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ABSTRACT

DETERMINATION OF CRUCIAL PARAMETERS IN GASOLINE
BLENDS BY USING INFRARED SPECTROSCOPY COUPLED WITH
MULTIVARIATE CALIBRATION METHODS

In petroleum refineries, converting the manual gasoline blending system to an
automatic inline blending system provides the most economical blending in gasoline
production, increasing efficiency, and reliability. The most important requirement for an
automatic inline blending system is the determination of gasoline parameters in a short
time with high reliability. For this purpose, fast and simple analytical methods have been
developed to determine crucial parameters of gasoline blends by using Fourier Transform
Infrared Spectroscopy (FTIR) coupled with multivariate calibration methods which are
Partial Least Squares Regression (PLSR) and Genetic Inverse Least Squares Regression
(GILS) for this study. Turkey Petroleum Refinery Incorporated Company (TUPRAS)
Izmir Refinery collected all gasoline samples and tested them using reference test
methods at Quality Control Laboratory. Since commercial product samples were used in
this study, the data ranges of the parameters were quite narrow. The Standard Error of
Cross-Validation (SECV) and Standard Error of Prediction (SEP) values were acceptable,
although the determintion coefficient (R?) value of some parameters was below the
expectation. It has been observed that the prediction results of GILS are better in these
parameters, whose R? value is low because the data range is very narrow. In the
comparison made with the reproducibility values specified in the reference measurement
methods, it was determined that the calibration model results of most parameters were
acceptable. Collecting more samples in a longer time interval to expand the data range of
the parameters, or preparing a data set with experimental design can improve the

prediction performance.
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OZET

BENZIN KARISIMLARININ ONEMLi PARAMETRELERININ COK
DEGISKENLI KALIBRASYON METOTLARI ILE DESTEKLENMIS
KIZILOTESI SPEKTROSKOPISI YONTEMI ILE TAYINI

Petrol rafinerilerinde verimliligin ve giivenilirligin arttirilmasi igin siirekli
iyilestirme ¢aligmalar1 yapilmaktadir. Benzin iiretimindeki verimliligin ve giivenilirligin
arttirllmasi i¢in iiriinlere ait 6nemli parametrelerin kisa siire igerisinde tayin edilmesi
onemlidir. Bu amagla, bu ¢alismada Fourier Doniisiimii Kiz1l6tesi Spektroskopisi (FTIR)
ile ¢ok degiskenli kalibrasyon yontemleri olan Kismi En Kiigiik Kareler Regresyon
(PLSR) ve Genetik Ters En Kiiciik Kareler Regresyon (GILS) kullanilarak benzin
karigimlarinin 6nemli parametrelerini belirlemek i¢in hizli ve basit analitik yontem
gelistirilmistir. Tiirkiye Petrol Rafinerileri A.S. (TUPRAS) Izmir Rafinerisi, tim benzin
numunelerini toplamis ve Kalite Kontrol Laboratuvari'nda referans test yontemleri ile test
etmigtir. Bu caligmada ticari {lirlin numuneleri kullanildig1 i¢in parametrelerin veri
araliklar1 dar olmasina bagli olarak, bu parametrelerde Korelasyon Katsayisi (R?) degeri
beklentinin altinda oldugu, fakat Standart capraz dogrulama hatas1 (SECV) ve standart
tahmin hatas1 (SEP) degerleri kabul edilebilir oldugu tespit edildi. Veri aralig1 ¢cok dar
oldugu i¢in R? degeri diisiik olan bu parametrelerde GILS model tahmin sonuglarinin
daha iyi oldugu gozlemlenmistir. Referans oOl¢iim yontemlerinde belirtilen tekrar
iiretilebilirlik degerleri ile yapilan karsilastirmada ¢ogu parametrenin kalibrasyon modeli
tahminlerinin kabul edilebilir oldugu goézlenmistir. Parametrelerin veri araligim
genisletmek i¢in daha uzun bir zaman araliginda daha fazla 6rnek toplamak veya deneysel

tasarim ile bir veri seti hazirlamak tahmin performansini iyilestirebilir.
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CHAPTER 1

INTRODUCTION

The word petroleum is formed by the combination of the Latin “Petro” (Stone)
and “Oleum” (Oil). It means stone oil. Petroleum is a very complex compound consisting
mainly of hydrogen and carbon with small amounts of nitrogen, oxygen, and sulfur and
has no simple formula. It can exist in gas, liquid, and solid form under normal conditions

(National Centre for Catalysis Research, 2006).

