cylinder with elliptic cross-section was presented by Dişibüyük et al.

(2017) using the fifth-order and third-order aproximations in case the shape function de-

pend on the small parameter ε = e in equation (4.29) where e is the elliptic eccentricity.

The shape of ellipse closer to circle as e approaches zero. In the case elliptic eccentricity

is getting closer to one which means that ellipse is elongated and the method of shape

function depend on the small parameter does not provide accurate solution.

In the case of the vertical cylinder with elliptic cross-section which centered at

origin and eccentricity e =
√

1 − b2/a2. Let a be the semi-major axis on the x-axis and b

be the semi-minor axis on the y-axis. The radius function in polar coordinates (r, θ) are

given by

r =
a
√

1 − e2√
1 − e2 cos2(θ)

(4.42)

Let the radius of ellipse be the equation r = aF(θ), 0 ≤ θ ≤ 2π and e =
√

1 − (b2/a2) =

0.661437 since b/a = 3/4. First, the Fourier coefficients of F(θ) should be determined

to convert the radius function into the form r = R[1 + ε f (θ)] which is the presented

asymptotic solution in Section 4.3. We should determine R, ε and Fourier coefficients of

f (θ). The Fourier series of F(θ) consists of cos(2mθ), m ≥ 0 since the ellipse has two

lines of symmetry, F(θ) = F(−θ), F
(
π
2 − θ

)
= F

(
π
2 + θ

)
:

F(θ) =
F0

2
+

∞∑
m=1

F2m cos(2mθ), (4.43)
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F2m =
1
π

∫ 2π

0
F(θ) cos(2mθ)dθ =

4
π

∫ π/2

0
F(θ) cos(2mθ)dθ, m = 0, 1, 2, . . .

The equation aF(θ) = R[1 + ε f (θ)] gives

R = aF0/2 ≈ 0.574378

The maximum value of r = aF(θ) is a, so that ε = 2/F0 − 1 ≈ 0.160676 and | f (θ)| ≤ 1,

where

f (θ) =

∞∑
m=1

f2m cos(2mθ), f2m =
2F2m

2 − F0
(4.44)

f2 = 0.891393, f4 = 0.0955885, f6 = 0.0113845, . . . The shape of the ellipse with two

terms (dashed line) and three terms (dotted line) of (4.44) in equation r = R[1 + ε f (θ)]

are shown in Figure 4.2. Three terms in the series (4.44) is enough for the ellipse.
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Figure 4.2. Ellipse with eccentricy e =
√

7/4 (solid line) and aproximation of the
ellipse by the r = R[1 + ε f (θ)] with two terms (dashed line) and three
terms (dotted line) in the series (4.44)

First, equation (4.44) is substituted into equations (4.20)-(4.23) to find the unknown coef-

ficients of the interior solution. Secondly, the non-dimensional added mass and damping

coefficients in heaving motion are calculated by the third-order approximation in equation

(4.41). In this case we should change (h − d) with d in equation (4.41) to compare the

non-dimensional results with the paper Williams and Darwiche (1990). Non-dimensional

added mass in Figures 4.3(a) and damping in 4.3(b) coefficients for elliptic cross-section

with eccentricity e =
√

7/4, a = 2/3 and d = 2/3. The present asymptotic method of the

42



third-order in equation (4.41) (solid line) is compared with the solution by Williams and

Darwiche (1990) (dots).
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Figure 4.3. Non-dimensional added mass in (a) and damping in (b) coefficients for el-
liptic cross-section with eccentricity e =

√
7/4 and d = 2/3. The present

asymptotic method of the third-order (solid line) is compared with the so-
lution by Williams and Darwiche (1990) (dots)

Similarly, we can choose an ellipse with a semi-major axis on the y-axis to compare with

the results in the paper Yu et al. (2019). Let a be the semi-major axis on the y-axis and b

be the semi-minor axis on the x-axis. The radius function in polar coordinates (r, θ) are

given by

r =
a
√

1 − e2√
1 − e2 sin2(θ)

(4.45)

