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ABSTRACT 

DEVELOPMENT OF CHEMOMETRICS METHOD BASED ON 

INFRARED SPECTROSCOPY FOR THE DETERMINATION OF 

CEMENT COMPOSITION AND PROCESS OPTIMIZATION 

Calcium, silicon, aluminum, iron oxide-containing raw materials are used in 

controlled portions to manufacture cement. (How cement Is Made, n.d.) This mixture is 

first converted to clinker, obtained by heating the mixture to 1500oC; some additives are 

added and ground to obtain cement. Depending on the purpose, various types are 

produced, and therefore, the determination of cement composition is an essential task for 

the quality consideration and the sustainability of the production processes. The 

quantitative analysis of cement is performed with X-ray fluorescence spectroscopy. 

However, XRF generally requires tedious and lengthy analysis times. In this study, 

quantitative determination of the raw materials, intermediate products, and types of 

cement by using Fourier transform infrared spectroscopy coupled with chemometrics 

multivariate calibration method is aimed, which could be an alternative for the current 

XRF technique. Samples were collected from a local cement factory that has been in the 

sector for several years. Reference analyses of the samples were performed at the quality 

control laboratory of the same factory. The same samples were analyzed by the FTIR-

ATR spectrometer. The resulting FTIR spectra combined with XRF reference 

composition data were used to construct calibration models using the partial least squares 

method (PLS). Based on the obtained results, the proposed method could generate quite 

successful results for the quantitative determination of all types of products used to 

produce cement. The regression coefficients (R2) of the PLS models vary from 0.95 to 

0.99. The standard errors of cross-validations were found as from 0.21 to 1.42 (w/w%). 
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ÖZET 

ÇİMENTO KOMPOZİSYONUN BELİRLENMESİ VE ÜRETİM 

SÜREÇLERİNİN OPTİMİZASYONU İÇİN KIZILÖTESİ 

SPEKTROSKOPİSİNE DAYALI KEMOMETRİK METOT 

GELİŞTİRİLMESİ 

Çimento ilk olarak kalsiyum, silisyum, alüminyum ve demir oksitleri içeren 

hammaddelerin belirli oranlarda karıştırılarak 1500oC gibi oldukça yüksek sıcaklıkta 

pişirilmesi ile oluşan klinker’in, çeşitli katkı maddeleriyle birlikte öğütülmesi sonucunda 

elde edilir. Günümüzde kullanım amaçlarına bağlı olarak oldukça fazla çeşit ve 

kompozisyonda çimento üretiminin gerçekleştirildiği göz önünde bulundurulduğunda söz 

konusu ürünlerin bileşimin belirlenmesi ürün kalitesi ve sürdürülebilirlik açısından büyük 

bir önem arz etmektedir. Hali hazırda çimento kompozisyonunun kantitatif analizine 

yönelik olarak kullanılan yöntemler genel olarak klasik ıslak kimyaya dayalı gravimetrik 

ve titrimetrik yöntemler yanında X-ışını floresans (XRF) spektroskopisi tekniği ile 

yapılmaktadır. Ancak, bu yöntemler analizi yapılacak örneğe bağlı olarak zaman alıcı ve 

zahmetli süreçler gerektirebilmektedir. Bu çalışmada, çimento üretiminde hammaddeler, 

ara ürünler ve nihai ürünlere yönelik olarak çimento kompozisyonunun kantitatif 

belirlenmesi için mevcut X-ışını floresans (XRF) spektroskopisi tekniğine alternatif 

olarak Fourier dönüşümlü kızılötesi spektrometresi (FTIR) kullanılarak alınan spektral 

verilere kemometrik çok değişkenli kalibrasyon metotlarından biri uygulanarak yeni bir 

analitik metot geliştirilmesi hedeflenmiştir. Çalışma kapsamında uzun yıllardır çimento 

sektöründe üretim yapan bir özel sektör kuruluşundan elde edilen örnekler ile bu 

örneklerin aynı kuruluşta bulunan XRF sisteminden elde edilen referans analizleri 

kullanılarak sonrasında laboratuvarımızda bulunan FTIR sistemi ile aynı örneklerin 

FTIR-ATR spektrumları kaydedilerek ve elde edilecek spektral veriler ile XRF 

sisteminden gelen referans kompozisyon bilgisi kullanılarak kısmi en küçük kareler 

(PLS) yöntemi ile çok değişkenli kalibrasyon modelleri oluşturulmuştur. Ülkemizde 

gerçekleştirilen çimento üretiminin neredeyse tüm bölgelere yayılmış olarak oldukça 

yüksek üretim kapasitelerine ulaştığı göz önüne alındığından geliştirilen modellerin 

oldukça önemli bir yaygın etkiye sahip olacağı görülmektedir. 
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1. CHAPTER 1 

INTRODUCTION 

Cement, derived from the Latin word "caementum" which means a piece of hewn-

stone, is an adhesive substance produced by grinding raw meals of cement such as 

limestone and clay then, heating these materials to high-temperature degrees to form a 

rock-like substance and is called clinker (Kapkaç, 2013). Clinker is the intermediate 

product of cement. Lastly, the clinker is combined with many additives then ground into 

the fine powder (Türkiye Çimento Sanayicileri Birliği, n.d.-a). In civilization's history, 

binding materials such as limestone and gypsum have been known and used since ancient 

times. However, the first ferroconcrete buildings built using cement began to construct in 

England 1850s.Today, the first cement is known as the ''Portland cement'' was created by 

an English engineer Joseph Aspdin in 1824, and he has patented it. He called his product 

Portland Cement because it produced a substance similar to stones from the mines near 

Portland Island in the UK when it hardened (Teknik Bilgiler - Batıçim, n.d.).The 

manufacturing of cement on an industrial scale has been started in the 1848. It continues 

to be a fundamental input of the construction industry as the essential building material 

worldwide. In Turkey, the first manufacturing of cement was started with just a 

production capacity of 20.000 tons/year in 1910. The production capacity of cement came 

up to over 130 million tons, according to the reports published by the Turkish cement 

Manufacturer's Association (TÇBM) and other related institutions in recent years 

(Türkiye Çimento Sanayicileri Birliği, n.d.-b; Türkiye Çimento Sektörü 100 Milyon Ton 

Üretim Kapasitesine Ulaştı, n.d.). The standardization studies for cement production on 

an industrial scale were carried out by T.C 51, a European Standardization Committee 

subcommittee. Also, many types of cement are included in EN 197-1 standard. Later, the 

European Standard, which was directly accepted as the Turkish Standard, replaced 

Turkish cement's general purposes. cements named as ''CEM'' are produced in 5 main 

types with covering 27 sub-types (CEM I, CEM II, CEM III, CEM IV and CEM V) in TS 

EN 197-1. In addition to these, there are various types of cement produced for the 

particular use.  
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When cement is discussed in detail, it is a primary concrete element that is the 

most used globally. Each year, an enormous amount of cement is manufactured and used 

to construct buildings, roads, and many local purposes. cement is made by mixing 

calcium, silicon, aluminum, and iron oxide-containing raw meals in a carefully controlled 

combination. The manufacturing of cement is comprised of four main stages. First, 

crushing and grinding the raw meals such as limestone and clay, and second, blending the 

raw meals in controlled proportions. Third, clinker production by burning the mixed raw 

meal to higher temperature degrees at 1450 °C. The final stage is cement making by 

grinding the burned product with about 5% of calcium sulfate (gypsum). 

On the other hand, The additives added to clinker affect the properties of cement 

and quality at high-temperature degrees (Arslanhan, 2016). Also, the production of the 

clinker process results in four main phases these are tricalcium silicate (3CaO.SiO2) noted 

C3S, dicalcium silicate (2CaO.SiO2) noted C2S, tricalcium aluminate (3CaO.Al2O3) 

noted C3A, and tetracalciumaluminoferrite (4CaO.Al2O3Fe2O3) noted C4AF. These four 

components are also known as the leading cement phases (Ferrari et al., 2012). The vital 

compounds C3S, C2S, C3A, and C4AF in Portland cement are effective for cement's 

physical features. The silicates, C3S and C2S, are responsible for the strength of hydrated 

cement paste. cement low in C3A has a sulfate-resistant property because gypsum reduces 

the hydration rate of C3A. Also, C4AF is present in cement in small amounts and can 

influence the melting temperature of raw materials in the kiln but does not provide so 

much cement paste strength (Neville, 1995; TAYLOR, 1964). In general, the chemical 

composition of Portland cement clinker  consists of calcium oxide (CaO; 62-68%), silicon 

dioxide (SiO2; 19-25%) and the other components aluminum oxide( Al2O3; 2-9%) also 

iron oxide (Fe2O3; 1-5%) (De Schepper et al., 2013). However, these percentages can be 

slightly changeable for specific applications. 

 

1.1. Literature Review 
 

In the past years, classical wet chemical methods such as gravimetric and 

titrimetric analyses were applied for the quantitative determination of cement 

composition in terms of six essential oxides (CaO, SiO2, Al2O3, Fe2O3, MgO, SO3) 

However, these methods generally require tedious and lengthy analysis times depending 
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on the sample types to be analyzed. Then, various spectroscopic analysis methods have 

been developed to determine the chemical composition of cement to overcome the 

drawbacks of the method of classical wet chemical. In the field of this application, 

methods for determining cement composition are consisting of methods such as atomic 

absorption spectroscopy (AAS), inductively coupled plasma emission spectrometry 

(ICP), and X-ray fluorescence spectrometry (XRF) which give an elemental analysis of 

bulk composition in equivalent oxides.  

Choi et al. (1994) were developed a new fusion method for the composition of 

cement raw mix by AAS and titrimetry as an alternative to X-ray fluorescence 

spectrometry. In the AAS method, the sample must be dissolved, and fusion is used to 

convert insoluble residue to an acid-soluble form. Many fusion agents are used, such as 

Na2CO3, Li2B4O7, and LiBO2 to achieve this aim, but all the common fusion agents have 

their disadvantages. A developed new fusion system was decided as the best in terms of 

efficiency and working times required. A new fusion system was developed by fusing the 

sample with a mixture of lithium tetraborate and sodium carbonate (1:3) at 925 oC for 10 

min. Also, hydrochloric acid was used to dissolve the fusion cake. The concentration of 

analyte solution was determined with both a classical method (volumetric titration) and 

an instrumental method (AAS). The analyses of interested oxides such as SiO2, Al2O3, 

Fe2O3 and CaO completed at the end of one hour. The accuracy and precision were found 

to as comparable with X-ray Fluorescence spectrometry. As a result, a new fusion system 

was proposed as a backup method because of having time-saving, cost-effective 

instrumentation than ICP and XRF (Choi et al., 1994). 

Marjanovic et al. (2000) are performed an analysis of cement for major ( Ca, Si, 

Mg, Al, Fe), minor and trace elements ( S,K,Ti,Na,P,Mn and Sr) was determined by 

introducing it as a slurry into an inductively coupled plasma optical emission 

spectrometer ( ICP-OES) for the feasibility of analyzing cement. In the experimental part, 

reference materials as slurries or simple aqueous standards were used for calibration. The 

mixture of hydrochloric acid (1% v/v), glycerol (0.01% m/v) and agitation in an ultrasonic 

bath (10 min) was utilized to ensure well dispersed and stable slurries. Both axial and 

radial plasma viewing was used for the measurements were made on simultaneous ICP-

OES instrument. As a result, the values obtained for selected elements were compared to 

those measured on an X-ray fluorescence (XRF) instrument, and it was seen that ICP-

OES gave an effective alternative to XRF for the analysis of cement. According to all 
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these results, the method could be easily utilized on a routine basis for the analysis of 

cement. In addition, this method also has great advantageous features such as cost-

effectiveness and simplicity of sample preparation (Marjanovic et al., 2000) 

In another study, Khelifi et al.  (2017) was developed a reliable analytical program 

to adjust raw materials of cement proportions and control process conditions by XRF. 

The design of the analytical program includes three steps those are: choice of well-defined 

standards, the determination of the composition of standard solution and plotting the 

calibration curve. Calibration standards were prepared to give maximum and minimum 

values for each element to be analyzed. The standards are consisting of clinker samples, 

and the chemical analyses of clinker samples were performed with the European standard 

EN-196-2. The CaO, Al2O3, Fe2O3, and MgO concentrations were determined by 

complexometric titration, and sulfate content was determined by nephelometric turbidity. 

Silica content was determined by the gravimetric method, and Na and K ions were 

determined by flame spectrophotometry. Also, in this work, an X-ray fluorescence 

spectrometer was used to perform analysis of the clinker samples by preparing fused bead. 

The relative intensities obtained XRF were plotted against corresponding concentrations 

of the calibration solutions. The regression coefficients of the models were found as R2> 

0.97 for CaO, SiO2, Al2O3, Fe2O3, and were found R2< 0.97 for MgO, Cl, and Na2O. 

(Khelifi et al., 2017). The mentioned methods above require sample preparation involves 

many steps that must be prepared carefully using many chemicals. Furthermore, the 

procedures are time-consuming. 

Infrared spectroscopy (IR) has been used greater drastically in this region for 

mineral constituent detection, structural studies, and hydration rate determination 

(Dunstetter et al., 2006; Gastaldi et al., 2010). However, only a few studies have used 

infrared spectroscopy to carry out quantitative analysis of cement. Zaini et al. used 

Shortwave infrared (SWIR) spectroscopy with reflectance measurements in the 2100-

2400 nm wavelength region that exhibits several diagnostic absorption features of mineral 

chemistries. The chemical composition and mineral abundance on the rock surfaces of 

Portland cement-grade lime stones was examined using shortwave infrared spectroscopy 

to determine the chemical composition and mineral abundance on the rock surfaces, 

which are used as one of the cement raw materials. Spectral parameters, consisting of the 

wavelength position and intensity of absorption characteristic derived from the SWIR 

continuum removed spectra suited for the second-order polynomial curves, are helpful in 
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reading and estimating carbonate (CO3) and Al-OH absorption functions associated with 

CaO and Al2O3 contents and the compositions inside the rock samples, respectively. The 

authors used portable X-ray fluorescence measurements of CaO and Al2O3 in the rock 

samples to correlate the wavelength location and depth of CO3 and Al-OH absorption 

features associated with carbonate and phyllosilicate minerals (Al2O3). The wavelength 

positions of the CO3 and Al-OH absorption features vary with the chemical compositions 

of the samples. For each type of carbonate rock sample, separate models were developed. 

The regression coefficients were obtained for dark gray limestone samples as 0.774 for 

CaO and 0.842 for Al2O3. Also, for the light gray limestones, the regression coefficients 

were obtained as 0.787, 0.723 for CaO and Al2O3, respectively. The model obtained from 

the dolomitic limestone samples gave lower regression coefficients. As a result, the 

authors decided that in terms of CaO, MgO, Al2O3, and SiO2 concentrations and 

compositions, dark gray and light gray limestone samples are more appropriate for 

manufacturing Portland cement clinker (Portland cement-grade limestone) than dolomitic 

limestone samples. (Zaini et al., 2016) 

In another study, Fourier transforms infrared spectroscopy (FTIR) is applied for 

quantification determination of alkali concentrations in cement samples by Nasrazadani 

and Springfield. Alkali determination is crucial because alkali in cement is responsible 

for the alkali-silica reaction that shows itself inside the shape of early cracking in concrete 

structures, bridge decks, and concrete roads. X-ray fluorescence spectroscopy (XRF) is 

typically used for cement alkali quantification, but a more straightforward and faster 

analytical manner based on Fourier transform infrared spectroscopy (FTIR) has been 

improved for this motive in the study. The Na2O linear regression coefficient, measured 

with FTIR and XRF, was taken into account. FTIR approach was performed efficiently 

to quantify alkali concentration in cement-based on absorbance band area ratio of 750 to 

a 923 cm-1  that belongs to tricalcium aluminate (C3A). The linear regression coefficient 

between FTIR absorption ratio at 750/923 cm-1 and equivalent alkali Na2Oe ( Na2O= % 

Na2O + 0.658x%K2O) measured by XRF was found as 0.97. Analyzes were performed 

with FTIR faster than other techniques as XRF, XRD. However, in the methodology and 

material part of the study, sample preparation includes many stages, such as dilution with 

KBr (2 mg cement and 98 mg KBr), milling, and pellet making.  The authors underlined 

the importance of meticulous control over pellet production to ensure reproducibility 

spectrally in results (Nasrazadani & Springfield, 2014). 
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In another study, Hughes et al. conducted qualitative and quantitative analyses 

using diffuse reflectance mid-infrared Fourier transform spectroscopy (DRIFTS). For the 

qualitative analysis, DRIFT spectra of synthetic C3S, C2A, C3A, C4AF, and pure gypsum, 

bassanite, anhydrite, and calcite are included in the study. For quantitative analysis, a 

large number of cement samples were included in the study. PLS regression calibration 

models were constructed to estimate the concentration of nine minerals and five minor 

oxides in samples. The elemental reference analysis of the samples was performed by 

inductively coupled plasma. Moreover, free lime, ignition loss, and acid-insoluble residue 

components were also examined for this study. Estimation of mineral composition was 

done based on the API Bogue calculation. For the construction of PLS models, the 

number of latent variables was used from 13 to 39 for the prediction concentration of 

many components. The linear regression coefficients (R2) for the calibration set were 

found from 0.765 to 0.977. For the independent validation set, linear regression 

coefficients were found from 0.632 to 0.959. The accuracy of the independent validation 

set was found to change from 0.01 to 3.10 % (w/w). Although the proposed FTIR 

technique is recommended as a fast method, it is stated that the diffuse reflectance 

measurement technique included the sample dilution with potassium bromide at 90% of 

each sample, and the measurement is made after a pellet preparation stage. Therefore, the 

authors highlighted that special care must be taken in the sample preparation step for 

quantification analyses to reach high-quality spectra (Hughes et al., 1995). 