Crude oil is a mixture of hydrocarbon molecules containing 1 to 60 carbon atoms
(Besergil, 2009). The properties of hydrocarbons depend on the number and arrangement
of carbon and hydrogen atoms in their molecules. Crude oil, for example, is not a single
compound like water; some are a mixture of large and some small hydrocarbon
molecules. Crude oil starts to boil at room temperature, the steam above the liquid rises
as the boiling continues as long as it is heated; the reason is that as the temperature rises,
various hydrocarbon molecules in crude oil leave the liquid by evaporation or boiling.
Higher temperatures are required for the chemometricmixture to boil. These distillation

steps are shown in Figure 1.

The composition and appearance of crude oil differ according to the region and
location, its fluidity varies from watery to tar-like solids, and its color varies from light
to black. An average crude oil consists of 84% carbon, 14% hydrogen, 1-3% sulfur, and

less than 1% nitrogen, oxygen, metals, and salts (Besergil, 2009).



SMALL MOLECULES
- low boiling point

- very volatile
- flows easily
- ignites easily == (Gasoline - Petrol FUEL FOR CARS

Naphtha

Kerosene AIRCRAFT FUEL

Diesel Oil FUEL FOR CARS, LORRIES; BUSSES

LARGE MOLECULES

- high boiling point Heated crude oil
- not very volatile

- does not flow easily

- does not ignite easily

Fuel Oil FUEL FOR SHIPS, POWER STATIONS

Residue BITUMEN FOR ROADS AND ROOFS

Figure 1: Atmospheric Distillation of Crude Oil

(Anton-Paar, 2009)

As can be seen in Figure 1, a wide variety of products are formed by the distillation
of petroleum. Each of these products is used for different purposes due to their different
performances. Gasoline, which is formed by the chemical processes of crude oil, is still
one of the largest energy sources for automobiles. Gasoline used for vehicles has some
properties and these vary according to the structure, characteristics, and operating

conditions of the engine.

One of the significant properties of gasoline is specific gravity. High specific
gravity will increase the boiling point of gasoline, making it difficult to start, negatively
affecting the operation of the engine at low temperatures and speeds. If the evaporation

pressure of gasoline is low and the air is cold, it makes it difficult for the engine to start.

The distillation feature of gasoline shows the evaporation ability of gasoline. The
distillation temperature is highly effective on the operation of the engine. Starting the
engine at 10% distillation temperature and in cold weather affects factors such as the

acceleration of engine oil contamination. The higher the octane number, which shows the



resistance of gasoline against knocking, the less chance of self-ignition of gasoline, and

there will be no knocking.

For the measurements of all these parameters mentioned, different tests are carried
out in the laboratories. These tests require both labor and time. However, with the
developing technology, studies have been made on the use of Infrared Spectroscopy for
the determination of all these important parameters. It is aimed to save both time and
labor, and at the same time, higher measurement accuracy that meets international
standards is aimed. Figure 2 shows the basic steps of the calibration models for the

determination of fuel properties with IR spectra.

Collection of Large Number of
Representative Fuel Samples

Laboratory Analyses by

.. t
Current (Classical) Methods Infrared Spectra (Training Set)

L> Build Regression Model Using 4—'
Multivariate Calibration with Cross
Validation

Validate Calibration Model with
Standard (Known) Samples

R

Rapid, On-site, Nondestructive, Simultaneous
Prediction of Pertinent Fuel Properties with a Small
Quantity of Unknown Sample

Figure 2: Process involved in the development of the calibration models for fuel

properties from IR spectra

(Fodor & Hutzler, 1997)



1.1. Literature Review

Due to the diversity of products, parameters, and methods, there are many studies
in the literature containing infrared spectroscopy coupled with multivariate calibration

models for the characterization of petroleum products.