Let the radius of ellipse be the equation r = aF(θ), 0 ≤ θ ≤ 2π and e =
√

1 − (b2/a2) =

0.866025 since b/a = 1/2 and a =
√

2/2. Similarly, the Fourier series of F(θ) consists of

cos(2mθ), m ≥ 0 since the ellipse has two lines of symmetry, F(θ) = F(−θ) and

F
(
π
2 − θ

)
= F

(
π
2 + θ

)
:

F(θ) =
F0

2
+

∞∑
m=1

F2m cos(2mθ), (4.46)
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F2m =
1
π

∫ 2π

0
F(θ) cos(2mθ)dθ =

4
π

∫ π/2

0
F(θ) cos(2mθ)dθ, m = 0, 1, 2, . . .

The equation aF(θ) = R[1 + ε f (θ)] gives

R = aF0/2 ≈ 0.485387

The maximum value of r = aF(θ) is a, so that ε = 2/F0 − 1 ≈ 0.456791 and | f (θ)| ≤ 1,

and

f (θ) =

∞∑
m=1

f2m cos(2mθ) where f2m =
2F2m

2 − F0
(4.47)

where f2 = −0.74047, f4 = 0.186032, f6 = −0.0518044, . . .

The shape of the ellipse with two terms (dotted line) and three terms (dashed line)

of (4.47) in equation r = R[1 + ε f (θ)] are shown in Figure 4.4. Three terms in the series

(4.47) is enough for the ellipse.
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Figure 4.4. Ellipse with eccentricy e =
√

3/2 (solid line) and aproximation of the
ellipse by the r = R[1 +ε f (θ)] with two terms (dotted line) and three terms
(dashed line) in the series (4.47)

As in the first example, equation (4.47) is substituted into equations (4.20)-(4.23) to find

the unknown coefficients of the interior solution. Then, the non-dimensional added mass
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and damping coefficients in heaving motion are calculated by the third-order approxima-

tion in equation (4.41). Non-dimensional added mass in figures 4.5(a) and damping in

4.5(b) coefficients for elliptic cross-section with eccentricity e =
√

3/2 and d = 0.5. The

present asymptotic method of the second-order (solid line) and the third-order in equation

(4.41) (dashed line) is compared with the solution by Yu et al. (2019) (dots).
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Figure 4.5. Non-dimensional added mass in (a) and damping in (b) coefficients for el-
liptic cross-section with eccentricity e =

√
3/2 and d = 0.5. The present

asymptotic method of the second-order (solid line) and the third-order
(dashed line) is compared with the solution by Yu et al. (2019) (dots)

The present asymptotic method of the third-order gives good result with the result by Yu

et al. (2019). Although the ellipse in the paper Williams and Darwiche (1990) was closer

to the circle than the ellipse in the paper Yu et al. (2019), the present asymptotic method

in equation (4.41) gives better results for Yu et al. (2019).

4.4.2. Added Mass and Damping for Vertical Cylinder with

Quasi-Elliptic Cross Section

A quasi-ellipse contains a rectangle in the middle of two semicirles (Figure 4.6(a)).

In this case semicircles on y axis. In Figure 4.6, the length of rectangular part is B and
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the radius of the semicircles is D/2. The equation r = F(θ) describes the quasi-ellipse in

Figure 4.6(a) in the polar coordinates, where x = r cos(θ) and y = r sin(θ).

F(θ) =



D
2 cos(θ) , 0 ≤ θ ≤ arctan B

D

B sin(θ)+
√

D2−B2 cos2(θ)
2 , arctan B

D ≤ θ ≤ π − arctan B
D

− D
2 cos(θ) , π − arctan B

D ≤ θ ≤ π + arctan B
D

−B sin(θ)+
√

D2−B2 cos2(θ)
2 , π + arctan B

D ≤ θ ≤ 2π − arctan B
D

D
2 cos(θ) , 2π − arctan B

D ≤ θ ≤ 2π

The Fourier coefficients of F(θ) should be determined to convert the radius function into

the form r = R[1 + ε f (θ)] which is the presented asymptotic solution in Section 4.3. We

should determine R, ε and Fourier coefficients of f (θ). The Fourier series of F(θ) consists

of cos(2mθ), m ≥ 0 since the quasi-ellipse has two lines of symmetry, F(θ) = F(−θ),

F
(
π
2 − θ

)
= F

(
π
2 + θ

)
:

F(θ) =
F0

2
+

∞∑
m=1

F2m cos(2mθ), (4.48)

F2m =
1
π

∫ 2π

0
F(θ) cos(2mθ)dθ =

4
π

∫ π/2

0
F(θ) cos(2mθ)dθ, m = 0, 1, 2, . . .

Let the non-dimensional area of quasi-ellipse be 0.25π with the axial ratio is 2. We get

B = D, D =
√
π/
√

4 + π and arctan(B/D) = 1. These values were used by Yu et al.