On the other hand, Rebouças et al. used Near-infrared emission spectroscopy 

(NIRES) to analyze cement samples. For the study, NIRES-AOTF (Acousto-Optical 

Tunable Filter) spectrometer was assembled to develop the method. A total of 77 samples 

of cement and 13 samples of mixture design containing cement phases were included in 

the study. These cement samples are diversified with different cement types such as type 

II, type III, type IV, and type V. The estimation of the concentration of six major oxides 

was investigated using PLS regression calibration models. The reference analyses of the 

studied samples were performed with the X-ray fluorescence spectrometer (XRF). The 

regression coefficients (R2) were obtained from 0.63 to 0.95 for the independent 

validation set. The worst performance of prediction the PLS model was found belongs to 

the Fe2O3 component. Also, Root means square error prediction (RMSEP) results were 

obtained from 0.18 to 1.67% (w/w). The authors stressed that there is no need to sample 

preparation, but temperature stabilization of the samples is required. Additionally, the 
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authors mentioned that there is no commercial instrument presently available (Rebouças 

et al., 2018). 

 

1.2. Aim of the study 
 

The present study aims to develop a new analytical method for determining the 

composition of cement raw materials, intermediate products, and finished products using 

Fourier Transform Infrared Spectroscopy combined with chemometrics multivariate 

calibration methods could be an alternative for the current XRF technique. With the 

present work, a new analytical method based on chemometrics calibration techniques 

provides a much more practical, fast, and cost-effective method to determine the 

composition of cement raw materials, intermediates, and final products are still carried 

out with mostly X-ray fluorescence spectroscopy. XRF or other techniques used in 

chemical composition determination of cement, raw materials, intermediate products 

require additional sample preparation, and analysis requires a long time. Compared to 

FTIR, X-ray fluorescence spectrometer exhibits relatively high costs and health concerns 

due to the radioactive source. Figure 1. shows a graphical illustration of the modeling 

process bringing together the FTIR and XRF analysis results, predicts a successful model 

for each parameter. 

 

 

Figure 1.1. Graphical illustration of FTIR based chemometrics modeling process. 
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As can be seen from Figure 1.1, the first step begins with the collection of cement 

samples, raw materials, intermediate products from the BatıÇim cement factory. Then, 

analyses with FTIR-ATR of these samples are performed in our laboratory. Results of 

reference analysis achieved by XRF are associated with the obtained spectra of the 

samples. Then with the spectra of the samples and reference analysis are combined with 

the chemometrics multivariate calibration technique. Finally, concentration estimation is 

performed for each parameter.  
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2. CHAPTER 2 

INSTRUMENTATION 

2.1. Infrared spectroscopy 

Infrared spectroscopy is one of the analytical techniques that any samples in any 

state can be studied to get information about the compound's structure with the infrared 

spectroscopy. Various types of samples such as liquids, pastes, powders, and gases can 

be inspected with a reasonable choice of sampling techniques. Infrared spectrometers 

have been on the market since the 1940s. At that time, the instruments bore on prisms to 

represent dispersive elements. After, diffraction gratings had been included in dispersive 

machines. The sizeable advances in infrared spectroscopy have emerged due to the 

introduction of Fourier transform infrared spectrometers. These instruments use an 

interferometer and a well-established mathematical process to improve the quality of 

infrared spectra and minimize the time required to occur analysis. With the feature, 

quantitative analysis of complex samples can be achieved both absorption and emission 

spectra by contrast with dispersive instruments used for qualitative analysis and structural 

determination on absorption spectra. Additionally, with continuous advancements to 

computers, infrared spectroscopy has made even more considerable progress. (Suart, 

2004) 

The infrared region occupies the electromagnetic spectrum between the visible and 

microwave region and includes radiations with wavenumbers from 12800 to 10 cm-1. The 

IR region comprises three parts: the near-, mid- and far-infrared radiation is given in Table 

2.1.  

 

 

Table 2.1. Infrared spectral regions 

Region Wavelength ( λ), μm  Wavenumbers (v), cm-1 

Near 0.75 to 2.5 12800 to 4000 

Middle 2.5 to 50 4000 to 200 

Far 50 to 1000 200 to 10 

Most Used 2.5 to15 4000 to 670 
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Infrared spectroscopy investigates the interaction between matter and infrared 

radiation by giving IR radiation through a sample. Some of the infrared radiation is 

absorbed by the molecules as they undergo vibrational and rotational transitions causes 

changing of net dipole moment in molecules (IR active). Some of the infrared radiation 

is not absorbed by the sample when the molecule does not cause a net change in the dipole 

moment (IR inactive). Excitation of vibrational, rotational, and bending modes results 

from the absorption of infrared radiation by the molecules while the molecule stays in its 

electronic ground state. The potential energy diagram of vibrational and rotational 

transitions is given in Figure 2.1. Rotational and vibrational transitions often occur 

together, and vibrational transitions occur at higher energies than rotational transitions, 

but rotational transitions have slight energy differences.  

 

Figure 2.1. Schematic illustration of vibrational and rotational transitions potential         
energies. 

(Source:chem.libretexts.org) 

Stretching and bending are the types of molecular vibrations. Stretching vibrations 

consist of two types are; symmetrical and asymmetrical vibrations, while bending 

vibrations consist of four types are; Scissoring, rocking, wagging, twisting. The 

difference between the two types of vibrations is; bending motions change the bond angle 

of the molecule while stretching motions change bond length. A schematic illustration of 

the molecular vibrations is given in Figure 2.2 

 



 

11 
 

 

Figure 2.2. Types of molecular vibrations 

(Source : Skoog et al 1998) 

A molecule along with n atoms has a total of 3n ranges of freedom, similar to 

cartesian coordinates of every atom in the molecule. For nonlinear and linear molecules, 

the net number of vibrations is given in Table 2.2. Three degrees of freedom are rotational 

in a nonlinear molecule, three are translational, and the remaining correspond to 

fundamental vibrations; in a linear molecule, two degrees are rotational, and three are 

translational. 

Table 2.2. Number of vibrations for nonlinear and linear molecules 

Molecule Degrees of freedom 
nonlinear 3n-6 

linear 3n-5 
 

A classical dispersive infrared spectrometer consists of a radiation source, 

monochromator, and detector. While using dispersive instruments, some limitations can 

be observed, such as analysis needs long scan times, detector response is slow, the source 

is weak, and broadened peaks are obtained that affect the spectra' quality. Instead of 

visualizing each component's frequency sequentially, like in a dispersive IR spectrometer, 

all frequencies are examined simultaneously in FTIR with the developments of 

interferometer. The most used interferometer is a Michelson interferometer. It comprises 

three active components: a moving mirror, a fixed mirror, and a beam splitter. 

Both mirrors are vertical. In an FT system, three fundamental components exist. These 

are; radiation source, interferometer, and detector. In contrast to the dispersive instrument, 

the radiation source is more often water-cooled to provide better power and stability, and 
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a monochromator is replaced with the interferometer. Instrumentation of Fourier 

transform infrared spectrometer is shown in Figure 2.3. 

 

Figure 2.3. Schematic illustration of Fourier transform infrared spectrometer  

(Source: (Titus et al., 2019) 

The principle of FT system is radiation from the broadband IR source is 

collimated and delivered into the interferometer and impinges on the beam splitter. Half 

of the infrared beam is transmitted to the fixed mirror at the beam splitter, and the moving 

mirror reflects the remaining half. When the beams are divided and reflected by the two 

mirrors, they are recombined in the beam splitter. An interference pattern is generated 

due to Infrared changes in the moving mirror's corresponding position to the fixed mirror. 

The ensuing beam then passes through the sample and is finally directed to the detector 

(Suart, 2004). 

 

2.2. Attenuated Total Reflectance (ATR) 

 Attenuated total reflectance (ATR) is an accessory used as a sampling technique 

to obtain high-quality data of various samples' infrared spectra. Samples that can not be 

easily examined through the usual transmission method can be analyzed with the 

Attenuated total reflectance (ATR) method. The ATR method is most suitable for 

studying thick or highly absorbing solid and liquid materials, such as films, coatings, 
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powders, threads, and polymer samples (Bağcıoğlu, 2011). Additional or sample 

preparation is not necessary with the ATR method, making it one of the versatile sampling 

techniques. Various types of crystals used in the ATR accessories change according to 

the samples to be analyzed. Characteristic ATR crystal materials and their features are 

listed in Table 2.3. Properties of some common ATR Crystals.  

Table 2.3. Properties of some common ATR Crystals 

(Source: Table courtesy of ThermoNicolet, Madison, WI.) 

Crystal Spectral Range 
(cm-1) 

Refractive 
index  Depth  Uses 

Germanium 5,500-675 4 0.66 

Good for most samples; 
strongly 
absorbing samples such as 
dark 
polymers 

Silicon  8,900-1500 3.4 0.85 Resistant to basic solutions 

AMTIRb 11,000–725 2.5 1.77 Very resistant to acidic 
solutions 

ZnSe 15,000–650 2.4 2.01 General use 

Diamond 30,000–200 2.4 2.01 
Good for most samples, 
extremely 
caustic or hard samples 

 

The theory behind the ATR working principle is that some light is reflected in the 

sample medium when the first incident beam (IR beam) passes from a medium of crystal with a 

high refractive index to a medium of the sample that has a low refractive index. Almost the 

whole of the light waves is reflected at a distinguished angle of incidence. This phenomenon is 

described as a total internal reflection. In this case, some light energy gets out from the crystal 

and travels a short distance (0.1-5 μm) beyond the surface like waves. This invisible wave is 

known as an evanescent wave. The strength of reflected light is decreased at this point by the 

sample. This phenomenon is known as Attenuated total reflectance. This evanescent wave is a 

standing wave that occurs at the inflection point of the propagating light. After interaction with 

the sample, it carries the chemical information along with the detector. Some infrared radiation 

is absorbed by penetrating away the crystal, and the absorption is transformed into the infrared 

spectrum of the sample.  A schematic illustration of the ATR principle is given Figure 2.4. The 

crystal's location must be positioned parallel to the ATR accessory's top surface. Actual physical 

contact must exist between the sample and high refractive index crystal such as zinc selenide, 

germanium, silicon, or diamond.  
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Figure 2.4. Schematic illustration of the ATR principle. 

(Source: Attenuated Total Reflectance (ATR) | For FTIR Applications. (n.d.)) 

 

2.3. X-ray Fluorescence Spectroscopy 

X-ray fluorescence (XRF) is used to analyze samples' elemental form at room 

temperature. XRF has many advantages compared to other elemental analysis techniques, 

such as the non-destructive method, and samples to be analyzed can also be in various 

forms, such as powders, crystals, and liquids. Consequently, XRF is carried out to a 

massive range of samples, including chemical, biological, environmental. (Skoog et al., 

2017) 

 The X-rays are situated on the high energy side of the ultraviolet of the 

electromagnetic spectrum. The X-ray wavelengths are from 1x10-11 to 1.0 x10-8 m (0.01 

to 10 nm), which corresponds to the 0.25 keV to 125 keV area.  The X-ray location on 

the electromagnetic spectrum is given in Figure 2.5 in terms of frequency (Hz) and 

wavelength (m). 

 

Figure 2.5. Regions of the electromagnetic spectrum 

In the XRF, a sample is bombarded by an X-ray beam that emits secondary X-

rays at lower energy, known as fluorescent radiation. It differs from conventional 



 

15 
 

fluorescence by not using visible light with poorly energetic and light-active molecules. 

A schematic illustration of fluorescent radiation is showed in Figure 2.6. 

 

 

Figure 2.6. Schematic illustration of fluorescent radiation 

 

Primary X-rays are produced by the X-ray source, generally an X-ray tube. When the 

sample is treated with an X-ray beam, generation of secondary X-ray is occurred by 

movement of atoms in the sample. If a photon of enough energy hits an atom, the energy 

is absorbed and excites one of the shell's outer electrons. As the electron relaxes, a 

secondary photon is emitted, and the secondary photons usually have low energy. This 

phenomenon is known as fluorescence. Low-energy photons are used in fluorescence 

microscopy; however, X-ray photons have sufficient energy to complete tight electrons' 

expulsion from an inner shell. When the excessive-energy primary x-ray collides with an 

atom, an electron at a high energy shell will fall into vacancy to re-establish its stability. 

The movement of electrons between two levels causes the release of excess energy, and 

it is emitted in the form of secondary X-rays specific for each element. This phenomenon 

is known to be X-ray fluorescence. It is used to identify the elemental composition of the 

sample and the amount found in the sample (X-Ray Fluorescence (XRF) | Protocol, n.d.). 

Figure 2.7, provides an illustration of the generation of X-ray fluorescence radiation.  
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Figure 2.7.  An illustration of the generation of X-ray fluorescence radiation 
(Source : www.projects.library.villanova.edu) 

 

Instrumentation of X-ray spectrometry consists of a source, wavelength-energy 

selector, detector, collimator, and filter. In XRF spectrometry, optical system properties 

vary with each. For instance, the characterization of elements that emit X-rays is 

performed by measuring the emitted X-rays' energies or wavelengths. Therefore, the 

instrumentation is divided into energy dispersive (EDXRF) and wavelength dispersive 

(WDXRF) x-ray fluorescence analysis, depending on the detection method. In Figure 2.8 

and Figure 2.9, basic schematic set-ups of an energy-dispersive and wavelength-

dispersive X-ray fluorescence spectrometer are given, respectively. 

 

 

Figure 2.8. A schematic setup of an energy-dispersive X-ray fluorescence spectrometer         
with direct excitation 

(Source: (Schramm, 2016)) 
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Figure 2.9. Schematic setup of a wavelength-dispersive X-ray fluorescence 
spectrometer.  

(Source: (Schramm, 2016)) 

In the type of wavelength-dispersive analysis (WDXRF), a dispersive device is 

used to separate X-rays by deflecting them at different angles comparable to their 

wavelength. In energy-dispersive mode (EDXRF), each detected X-ray photons are 

records and measured by a detector, and a dispersive device is not used. With WDXRF 

systems, it may be viable to have many detector assemblies placed at constant angular 

places to examine some chosen elements repeatedly. WDXRF spectrometers usually 

provide more flexibility for the analyst and excellent sensitivities. Detector outputs are 

also more manageable to use directly. Disadvantages consist of the inability to quickly 

accumulate the whole x-ray spectrum for complete-element analyses, more expensive 

hardware prices, and a larger instrumental footprint than EDXRF systems.  
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3. CHAPTER 3 

MULTIVARIATE CALIBRATION METHODS 

 

3.1. Overview  
 

 Modern spectroscopic instruments can take many spectra of samples that have 

complex components over a short time. Univariate calibration methods are not suitable 

for those samples which have complex components. Multivariate calibration methods 

include applying mathematical methods to chemical analysis when each sample has more 

than one instrument signal. In spectroscopy, multivariate calibration is usually concerned 

about data comprised of instrument signals over multiple wavelengths for a multi-

component sample. Multivariate calibration methods cope with some of the problems 

encountered in univariate calibration methods. In determining concentration from 

absorbance values, multivariate calibration can be seen an extension of Beer-Lambert’s 

law, which may use the entire or partial spectra for calibration. It is not possible for the 

univariate calibration method. Other concerns are random interferences caused by 

interfering species and noises coming from instrument signals are decreased by averaging 

useful information on absorbance responses to predict more reliable and better calibration 

models (Brereton, 2000).This chapter will discuss the most used multivariate calibration 

techniques and their benefits, disadvantages, and implementation strategies.   