In a study by Ozdemir, it was shown that near-infrared (NIR) spectroscopy and
three different genetic algorithm-based multivariate calibration approaches (GILS, GR,
GCLS) can be used to rate the octane number of gasoline (Ozdemir, 2005). In this study,
a data set consisting of 60 gasoline samples with known octane numbers and the
spectrums (900 to 1700 nm spectral region) of those samples, previously created by John
H. Kalivas (Kalivas, 1997), was used. By using a genetic algorithm, it was tried to
improve the results of the calibration study, which was done with the least square and
classical methods before. It was stated that the calibrations using the genetic algorithm
were successful. Bohdcs and friends tried to present a feasible procedure for the prediction
of quality parameters of gasoline from its NIR spectrum in a large and very diverse sample
set (Bohacs, Ovadi, & Salgo, 1998). They developed NIR methods with Partial Least
Square Regression(PLSR) to predict four important gasoline properties (RON, MON,
benzene, MTBE content, evaporation values, density, Reid vapor pressure, sulfur content)
with reproducibilities equivalent to the standard test procedures. They used 350 gasoline
samples. 900 to 1700 nm spectral range was used. It is stated research and motor octane
number, benzene, and MTBE content correlation are excellent ( R>>0.97), Reid vapor
pressure, sulfur content, initial and final boiling point and evaporated at 180°C point
correlation as poor ( R?<0.9). Fodor& Hutzler developed to FT-IR method with PLS
calibration for the rapid, simultaneous determination of several pertinent fuel properties,
using less than 2 mL of sample, as an alternative to established laboratory protocols
(Fodor & Hutzler, 1997). They tried to confidently measure by FT-IR: research and
motor octane numbers, aromatic, olefinic, and saturated hydrocarbon content, benzene
content, and concentrations of ethanol, methyl tert-butyl ether, and total oxygenated
compounds. In this study, two different FTIRs were used and compared. A spectral region
of 4000-650 cm'! was used. A large number of summer and winter gasoline samples
collected from different regions were used. In this study, analyzes were made depending

on the parameters of different season product types, different devices, baseline correction,



or not. It has been stated that the prediction error increases when the calibration model
prepared in one FTIR device is used for prediction in the other FTIR device. Some
gasoline parameters were found to have better correlation coefficients without baseline
correction. It has been observed that the correlation of the model made in winter products
is better.. Reboucas also tried for prediction of key gasoline properties (density,
hydrocarbon composition) by Near-infrared Spectroscopy coupled with the PLS
calibration method (Reboucas, Santos, Pimentel, & Teixeira, 2011). They used Doehlert
design matrix with three input variables (wavenumber range, preprocessing technique,
and regression/validation technique) varied at 5, 7, and 3 levels, respectively, and
improved the efficiency of PLS modeling. 10,000 — 3900 cm™! spectral region was used.
They have stated that PLS modeling became more efficient because of the use of
experimental design, which required less experimental effort and ensured the accurate
simultaneous evaluation of important response variables. In a study by Ozdemir, the
application of genetic algorithm-based multivariate calibration to the near-infrared
spectroscopic determination of several diesel fuel parameters was demonstrated
(Ozdemir, 2008). Genetic Inverse Least Square Regression was used in this study. It is
tried to determine: cetane number; boiling point, °C; freezing point, °C; total aromatic,
(wW/w)%; viscosity, cSt; density, g/mL. It has been managed to keep the percent standard
error of prediction (SEP%) below 5%. Breitkreutz tried to determine total sulfur in diesel
fuel employing NIR spectroscopy and multivariate calibration (Breitkreitz, et al., 2003).
In this study, multiple linear regression (MLR) following variable selection using the
genetic algorithm (GA) or the successive projection algorithm was compared to the
performance of principal component regression (PCR) and partial least square (PLS)
chemometric approaches. 97 diesel samples were used, and they used 4000 to 12,820
cm! spectral region for NIR analysis. They determined that the use of variable selection
methods increases the success of the model prediction and the genetic algorithm with

multiple linear regression model gives the better prediction result.

1.2. Structure and Purpose of The Thesis

In the first chapter of the thesis, general information about petroleum products and

crucial parameters are given with their common principles of analysis. In the second



chapter, the most common chemometric calibration methods are shared along with their
motivation, mathematical background. Additionally, a study of the determination of
crucial parameters of blended gasoline was provided in the third chapter in which

different calibration techniques were compared.

TUPRAS Izmir Refinery is planning to convert the existing manual Gasoline
Blending system to an automated In-Line Blending system for enhancing efficiency and
reliability thus ensuring the most economical blending in gasoline production. The in-line
blending of continuous blending is the process of mixing crude oil or petrochemical
feedstocks (blend components) to produce a homogenous mixture of consistent quality.
The first step of this project, which belongs to the TUPRAS Izmir Refinery, is to
determine the parameters of the blended gasoline while the process is in progress and to
intervene in the process in a short time. In the next steps, the samples of all the lines
included in the mixture are modeled and the optimization system is developed and the
blended gasoline is automatically prepared to depend on the final and intermediate

product parameters.