(2019). The equation F(θ) = R[1 + ε f (θ)] gives

R = F0/2 ≈ 0.484642

The maximum value of r = F(θ) is (D + B)/2, so that ε = (B + D)/F0 − 1 ≈ 0.368536 and

| f (θ)| ≤ 1, and

f (θ) =

∞∑
m=1

f2m cos(2mθ) where f2m =
2F2m

εF0
(4.49)

where f2 = −0.969188, f4 = 0.0776783, f6 = 0.0497145, . . . The shape of the quasi-

ellipse with three terms (dashed line) of (4.48) in equation r = R[1 + ε f (θ)] is shown in
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Figure 4.6(b). Three terms in the series (4.49) is enough for the quasi-ellipse..
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Figure 4.6. (a) Quasi-ellipse, (b) Quasi-ellipse with non-dimensional area is 0.25π and
the axial ratio is 2 (solid line) and the approximation by the radius function
r = R[1 + ε f (θ)] with three terms (dashed line) in the series (4.49)

First, equation (4.49) is substituted into equations (4.20)-(4.23) to find the unknown co-

efficients of the interior solution. Then, the non-dimensional added mass and damping

coefficients in heaving motion are calculated by the third-order approximation in equa-

tion (4.41). The present asymptotic method of the third-order in equation (4.41) gives

good results with the result by Yu et al. (2019) for added mass for d = 0.3, d = 0.5,

d = 0.7 and damping for d = 0.3, d = 0.5. Damping coefficients approach to zero for

0 < k0h < 6 and added mass coefficients approach to a constant (approximately k0a > 1)

for all the cases. Also, damping coefficients for different values of d increase whenever d

increases (whenever k0h approaches to zero).
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Figure 4.7. Non-dimensional added mass and damping coefficients with d = 0.1 and
d = 0.3 for quasi-elliptic cross-section with the axial ratio is 2 and the non-
dimensional area is 0.25π. The present asymptotic method of the third-
order (solid line) is compared with the solution by Yu et al. (2019) (dots)
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Figure 4.8. Non-dimensional added mass and damping coefficients with d = 0.5 and
d = 0.7 for quasi-elliptic cross-section with the axial ratio is 2 and the non-
dimensional area is 0.25π. The present asymptotic method of the third-
order (solid line) is compared with the solution by Yu et al. (2019) (dots)
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4.4.3. Added Mass and Damping for Vertical Cylinder with Cosine

Cross Section

The wave radiation problem for truncated cylinder with cosine cross-section,

r = 0.5[1 + 0.1 cos(3θ)], studied by Yu et al. (2019). In that paper, the numerical results

for cosine type radial perturbation were obtained by using the Boundary Element Method

and the ANSYS AQWA software showed excellent agreement with the semi-analytical

method. The radius of shape function in the form r = R[1 + ε f (θ)] is shown in Figure 4.9

which is the presented asymptotic solution in Section 4.3. We have R = 0.5, ε = 0.1 and

f (θ) = cos(3θ).
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Figure 4.9. The cosine type cross-section with radius r = 0.5[1 + 0.1 cos(3θ)]

In this case, f (θ) = cos(3θ) is substituted into equations (4.20)-(4.23) to find the

unknown coefficients of the interior solution. Then, the non-dimensional added mass and

damping coefficients in heaving motion are calculated by the third-order approximation

in equation (4.41). The present asymptotic method of the third-order in equation (4.41)

gives good results with the results by Yu et al. (2019) for added mass and damping with

draft d = 0.5. Damping coefficients are approaching to zero for 0 < k0h < 6 and added

mass coefficients are approaching to a constant (approximately k0a > 1).
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Figure 4.10. Non-dimensional added mass and damping coefficients for cosine type
cross-section with d = 0.5. The present asymptotic method of the third-
order (solid line) is compared with the solution by Yu et al. (2019) (dots)