3.2. Classical Least Squares (CLS) 
 

 Classical least squares (CLS) is one of the fundamental multivariate calibration 

techniques known as Beer's Law, where the absorbance value changes while depending 

on the concentration. The following Equation models CLS: 

                                      (3.1) 

 In Equation 3.1, the mxn matrix of absorbance values is represented by A, mxl 

matrix of concentration is represented by C. Here, m is the number of samples in 

calibration set, n is the number of wavelengths, l is the number of components in a sample. 
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In this Equation, the unknown is the K matrix, which is the lxn matrix of absorptivity 

coefficients that depend upon absorbance values at n number of wavelengths to the 

concentration of l components of the m number of the calibration set. While using the 

least-squares method, Estimation of the K matrix is done by the described Equation 3.2. 

  

                                                         (3.2) 

 

After the calculation of the K matrix with Equation 3.2, the predicted component 

concentrations of an unknown sample from its spectrum can be found by  Equation 3.3 

as: 

                                                          (3.3) 

 

a is the vector of absorbance values of the unknown sample obtained from its 

spectrum, and c is the vector of predicted concentration of components in the unknown 

sample. To obtain the best calibration model with the CLS method, all species' 

(components) concentrations with a significant effect on the spectrum in the calibration 

samples must be identified and included in the C matrix because the calculated 

coefficients are depended on all compositions of the samples. As all species' 

concentration is generally unknown, the response of instrument signal is used with these 

interfering species during modeling. This feature is the main disadvantage of the CLS 

method and can be eliminated by Inverse Least Squares (ILS) method. 

3.3. Inverse Least Squares (ILS) 
 

The necessity for the knowledge of the concentration of every interfering species, 

which is stated as the main drawback in the CLS method, can be solved by the Inverse 

Least Square(ILS) method, which is based on the multivariate extension of inverse Beer-

Lambert's law and assumed that concentration is a function of absorbance. 

                                           (3.4) 

In this Equation 3.4 , C is the concentration matrix, and A is the absorbance 

matrix. E is the matrix of errors in concentrations not fitted by the model. Model error is 

assumed to derive from errors in the measurement of component concentration caused by 

the samples used for calibration, not the absorbance values. Modern spectroscopic 
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instruments provide excellent signal-to-noise(S/N) ratios with these instruments' 

development over the last decades. In Equation 3.4, P is the nxl matrix of regression 

coefficients associated with the absorbance values to the concentrations of the 

components in the calibration set. The solution of P is calculated as in Equation 3.5.  

                                          (3.5) 

The difference between ILS and CLS is, The ILS model has the advantage of 

modeling one component at a time, as given in Equation 3.6. 

                                               (3.6) 

p is an nx1 vector of the regression coefficient for the component being modeled, 

and c is an mx1 vector of concentration of the component modeled in the calibration set. 

After the p vector is reached, the prediction of the unknown sample's concentration is 

calculated by Equation 3.7.  

                                                         (3.7) 

            Although this method's strength is that without knowing the concentration of all 

interfering species, it can obtain a calibration model for a single component in a sample. 

Also, there are some problems with the ILS method. As shown in Equation 3.6, the 

absorbance matrix of A, which must be inverted while obtaining the p vector, has a longer 

dimension than the dimension of the concentration vector of c. Moreover, it contains the 

collinearity problem arising from the nature of the spectrum. Therefore, the number of 

columns equal to the number of wavelengths in the spectra of the matrix of A can not 

exceed the size of the vector of c, which is equal to the number of experiments or samples 

in the calibration set.  Otherwise, makes ILS models overfitting can cause predicted 

concentrations are not reasonable. One solution to these problems is performing feature 

selection methods such as Genetic algorithms (GA) by leaving out the absorbances at 

wavenumber, which are unrelated to the concentrations. Another common solution based 

on principal component analysis (PCA) is using factor-based projection methods such as 

the partial least squares (PLS) method. (Fredrick Lindgren et al., 1994; Fredrik Lindgren 

et al., 1995). In the following section, brief information about these two methods is 

described. 
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3.4. Partial Least Squares (PLS) 
 

 In the late sixties, the pioneering studies in Partial Least Squares (PLS) were done 

by H.Wold in econometrics. PLS is becoming a significant regression method in many 

chemistry disciplines; analytical, physical, clinical chemistry, and industrial process 

control. For chemical applications, the groups of S. Wold and H. Martens led to the use 

of the PLS method in the seventies after a primary application by Kowalski et al. 

(Kowalski et al., 1982).Many articles (Otto & Wegscheider, 1985; Wold et al., 1983) 

show that PLS is a good choice to other regression methods as multiple linear regression 

and principal component regression because it is more robust. Also, there are many 

completed studies on PLS conducted by S. Wold et al. Besides, while other calibration 

methods assume that errors are in the samples' response or properties, PLS considers both 

cases .(Geladi & Kowalski, 1986) 

 Partial least square is a technique that creates new variables that are linear 

combinations of the original data by decomposing the data. These new variables are called 

principal components or factors. The way in which new variables are created can be 

visualized in a two-dimensional system. If the instrumental signals for a set of m samples 

at two wavelengths(n=2) are plotted against each other, the new axis is formed to 

represent the data's maximum variability. This new axis is called the first principal 

component or first eigenvector. Otherwise, the second eigenvector is perpendicular or 

orthogonal to the first eigenvector. The second eigenvector specifies the maximum 

amount of residuals not fit by the first one in the data set. If the instrumental signal matrix 

contains more than two wavelengths, the plotting space becomes multidimensional. 

Several eigenvectors can be found; each represents the maximum remaining variability 

and each orthogonal to the others. 

The PLS model equation is described as: 

                            (3.8) 

 

A is an mxn matrix of spectral absorbance, B is a hxn matrix of loading vectors or loading 

spectra, and  T is an mxh matrix of intensities or scores in the new coordinate system of 

the h loading vectors for the m sample’ spectra. EA is the mxn matrix residuals not fit by 

the model. The difference between the CLS and PLS methods is that B's loading vectors 
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are not pure component spectra. They are linear combinations of original calibration 

spectra. Also, intensities in the new coordinate system are not dependent on 

concentrations as in CLS. However, the modeling is based on the relationship between 

scores in T and component concentrations. The algorithm determines the required number 

of basis vectors, h, (representing calibration spectra), during the calibration step. In the 

new coordinate system, spectral intensities are correlated with analyte concentrations 

using the ILS model. The concentration of the analyte is calculated by: 

                                                       (3.9) 

In this equation 3.9, c  is the mx1 vector of component concentration, v is the hx1 vector 

that relates spectral intensities to component concentrations, and ec is the mx1 vector of 

errors in reference values of analyzed components. The solution for v is the least-squares 

solution as in ILS: 

                                                          ′ ′                                             (3.10) 

Where  is the least-squares estimate of v. T and B matrices are calculated in a stepwise 

manner (one vector at a time) until the desired model has been obtained. The modified 

version of the NIPALS (nonlinear iterative partial least squares) algorithm is used to 

calculate loadings vectors with the concentration of components in PLS. There two 

different versions of PLS algorithms, which are PLS1 and PLS2. One component is 

examined at a time in PLS1, while all component is examined at a time in PLS2. That’s 

why, PLS1 exhibits better predictive power than PLS2. Also, PLS1 is recommended for 

quantitative analysis, while PLS2 is recommended for qualitative analysis. 

In the PLS1 algorithm, inverse classical least squares calibration is performed, 

assuming that only one component is known in the calibration samples. Then, the least-

squares method estimates the first weighted loading vector, , with the substitution of 

1 for h in following Equation 3.11. 

′ ′                                               (3.11) 

 is an nx1 vector that represents the least square estimation (first-order approximation) 

of the pure component spectrum for h=1 of the interested component. The next step is 

forming the score (latent variable) vector   by using the weighted loading vector with 

an ILS prediction model as given as: 
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                                                         (3.12) 

Using a linear least square regression, the score vector representing the new PLS 

coordinate system's intensities can be associated with the concentrations. Equation 3.13 

gives the estimate for  which is the scalar regression coefficient relating to the 

concentration of the component that is being analyzed. 

′ ′                                             (3.13) 

Orthogonal  vectors are desirable to eliminate the collinearity problem caused by 

original inverse least square regression and can be acquired by forming a new model for 

A. Also, the calculated regression coefficient is used to obtain concentration residuals. 

Once more, the least square method is performed to find bh, which is the PLS loading 

vector is given in Equation 3.14.  

′ ′                                         (3.14) 

where  is the nx1 PLS loading vector, it is possible to calculate the first PLS 

approximation to the concentrations related to calibration spectra by multiplying the score 

vector   with the transpose of the PLS loading vector. Spectral residuals, EA, in the 

calibration spectra A are calculated by subtracting the PLS approximation from the 

measured calibration spectra A as given in Equation 3.15. 

′                                                  (3.15) 

Also, concentration residuals, ec, is obtained by multiplying scalar regression coefficient 

, with the score vector , and substracting the obtained result from the original 

concentration vector as given in Equation 3.16. 

                                                 (3.16) 

PLS1 algorithm for obtaining concentration predictions involves calculating and using 

the vector of the final calibration coefficient, bf. Once bf is calculated, it is possible to 

calculate the new sample's concentration using average analyte concentrations and its 

spectrum. Equation 3.17 shows the calculation of the final regression coefficient bf for 

the prediction in PLS1. 

′                                            (3.17) 
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Where  and  are comprised of vectors  and , respectively, and  is formed from 

individual regression coefficient, . The bf ensures an effective method to estimate 

concentrations from any unknown sample spectrum. The final estimation, Equation 3.18, 

is given below. 

′                                                     (3.18) 

Here, c is the estimated unknown sample concentration, a is the spectrum of this sample, 

and co is the average concentrations of the calibration samples. (Haaland & Thomas, 

1988) 

One of the most critical concerns for the PLS model is selecting the optimum 

number of factors.  The selection of the optimum number of factors allows us to model 

data with complexity without overfitting the concentration data. Cross-validation method 

leaving out one sample at a time is used to achieve this aim (Stone, 1974). For a set of m 

calibration spectra, the PLS1 calibration is performed on m-1 calibration spectra and with 

this calibration, prediction of the allocated sample’s concentration is done. This process 

continues m times until each spectrum in the calibration set is used to test once. Then 

predicted concentration for every sample is compared with the initial concentration of the 

reference sample. Prediction error sum of squares or PRESS is a measure of how well the 

certain PLS model fits the concentration data. PRESS is determined in the same way each 

time a new factor is introduced to the PLS1 model. The equation of PRESS is given in 

below. 

                                   (3.19) 

The most appropriate PLS factor number should be selected according to the lowest 

PRESS value. Otherwise, we may face a model that gives excellent calibration results but 

cannot produce the same results at the prediction step. A comparison between the hth and 

h+1th factors is usually made to those using the F-test method to avoid this situation. If 

the F-test method indicates no significant difference, the better model is usually the one 

obtained with a smaller number of factors. Figure 3.1 shows the PRESS values obtained 

as a result of cross-validation corresponding factor numbers are given. 
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Figure 3.1. An example of a number of components vs. PRESS plot. 

(Source: Özdemir Durmuş, 2020) 

 

In Figure 3.1given above, PRESS values are given against the number of factors 

used to determine the number of PLS factors required to create the most suitable PLS 

model. As shown from the figure, the PRESS values obtained for the model show a 

decreasing trend, but after the fifth factor, the PRESS values in the prediction step 

increase. In this case, the most appropriate factor number should be 5  
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4. CHAPTER 4  

EXPERIMENTATION AND METHODS 

4.1. Samples 
 

Samples for the study are obtained from the quality control laboratory in the 

BatıÇim factory at İzmir. Batı Anadolu cement Industry A.Ş. was established in 1966 

with 100% of the Turkish capital. It continues its route inside the Batı Anadolu group, 

underneath its roof the Turkish cement industry's robust enterprises today.  

4.2. FTIR-ATR Measurements 
 

Fourier transform infrared spectrometer (PerkinElmer Spectrum 100 FT-IR) 

coupled with attenuated total reflectance (PIKE MIRacle) accessory as a sampling 

technique was employed to analyze the 113 samples that vary with raw materials, the 

intermediate product of cement (clinker), and cement samples. The diamond crystal was 

chosen because it generally is proper for hard samples. The spectrum analysis was 

performed between the wavenumber region 4000 cm-1 and 550 cm-1. The optimum 

resolution was decided as an 8 cm-1 (data point interval 2 cm-1), and 16 scans were done. 

For each sample, triplicate measurements were taken to limit spectral errors caused by 

sample particle size. An average spectrum of three measurements was calculated to use 

future in multivariate analysis. Before starting the sample analysis, the background 

measurement against air was done with the same parameters as the sample's 

measurements to decrease contamination caused by ATR crystal. For background, the 

empty, clean crystal was used, and after each measurement, the sample was removed from 

the sample holder part of the ART crystal by a vacuum cleaner. Then ethanol was used 

to clean the crystal surface and was allowed to dry.  
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4.3. X-ray Fluorescence Spectrometer Measurements 
 

Elemental analysis of raw materials, raw meals, intermediate products, and 

cement is performed with an X-ray fluorescence spectrometer for most cement factories. 

XRF analyses of the study samples are performed at the BATIÇİM quality control 

laboratory with an X-ray Fluorescence spectrometer. Determination of elemental analysis 

of the products is a crucial procedure for the quality control stage and manufacture. 

Because the product's elemental composition constitutes their chemical composition that 

influences cement's performance, the nature of the raw materials used in the production 

of cement can significantly change the final cement's chemical composition. cement 

chemical analysis can thus be used to assess the cement's consistency and the applications 

to which it is ideally suited. The elemental ratios are detected in the sample by converting 

into weight fractions of each oxide present. The performance of XRF is strongly 

dependent on sample preparation. The measurements are achieved with XRF generally 

requires careful and controlled sample preparation, and analysis times take about 15 min 

per sample, changing with what type of sample is to be analyzed. The material types, such 

as raw materials and final products, can be analyzed at different time scales. Also, XRF 

presents high costs. Furthermore, the usage of radioactive source can be an issue for 

safety. Consequently, there may be room for improving the latest analytical techniques 

as an alternative technique for XRF that can carry out quicker, more secure, at a lower 

fee, and meet the requirements for quality control of cement samples. 

There are two types of sample preparation techniques for XRF analysis. Pressed 

pellet techniques and glass bead preparation techniques are used for sample preparation. 

The pressed pellet technique is applied to the cement samples and clinker samples that 

are intermediate cement products, and glass bead preparation is applied to the raw 

materials. 

In this study, the samples obtained from the BatıÇim cement factory were 

analyzed in the quality control laboratory by X-ray fluorescence spectrometer with two 

different sample preparation techniques that change with sample types. 
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4.3.1. Pressed Pellet Technique 
 

 The method for forming pressed pellets for XRF analysis consists of five main 

stages: milling the sample to fine grain size, mixing it with a binding agent in a grinding 

vessel, pouring the mixture a pressing die, and pressing at constant a particular pressure. 

Illustration of all the steps in producing a pressed pellet are given in Figure 4.1.  Making 

pellet technique was applied to our samples that are cement, clinker, raw meal. The 

specific procedure is given in below. 

1. The sample was weighed to 20 g. 

2. The grinding or tableting aid was added to the sample. The amount of grinding 

is to be added changes with the specificity of the sample 

3. The sample and tableting aid were ground to fine particle size by pulverizing 

mill. Small particle size is a critical component in producing pellets that 

provide the best analytical results as it affects how the sample will compress 

and bind together when pressed.  

4. After grinding, the mixture was poured into a mixing vessel, and 

triethanolamine was added to the mixture as a binding agent. 

5. The mixing vessel was placed into pulverizing mill. The sample and bind were 

ground together into the mill. 

6. The 5.0 g of the mixture was poured into a pressing die and pressed at a 

particular constant pressure. 

7. The resulting pellet was then prepared for analysis. 

 

 

Figure 4.1. Illustration of all the steps in producing a pressed pellet with a binder 
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4.3.2. Glass Bead Preparation 
 

 Glass bead preparation for XRF analysis from the samples used for cement 

manufacturing has many advantages over pressed pellets. Forming samples into glass 

beads involves three main stages. First, a flux is used to mix with the sample. Second, 

melting the sample into glass beads at very high temperatures. Last, molten mixture can 

be formed into discs using a mold. Illustration of the steps in producing glass beads are 

given in Figure 4.2. There are challenges associated with the preparation of glass beads 

from cement samples. Identifying the right preparation strategy usually involves trial and 

error to find the best fusion parameters, ratios, and additives. The specific procedure used 

in the study is given in below. 

 

1. The sample was to be analyzed, weighed, and tetraborate as a flux also weighed 

to specific amounts. 

2. The sample and flux were mixed and transferred into a platinum crucible. Then, 

Calcium iodide was added to make an easy melting process. 