In this study, it is aimed to develop an alternative method with FTIR coupled
PLS and GILS calibration methods to determine the important parameters of gasoline.
The developed method was compared with both traditional methods which are CFR
engine analysis (RON, MON), multidimensional gas chromatography (MTBE, Olefin,
Aromatic, Benzene Content), atmospheric distillation (distillation points), automated
densitometer (density), and the reproducibility criteria of the relevant methods specified

in the international standards.



CHAPTER 2

PETROLEUM AND PETROLEUM REFINING

Petroleum is a fossil fuel formed over millions of years. Oil has been used for
thousands of years in human history. The share of oil in energy consumption is 40%. This
is followed by coal with a share of 28% and natural gas with a share of 23% (Akova,
2019). A mixture of liquid hydrocarbons stored in porous rocks deep within the Earth is
called crude oil. In addition to hydrocarbon compounds in its structure, petroleum also
contains organic components containing nitrogen, oxygen, and sulfur. The term crude oil
is used to understand that refined petroleum products are different. In today's technology,
many intermediates and fuel products that we use in our daily life are obtained by

separating (distilled) crude oil into its components in refineries.

2.1. Petroleum Refining

The purpose of the refining process is to transform the natural raw material, crude
oil, into salable products. Products from refineries, fuel for cars, trucks, aircraft, ships,
and other vehicles, fuel for heat and power generation for industrial, commercial, and
domestic use, raw materials for the petrochemical and chemical industry, specialty
products such as lubricating oils, paraffin/waxes, and bitumen Energy as by-products can
be grouped into heat (steam) and power (electricity) (Turkey Ministry of Environment

and Urbanization, 2019).

For the production of petroleum products, raw materials are processed at different
distillation plants. The combination of these processing units that convert crude oil into
products with the help of supporting units and facilities is called a refinery. Market
demand for the product type, available raw quality, and requirements set by authorities

affect the size, configuration, and complexity of a refinery. Since these factors vary from



region to region, the facility structures of refineries also differ (Turkey Ministry of

Environment and Urbanization, 2019).

2.2. Petroleum Products

2.2.1. LPG

Propane, butane, and paraffinic light hydrocarbons, which are mixtures of these
two, which are released during refinery and natural gas processes, are easily liquefied
under pressure. Composed primarily of propane and butane, LPG is produced for fuel
purposes and is an intermediate in the production of petrochemicals. Important

specification control tests include vapor pressure and pollution tests.

2.2.2. Gasoline

Gasoline product is grouped under two general groups as motor gasoline and
aviation gasoline. These two types of gasoline are also divided into various classes or

grades.

Motor gasoline, which is the most important refinery product, is a mixture of
hydrocarbons used in internal combustion engines (other than aircraft engines) and with
a boiling range of around 35-215 °C; Important quality characteristics of gasoline are
octane number (anti-knock), volatility (engine running and vapor compression) and vapor
pressure. Additives are added to gasoline to meet this performance and also to protect
against oxidation and rust. With the development of reciprocating aircraft engines,
aviation gasoline with different octane numbers (87, 100/130, and 115/145 octane)

blended with lead compound additives was produced in the 1940s.



2.2.3. Jet Fuels

Jet fuels are fuels produced by blending kerosene and/or 'wide-cut' fractions used

in turbine aircraft engines to meet the requirements in the specifications.

Wide-cut jet fuel is a mixture of light hydrocarbons with a distillation range of
about 100-250 °C; It is prepared by blending kerosene, gasoline, or naphtha fractions in
such a way that the content of aromatic hydrocarbons does not exceed 25% by volume
and the vapor pressure is between 13.7 kPa - 20.6 kPa (Besergil, 2009). Necessary
additives are also added to increase the stability of the fuel and to increase its good
flammability properties. Since wide-cut type jet fuels are a mixture of lighter
hydrocarbons with a boiling range between gasoline and kerosene, the risk of ignition and

evaporation losses in high flights is higher than in kerosene.

Kerosene-type jet fuel is a medium distillate product; distillation range (150 C -
300 °C. usually not exceeding 250 °C) and flash point are the same as kerosene. Unlike,

some critical properties such as freezing point are changed.

2.2.4. Kerosene

Kerosene is a refined medium-distilled petroleum product; Its volatility is between
gasoline and diesel fuel (boiling range is around 150-300 °C) (Besergil, 2009). Kerosene
is used as jet fuel and has a wide range of uses for heating purposes. Kerosene, which is
defined by a small number of specification values, can also be evaluated by mixing it with

diesel.