4.4.4. Added Mass and Damping for Vertical Cylinder with Square

Cross Section

Let the radius function of square be the r = aF(θ), x = ±a, −a < y < a and

y = ±a, −a < x < a, in the polar coordinates, x = r cos(θ), y = r sin(θ), since

F(θ) =


1

| cos(θ)| , 0 ≤ θ ≤ π
4 ,

7π
4 ≤ θ ≤ 2π

1
| sin(θ)| ,

π
4 ≤ θ ≤

3π
4 ,

5π
4 ≤ θ ≤

7π
4

The Fourier coefficients of F(θ) should be determined to convert the radius function into

the form r = R[1 + ε f (θ)] which is the presented asymptotic solution in Section 4.3. We

should determine R, ε and Fourier coefficients of f (θ). The Fourier series of F(θ) consists

of cos(4mθ), m ≥ 0 since the quasi-ellipse has four lines of symmetry, F(θ) = F(−θ),
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F
(
π
2 − θ

)
= F

(
π
2 + θ

)
, F

(
π
4 − θ

)
= F

(
π
4 + θ

)
, F

(
−π4 − θ

)
= F

(
π
4 + θ

)
:

F(θ) =
F0

2
+

∞∑
m=1

F4m cos(4mθ), (4.50)

F4m =
8
π

∫ π/4

0
F(θ) cos(4mθ)dθ m = 0, 1, 2, . . .

Let the non-dimensional area of the square be 0.25π and a =
√

(π/16) ≈ 0.443113. The

equation F(θ) = R[1 + ε f (θ)] gives

R = aF0/2 ≈ 0.497262

The maximum value of r = aF(θ) is a, so that ε = 2
√

2/F0−1 ≈ 0.260216 and | f (θ)| ≤ 1,

and

f (θ) =

∞∑
m=1

f4m cos(4mθ) where f4m =
2F4m

εF0
(4.51)

where f4 = −0.535742, f8 = 0.168973, f12 = −0.0801686, f16 = 0.0463187, f20 =

−0.0300436, f24 = 0.0210227, f28 = −0.0155181, f32 = 0.011918, f36 = −0.00943701,

f40 = 0.00765587, . . . The shape of the square with four terms (dashed line) and ten

terms(dotted line) of (4.51) in equation r = R[1+ε f (θ)] is shown in Figure 4.9. Ten terms

in the series (4.51) is enough for the square.
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Figure 4.11. The exact shape of the square (solid line) and approximation by the
r = R[1 + ε f (θ)] with four terms (dashed line) and ten terms (dotted line)
in the series (4.51)
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First, equation (4.51) is substituted into equations (4.20)-(4.23) to find the unknown co-

efficients of the interior solution. Then, the non-dimensional added mass and damping

coefficients in heaving motion are calculated by the third-order approximation in equation

(4.41). The present asymptotic method of the third-order in equation (4.41) is for vertical

cylinder with nearly square cross-section for different values of d. Damping coefficients

are approaching to zero for 0 < k0h < 6 except d = 0.9 and added mass coefficients are

approaching to a constant (approximately k0a > 1) for all the cases. Also, damping coef-

ficients for different values of d increase whenever d increases (whenever k0h approaches

to zero).
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Figure 4.12. Non-dimensional added mass and damping coefficients for vertical cylin-
der with nearly square cross-section for different values of d. The present
asymptotic method of the third-order is used.

4.4.5. Comparison of Added Mass and Damping for Different

Cylinders

Wave radiation in heaving motion is studied by the third order asymptotic method.

Non-dimensional added mass and damping coefficients are compared for cylinders with

circular, cosine type, square, elliptic and quasi-elliptic cross-section (in Figure 4.13) with
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same area, i.e., 0.25π. Additionally, axial ratio of elliptic and quasi-elliptic cross-sections

is 2.
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Figure 4.13. Cylinders with circular (solid line), cosine type (large dashed), square (dot-
ted line), elliptic (dashed line) and quasi-elliptic (dotdashed line) cross-
section with same area, i.e., 0.25π.