3. The mixture was melted in a platinum crucible at a very high temperature, such 

as 900-1200 °C. While the mixture sample was melting, at the same time, the 

shaking process was constantly applying.  

4. The molten mixture was formed into a disc using a mold. 

5. The resulting glass bead was then prepared for analysis 

 

 
Figure 4.2. Illustration of the steps in producing glass beads 

4.4. Loss of Ignition Analysis 

 
The amount of weight lost by raising the temperature of raw material, cement, to 

a predetermined level is known as ignition loss. Loss of ignition analysis of the studied 

samples was made according to Turkish standards, TS EN 196-2.  
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Weight loss during heating can be caused by evaporation or volatilization of various 

components of the sample. Water vaporizes at 100-105 °C, organic matter is burned at 

approximately 550 °C, and most carbonates can be lost at 800-1000 °C. The procedure of 

the loss of ignition analysis is given in below 

. 

1. The sample was weighed 1.0000 ± 0.0005 g of on the analytical balance. 

2. The sample was taken into a porcelain crucible, brought to a fixed weight, and 

had a fixed tare.  

3. Put the porcelain crucible in the 950 °C muffle furnace and let stand 30 minutes.  

4. After the porcelain crucible with sample has a fixed weight, the porcelain crucible 

was taken to the desiccator. 

5. The porcelain crucible containing the sample was weighted After the crucible has 

cooled.  

 

4.5. Data Analysis 

 

 The spectra obtained from the FT-ATR system were transferred to Microsoft 

Excel 365. The calibration data set and independent validation data set were created to 

predict the chemical composition of samples which are cement, clinker, raw meal, raw 

materials. The calibration data set was used to construct multivariate calibration models, 

and the independent validation set was used to train the predictive power and reliability 

of the created calibration models. The partial least squares (PLS) method was applied to 

the data to construct calibration models by chemometrics calibration toolbox belongs to 

OBA quantifier, OBA Chemometrics Inc Turkey (OBA Kemometri) in the environment 

of MATLAB R2018b. (Math Works Inc., MA). Different scenarios were tried to construct 

calibration models with the best predictive powers to predict cement's chemical 

composition as an alternative to XRF. 
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5. CHAPTER 5 

RESULTS AND DISCUSSION 

 All samples obtained from the BatıÇim cement factory were analyzed by Fourier 

transform infrared spectrometer (FTIR) coupled with attenuated total reflectance 

accessory (ATR). The data acquired from the FTIR-ATR system were combined with 

multivariate calibration methods and used to determine major oxides that comprise the 

chemical composition of cement. The elemental reference analyses of samples were 

performed by X-ray fluorescence (XRF). For the thesis study, the different scenarios were 

developed to determine cement composition and process optimization. 

 The first scenario was that the studied samples were diversified using all kinds of 

samples used to manufacture cement, and the sample analysis was required rapid analysis 

times to determine the concentration of major oxides for the process optimization in the 

quality control stage. Types of samples, such as cement, raw materials, limestone, raw 

meals, and clinker samples, were included in the model.  In conclusion, a calibration 

model was tried to construct using various types of samples that significantly affected the 

manufacturing stage of cement for the first scenario. 

The data set was arranged into two groups as the calibration set and the 

independent validation set. Details of the data for each scenario were explained in the 

specific part of the scenarios. The partial least square (PLS) method was applied to the 

data for two scenarios. 

5.1. The First Scenario. 

A total of 113 samples was diversified as raw materials and types of cement. The 

113 samples were consisted of 51 cement samples, 20 clinker samples, 11 of limestone, 

9 of gypsum, 6 of raw meal, 5 of clay, 5 of iron ore, 3 of them trass, and 3 of the ash. The 

data set was divided into two groups; 89 samples were included in the calibration data 

set, and the remaining 24 samples were included in the independent validation set. (80% 

for calibration data set and 20% for validation data set). The data sets were arranged 

considering, the validation and the calibration set have samples with similar composition. 
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The validation data set was established to cover all types of samples. The calibration data 

set and validation data set were given with the percentages of major oxides comprise of 

cement composition in Table 5.1and Table 5.2, respectively. 

Table 5.1. The calibration data set of the first scenario 

Calibration Data Set 

No Type Name CaO 
(w/w%) 

SiO2 
(w/w%) 

Al2O3 
(w/w%) 

Fe2O3 
(w/w%) 

MgO 
(w/w%) 

SO3 
(w/w%) 

Na2O 
(w/w%) 

K2O 
(w/w%) 

1 Iron ore S42 0.61 50.53 1.15 42.42 0.05 0.72 0.02 0.09 

2 Iron ore S4 1.41 29.86 1.85 59.38 0.12 1.28 0.35 0.13 

3 Iron ore S33 4.36 32.82 2.51 48.77 0.21 0.93 0.41 0.21 

4 Iron ore S43 4.58 31.84 1.43 56.4 0.11 1.07 0.15 0.12 

5 Clay S9 5.33 54.22 15.64 5.88 2.09 0.14 2.41 2.52 

6 Trass S28 9.42 51.21 14.02 5.24 2.11 1.48 2.26 2.6 

7 Clay S70 5.6 52.05 16.2 6.13 2.31 0.16 1.11 3.2 

8 Clay S75 7.39 55.42 12.73 4.93 2.31 0.14 0.9 2.56 

9 Clay S73 9.22 49.11 14.46 5.83 2.53 0.35 1.11 2.71 

10 Clay S74 9.96 50.51 14 5.48 2.05 0.23 0.87 2.75 

11 Ash S37 29.86 37.44 17.66 4.3 2.16 5.09 0.39 1.21 

12 Ash S6 37.33 32.25 14.51 3.9 1.85 6.53 0.37 1.04 

13 Gypsum S19 33.22 1.21 0.29 0.1 2.93 37 0.12 0.06 

14 Gypsum S45 33.4 0.28 0.02 0.02 0.88 43.48 0.03 0.01 

15 Gypsum S76 34.02 0.82 0.13 0.11 0.27 42.45 0.05 0.02 

16 Gypsum S44 34.35 0.61 0.06 0.05 4.38 33.19 0.02 0.02 

17 Gypsum S49 34.97 0.76 0.1 0.12 0.06 41.99 0.05 0.02 

18 Gypsum S46 36.4 1.03 0.27 0.12 9.13 16.51 0.03 0.07 

19 Gypsum S14 36.5 0.74 0.13 0.12 3.54 33.56 0.04 0.03 

20 Raw meal S34 42.02 12.96 4.45 2.31 0.76 0.18 0.25 0.98 

21 Raw meal S36 42.05 12.98 4.42 2.28 0.75 0.18 0.6 0.98 

22 Raw meal S38 54.7 15.89 4.68 2.16 1.00 0.52 0.31 3.98 

23 Raw meal S39 55.27 16.28 4.74 2.39 0.99 0.5 0.28 3.38 

24 Raw meal S40 55.26 15.93 4.68 2.37 0.97 0.51 0.22 1.86 

25 Limestone S10 54.09 1.47 0.75 0.20 0.64 0.17 0.06 0.07 

26 Limestone S2 54.27 1.97 0.95 0.55 0.28 0.07 0.08 0.09 

27 Limestone S32 54.29 1.57 0.88 0.23 0.28 0.10 0.07 0.08 

28 Limestone S41 54.77 1.63 0.75 0.26 0.23 0.05 0.07 0.07 

29 Limestone S21 55.05 1.43 0.57 0.29 0.33 0.49 0.09 0.07 

30 Limestone S20 55.1 0.67 0.31 0.14 0.34 1.16 0.07 0.03 

31 Limestone S1 55.48 1.03 0.52 0.18 0.19 0.05 0.07 0.05 

32 Limestone S7 55.57 0.75 0.37 0.11 0.31 0.24 0.07 0.04 

33 Limestone S15 55.69 0.50 0.28 0.14 0.4 0.15 0.07 0.03 

34 CEM IV S71 48.38 28.82 7.84 3.74 1.45 2.8 0.69 1.18 
   (cont. on next page) 
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Table 5.1 (cont.). 

35 CEM IV S79 49.76 28.36 7.98 2.87 1.46 3 0.75 1.17 

36 CEM II S22 56.01 22.31 6.28 3.05 1.41 3.66 0.56 1.05 

37 CEM II S29 56.39 22.32 6.31 3.02 1.39 3.36 0.57 1.03 

38 CEM-I S80 57.4 22.39 7.35 2.66 1.23 3.42 0.39 0.77 

39 CEM-II S25 58.56 21 7.08 2.82 1.35 2.98 0.38 0.86 

40 CEM-II S24 58.67 20.8 6.98 2.95 0.36 3.05 0.38 0.85 

41 CEM-I S77 60.38 19.75 6.99 2.43 1.34 2.84 0.47 0.85 

42 CEM-I S99 61.96 21.23 5.76 2.1 1.9 3.07 0.21 0.9 

43 CEM-I S103 62 20.48 5.65 2.22 1.45 4.21 0.21 0.85 

44 CEM-I S111 62.33 20.82 5.76 2.32 1.47 3.11 0.22 0.88 

45 CEM-I S92 62.46 20.24 5.62 2.26 1.52 3.32 0.21 0.86 

46 CEM-II S26 62.58 21.11 7.28 2.63 1.42 3.11 0.46 0.9 

47 CEM-I S109 62.76 20.21 5.53 2.1 2.02 3.45 0.16 0.85 

48 CEM-I S110 62.76 20.52 5.66 2.18 1.58 3.3 0.18 0.86 

49 CEM-I S18 62.99 18.87 5.45 2.94 1.35 3.33 0.38 0.84 

50 CEM-I S90 63.02 19.99 5.54 2.12 1.59 3.57 0.18 0.83 

51 CEM-I S105 63.06 20.32 5.37 2.12 1.44 3.55 0.17 0.83 

52 CEM-I S12 63.07 18.92 5.44 2.91 1.36 3.29 0.39 0.85 

53 CEM-I S13 63.1 18.98 5.34 2.84 1.36 3.47 0.37 0.85 

54 CEM-I S97 63.25 20.36 5.41 2.17 1.67 3.21 0.17 0.85 

55 CEM-I S106 63.31 20.29 5.45 2.38 1.46 3.28 0.17 0.81 

56 CEM-I S84 63.34 20.24 5.4 2.12 1.67 3.24 0.16 0.82 

57 CEM-I S89 63.42 19.83 5.23 2.35 1.54 3.62 0.17 0.83 

58 CEM-I S93 63.45 19.81 5.47 2.91 1.49 3.17 0.18 0.9 

59 CEM-I S88 63.48 20.21 5.58 2.08 1.34 3.22 0.19 0.78 

60 CEM-I S104 63.48 20.21 5.58 2.08 1.34 3.22 0.19 0.78 

61 CEM-I S30 63.49 19.07 5.48 2.8 1.38 3.25 0.4 0.88 

62 CEM-I S102 63.65 20.2 5.37 2.29 1.28 2.8 0.18 0.81 

63 CEM-I S95 63.7 20.01 5.33 2.12 1.41 3.37 0.19 0.8 

64 CEM-I S100 63.75 20.29 5.26 2.18 1.3 3.28 0.17 0.75 

65 CEM-I S81 64.59 20.87 5.14 2.93 2.01 3.42 0.25 0.78 

66 CEM-I S113 62.27 18.94 4.89 2.86 2.48 3.39 0.49 0.79 

67 CEM-I S91 64.89 19.16 5.26 2.85 1.3 2.82 0.2 0.87 

68 CEM-I S94 64.96 21.63 5.93 2.26 1.49 2.65 0.21 0.86 

69 CEM-I S83 65.05 20.76 5.23 2.83 1.85 3.29 0.24 0.76 

70 CEM-I S85 63.38 19.82 5.14 2.66 1.43 3.52 0.19 0.83 

71 CEM-I S112 63.13 18.78 5.16 2.88 1.98 3.25 0.38 0.84 

72 CEM-I S96 63.16 20.44 5.53 2.14 1.23 3.01 0.21 0.86 

73 CEM-I S114 62.17 19.13 4.72 3.13 1.73 2.82 0.38 0.81 

74 CEM-I S82 66.16 20.32 4.83 3.05 1.8 2.9 0.26 0.67 

75 Clinker S60 65.75 21.49 5.81 3.8 1.04 0.35 0.34 0.92 
76 Clinker S50 65.82 21.47 5.84 3.64 1.06 0.39 0.35 0.91 

(cont. on next page) 
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Table 5.2. Validation data set of first scenario. 

Validation Data Set 

No Type Name CaO 
(w/w%) 

SiO2 
(w/w%) 

Al2O3 
(w/w%) 

Fe2O3 
(w/w%) 

MgO 
(w/w%) 

SO3 
(w/w%) 

Na2O 
(w/w%) 

K2O 
(w/w%) 

90 Iron ore S3 4.36 32.82 2.51 48.77 0.21 0.93 0.41 0.21 

91 Trass S23 8.05 54.11 14.63 5.41 2.05 0.28 2.47 2.78 

92 Clay S72 7.27 53.74 13.83 5.34 2.24 0.18 0.97 2.75 

93 Ash S5 30.38 37.9 16.85 4.24 2.02 5.14 0.42 1.24 

94 Gypsum S48 34.21 0.3 0.03 0.02 3.53 34.92 0.02 0.02 

95 Gypsum S47 35.98 0.56 0.08 0.06 5.09 27.28 0.04 0.03 

96 Raw meal S35 43 12.58 4.19 2.16 0.7 0.14 0.25 0.89 

97 Limestone S8 54.87 1.34 0.5 0.97 0.2 0.06 0.07 0.06 

98 Limestone S69 55.11 1.56 0.51 0.21 0.23 0.02 0.07 0.05 

99 CEM-II S31 54.76 23.74 7.37 3.16 1.39 3.56 0.56 1.06 

100 CEM-I S78 56.14 22.48 6.34 3.17 1.45 3.2 0.58 1.04 

101 CEM-II S27 58.48 20.82 6.89 3.03 1.35 3.08 0.38 0.88 

102 CEM-II S17 60.4 19.97 5.63 3.07 1.32 3.45 0.44 0.9 

103 CEM-I S87 62.28 21.07 5.66 2.18 1.47 3.42 0.2 0.87 

104 CEM-I S108 62.5 20.32 5.69 2.28 1.46 3.55 0.2 0.84 

105 CEM-I S11 63.03 18.78 5.31 2.86 1.4 3.42 0.36 0.84 

106 CEM-I S101 63.28 20.18 5.54 2.16 1.36 2.79 0.19 0.84 

107 CEM-I S86 63.46 20.12 5.52 2.05 1.25 3.06 0.2 0.78 

108 CEM-I S98 63.53 20.41 5.27 2.15 1.38 3.22 0.17 0.83 

109 Clinker S61 65.87 21.41 5.76 3.79 1.05 0.34 0.36 0.9 

110 Clinker S51 65.92 21.38 5.76 3.63 1.06 0.38 0.41 0.92 

111 Clinker S65 66.18 21.33 5.68 3.65 1.02 0.39 0.33 0.92 

112 Clinker S64 66.25 21.28 5.73 3.49 1.08 0.41 0.31 0.93 

113 Clinker S62 66.29 21.3 5.7 3.49 1.04 0.37 0.33 0.97 
 

Table 5.1 (cont.). 
77 Clinker S56 65.89 21.43 5.76 3.65 1.01 0.46 0.34 0.94 

78 Clinker S57 65.91 21.64 5.65 3.49 1.03 0.47 0.34 0.94 

79 Clinker S16 65.92 21.21 5.74 3.62 1.05 0.41 0.34 1.01 

80 Clinker S52 65.96 21.44 5.76 3.57 1.01 0.39 0.34 0.93 

81 Clinker S54 66.03 21.43 5.75 3.59 1.04 0.4 0.33 0.92 

82 Clinker S58 66.09 21.55 5.56 3.43 1.02 0.52 0.34 0.96 

83 Clinker S67 66.16 21.49 5.64 3.46 1.01 0.44 0.34 0.95 

84 Clinker S66 66.2 21.46 5.7 3.41 1.01 0.43 0.34 0.94 

85 Clinker S53 66.22 21.32 5.71 3.49 1.09 0.4 0.33 0.92 

86 Clinker S55 66.24 21.21 5.72 3.5 1.09 0.51 0.31 0.9 

87 Clinker S68 66.24 21.56 5.61 3.37 1 0.44 0.34 0.93 

88 Clinker S63 66.27 21.21 5.73 3.49 1.08 0.6 0.32 0.94 

89 Clinker S59 66.38 21.15 5.72 3.52 1.04 0.4 0.33 0.96 
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The partial least squares (PLS) multivariate calibration method combined with 

FTIR-ATR spectroscopy has been used to determine the percent concentration of eight 

oxides: CaO, SiO2, Al2O3, Fe2O3, MgO, SO3, Na2O, K2O. Figure 5.1 illustrates the FTIR-

ATR spectra of all 113 samples, which consist of raw materials, cement types, raw meals, 

and clinker between 4000-550 cm-1 wavenumber region.  Each sample was analyzed in 

triplicate, and its mean spectrum was used to perform the PLS analysis.  