2.2.3. Diesel And Fuel Oils

Diesel Fuels: Diesel fuels (gas oil or diesel distillate), used as diesel engine fuel
and heating oil, contain alkanes with 12 or more carbon atoms, boiling range is 180-380

°C. Among the quality tests, the cetane number of diesel fuel is important, which defines



the flash and pour point, clean combustion, no deposits in storage tanks, and good

combustion initiation and combustion properties.

Distillate Fuel Oils: Heavy gas oil (distillate fuel oils) is used as an industrial fuel
and as a raw material (starting material) in the production of some products. It contains
long-chain (20-70 carbon atoms) alkanes, cycloalkanes, and aromatic hydrocarbons,

boiling range 380-540 °C.

Heavy Fuel Oil (Residues): Products in this group are distillation residues;
densities > 900 kg/L, flashpoints >50 °C, and kinematic viscosities at 80 °C greater than
10 cSt.

2.2.5. Asphalt/Tar

They are by-products obtained from the refining of petroleum. Asphalt can be
found in different forms from highly viscous to solid. It is used in the coating of roads,
airports, roof insulation, waterproofing in structures related to water. It is used in the paint

industry, battery production, lining water channels, and bonding clay bricks.

Tar, on the other hand, is very similar to asphalt in appearance. There are
differences in the proportions of hydrocarbons in their structure. It can be used in areas
similar to asphalt. Tar can be obtained from the refining of petroleum, as well as from

wood and coal.

2.3. Parameters of Gasoline

Petroleum products have international quality criteria. For this reason, the
analyzes to determine these criteria should be carried out by the relevant international
standard. All gasoline samples should be tested according to the standard test methods
given in TS EN 228 - Automotive Fuels - Unleaded Petrol Requirements and Test
Methods — Specification. In this standard, the appropriate test methods and the reliability

values of the relevant methods are given in Table 1.
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Table 1: Crucial Parameters of Gasoline and Relevant Test Methods

TEST
PROPERTY UNIT | REPRODUCIBILITY NOTE METHOD
) , TS EN ISO
Density kg/m 0.5 - 12185
E
70°C
E o X is the
Distillation | 100°C | YV +0.02(150-%) measured value. | ASTM D 86
E
150°C
FBP °C +6.78 -

Research Octane ) 407 i TS EN ISO
Number, RON ) 5164
Motor Octane ) +09 i TS EN ISO
Number, MON ) 5163

Benzene +(0.0777Y-0.025) Y is the mean of
Olefins o +(0.1176Y+0.5118) | the tworesults | TS ENISO
- v/v % .
Aromatics +(0.045Y+0.1384) being 22854
MTBE + (0.0251Y+0.3515) compared.
2.3.1. Density

Density (or specific gravity) is an indicator of density or weight per unit volume
of fuel. Density is a basic parameter, it is usually given in kg/L or kg/m? for petroleum
products (TS EN ISO 12185, 2007). As the density increases, the amount of energy per
unit volume increases (Rand, 2010). Given the amount of fuel injected at a constant rate,
the energy supplied to the engine increases with intensity, which increases engine
performance. However, exhaust emissions, and especially particulates, increase under full
load due to the richer mixture. On the other hand, as density decreases, volumetric fuel

consumption increases.

Relative density is frequently used instead of absolute density. The mass of a
given volume of fuel at a certain temperature divided by the mass of an identical volume
of water at the same temperature is known as relative density or specific gravity. At

15.6°C, most vehicle fuels have relative densities between 0.70 and 0.78 (Rand, 2010).
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2.3.2. Octane Numbers

The octane number is a characteristic that defines the knock-free combustion
characteristics of gasoline; It is the ability of the engine to resist knocking when it is
burned in the combustion chamber of the engine. There are two laboratory test methods
for determining the octane number of gasoline; Research Octane Number (RON) and
Motor Octane Number (MON). RON is associated with low velocity and moderate knock
conditions, MON with high velocity, high-temperature knock conditions. In a gasoline
example, the value of RON is always greater than MON; The difference between them is
called “sensitivity”. The chemical structure affects the knocking tendency. Aromatics

have a higher octane number than other types of hydrocarbons. (Sivasankar, 2008).