The shape of circular, cosine type and square are close to each other such that added mass

and damping coefficients are same in the Figure 4.14. On the other hand, the cylinder

with elliptic and quasi-elliptic have almost same added mass and damping coefficients

since their cross-section are close. The cylinders with elliptic and quasi-elliptic cross-

sections have less added mass and damping than the cylinder with circular, cosine and

square cross-sections. Damping coefficients are approaching to zero for 0 < k0h < 6 and

added mass coefficients are approaching to a constant (approximately k0h > 1) for all the

cases.
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Figure 4.14. Non-dimensional added mass and damping coefficients for different cross-
sections with d = 0.5
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CHAPTER 5

CONCLUSION

Wave radiation problems in heaving motion from a vertical cylinder of circular

cross-section and truncated cylinder of an arbitrary cross-section in the water of finite

depth are studied. The water domain is divided into two regions: the interior region

below the cylinder and the exterior region outside the cylinder. The interior and exterior

solutions are matched by the continuity of pressure and normal velocity in both cases.

In Chapter 3, the wave radiation problem in heaving motion by a vertical cylin-

der of the circular cross-section is solved by using the separation of variables method in

cylindrical coordinates. The coefficients of interior and exterior solutions are related to

each other by the matching conditions. The matrix system formed by these unknown co-

efficients has been solved. Then, the non-dimensional z component of force is calculated.

Real part and imaginary parts of Fz give added mass and damping coefficients in heaving

motion, respectively. Added mass and damping for 0 < k0a < 4 presented for different

values of radius a and the distance d between sea bottom and cylinder’s bottom surface.

Added mass coefficients for a = 5.0 and a = 1.0 are close. Damping coefficients are

approaching zero and added mass coefficients are approaching a constant (approximately

k0a > 1) for all the cases. Added mass coefficients decrease, whenever d increases. Also,

damping coefficients increase whenever d increases (as k0a approaches zero). However,

at the same depth, damping was weakly affected. These numerical results are important

for the asymptotic solutions of the present thesis. Because the zeroth-order system of the

asymptotic approach is the same as the circular cylinder case.

In Chapter 4, the wave radiation problem in heaving motion by a vertical cylinder

of an arbitrary cross-section is solved by an asymptotic approach. The radius of the

cross-section of the vertical cylinder is described by the equation r = R[1 + ε f (θ)] where

R is the mean radius of the cylinder and ε be the small non-dimensional parameter of

the problem which is suggested by Dişibüyük et al. (2017). In this thesis, the third-

order asymptotic method was obtained. The interior and exterior potentials and shape

functions are written in terms of the Fourier Series. The potentials are matched by the
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continuity of pressure and normal velocity in both cases. Then the Fourier series of the

shape function is written in boundary conditions. The zeroth-order potentials φ(i)
0 (r, z) and

φ(e)
0 (r, z) are independent of Fourier coefficients, the first-order potentials φ(i)

1 (r, θ, z) and

φ(e)
1 (r, θ, z) are linear forms of these coefficients, the second-order potentials φ(i)

2 (r, θ, z)

and φ(e)
2 (r, θ, z) are quadratic forms of these coefficients. When the force in the z-direction

is calculated after the necessary asymptotic and Taylor series expansions, it includes the

constant coefficients of interior potentials. Non-dimensional added mass and damping

coefficients are compared for cylinders with circular, cosine type, square, elliptic, and

quasi-elliptic cross-section with the other numerical results. The shape of circular, cosine

type and square are close to each other such that added mass and damping coefficients are

the same. On the other hand, the cylinder with elliptic and quasi-elliptic have almost same

added mass and damping coefficients since their cross-sections are close. The cylinders

with elliptic and quasi-elliptic cross-sections have less added mass and damping than

the cylinder with circular, cosine and square cross-sections. Damping coefficients are

approaching zero for 0 < k0h < 6 and added mass coefficients are approaching a constant

(approximately k0h > 1) for all the cases.