Loss of ignition analysis of the samples was determined gravimetrically. Clinker 

samples were removed from the data because the loss of ignition analyses for the clinker 

samples do not perform in the quality control laboratory of the most cement factory. After 

all, clinker samples are produced by burning raw meals at high temperatures. They do not 

have humidity. Also, the loss of ignition result of some samples does not have. Therefore, 

these samples were also excluded from the data. Finally, loss of ignition results of 85 

samples and their full range of spectra were mean-centered were used to construct the 

PLS model. The reference loss of ignition results was given in Table 5.3.The datasets 

were organized considering that the validation and calibration sets contain samples of 

similar composition. The validation dataset was designed to cover all types of samples.  

Table 5.3. Calibration and Validation data set of first scenario for L.O.I 

 

NO Sample Loss of Ignition (w/w%) NO Sample Loss of Ignition (w/w%) NO Sample Loss of Ignition (w/w%)
1 S37 1.03 35 S4 4.40 68 S5 1.03
2 S6 1.52 36 S25 4.45 69 S23 2.86
3 S93 2.60 37 S24 4.45 70 S84 3.00
4 S91 2.63 38 S77 4.45 71 S98 3.03
5 S87 2.83 39 S26 4.53 72 S88 3.11
6 S106 2.84 40 S114 4.56 73 S13 3.17
7 S99 2.86 41 S78 5.08 74 S113 3.42
8 S109 2.90 42 S29 5.10 75 S31 3.86
9 S97 2.90 43 S22 5.16 76 S27 4.57

10 S110 2.95 44 S75 5.48 77 S70 6.44
11 S89 3.00 45 S3 6.66 78 S72 6.77
12 S85 3.00 46 S33 6.69 79 S38 15.10
13 S100 3.01 47 S74 8.17 80 S49 21.93
14 S112 3.03 48 S73 8.99 81 S14 25.33
15 S111 3.07 49 S39 14.75 82 S34 34.57
16 S95 3.07 50 S40 17.36 83 S69 42.15
17 S43 3.11 51 S45 21.88 84 S20 42.72
18 S104 3.11 52 S76 22.30 85 S32 42.86
19 S105 3.12 53 S19 25.07
20 S90 3.15 54 S48 26.95
21 S108 3.15 55 S44 27.32
22 S12 3.25 56 S47 30.88
23 S42 3.32 57 S36 34.29
24 S18 3.32 58 S35 34.94
25 S102 3.41 59 S46 36.44
26 S96 3.41 60 S2 41.91
27 S28 3.48 61 S41 42.50
28 S30 3.48 62 S15 42.50
29 S86 3.55 63 S10 42.58
30 S92 3.57 64 S21 42.63
31 S9 3.64 65 S8 42.81
32 S101 3.64 66 S1 43.19
33 S80 3.88 67 S7 43.48
34 S79 4.13

Calibration Data Set Validation Data Set
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Figure 5.1.  Mid-IR spectra of all samples 

In Figure 5.2, the spectrum of one sample for each type was given in order to 

distinguish the types of samples included in the data set. 

 

Figure 5.2. Mid-IR spectra of each type of sample included in the data set 

Without any pre-processing technique and, also, with performing a suitable pre-

processing technique, the full range of spectra was mean-centered and used to construct 

the PLS models. The Leave-one-out cross-validation pattern was used to determine the 

optimal number of latent variables (principal components) to prevent the overfitting 

problem. 
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5.1.1. The First Scenario Without pre-processing  
 

5.1.1.1. The PLS results of the CaO component 

 

The predicted residuals errors sum of squares (PRESS) values were determined 

using cross-validation with mean-centering for the first 30 LVs to find the optimal 

number of Latent variables, and the results are shown in Figure 5.3.  

Figure 5.3. Number of PCs vs. PRESS plot to select the optimal number of LVs of CaO. 

By considering Figure 5.3, 12 LVs were chosen after the mean centering of the 

data. Next, the model's performance was decided by plotting predicted CaO (w/w%) 

values against reference CaO (w/w%) values. Finally, Figure 5.4 represents the 

correlation graph of the calibration and validation sets.  

 

Figure 5.4. a) Reference CaO concentrations vs. Predicted CaO concentrations. 
                  b) Statistical parameters of CaO. 

 
As can be seen in Figure 5.4, the regression coefficient (R2) of the model was found 

as 0.988, and the standard error of cross-validation (SECV) was found 2.065 (w/w%), 

and the standard error of prediction (SEP) was found as 4.234 (w/w%). Thanks to having 
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a high regression coefficient value, the Pls model has successfully predicted the 

concentration of CaO (w/w%) for the samples. Figure 5.5 shows the residuals graph, which 

can be used to determine the error range and potential residual trends. 

 

Figure 5.5. Reference CaO concentrations vs. Corresponding PLS prediction residuals of 
CaO    

 

Although most residuals are in the ±5 (w/w%) range, there are exceptions, 

especially for some samples, as shown in Figure 4.7. When the calibration and validation 

data were examined, the s74 sample has the highest cross-validation absolute error in the 

calibration data set, and the S3-S5 samples have the highest absolute errors in the 

validation data set. The s74 sample has three times more cross-validation errors than other 

samples in the calibration dataset. The S3 and S5 samples have the close absolute errors 

and have the two highest errors compared to other samples in the validation set and were 

a vast difference between its absolute errors the other samples. First, S74 was removed 

from the data to improve the calibration model. Then S3 and S5 samples were also 

excluded from the validation dataset. After all outlier samples are removed, the PLS 

model was performed on the rest of the data by choosing 10 LVs after mean centering of 

the data and number of PCs vs. PRESS plot for selecting the optimal number of PCs was  

illustrated in Figure 5.6. 
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Figure 5.6. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of   
CaO 

 

For the prediction of concentration of CaO (w/w%), the PLS model was 

constructed using the first ten principal components (PCs). To evaluate performance of 

model, a plot which is reference concentration of CaO (w/w%) values vs. predicted 

concentration of CaO (w/w%) values were obtained and was showed in Figure 5.7. 

 

Figure 5.7. a) Reference CaO concentrations (w/w%) vs. PLS predicted CaO 
                   concentrations (w/w%) b) Statistical parameters of CaO.  

As seen in Figure 5.7, the model performance is considerably close for calibration 

and validation set predictions with showing no overfitting. Additionally, SECV and SEP 

values were found to be 1.912 (w/w %) and 2.086 (w/w %), respectively. The predicted 

power of value for calibration set predictions are calculated as 0.99, and the regression 

coefficient (R2) value for the validation set is 0.989. For determining the error range and 

possible residual trends, the residuals plot is given in Figure 5.8. 
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Figure 5.8. Reference concentrations vs. corresponding PLS prediction residuals of CaO. 

With the elimination of the outlier samples from the data set, most of the residuals 

exist in the range of ±4 (w/w %). As compared to the first model, the final PLS model 

was produced using a lower number of principal components that ensure avoiding the 

model to noises and with lower SECV and SEP values, and with higher predictive power. 

The same strategy has been followed for outlier detection for other components.  

5.1.1.2. The PLS results of the SiO2 component 

Prediction of SiO2 component concentration of scenario one samples was obtained 

by applying the PLS method. The predicted residuals errors sum of squares (PRESS) 

values were determined using cross-validation with mean-centering for the first 30 LVs 

to decide the optimal number of Latent variables, and the results are presented in Figure 

5.9. 

 

Figure 5.9. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
SiO2. 
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By considering Figure 5.9, 14 LVs were chosen after mean centering of the data. 

The model's performance was decided by plotting a graph that predicted SiO2 (w/w%) 

values vs. reference SiO2 (w/w%) values. Figure 5.10 was then reached to represent the 

performance of the model. 

 

Figure 5.10. a) Reference SiO2 concentrations (w/w%) vs. PLS predicted SiO2 
concentrations (w/w%). b)Statistical parameters of SiO2. 

 

The same strategy has been followed for outlier detection for the SiO2 component. 

Samples that have names as S46, S33 was removed from the calibration data set and, S5, 

S3 were removed from the validation data set. Those samples were decided as outlier 

samples because they had high cross-validation absolute errors for calibration set samples 

and high absolute errors for validation set samples. After the outlier elimination, the 

regression coefficient of the final calibration model (R2) was found as 0.99, and the 

predictive power of the validation data set (R2) was found as 0.97. The performance of 

the model is remarkably close for both calibration and validation set predictions. Also, 

the Standard error cross-validation (SECV) and the standard error prediction (SEP) values 

were calculated as 1.161 and 2.594 (w/w%), respectively. For the detection of error range, 

the residual plot of reference concentrations vs. corresponding PLS predictions of SiO2 

the residual plot of reference concentrations vs. corresponding PLS predictions of SiO2 

was given in Figure 5.11. 
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Figure 5.11. Reference concentrations vs. corresponding PLS prediction residuals of SiO2 

As can be seen in Figure 5.11 , most of the residuals are in the region of ±4 

(w/w%), but the range of residuals for the validation set was expanded +7 for the positive 

side of the plot. Therefore, the SEP value was higher than the SECV value. 

 

 5.1.1.3. The PLS results of the Al2O3 component  

For the concentration prediction of Al2O3 component, 18 principal components 

were used while applying PLS calibration method. The responsible figure  that number 

of principal component vs. PRESS was showed in Figure 5.12.  

 

Figure 5.12. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
Al2O3  

The reference Al2O3 concentrations (w/w%) against predicted Al2O3 

concentrations (w/w%) gained by the PLS model were plotted to obtain the model's 
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performance for the Al2O3 concentration prediction. The corresponding figure was given 

in Figure 5.13. 

 

Figure 5.13. a) Reference Al2O3 concentrations vs. Predicted Al2O3 concentrations by 
PLS. b) Statistical parameters of Al2O3   

 In Figure 5.13, the regression coefficient, SECV, SEP values, and concentration 

range of the Al2O3 were given to indicate the performance of the PLS model. The 

regression coefficient values were found as 0.99, and 0.92 for calibration and validation 

sets, respectively. For the concentration prediction of Al2O3 components, high regression 

coefficients were obtained. The standard error of cross-validation was calculated as 0.339 

(w/w%), and the standard error of prediction was calculated as 0.728 (w/w%). Before 

constructing the last model, outlier elimination was made by following the same strategy 

as modeled previous components. S46 and S5 samples are removed from the data as 

outliers. Those were gypsum and ash samples. For the determination of the range of errors 

and possible residual trends, the residuals graph is shown in Figure 5.14. 

 
Figure 5.14. Reference concentrations vs. corresponding PLS prediction residuals of 

Al2O3 

The residuals were found in ±1 region for the calibration set and were found in 

the -1.5,+2 region for the validation set.   
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5.1.1.4. The PLS results of the Fe2O3 component  

Before starting construction of a calibration model, S4, S43, S33, S42, S3 samples 

were removed from the data set because those samples are iron ore samples and have  

significantly higher concentrations of Fe2O3 than the rest of the data. PRESS values were 

calculated using CV predictions with mean centering for the first 30 LVs to decide the 

optimal number of LVs, and the results are presented in Figure 5.15. 

 

Figure 5.15. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
Fe2O3  

 

 Using the first eighteen principal components, the PLS model was constructed for 

the concentration prediction of the Fe2O3 component. The model performance was found 

by plotting the reference concentration of Fe2O3 (w/w%) against the predicted 

concentrations of Fe2O3 (w/w%). The results were shown in Figure 5.16.   

 

Figure 5.16. a) Reference Fe2O3 concentrations vs. Predicted Fe2O3 concentrations by 
PLS. b) Statistical parameters of Fe2O3  
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 The regression coefficients of the model for Fe2O3 concentration prediction were 

found as 0.988 that belongs to the calibration set, and 0.987 which belongs to the 

validation set. These results show that the model performance to predict Fe2O3 

concentration is excellent because calibration and validation set regression coefficients 

are almost equal. In conclusion, The PLS model results are reliable to predict the 

concentration of Fe2O3. SECV and SEP values were calculated as 0.159 and 0.314 

(w/w%), respectively. SECV value is higher than the SEP value that shows the model 

does not have an overfitting problem. Although the dynamic range of samples is narrow, 

the Fe2O3 model showed high performance with high regression coefficients. For the 

determination of error range along , the residuals plot was given in Figure 5.17. 

Figure 5.17. Reference concentrations vs. corresponding PLS prediction residuals of 
Fe2O3    

 
Figure 5.17. shows the residual trends, and most of the residuals are in the region 

between  ±0.6 (w/w %). 

5.1.1.5. The PLS results of the MgO component  

 

 The MgO model was constructed using the first seventeen principal components 

that were decided as the optimal number of principal components. The number of latent 

variables vs. PRESS plot was given in Figure 5.18. 
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Figure 5.18. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
MgO 

The reference MgO concentrations (w/w%) against predicted MgO 

concentrations (w/w%) obtained by the PLS model were plotted to obtain the model's 

performance for the MgO concentration prediction. The corresponding figure was given 

in Figure 5.19. 

 

Figure 5.19. a) Reference MgO concentrations vs. Predicted MgO concentrations by PLS. 
b) Statistical parameters of MgO.  

 

The regression coefficients of model were found as 0.937 and 0.922 for 

calibration, validation sets, respectively. SECV and SEP values were calculated as 0.279, 

0.310 (w/w%), respectively. The results are close each other, the performance of the 

model is succeeded to predict concentration of MgO for each sample. Before the 

constructing final model, the outlier samples were evaluated for MgO component 

according to their results of absolute errors. Only S35 sample was defined as outlier and 

removed the data set. For the determination of the range of errors and possible residual 

trends of constructed final PLS models,  the residuals graph is shown in Figure 5.20. 
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Figure 5.20. Reference concentrations vs. corresponding PLS prediction residuals of 
MgO (w/w%) 

Figure 5.20, shows the residual trends, and most of the residuals are in the region 

between  ±0.5 (w/w %). 

5.1.1.6. The PLS results of the SO3 component  

 For the determination of SO3 concentrations in studied samples, the PLS model 

was constructed using the first sixteen principal components given in Figure 5.21 

obtained to find the optimal number of principal components.   

 

Figure 5.21. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
SO3   

The model performance was found by plotting the reference concentration of SO3 

(w/w%) against the predicted concentrations of SO3 (w/w%). The results were shown in 

Figure 5.22.   
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Figure 5.22. a) Reference SO3 concentrations vs. Predicted SO3 concentrations by PLS. 
b) Statistical parameters of SO3.   

The regression coefficients of the model were found as 0.994 and 0.988 for 

calibration and validation sets, respectively. SECV and SEP values were calculated as 

0.74 and 1.205 (w/w%), respectively. The model performance is close enough for the 

calibration and validation set predictions, with the calibration performance only slightly 

higher, indicating that no overfitting can be observed. For the determination of the error 

range and possible residual trends, the residuals plot was given in Figure 5.23. 

 

 

Figure 5.23. Reference concentrations vs. corresponding PLS prediction residuals of SO3 

As shown in Figure 5.23, most residuals are in the range between  ±1 (w/w %). 

However, there are exceptions for some samples which lie on more extensive error ranges. 

The samples were checked and realized that all samples with high error values are gypsum 

samples that comprise CaSO4.0.5 H2O. The constructed model can trouble in predicting 

concentrations of SO3 of gypsum samples. 
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5.1.1.7. The PLS results of the Na2O component  

 The PLS model of Na2O was formed using the first ten principal components after 

mean centering of the data. PRESS values were calculated using cross-validation 

predictions for 30 LVs. Results were presented in Figure 5.24. 

 

 
Figure 5.24. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 

Na2O 

 The model performance evaluation was done by plotting the reference 

concentrations of Na2O (w/w%) against predicted concentrations of Na2O (w/w%) 

obtained by the constructed PLS model. The corresponding figure is illustrated in Figure 

5.25. 

 

   Figure 5.25 a) Reference Na2Oconcentrations vs. Predicted Na2O concentrations by 
PLS.   b) Statistical parameters of Na2O  

 The regression coefficients of the model were found as 0.944, 0.90 for calibration 

and validation set, respectively. SECV and SEP values were calculated as 0.089 and 0.154 

(w/w%), respectively. Any sample was not removed from the data as an outlier. The Na2O 

is a minor oxide that includes cement composition; therefore, the range of the Na2O 

concentration is narrow. Although the concentration range of Na2O was narrow, the 
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constructed PLS model successfully predicted the concentration Na2O of the sample 

thanks to having high regression coefficients. For the determination of the error range and 

possible residual trends, the residuals plot was given in Figure 5.26. 