2.3.3. Distillation Points

Each hydrocarbon boils at a specific temperature called the "boiling point", which
increases as the size of the molecule increases. For this reason, the distillation profile of
gasoline, which is a mixture, shows the distribution of hydrocarbons it contains against
temperature. The temperature limits of the distillation profile determine the boiling range,

excluding low- and high-boiling compounds.

Gasoline is a mixture of hundreds of hydrocarbon molecules with different boiling
points, and so it boils or distills over a range of temperatures, not at a single temperature
like pure substances. A distillation profile (or distillation curve) is drawn by measuring
the volumes of liquid that gasify and condense against increasing temperatures when
gasoline is heated under specific conditions. Figure 3 shows the distillation profile of
gasoline. Various ranges of a distillation profile are associated with gasoline performance.
Gasoline must contain a light vaporizable fraction to provide a good start in a cold engine
and must not contain fractions with boiling points above 200°C, as they would evaporate

and dilute the oil in the engine.

The values of E70, E100, and E150 (evaporated at temperatures of 70, 100, and
150°C) determine the standard range for gasoline quality according to European standard

EN 228. Refineries try to move T95 for gasoline at temperatures 160—170 °C in the future
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(Chevron Corporation, 2009). These features have an impact on engine starting, warm-
up, and vapor lock at high operating temperatures and altitudes in the case of fuels.

Furthermore, the outcome is critical for the sample's safety and handling rules.

Temperature °F Temperature °C
FrontEnd | | Midrange , JailEnd
250
400
- 200
& Carburetor Icing .
E300 T90
300 150
Hot Driveability and Vapor Lock
E200 T50
Carburetor 100
200 . Evap. Losses
50
100
g I Warmup and Cool Weather Driveability :
Easy Cold " Short Trip Economy R
Starting ~ 0
0 20 40 60 80 100

Percent Evaporated

Figure 3: Distillation curve of gasoline. Correlation of distillation profile ranges

with gasoline performance

(Chevron Corporation, 2009)
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2.3.4. Hydrocarbon Composition

The physical and chemical properties and performance of gasoline are determined
by the hydrocarbons and additives in their composition. Different carbon numbers and
different hydrocarbon types are present in different proportions in the composition of
gasoline. These hydrocarbon groups have different physical and chemical properties and
their amounts in gasoline directly affect the fuel properties, performance, and emissions
of gasoline. Although aromatic hydrocarbons and olefins also increase the knock
resistance of the fuel, the ratio of these hydrocarbons in gasoline is limited because
aromatic hydrocarbons increase irregular emissions (formaldehyde, acetaldehyde,
benzene, toluene, and xylene), cause carbon deposits in the engine, and olefins increase
the volatility of the fuel. The molecular composition of the gasoline is connected to
octane. Aromatics, branched paraffin, and olefins have high octane values, but straight-

chain paraffin and naphthenes (saturated cyclic hydrocarbons) have low octane values.

2.3.5. Methyl Tertiary-Butyl Ether - MTBE Content

The chemical compound MTBE (methyl tertiary-butyl ether) is produced by the
reaction of methanol with isobutylene. MTBE is manufactured in enormous quantities
and used nearly exclusively as a fuel additive in gasoline. Because it raises the oxygen
content of gasoline, it is one among a group of compounds known as "oxygenates."
MTBE is a volatile, flammable, colorless liquid that dissolves readily in water at ambient

temperature.

Since 1979, MTBE has been used as an octane enhancer in U.S. gasoline at low
levels to replace lead (helps prevent the engine from "knocking"). Between 1992 and
2005, higher quantities of MTBE were used in some gasoline to meet the oxygenate
standards established by Congress in the 1990 Clean Air Act Amendments (Concawe,
2002)

Oxygen aids in the complete combustion of fuel, lowering hazardous tailpipe
emissions from automobiles. In one way, oxygen dilutes or displaces gasoline

constituents like aromatics (benzene, for example) and sulfur. Oxygen, on the other hand,
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optimizes oxidation during burning. Most refiners prefer MTBE to other oxygenates

because of its blending properties and cost.
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CHAPTER 3

CHEMOMETRICS

Advances in computers, software, statistics, and applied mathematics have led to
the birth of a new discipline called chemometrics for the solution of complex systems in
the field of chemistry, especially analytical chemistry. These developments have created
new fields of study with chemometric methods using multidimensional and multivariate
parameters, which provide new possibilities for analytical chemistry and researchers in

neighboring branches to solve analytical problems.