The advantages of this method are the higher orders can be solved sequentially

using hydrodynamic coefficients of the circular cylinder and Fourier Series. This method

can be applied in geometries where the Fourier series of the shape function is known. The

cross-section of the cylinder can be written as a Fourier Series and the method gives better

results if the value of ε is small. The disadvantages of this method are when epsilon is

close to one; the method does not give good results with other numerical calculations. As

the number of orders of the asymptotic approach increases, the numbers of terms increase,

and solving systems of equations slows down.
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APPENDIX A

THE FUNCTION Z` NORMALIZED IN [0,1]

Z`(k`z) =


cosh(k0z)/N1/2

0 , N0 = 1
2 (1 +

sinh(2k0)
2k0

)

cos(k`z)/N1/2
` , N` = 1

2 (1 +
sin(2k`)

2k`
)

(A.1)

The function
〈
Z`(k`z),Z j(k jz)

〉
is normalized orthogonal set in [0,1] as shown below

∫ 1

0
[Z0(k0z)]2dz =

∫ 1

0

cosh(2k0z) + 1
2N0

dz

=

sinh(2k0z)
2k0

+ z

2N0

∣∣∣∣∣1
0

=

sinh(2k0)
2k0

+ 1

2N0
= 1 (A.2)

For ` = 1, 2, 3, ..., we have

∫ 1

0
[Z`(k`z)]2dz =

∫ 1

0

cos(2k`z) + 1
2N`

dz

=

sin(2k`z)
2k`

+ z

2N`

∣∣∣∣∣1
0

=

sin(2k`)
2k`

+ 1

2N`

= 1 (A.3)

∫ 1

0
Z0(k0z)Z`(k`z)dz =

∫ 1

0

cosh(k0z)cos(k`z)

N1/2
0 N1/2

`

dz

=
sinh(k0z)cos(k`z)

k0N1/2
0 N1/2

`

∣∣∣∣∣1
0
−

∫ 1

0

k`sinh(k0z)sin(k`z)

k0N1/2
0 N1/2

`

dz

=
sinh(k0z)cos(k`z)

k0N1/2
0 N1/2

`

∣∣∣∣∣1
0

+
k`cosh(k0z)sin(k`z)

k2
0N1/2

0 N1/2
`

∣∣∣∣∣1
0
−

k2
`

k2
0

∫ 1

0

cosh(k0z)cos(k`z)

N1/2
0 N1/2

`

dz

∫ 1

0

cosh(k0z)cos(k`z)

N1/2
0 N1/2

`

dz =

 sinh(k0)cos(k`)

k0N1/2
0 N1/2

`

+
k`cosh(k0)sin(k`)

k2
0N1/2

0 N1/2
`

 / (1 +
k2
`

k2
0

)
(A.4)
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We can rearrange the right-hand side of the equation (A.4) to use the dispersion relations

k0tanh(k0) = v and k`tan(k`) = −v,

sinh(k0)cos(k`)

k0N1/2
0 N1/2

`

+
k`cosh(k0)sin(k`)

k2
0N1/2

0 N1/2
`

=
sinh(k0)cos(k`)

k0N1/2
0 N1/2

`

(
1 +

k`tan(k`)
k0tanh(k0)

)
=

sinh(k0)cos(k`)

k0N1/2
0 N1/2

`

(
1 +
−v
v

)
= 0

So that,

∫ 1

0
Z0(k0z)Z`(k`z)dz = 0 (A.5)

For ` = 1, 2, 3, ... , j = 1, 2, 3, ... , ` , j and we have

∫ 1

0
Z`(k`z)Z j(k jz)dz =

∫ 1

0

cos(k`z)cos(k jz)

N1/2
` N1/2

j

dz

=

∫ 1

0

cos(k`z + k jz) + cos(k`z − k jz)

2N1/2
` N1/2

j

dz

=
sin(k`z + k jz)

2N1/2
` N1/2

j (k`z + k jz)

∣∣∣∣∣1
0

+
sin(k`z − k jz)

2N1/2
` N1/2

j (k`z − k jz)

∣∣∣∣∣1
0

=
sin(k` + k j)

2N1/2
` N1/2

j (k` + k j)
+

sin(k` − k j)