 

Figure 5.26. Reference concentrations vs. corresponding PLS prediction residuals of 
Na2O. 

Figure 5.26. shows the residual trends, and most of the residuals are in the region 

between  ±0.2 (w/w %). The reference concentration range is quite narrow, making it 

more difficult to predict, and more samples can improve the ability to predict Na2O 

concentration. 

5.1.1.8. The PLS results of the K2O component  
 

For deciding optimal LVs, PRESS values were calculated using cross-validation 

predictions with mean-centering for the first 30 LVs, and the results are given in    Figure 

5.27. Using the first fourteen principal components, the PLS model was constructed to 

predict concentration K2O in samples. 

 

   Figure 5.27. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
K2O 
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The model performance evaluation was done by plotting the reference 

concentrations of K2O (w/w%) against predicted concentrations of K2O (w/w%) 

obtained by the constructed PLS model. The corresponding figure is illustrated in Figure 

5.28. 

 
Figure 5.28. a) Reference K2Oconcentrations vs. Predicted K2O concentrations by PLS. 

b) Statistical parameters of K2O.  

The K2O concentration range of samples is narrow because K2O is also minor 

oxide that includes in the cement composition. The performance of the model was found 

0.924 for the calibration set and 0.9525 for the validation set. The regression coefficient 

of the validation model is higher than the calibration model. The SECV and SEP values 

were calculated as 0.21 and 0.169 (w/w%), respectively. Therefore, SEC value of the 

validation model is higher than the SEP value for the calibration set. This result shows a 

slight overfitting problem in constructed PLS model for the estimation of K2O 

concentration. For the determination of the error range and possible residual trends, the 

residuals plot was given in Figure 5.29.  

 

    Figure 5.29. Reference concentrations vs. corresponding PLS prediction residuals of    
K2O 
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As shown in Figure 5.29, most residuals are in the region between ±0.5 (w/w %). One 

sample was out of the region between ±0.5 (w/w%). As this sample is examined, the S38 was 

found to as one of the raw-meal samples with the highest concentration of K2O. By adding the 

raw-meal samples with the concentrations close as the s38 sample in the data set, the predicting 

ability of the model can be improved. 

5.1.1.9.  The PLS results of L.O.I 

The PLS model was constructed to estimate the amount of loss of ignition of 85 

samples using the optimal number of principal components. PRESS values were 

calculated by using cross-validation predictions with mean centering of 30 LVs. Figure 

5.30 represents the results of calculated PRESS values vs. the Number of Latent variables. 

 

Figure 5.30. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
L.O.I  

Using the first sixteen principal components, the Pls model was constructed to 

estimate the loss of ignition concentration of samples. Also, the constructed PLS model 

performance was evaluated by plotting the reference concentration of loss of ignition 

(w/w%) against the predicted concentration of loss of ignition. The PLS model results 

and the plot were given in Figure 5.31. 
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Figure 5.31. a) Reference K2Oconcentrations vs. Predicted L.O.I  concentrations by PLS 
b) Statistical parameters of L.O.I  

 The regression coefficients of the model were found as 0.99,  0.96 for calibration 

and validation, respectively. The regression coefficients of the two sets were quite close 

to each other. The performance of the calibration model is too good, and the performance 

of the formed validation set to test the calibration model was also quite good. The 

constructed PLS model was successful in estimating the concentration of loss of ignition 

of studied samples. The SECV and SEP values are calculated 0.79, 3.034 (w/w%), 

respectively. The residual plot for both calibration and validation set was given in    Figure 

5.32. 

 

   Figure 5.32. Reference concentrations vs. corresponding PLS prediction residuals of 
L.O.I 

As shown in Figure 5.32, the residual plot of the validation set was distributed in a 

wide range between ±4  (w/w %), and the calibration set residuals are in the lower range 

between ±2 (w/w %), which shows that the SEP value of the validation set much higher 

than calibration set. 
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5.1.2.  The First Scenario with Pre-Processing  

Data pretreatment is carried out by using several pre-processing techniques for 

each FTIR-ATR spectrum of first scenario samples are given before. Several pre-

processing techniques, such as Multiplicative Scatter Correction (MSC), Baseline 

correction, Extended Multiplicative Scatter Correction (EMSC), were applied to spectra 

of samples before the PLS models of each oxide and loss of ignition are computed. The 

best PLS models have been obtained with the Extended Multiplicative Scatter Correction 

(EMSC) pre-processing technique. Before extended multiplicative scatter correction is 

applied, the region between 2450-2350 cm-1 was excluded from the spectra because of 

showing absorption caused by atmospheric carbon dioxide. The calibration and validation 

sets are the same as the without-preprocessing part of the thesis. Outlier detection was 

evaluated for every specific component according to the high error values of the sample 

for each component.  

Extended multiplicative signal correction (EMSC) is a preprocessing tool for 

distinguishing physical light scattering effects from vibrational effects in samples ranging 

from powders to turbid solutions. In spectroscopy, the spectra are often influenced by 

various phenomena other than chemical components of interest. Depending on the 

analysis type, the phenomena are changing, for example, from measurement noise to 

systematic error to interfering effects of undesired chemical and physical variations that 

cause undesired scattering variations in the sample of interest. This uncontrolled physical 

variation in samples could be due to the particle size and shape, sample preparation, 

sample surface. These issues could be minimized or eliminated if light scattering could 

be mathematically modeled and corrected in a reliable preprocessing point. EMSC 

preprocessing produces a spectrum by isolating the chemical absorption of light from 

additive, multiplicative and wavelength-dependent effects of uncontrolled variations in 

light scattering (Afseth & Kohler, 2012; Martens et al., 2003). 

The Lambert-Beer law, a convenient starting point for deriving the basic EMSC 

model, is used to make quantitative measurements in vibrational absorbance 

spectroscopy. According to the Lambert- Beer law, an absorbance spectrum is directly 

proportional to the effective optical path length. The absorbance A(v) of transparent 

samples containing a single light-absorbing chemical species is calculated as follows: 
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                                    (5.1) 

where k(v) denotes the characteristic absorptivity of a particular component at a given 

wavenumber v, b denotes the optical path length, and c denotes the concentration of light-

absorbing chemical species in the sample. Spectral variations caused by changes in 

optical path length are generally referred to as "multiplicative" variations. Many different 

component spectra kJ(v) (where j denotes the different component from j=1...J) have 

strongly overlapping characteristics since many different types of samples are very 

complex and encounter many different species k(v). The Lambert-Beer law can thus be 

written as a superposition of absorbance of several species for J absorbing species: 

                                   (5.2) 

where is the spectrum, and is the concentration for component j. The length of 

the optical path b is assumed to be comparable for all components Sample’s chemical-

constituent spectra are often not recognized also difficult to obtain. However, the overall 

shapes of infrared spectra from samples are similar. The average spectrum of a sample 

set is an excellent approach for each spectrum. A measured absorbance spectrum A(v) 

may thus be expressed as the mean  of all spectra in given data set plus deviations 

 from this mean : 

                                    (5.3)        

Inserting Equation (5.3) into Equation (5.2) obtained : 

              (5.4) 

 

where the total of the concentrations is 1 : 

                                               (5.5) 

Then inserting Equation (5.5) into Equation (5.4), then obtained: 

                                (5.6)  
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The statistical model can be used to replace Equation 5.6  in all situations where the 

overall form of the measured spectrum is similar to the average spectrum  , anf the 

satistical model represented as : 

                                                (5.7) 

Where  is the residual. The multiplicative signal correction (MSC) model is an 

additive effect provided by the constant baseline that extends the Lambert–Beer-type 

model shown in Eq. (5.7).The MSC model can be written as : 

                                               (5.8) 

Parameters that are not known are estimated by weighted least squares regression, then, 

a and b are evaluated, the spectra are corrected for: 

                                                 (5.9) 

In some instances, the spectra contain baseline variations that cannot be expressed by a 

straight line. A baseline with an arbitrary slope, a quadratic term, or terms of higher 

polynomial order can be added to the MSC model in Eq. (5.8) to produce simple 

extensions of MSC, known as an extended multiplicative signal correction and 

represented as :  

                (5.10) 

The least square solution of the unknown parameters is given by :  

                             (5.11) 

 

Figure 5.33, Raw FT-IR spectra of the samples are given, and after the EMSC pre-

processing applied spectra of the samples are given. 
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Figure 5.33. left: Raw FT-IR spectra of the samples, right : the EMSC spectra of the 
samples.  

 

5.1.2.1.  The PLS result of CaO component 

To find the best-suited LV number, the predicted residual error sum of  squares 

(PRESS) was calculated for the first 30 LVs, and the results are given in Figure 5.34. 

 

Figure 5.34. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
CaO. 

Using the first ten principal components, the PLS model to predict the 

concentration of CaO (w/w%) was constructed. The model's performance was calculated 

by plotting the regression graph of two sets that involves reference concentration of CaO 

(w/w%) vs. predicted concentration of CaO (w/w%) by the PLS model. Furthermore, the 

related graphic was illustrated in Figure 5.35. 
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Figure 5.35. a) Reference CaO concentrations vs. Predicted CaO concentrations by PLS. 
b) Statistical parameters of CaO  

The regression coefficients of the model were found as 0.994, 0.987 for 

calibration and validation sets, respectively. The model performance of the calibration 

set, and the validation set  is quite close each other which show that the PLS model 

predictive ability are too reliable. SECV and SEP values were calculated as 1.391, 2.075 

(w/w%), respectively. The residual graph of the two set was given in Figure 5.36. 

 

Figure 5.36. Reference concentrations vs. corresponding PLS prediction residuals of 
CaO. 

 
 As shown in Figure 5.36, most of the residuals are in the region between ±4 . 

When The PLS model, which is created without the pre-processing technique, and 

with the EMSC applied PLS model were compared, the concentration of CaO (w/w%) in 

the studied samples was predicted more successfully for the EMSC applied PLS model. 

Lower SEC and SEP values and higher regression coefficients were obtained with the 

EMSC technique. 
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5.1.2.2. The PLS result of SiO2 component 

The predicted residual error sum of squares (PRESS) were calculated for 30LVS 

for detection optimal number of principal component that will use for the construction 

the PLS model. The PRESS values and number latent variables results are given Figure 

5.37. 

 

Figure 5.37. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
SiO2. 

 The first six principal components were found as the optimal number principal 

components and with using these first six principal components the PLS model was 

obtained for prediction of SiO2 concentration. The regression coefficient of the model 

was decided to detect the reliability of the model for the prediction stage. Therefore, 

correlation graph of the calibration and validation set was plotted by using reference 

concentrations of SiO2 and the predicted concentrations of SiO2 (w/w%). The graph was 

given in Figure 5.38. 

 

Figure 5.38. a) Reference SiO2 concentrations vs. Predicted SiO2  concentrations by PLS.  
b) Statistical parameters of SiO2. 
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 The regression coefficients of the model were found as 0.986, 0.984 for 

calibration and validation sets, respectively. SECV and SEP values were calculated as 

1.416 and 1.96 (w/w%), respectively. The PLS model's prediction of SiO2 concentration 

was made successful thanks to having high and close regression coefficients of the two 

sets. The residual range of samples were given in Figure 5.39. 

 

Figure 5.39. Reference concentrations vs. corresponding PLS prediction residuals of 
SiO2 

 As shown in Figure 5.39, most of the residuals are in the range of ±1.5. The 

calibration set residuals were found to be scattered in a little wide range than the 

validation set, which shows that the SECV value was found higher than the SEP value 

5.1.2.3. The PLS result of Al2O3 componentt 

To find the best-suited LV number, the predicted residual error sum of  squares 

(PRESS) were calculated for the first 30 LVs, and the results are given in Figure 5.40.

 

Figure 5.40. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
Al2O3  

Using Figure 5.40, the PLS model was created with the first eleven principal 

components. Figure 5.41 is a regression graph obtained from the calibration and 
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validation's reference concentrations and predicted concentration of the  Al2O3 (w/w%)  

to determine the performance of the PLS model. 

 

Figure 5.41. a) Reference Al2O3 concentrations vs. Predicted Al2O3 concentrations by 
PLS. b) Statistical parameters of Al2O3  

The regression coefficients of the model were found as 0.98, 0.99 for calibration 

and validation set, respectively. SECV and SEP values were calculated as 0.486, 0.455, 

respectively. SEP value was higher than the SECV value, indicating a little overfitting 

problem in the PLS model, but not too much because the quantities of regression 

coefficients are close. Also, having high regression coefficients indicates that the 

model's predictability was quite satisfying to estimate Al2O3 (w/w%) concentration in 

the samples. The residual scatter graph  of the two set was given in Figure 5.42. 

 

Figure 5.42. Reference concentrations vs. corresponding PLS prediction residuals  of 
Al2O3  

As can be seen in Figure 5.42, the residuals of the PLS model for the calibration 

set distributed in a  little wider range than the residuals of the validation set. Therefore, 

the SECV value was found higher than the SEP value. 



 

62 

5.1.2.4. The PLS result of Fe2O3 component 

For the determination of Fe2O3 concentration (w/w%), the PRESS values were 

calculated for the first 30 LVs, then the optimal number of the latent variables was 

decided. The results were shown in Figure 5.43. 

 

Figure 5.43. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
Fe2O3  

Using the first ten latent variables, the PLS model was constructed, and Figure 5.44 

was obtained to evaluate the model's performance. 

 

Figure 5.44 . a) Reference Fe2O3 concentrations vs. Predicted Fe2O3  concentrations by 
PLS. b)Statistical parameters of Fe2O3 

 
The regression coefficients of the model were found as 0.978, 0.968 for the 

calibration and validation set, respectively. SECV and SEP values were calculated as 

0.205, 0.273 (w/w%), respectively. Although the Fe2O3 concentration range of the sample 

is narrow, the model's predictive ability was found high thanks to having high regression 

coefficients and low SEC and SEP values. Furthermore, the model was constructed with 

a relatively low number of the latent variable. The residual plot was given in Figure 5.45. 

PR
ES

S



 

63 

 

Figure 5.45. Reference concentrations vs. corresponding PLS prediction residuals of 
Fe2O3      

As shown in Figure 5.45, most of the residuals are in the range of ±0.6, and the 

two sets are almost equally scattered. 

5.1.2.5. The PLS result of MgO component 

     PRESS values were calculated by using cross-validation predictions for the first 

30 LVs to find the optimal number of latent variables, and the results are shown in Figure 

5.46. 

.  

Figure 5.46. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
MgO  

The PLS model was constructed with the first 18 LVs to estimate the MgO 

concentrations of samples (w/w%). The model performance was presented in Figure 5.47. 
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Figure 5.47. a) Reference MgO concentrations vs. Predicted MgO  concentrations by PLS. 
b) Statistical parameters of MgO  

The regression coefficients of the model were found as 0.94, 0.89 for calibration 

and validation sets, respectively. The SECV and SEP values were calculated as 0.26 and 

0.417, respectively. The regression coefficient of the validation set showed inferior 

performance for the prediction of MgO, which can be explained by the low variability of 

samples with high MgO content. Also, can be explained low content of the MgO 

component in the sample set. The residual graph of two set was given in Figure 5.48. 

 

Figure 5.48. Reference concentrations vs. corresponding PLS prediction residuals of 
MgO  

As can be seen in Figure 5.48, most residuals are in the range  ±1, but there are a 

exception for a specific sample that is S47-gypsum sample. Among all gypsum samples, 

S47 has the highest MgO concentration.  Although the PLS model is relatively successful, 

in the prediction stage, the estimation of MgO can be doubtful, especially for gypsum 

samples. 
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5.1.2.6. The PLS result of SO3 component 

PRESS values were calculated with using cross-validation prediction of the first 

30 LVs to obtain the optimal principal component to create PLS model. The results a 

given in Figure 5.49. 

 

Figure 5.49. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
SO3 

 The first 13 principal components were used to construct the PLS model for the 

estimation of SO3 concentrations of the samples. The model performance evaluation was 

done by plotting the correlation graph of the calibration and validation sets. The 

correlation graph was given in Figure 5.50. 

 

Figure 5.50. a) Reference SO3 concentrations vs. Predicted SO3  concentrations by PLS.  
b) Statistical parameters of SO3 

The regression coefficients of the model were found as 0.9979, 0.9977 for 

calibration and validation sets, respectively. SECV and SEP values were calculated as 

0.39, 0.68 (w/w%), respectively.The regression coefficients of the two set are very close 

that show the predicted abilility of the model for SO3 concentration is quite high thanks 
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to having high regression coefficients. SECV  values is lower than the SEP value that 

indicates that there is no overfitting problem in PLS model. The residual plot of the two 

set is given in Figure 5.51. 