Chemometrics is a chemistry discipline that encompasses the processing of
chemical data using computers, along with statistics and mathematics. This discipline is
a powerful tool in chemical analysis that allows the extraction of real information from
chemical data or the revealing of hidden information. One of the main application areas

of chemometrics in analytical chemistry.

In a word, chemometrics started to be mentioned in the 1970s for its applications
in chemistry, where computers and software are used, along with statistical and
mathematical methods. The concept of chemometrics was put forward by Swedish Svante
Wold and American Bruce R. Kowalski in 1972, and the first official explanation of this
discipline was made by the International Chemometrics Association in 1974. In the
following years, it is observed that national and international chemometrics conferences

were also organized in the world (Ding, 2007).

Chemometrics includes concepts and applications such as Descriptive and
Inference Statistics, Signal Processing, Experimental Design, Modeling, Calibration,
Optimization, Pattern Recognition, Classification, Artificial Intelligence Methods, Image

Processing, Information and System Theory.
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3.1. Infrared Spectroscopy

Infrared (IR) spectroscopy is one of the spectroscopic methods developed based
on the interaction between light rays and the analyzed chemical molecule. In IR
spectroscopy, radiation in a certain part of the electromagnetic spectrum (at a certain
frequency) is used. The region between 12800-10 cm! of the electromagnetic spectrum
is the infrared area, the region between 12800-4000 cm™! is known as the near IR, the
region between 4000-200 cm! is known as the mid-IR, and the region between 200-10
cm’! is known as the far IR (Thomson, 2007).

The IR spectrum gives characteristic peaks for many groups. Thus, it contributes
to the analysis of which characteristic groups are present in the substance whose spectrum
we have taken, and therefore to the analysis of the structure of the substance. It is also
important for us that the characteristic group peaks shift with the change in the molecular
structure. For example, the C=0 group gives a peak between 1900-1600 cm™! in the IR,
but the side of the peak in this region depends on the structure of the molecule (Ankara

University, 2021).

It can be used IR spectroscopy for quantitative analysis. The analysis application

can be carried out in two ways;

e According to Lambert-Beer law: In such an application, the cell thickness must be
known exactly to be able to calculate. Measuring this is both very difficult and not

very sensitive.

e By drawing a calibration curve: This method is more sensitive but time-consuming.
In this method, firstly, solutions of many different concentrations are prepared from
the substance whose concentration will be found (as in UV spectroscopy), and the
observed absorption for each concentration at a characteristic peak of this substance
is plotted against the concentration. The graphing equivalent of the absorption of the
solution, whose concentration we do not know, at the same frequency and under the

same conditions, gives us the concentration of this substance.

Fourier transform infrared (FTIR) spectrometry was developed to overcome the
limitations encountered with dispersive instruments. FTIR is a chemical analytical

method that measures the number of waves against the infrared intensity of light using
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the mathematical Fourier transform method. Figure 4 shows typical FTIR

instrumentation.
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Figure 4: FTIR Simple block diagram for the instrumentation of FTIR Spectroscopy
(Thermo Fisher Scientific Inc., 2013)

3.2. Calibration

Calibration is the process of transforming the signals received from the
instruments into meaningful data in both quantitative and qualitative measurements. It is

done by mathematical and statistical processing of signals.

3.2.1. Univariate Calibration

In univariate calibration, the aim is to correlate the property of matter with the
spectral density. It is defined by the Beer-Lambert Law (Eq. 1). The law states that the
concentration of a chemical is directly proportional to the absorbance of a solution. The

relationship can be used to determine the concentration of a chemical species in a solution
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using a colorimeter or spectrophotometer. The relationship is most commonly used in

UV-visible absorption spectroscopy.

A = gbc Eq. (1)

Where A is absorbance, € is molar absorption coefficient, b is optic path length ¢
is molar concentration. There is a linear relationship between the concentration and the
absorbance of the solution, which enables the concentration of a solution to be calculated

by measuring its absorbance.

3.2.2. Multivariate Calibration

Multivariate calibrations are obtained by applying chemometric algorithms to the
concentration set and corresponding multivariate measurement data. In chemometrics,

various mathematical algorithms are used for multivariate calibrations.

The model may appear to be very optimistic for the data used for modeling, even
though the actual performance is far worse, this is a big risk with mathematical
assumptions and parameter tuning (Brereton 2003). Overfitting is the term for this
phenomenon. On the other hand, the opposite situation can occur on occasion. The model
fails to capture relevant data, in this case, resulting in a poor fit and poor prediction
performance. As a result, validating the model against data that isn't used for modeling is
critical for determining model performance. This data set is known as a validation set, an
independent data set, or a test set, while the data used for modeling is known as a
calibration set or a training set. Splitting the data into calibration and validation sets is
common practice rather than using the entire data set for calibration. While the splitting
ratio is optional, the calibration set and validation set should cover as much variance as

possible.