2N1/2
` N1/2

j (k` − k j)

=
(k` − k j)sin(k` + k j) + (k` + k j)sin(k` − k j)

2N1/2
` N1/2

j (k2
` − k2

j )

We can use sum and difference formulas for sine,

(k` − k j)sin(k` + k j) + (k` + k j)sin(k` − k j) = 2(k`sin(k`)cos(k j) − k jcos(k`)sin(k j))

= 2k`sin(k`)cos(k j)
(
1 −

k jtan(k j)
k`tan(k`)

)
= 2k`sin(k`)cos(k j)

(
1 −

(−v)
(−v)

)
= 0
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∫ 1

0
Z`(k`z)Z j(k jz)dz = 0 (A.6)

So, the inner product
〈
Z`,Z j

〉
= δ` j, where δ` j is the Kronecker delta.

δ` j =


0 , ` , j

1 , ` = j
(A.7)
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APPENDIX B

DEFINITION AND PROPERTIES OF MODIFIED BESSEL

FUNCTION I

z2 d2w
dz2 + z

dw
dz
− (z2 + v2)w = 0

Solutions of the differential equation are modifed Bessel functions I±v(z) and Kv(z). Iv(z)

is called the modified Bessel function of order v of the first kind.

∂Iv(z)
∂z

=
v
z

Iv(z) + Iv+1(z)

So, we get
∂I0(z)
∂z

= I1(z) (B.1)

∫ z

0
tI0(t)dt = zI1(z) (B.2)

from (9.6.27) and (11.3.25) in Abramowitz and Stegun (1970).
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APPENDIX C

THE PRODUCT OF TWO FOURIER SERIES

The product of two Fourier series gives a Fourier series. Dişibüyük et al. (2017)

used for the product of Fourier series in the system of equations of diffraction problem.

f (θ) ∼
a0

2
+

∞∑
m=1

amcos(mθ) + bmsin(mθ)

g(θ) ∼
c0

2
+

∞∑
m=1

cmcos(mθ) + dmsin(mθ) (C.1)

f (θ)g(θ) ∼
A0

2
+

∞∑
m=1

Amcos(mθ) + Bmsin(mθ)

where Fichtenholz (2001)

An =
a0cn

2
+

1
2

∞∑
m=1

[am(cm+n + cm−n) + bm(dm+n + dm−n)] (C.2)

Bn =
a0dn

2
+

1
2

∞∑
m=1

[am(dm+n + dm−n) − bm(cm+n − cm−n)] (C.3)

dm−n = −dn−m and am−n = an−m if m − n < 0.
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APPENDIX D

BEHAVIOUR OF αJ AND A` FOR VARYING NUMBER OF

EQUATIONS

Table D.1. Behaviour of α j and A` for variying number of equations

N = 5, d = 0.5, a = 0.5, k0 = 1.0,
(µ33, λ33) = (0.61354, 0.22437)

α j A`

Re Im Re Im

0 0.3994 0.2176 0.1727 0.0051
1 -0.0022 0.0001 -1.4472 0.0636
2 0.1240 -0.0054 -8.8840 0.3306
3 -0.0372 0.0015 -20.4621 0.9664
4 0.0156 -0.0005 -37.1218 2.4864

N = 10, d = 0.5, a = 0.5, k0 = 1.0,
(µ33, λ33) = (0.61052, 0.22444)

α j A`

Re Im Re Im

0 0.3995 0.2175 0.1706 0.0052
1 -0.0004 0.00001 -1.4651 0.0647
2 0.1252 -0.0054 -8.9842 0.3354
3 -0.0347 0.0014 -21.6485 0.9895
4 0.0157 -0.0006 -48.4433 2.9390

N = 20, d = 0.5, a = 0.5, k0 = 1.0,
(µ33, λ33) = (0.60979, 0.22447)

α j A`

Re Im Re Im

0 0.3991 0.2175 0.1704 0.0052
1 -0.0004 0.000008 -1.4660 0.0649
2 0.1252 -0.0055 -8.9912 0.3358
3 -0.0341 0.0014 -21.8397 0.9948
4 0.0156 -0.0006 -50.2130 3.0113
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