 

Figure 5.51. Reference concentrations vs. corresponding PLS prediction residuals of SO3

As can be seen in Figure 5.51, most residuals are in the range of  ±1. Some samples 

exceed the ±1 range. These samples are the gypsum samples with a much higher 

concentration of SO3 than the rest of the data. 

5.1.2.7. The PLS result of Na2O component 

PRESS values were calculated with using cross-validation prediction of the first 30 

LVs to obtain the optimal principal component to create PLS model. The results are given 

in Figure 5.52. 

 

Figure 5.52. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
Na2O 

The first thirteen principal components were decided as the optimal number of 

latent variables and were used to construct PLS model to estimate the concentration of 
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Na2O (w/w%). The performance of model were decided by plotting regression graph of 

the two set. The correlation graph is shown in Figure 5.53. 

 

Figure 5.53. a) Reference Na2O concentrations vs. Predicted Na2O  concentrations by 
PLS. b) Statistical parameters of Na2O   

As shown in Figure 5.53, the regression coefficients of the model were found 0.95, 

0.95 for calibration and validation set, respectively. The SECV value for calibration set 

and SEP value for validation set were calculated as 0.067, 0.118 (w/w%), respectively. If 

the Na2O concentration range of the sample is considered, the range is found to be so 

narrow. Although the samples have low content of Na2O component, the model has a 

high predicted ability because of obtained high regression coefficient for two sets.Figure 

5.54, shows the residuals plot, which can be used to determine the error range and 

potential residual trend. 

 

Figure 5.54.  Reference concentrations vs. corresponding PLS prediction residuals of 
Na2O 

The most residuals are in the range ± 0.3. One sample in the validation set exceeded 

the 0.3 range. Also, that sample has the highest concentration of Na2O. If more samples 
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added that near have that concentration, the model performance, especially for this type 

of sample, can be more robust. 

5.1.2.8. The PLS result of K2O component 

For determination of optimal number of latent variables, PRESS values were 

calculated for the first thirty latent variables, and results are given in Figure 5.55.. 

 

Figure 5.55. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
K2O   

The PLS model was constructed with the 9 latent variables. The evaluation of the 

model performance was shown in Figure 5.56. 

 

Figure 5.56. a) Reference K2O  concentrations vs. Predicted K2O  concentrations by PLS. 
b) Statistical parameters of K2O 

 The regression coefficients of the model were found as 0.98, 0.97 for calibration 

and validation sets, respectively. SECV and SEP values were calculated as 0.072 and 

0.104 (w/w%), respectively. Although the concentration range so narrow, the model’s 

predictive ability is found quite well shows that the constructed PLS model is robust. 
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Figure 5.57, shows the residuals plot, which can be used to determine the error range and 

potential residual trend. 

 

Figure 5.57. Reference concentrations vs. corresponding PLS prediction of K2O 

As shown in Figure 5.57, most residual are in the range of  ± 0.3. 

5.1.2.8. The PLS result of L.O.I component 

For the loss of ignition estimation of samples given in Table 5.3, the optimal 

number of latent variables was determined by calculating PRESS values for the first thirty 

latent variables to construct a PLS model. The results were shown in Figure 5.58. 

Figure 5.58. Number of PCs vs. PRESS plot for selecting the optimal number of PCs of 
L.O.I  

By considering Figure 5.58, the eight principal components were used to construct 

a PLS model to predict the loss of ignition content of the studied samples. The model's 

performance was examined by plotting a correlation graph of the model that How 
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consistent the concentration values predicted by the PLS model are with the actual values, 

and the corresponding correlation graph and model parameters were given in Figure 5.59. 

 

Figure 5.59. a) Reference L.O.I concentrations vs. Predicted L.O.I  concentrations by 
PLS. b) Statistical parameters of L.O.I 

The regression coefficients of the model were found as 0.99, 0.99 for calibration 

and validation set, respectively. The SECV and SEP values were calculated as 1.40, 1.24 

(w/w%), respectively. The model's performance was found quite good, and also, there is 

a slight overfitting problem in PLS because the SEP value was found lower than the 

SECV value. The residual graph of the two sets was given in Figure 5.60. 

 

Figure 5.60. Reference concentrations vs. corresponding PLS prediction residuals of 
L.O.I  

As shown in Figure 5.60, most residuals are in the range of ±3.  

As a conclusion, all obtained results of PLS both without preprocessing and with 

EMSC preprocessing are given in Table 5.4. 
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Table 5.4. All PLS results of without pre-processing and with EMSC pre-processing 

 

As shown in Table 5.4, the obtained  PLS model after applied the EMSC pre-

processing method of the spectra of the samples has more effective than the first PLS 

model with raw spectra of the samples. The PLS model with EMSC is more successful in 

predicting each component's concentration because the regression coefficients of the 

calibration and validation sets were found higher than PLS with the without pre-

processing method. Also, SECV and SEP values were found much lower, and the PLS 

model was constructed for each component with a relatively low number of latent 

variables that show the model has less noise. Only the MgO component has better 

predicted with the first PLS model. Finally, the Paired t-test method was applied to SECV 

and SEP values obtained from both PLS models with raw FTIR spectra, and EMSC 

applied FTIR spectra. The results are shown in Table 5.5.  

Latent Variables SECV (w/w%) SEP (w/w%) R2(cal) R2(val) Max Min Range
CaO 10 1.91 2.09 0.99 0.99 66.38 0.61 65.77
SiO2 14 1.16 2.59 0.99 0.97 55.42 0.28 55.14
Al2O3 18 0.34 0.73 0.99 0.97 17.66 0.02 17.64
Fe2O3 18 0.16 0.31 0.99 0.97 6.13 0.02 6.11
MgO 17 0.28 0.31 0.94 0.92 9.13 0.05 9.08
SO3 16 0.75 1.20 0.99 0.99 43.48 0.05 43.43
Na2O 10 0.08 0.15 0.94 0.94 2.41 0.02 2.39
K2O 14 0.21 0.17 0.92 0.95 3.98 0.01 3.97
L.O.I 16 0.79 3.03 0.99 0.96 43.48 1.03 42.05

Latent Variables SECV (w/w%) SEP (w/w%) R2(cal) R2(val) Max Min Range
CaO 10 1.39 2.07 0.99 0.99 66.38 1.41 64.97
SiO2 6 1.42 1.97 0.99 0.98 55.42 0.28 55.14
Al2O3 11 0.49 0.45 0.98 0.99 17.66 0.02 17.64
Fe2O3 10 0.21 0.27 0.98 0.97 6.13 0.02 6.11
MgO 18 0.26 0.42 0.95 0.89 9.13 0.05 9.08
SO3 13 0.40 0.69 0.99 0.99 43.48 0.05 43.43
Na2O 13 0.07 0.12 0.95 0.95 2.26 0.02 2.24
K2O 9 0.07 0.10 0.99 0.97 3.38 0.01 3.37
L.O.I 8 1.41 1.25 0.99 0.99 43.48 1.03 42.45

Without Pre-Processing

With EMSC pre-processing 
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Table 5.5. t-Test: Paired Two Sample for Means 

 

The purpose of applying Paired t-test is to compare SECV values obtained with 

the two different PLS calibration models and compare SEP values obtained from the 

validation sets of two different PLS models. As seen in Table 5.5, the t-stat is calculated 

as -0.03. According to t Critical two-tail at 95% confidence level, -0.03 is between ± 2.31, 

and the result shows no significant difference between SECV values obtained from the 

PLS model with raw data and PLS model-EMSC applied. For SEP values, t-stat is 

calculated as 1.84. According to t Critical two-tail at 95% confidence level, 1.84 is 

between ± 2.31. It can be said that there is no significant difference also SEP values 

obtained from validation sets of both two methods. On the other hand, mean of the SEP 

values is decreased from 1.18 to 0.82 to validation set with EMSC also variance of the 

SEP values is decreased from 1.26 to 0.59 with EMSC. Although the result was 

insignificant at the 95% confidence level, when examined numerically, it was seen that 

better SEP values were obtained by the PLS models with EMSC, with the decrease of the 

mean and variance in the SEP values. 

5.2. The second scenario 

The second scenario was that the CEM-I samples were used to construct a 

calibration model to predict significant oxides, constituting its chemical composition. The 

reason for constructing a calibration model with CEM-I types of cement samples was that 

every year in Turkey, a considerable amount of CEM-I is manufactured and used for local 

purposes. According to the Turkish cement Manufacturers’ Association, in 2020, the sale 

capacity of CEM-I was approximately 30 million tons per year in domestic, and abroad 

sale capacity of CEM-I was approximately 10 million tons per year. (Türkiye Çimento 

Sanayicileri Birliği, n.d.-c) Each cement factory produces CEM-I type as the main 

product. For that reason, CEM-I quality assurance has a significant factor, and CEM-I 



 

73 
 

types of cement must have certain qualities. Changes in cement quality result from 

changes in the amounts of chemical components that affect the physical performance of 

cement. In the second scenario for a total of 56 CEM-I samples, a calibration model was 

tried to create to detect its chemical composition. 

 A total of 40 CEM-I samples were used as a calibration set to construct the 

PLS  model, while the remaining 16 samples were used as an independent validation set 

to assess the model's predictive performance. The calibration data was left with at least 

three samples at the upper and lower limits to ensure that the resulting model covered 

boundary conditions and accounted for the majority of the variance, and the remaining 

samples were randomly distributed. In Table 5.6 the calibration data set samples' 

reference analyses of each component are given, and in Table 5.7, the validation set 

samples' reference analyses are given. 

Table 5.6. Calibration data set for second scenario samples. 

 

 

No Sample CaO (w/w%) SiO2 (w/w%) Al2O3 (w/w%) FE2O3 (w/w%) MgO (w/w%) SO3 (w/w%) Na2O (w/w%) K2O (w/w%) L.O.I (w/w%)
1 s44 63.75 20.29 5.26 2.18 1.3 3.28 0.17 0.75 3.01
2 s2 63.77 19.56 5.05 3.2 1.25 2.94 0.34 0.75 2.62
3 s14 63.46 19.68 5.3 3.17 1.28 2.9 0.35 0.75 2.6
4 s33 63.48 20.21 5.58 2.08 1.34 3.22 0.19 0.78 3.11
5 s47 63.48 20.21 5.58 2.08 1.34 3.22 0.19 0.78 3.11
6 s31 63.46 20.12 5.52 2.05 1.25 3.06 0.2 0.78 3.55
7 s55 62.27 18.94 4.89 2.86 2.48 3.39 0.49 0.79 3.42
8 s56 62.17 19.13 4.72 3.13 1.73 2.82 0.38 0.81 4.56
9 s29 63.34 20.24 5.4 2.12 1.67 3.24 0.16 0.82 3
10 s9 63.65 19.48 4.98 3.19 1.23 2.92 0.33 0.82 2.89
11 s24 63.21 19.35 5.13 3.27 1.23 3.05 0.34 0.82 3.09
12 s34 63.42 19.83 5.23 2.35 1.54 3.62 0.17 0.83 3
13 s35 63.02 19.99 5.54 2.12 1.59 3.57 0.18 0.83 3.15
14 s15 63.89 19.37 5.2 3.2 1.34 3.16 0.35 0.83 2.21
15 s13 63.8 19.02 5.42 3.26 1.28 2.74 0.38 0.83 2.76
16 s45 63.28 20.18 5.54 2.16 1.36 2.79 0.19 0.84 3.64
17 s50 62.5 20.32 5.69 2.28 1.46 3.55 0.2 0.84 3.15
18 s6 62.99 19.49 5.29 3.67 1.26 3.02 0.33 0.84 2.6
19 s54 63.13 18.78 5.16 2.88 1.98 3.25 0.38 0.84 3.03
20 s51 62.76 20.21 5.53 2.1 2.02 3.45 0.16 0.85 2.9
21 s41 63.25 20.36 5.41 2.17 1.67 3.21 0.17 0.85 2.9
22 s5 63.33 19.31 5.36 3.53 1.28 2.77 0.35 0.85 2.7
23 s57 63.1 18.98 5.34 2.84 1.36 3.47 0.37 0.85 3.17
24 s40 63.16 20.44 5.53 2.14 1.23 3.01 0.21 0.86 3.41
25 s37 62.46 20.24 5.62 2.26 1.52 3.32 0.21 0.86 3.57
26 s10 63.49 19.49 5.14 3.36 1.25 2.77 0.34 0.86 2.88
27 s17 65.01 19.96 5.27 3.57 1.28 3.2 0.34 0.86 2.43
28 s8 63.98 19.47 5.34 3.44 1.27 2.79 0.35 0.86 2.99
29 s36 64.89 19.16 5.26 2.85 1.3 2.82 0.2 0.87 2.63
30 s32 62.28 21.07 5.66 2.18 1.47 3.42 0.2 0.87 2.83
31 s53 62.33 20.82 5.76 2.32 1.47 3.11 0.22 0.88 3.07
32 s38 63.45 19.81 5.47 2.91 1.49 3.17 0.18 0.9 2.6
33 s43 61.96 21.23 5.76 2.1 1.9 3.07 0.21 0.9 2.86
34 s1 63.57 19.09 5.33 3.21 1.31 2.8 0.35 0.81 3.01
35 s28 63.12 19.58 5.38 3.32 1.29 2.99 0.34 0.81 2.76
36 s46 63.65 20.2 5.37 2.29 1.28 2.8 0.18 0.81 3.41
37 s26 63.43 19.5 5.16 3.42 1.25 2.79 0.34 0.82 2.78
38 s20 63.27 19.38 5.13 3.42 1.28 3.02 0.33 0.83 2.82
39 s16 63.62 19.4 5.11 3.11 1.28 3.09 0.34 0.84 2.69
40 s18 63.18 19.3 5.14 3.41 1.28 3.1 0.33 0.87 2.88

Calibration Data Set 
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Table 5.7. Validation data set for second scenario samples 

 

Figure 5.61, shows the raw FTIR-ATR absorbance spectra for a total of 56 CEM-

I samples, which were recorded in the 4000–550 cm-1 wavenumber region.  

The mean spectra of each sample were used to construct a PLS model, which was 

done in triplicate. The data was reduced by removing the sensitivity to atmospheric 

carbon dioxide area 2450-2350 cm-1, and mean spectra were pre-processed with extended 

multiplicative scattering correction (EMSC). The PLS models of each oxide and loss of 

ignition component were constructed after mean-centering all spectra. The optimal 

number of latent variables was calculated using the leave one out cross-validation 

method. In the future, the best models will be given. The view of the EMSC applied 

spectra is given in Figure 5.62. 

No Sample CaO (w/w%) SiO2 (w/w%) Al2O3 (w/w%) Fe2O3 (w/w%) MgO (w/w%) SO3 (w/w%) Na2O (w/w%)K2O (w/w%L.O.I (w/w%)
41 s12 62.9 19.5 5.26 3.14 1.24 2.99 0.35 0.8 3.31
42 s39 63.7 20.01 5.33 2.12 1.41 3.37 0.19 0.8 3.07
43 s19 63.71 19.26 5.15 3.38 1.27 2.95 0.34 0.81 2.61
44 s23 63.45 19.4 5.08 3.19 1.25 2.91 0.35 0.81 3.05
45 s3 63.1 19.58 5.19 3.39 1.27 3.08 0.34 0.81 2.72
46 s49 63.31 20.29 5.45 2.38 1.46 3.28 0.17 0.81 2.84
47 s25 63.18 19.05 5.4 3.26 1.32 2.93 0.38 0.83 3.14
48 s22 63.29 19.46 5.22 3.4 1.28 2.99 0.35 0.83 2.68
49 s30 63.38 19.82 5.14 2.66 1.43 3.52 0.19 0.83 3
50 s48 63.06 20.32 5.37 2.12 1.44 3.55 0.17 0.83 3.12
51 s42 63.53 20.41 5.27 2.15 1.38 3.22 0.17 0.83 3.03
52 s7 63.38 19.48 5.22 3.35 1.27 2.89 0.35 0.85 2.7
53 s21 63.35 19.34 5.33 3.22 1.28 2.96 0.36 0.86 2.79
54 s52 62.76 20.52 5.66 2.18 1.58 3.3 0.18 0.86 2.95
55 s4 63.13 19.38 5.42 3.12 1.25 3.07 0.38 0.87 2.88
56 s11 63.35 19.47 5.16 3.29 1.28 3.08 0.34 0.88 2.64

Validation Data Set

Figure 5.61. Raw FT-NIR spectra of a total of 56 CEM-I samples 
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Figure 5.62. The view of spectra of CEM-I samples after EMSC pre-processed method 
applied  

In Figure 5.62, the x-axis represents the wavenumber (cm-1) from 550 cm-1 to 

4.000 cm-1, and the y axis represents the absorbance values. The program that was applied 

the EMSC has its own scale for wavenumber. Therefore, the numbers on the x-axis are 

different from the x axis of Figure 5.61. 

The PLS was performed on the data set of 56 CEM-I samples. Also, the EMSC 

pre-processing was applied for FTIR-ATR spectra to reduce baseline shifts caused by the 

particle size of cement samples. Major and minor oxides were examined with the 

constructed PLS model to predict concentrations that constitute CEM-I chemical 

composition. In addition, the loss of ignition analysis is performed to control the humidity 

of the cement samples, and PLS also examined the estimation of the loss of ignition 

concentration of the studied samples.  The regression coefficients (R2) of the calibration 

and validation data sets, as well as the standard error of cross-validation (SECV) and 

standard error of prediction (SEP), were used to assess the prediction performance of the 

developed models. Models with high regression coefficients and low SECV and SEP 

values were favored. The PLS results were given for each component in the below. 
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5.2.1. The PLS results of CaO 

 Prediction of CaO  concentration of studied samples was done by PLS method, 

the results of constructed PLS model were given in Figure 5.63. 

 

For determining the optimal number of latent variables, PRESS values were 

calculated for the first thirty latent variables, and results were given in Figure 5.63a. 

Considering Figure 5.63a, the first three latent variables were used to construct the PLS 

model to predict CaO concentration (w/w%). The PLS model performance was evaluated 

by plotting the correlation graph of the calibration and validation sets. Reference CaO 

concentrations against predicted CaO concentrations (w/w%) were shown in Figure 

5.63b. The regression coefficient (R2) of the calibration set was found as 0.4512, and the 

regression coefficient (R2) of the validation set was found as 0.21. The model 

performance is not close for calibration and validation. When the range of CaO 

concentration of samples is examined, it is observed that the range is so narrow, making 

prediction more difficult for the PLS model. By adding more samples to the data set, the 

predictability of the model can be improved. Standard error of cross-validation (SECV) 

and standard error of prediction (SEP) were calculated as 0.48, 0.35 (w/w%), 

Figure 5.63. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs.
b) Reference CaO concentrations vs. Predicted CaO concentrations c) 
Reference CaO concentrations vs. corresponding PLS prediction   residuals 
d) Statistical parameters of CaO. 
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respectively. The reference CaO concentrations vs. corresponding PLS prediction 

residuals were given in Figure 5.63c. Most of the residuals are in the range between ±1. 

Finally, all statistical parameters were shown in Figure 5.63d. 

5.2.2. The PLS results of SiO2 

Prediction of SiO2 concentration of studied samples was done by PLS method, the 

results of constructed PLS model were given in Figure 5.64. 

 

Figure 5.64. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs. 
b) Reference SiO2 concentrations vs. Predicted SiO2 concentrations c) 
Reference SiO2 concentrations vs. corresponding PLS prediction residuals 
d) Statistical parameters of SiO2. 

As shown in Figure 5.64 a, the PRESS values were calculated to find the optimal 

number of latent variables to construct a PLS calibration model to estimate the 

concentration of the SiO2 content in the samples. By taking into consideration Figure 5.64 

a, five latent variables were used to create the PLS model. Then the performance of the 

PLS model was evaluated by finding the regression coefficients of the calibration model 

and independent validation set to test our calibration model predictability. The correlation 

graph was shown in Figure 5.64b. The regression coefficients of the calibration and 

validation set were found as 0.85, 0.70, respectively. If considered to the concentration 

range of the samples, these regression coefficients are not too low but not high enough to 

trust the model’s predictability. SECV and SEP values were calculated as 0.23 and 0.25 

(w/w%), respectively. Reference concentrations vs. corresponding PLS prediction 
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residuals were given in Figure5.64c. As shown in Figure 5.64c, most residuals are in the 

range of ±0.6. Finally, all statistical parameters are shown in Figure 5.64d. 

5.2.3. The PLS results of Al2O3 

Prediction of Al2O3  concentration of studied samples was done by PLS method, 

the results of constructed PLS model were given in Figure 5.65. 

 

For the construction of a PLS model, the optimal numbers of latent variables were 

decided by calculating the PRESS values, then, using five latent variables, PLS model 

was constructed. The performance evaluation of the model was done by plotting the 

correlation graph of calibration and independent validation set. The correlation graph of 

the model was given in Figure 5.66b. Correlation coefficients (R2) were found as 0.77, 

0.20 for calibration and validation sets, respectively. Correlation coefficients show that 

the PLS model failed to predict the Al2O3 concentration of the samples because of the 

having low regression coefficients. If considered to Al2O3 concentration of the validation 

set samples are distributed in the narrow concentration compared to the calibration set 

samples, that might be the reason to have a low regression coefficient for the validation 

set. SECV and SEP values were calculated as 0.11 and 0.15 (w/w%), respectively. The  

Figure 5.65. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs.
b) Reference Al2O3 concentrations vs. Predicted Al2O3 concentrations c)
Reference Al2O3 concentrations vs. corresponding PLS prediction residuals
d) Statistical parameters of Al2O3. 
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Al2O3 concentration range of all samples is 1.04 (w/w%), and the residuals are in the 

range between ±0.2. Finally, all statistical parameters were given in Figure 5.65d.   

5.2.4. The PLS results of Fe2O3 

 Prediction of Fe2O3 concentration of studied samples was done by PLS method, 

the results of constructed PLS model were given in Figure 5.66. 

As shown in Figure 5.66a, the PRESS values were calculated to find the optimal 

number of latent variables. By considering the corresponding figure, the first seven latent 

variables were used to form a PLS model. The performance evaluation of the model was 

done by plotting the reference Fe2O3 concentration against predicted Fe2O3 

concentrations for both calibration and validation sets in Figure 5.66b. The regression 

coefficients of the model were found as 0.97, and 0.97 for calibration and validation sets, 

respectively. The SECV and SEP values were calculated as 0.10, 0.16, respectively.  As 

shown in Figure 5.66b, the calibration set covered as much variance as possible for Fe2O3 

concentrations, and the validation set represents a realistic scenario that overfitting could 

not be observed. The regression coefficients of the Fe2O3 concentrations were found high; 

also, SECV and SEP values were found small and close shows that the prediction ability 

of the model was reliable. The possible error range and residual trends were shown in 

Figure 5.66. a) Number of PCs vs. PRESS plot for selecting the optimal number of
PCs. b) Reference Fe2O3 concentrations vs. Predicted Fe2O3
concentrations c) Reference Fe2O3 concentrations vs. corresponding
PLS prediction residuals d) Statistical parameters of Fe2O3. 
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Figure 5.66c that apparently, most residuals are in the range between ±0.2.  Lastly, the 

results obtained from the PLS model were shown in Figure 5.66d. 

5.2.5. The PLS results of MgO 

Prediction of MgO concentration of studied samples was done by PLS method, 

the results of constructed PLS model were given in Figure 5.67. 

For the determination of the optimal number of latent variables, the PRESS values 

were calculated for the first thirty latent variables shown in Figure 5.67a. By considering 

the corresponding Figure 5.67a,  the nine latent variables were used to create a PLS 

model. The model's performance was obtained by plotting a correlation graph for the 

calibration and validation set, which was given in Figure 5.67b. The regression coefficient 

(R2) of the PLS model was found as 0.94, and the regression coefficient (R2) of the 

validation set was found as 0.38 shows that the model performance at the prediction stage 

against a data that is not used for modeling (independent validation set) was not 

reasonable. The SECV and SEP values were calculated as 0.06 and 0.10 (w/w%), 

respectively. The error range and the residuals trend were shown in Figure 5.67c. As 

shown in Figure 5.67c, most residuals were in the range between ±0.2. Lastly, all results 

are represented in Figure 5.67d. 

 
Figure 5.67. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs.

b) Reference MgO concentrations vs. Predicted MgO concentrations c)
Reference MgO concentrations vs. corresponding PLS prediction 
residuals   d) Statistical parameter of MgO 
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5.2.6. The PLS results of SO3 

 

Prediction of SO3 concentration of studied samples was done by PLS method, 

the results  of constructed PLS model were given in Figure 5.68. 

 

Figure 5.68. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs. 
b) Reference SO3 concentrations vs. Predicted SO3 concentrations c) 
Reference SO3 concentrations vs. corresponding PLS prediction residuals d) 
Statistical parameters of SO3.  

For the estimation of SO3 concentration, a PLS model was constructed with the 

optimal number of latent variables founded by calculating the PRESS values for the first 

30 LVs then, and the first four latent variables were used to construct the PLS model. The 

model's performance was examined, by plotting reference SO3 concentrations against 

predicted SO3 concentrations by the PLS model for both calibration and validation sets. 

The regression coefficient of the PLS model was found as 0.58, and the validation set 

created to test the PLS model's prediction regression coefficient was found 0.76. The 

validation set's performance was found higher than the calibration set. Also, SECV and 

SEP values were calculated as 0.169 and 0.12, respectively. SEP value is lower than the 

SECV value. The selected validation samples were in the range of intermediate reference 

concentrations for the SO3 component. The lowest and highest values in the studied 

reference concentration range were often included in the calibration set. If the validation 

set had a wider concentration range comparable to the calibration set, the errors might 
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have been similar. The residuals graph is given in Figure 5.68c shows that residuals are 

in the range between ±0.2. Lastly, all results are given in Figure 5.68d. 

5.2.7. The PLS results of Na2O 

Prediction of Na2O concentration of studied samples was done by PLS method, 

the results of constructed PLS model were given in Figure 5.69. 

PRESS values were calculated for the first thirty latent variables to find the 

optimal number of latent variables shown in Figure 5.69a. By considering Figure 5.69a, 

the first nine latent variables were used to create a PLS model for estimating the 

concentration of Na2O in the samples. The model performance was evaluated by taking 

into consideration the correlation graph of calibration and validation sets. The correlation 

graph was given in Figure 5.69b. The regression coefficient of the model was found as 

0.96, and the regression coefficient of the independent validation set was found as 0.93. 

The SECV and SEP values were calculated as 0.02 and 0.03 (w/w%), respectively. The 

regression coefficients of the two sets were found high, and SECV, SEP values were 

found low. The reference Na2O concentrations vs. corresponding PLS prediction 

residuals were given in Figure 5.69c. As shown in Figure 5.69c, most residuals are in the 

range between ±0.04, and it is seen that the reference concentration values are divided 

into two groups, and there are many reference concentrations at the same value. The 

Figure 5.69. a) Number of PCs vs. PRESS plot for selecting the optimal number of
PCs. b) Reference Na2O concentrations vs. Predicted Na2O
concentrations c) Reference Na2O concentrations vs. corresponding 
PLS prediction residuals d) Statistical parameters of Na2O 
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concentration of Na2O in the samples is extremely low when compared to other major 

oxides. As a result, XRF measurements for Na2O were not precise enough, and several 

samples had the same concentration values, leading to unsatisfactory PLS results. As a 

result, to assure XRF measurement precision, each sample must be measured multiple 

times. Lastly, all statistical parameters obtained from the PLS model were given in Figure 

5.69d. 

5.2.8. The PLS results of K2O 

Prediction of K2O concentration of studied samples was done by PLS method, the 

results of constructed PLS model were given in Figure 5.70. 

 

The PRESS values were calculated for finding the optimal number of latent 

variables, and the results were shown in Figure 5.70a. The optimal number of the latent 

variable was chosen as one show that the K2O content in the samples was not modeled 

with PLS. Other latent variables were tried to improve model performance, but this time 

model has an overfitting problem because the SEP value is increased. Also, regression 

coefficients were found at lower values. The PLS model is not working because the 

samples have a low concentration of K2O, and the PLS model fails to capture relevant 

Figure 5.70. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs.
b) Reference K2O concentrations vs. Predicted K2O concentrations c) 
Reference K2O concentrations vs. corresponding PLS prediction residuals 
d) Statistical parameters of K2O 
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spectral information for K2O. Therefore, it causes poor fit and low prediction.  Also, there 

are many reference concentrations at the same value, as shown in Figure 5.70c. Therefore, 

XRF measurement precision could not be achieved for K2O. After replicating 

measurements for each sample, the PLS model can be created again. Finally, all statistical 

parameters for the PLS model are shown in Figure 5.70d. 

5.2.9. The PLS results of Loss of ignition 

Prediction of Loss of ignition estimation of studied samples was done by PLS 

method, the results of constructed PLS model were given in Figure 5.71. 

Loss of ignition values of samples was estimated by constructing a PLS model. 

PLS model was constructed by finding the optimal number of latent variables for that the 

PRESS values were calculated for the first thirty latent variables, and the results were 

shown in Figure 5.71a. By considering 5.71a, the first third latent variable was used for 

constructing a PLS model. The model's performance was evaluated by considering the 

regression coefficients of the calibration and validation sets. The correlation graph was 

given in Figure 5.71b. The calibration coefficient was found as 0.77. The validation set's 

regression coefficient was found as 0.182 and seen that the predictability of the PLS 

model for L.O.I was not found reliable because of the enormous difference between the 

calibration and validation regression coefficients. The SECV and SEP values were 

calculated as 0.19 and 0.22, respectively. The possible error range and the residuals trend 

Figure 5.71. a) Number of PCs vs. PRESS plot for selecting the optimal number of PCs.
b) Reference L.O.I concentrations vs. Predicted L.O.I concentrations c)
Reference L.O.I concentrations vs. corresponding PLS prediction residuals
d) Statistical parameters of L.O.I. 
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were given in Figure 5.71c. Lastly, all results obtained from the PLS model were given 

in Figure 5.71d. 

In the second scenario, PLS models were tried to be constructed to predict 

concentrations of minor and major oxides also loss of ignition component for CEM-I type 

of cement samples. PLS regression models with high predictability were not obtained 

excepts for SiO2, Fe2O3 components. The reason for that, CEM-I must have certain limits 

for oxides content; therefore, the studied concentration range is so low this situation 

decreases the model’s predictive ability. To improve the model’s predictability, the 

number of studied samples can be increased, or other cement types such as type II, III, IV 

can be added to PLS models to increase the concentration range of major and minor 

oxides. Due to the large number of CEM-I samples compared to other types of cement 

that we have easy to accessibility, a PLS study was also carried out for 56 CEM-I samples 

that a specific type of cement. 

XRF measurements were accomplished using two-sample preparation techniques, 

pressed pellet, and glass bead, as the first scenario included samples of various types. 

Since all samples were Cem-1  in the second scenario, XRF measurements were carried 

out using only the pressed pellets sample preparation technique. In the glass bead 

preparation technique, the samples are melted to at high temperatures, which allows us to 

obtain more homogeneous analysis surfaces and eliminates the measurement errors that 

may arise from the particle size of the sample. Due to XRF measurement errors caused 

by the pressed pellet sample preparation technique in the second scenario, Constructed 

PLS models to estimate major oxides and minor oxides in CEM-I samples may not have 

well predictive power.  
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6. CHAPTER 6 

CONCLUSION 

In conclusion, the present study has demonstrated a new analytical method for the 

quantitative determination of composition for cement raw materials, intermediate 

products, and finished products by using Fourier Transform Infrared Spectroscopy 

coupled with Chemometrics multivariate calibration method as an alternative for the 

current XRF technique. The developed new method ensures that much faster than XRF 

because there is no need for additional sample preparation. Also, the developed new 

method provides much more safety than XRF because of the usage of radioactive sources 

in XRF. Furthermore, the developed new method has a lower instrumentation cost than 

other techniques used for the chemical composition of cement. In the study, two different 

scenarios are created. In the first scenario, the broadened samples from the raw materials 

to finished products were used for the construction of PLS models to estimate major and 

minor oxides and loss of ignition parameter in samples. The PLS models were created 

using raw FTIR-ATR spectra of the samples and were created by applying a proper pre-

processing method that was decided as extended multiplicative scatter correction 

(EMSC). The higher quality PLS models have obtained with the EMSC-applied spectra 

thanks to the reduction of scattering caused by the particle size of the samples. The 

regression coefficients( R2) of the PLS model were found to varies from 0.95 to 0.99, and 

the standard error of cross-validation (SECV) values were founded as from 0.21 to 1.42 

(w/w%). In the second scenario, the PLS method was applied for only Cem-I samples to 

estimate the chemical composition of the samples. However, the Cem-I samples must 

have certain limits in terms of the concentration of each oxide. Therefore, the 

concentration range of the studied samples was found narrow. The high-quality PLS 

models were not obtained in the second scenario. If the addition of other types of cement 

(Cem-II, Cem-III, Cem-IV, CemV)  to Cem-I samples, the concentration range would be 

more expansive.  Perhaps, with all types of cement and with a more extensive sample set 

collected over an extended time to improve variability, the models could provide better 

predictive performance. 
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