The most common performance metric is the root-mean-squared-error
(Brereton,2003). Root-Mean-Squared-Error of Calibration (RMSEC) is defined in Eq.(2)

and is used for the calibration set.
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Eq. (2)

LG — yi)?
RMSEC=\[Z'=1(Y yi)
n—2

Above in Eq.(2), yi is the actual variable of an observation belonging to the
calibration set (i.e., concentration, activity, or another property) and §; is the predicted
variable that is obtained by the model. For the validation set, Root-Mean-Squared-Error

of Prediction (RMSEP) is defined in Eq.(3).

Eq. 3)

RMSEP = \[ ie1(Ji — ¥1)?

n
In Eq.(3), yi now refers to the actual variable of a sample from the validation
set and ¥ is its model prediction. The overfitting can now be defined as having very low
RMSEC and high RMSEP value whereas underfitting is evident with low RMSEC value.
In a perfect scenario, both RMSEC and RMSEP values are expected to be small and close.

3.2.2.1. Classical Least Squares

The classical least squares calibration method is the application of the Beer-
Lambert law to linear equation systems consisting of measurement data obtained from
spectrophotometric or another analytical instrument. Explanations here are made for

spectrophotometric studies.

A =KxC+E, Eq. (4)

Where A is the nxm matrix of absorbance values, C is the nx/ matrix of
concentration values of the calibration set. Here, / is the number of parameters that is

predicted, n is the number of samples in the calibration set and m is the number of
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wavelengths in a given spectrum. The unknown in this equation is the K matrix which is
the /xm matrix of absorptivity coefficients that relates the absorbance values at m number
of wavelengths to the concentrations of / parameters of the » number of calibration
samples. The term Ea stands for the absorbance residuals that are not fitted by the model

equation. The least-square solution of K is given as Eq.(5)

K=(C.0).C.A Eq. (5)

Here C’ is the transpose of C matrix and superscript -1 on the upper right corner
of the parenthesis stands for matrix inversion. Once the K matrix is obtained
concentrations of the components in a given unknown sample can be predicted by Eq.(6)

as:

c=(KK)1LKa Eq. (6)

Here ¢ is the /x/ vector of component concentrations in a given unknown sample

and a is an mx/ matrix of absorbance values from the spectrum of the unknown sample.

3.2.2.2. Inverse Least Squares

In spectroscopy of the system of linear equations, the ILS method involves

applying the inverse of the Beer-Lambert law to the system of linear equations:

C =AP + EC Eq. (7)

C and A are the same as they are in the CLS. EC is the matrix of concentration
residuals, and P is the mx/ matrix of regression coefficients that relate the absorbance
values to the concentrations of the components in the calibration set. P is calculated as

Eq.(8) using pseudo-inverse.
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P=(A.A)1A.C Eq. (8)

Unlike CLS, the ILS model has the advantage of modeling one component at a time as

given in Eq.(9)

p=(A.A)1A.c Eq. (9)

Where p is an mx/ vector of the regression coefficient for the component being
modeled and ¢ is an nx/ vector of concentrations of the component model in the
calibration set. Once the p vector is obtained, the predictions of an unknown sample are

determined by using Eq.(10).

c=a.p Eq. (10)

Here the concentration of the unknown sample and a is an mx/ matrix of

absorbance values from the spectrum of the unknown sample.

3.2.2.3. Partial Least Squares Regression

Because of the way the multicollinearity problem is handled, projection methods
are very popular among chemometricians. They also allow for multi-compound
predictions. The data is projected to a new space using principal components analysis
(PCA) in such a way that there is no correlation between the new variables in this space.
This decomposes the original absorbance data matrix (A) into two smaller matrices
known as scores (T) and loadings (B). The variance in independent variables is defined

by principal components, which can be described as Eq. (11).

A=T.B Eq. (11)
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The variables in PCA projected data are also sorted by how much variance they
explain from the original data. This allows, for the most part, to be accounted for by only
a few first projected variables (scores) while leaving others out helps to remove
instrumental noise. The first few columns of scores can then be used in a regression model
with these variables. The loadings, which have the same number of columns as scores,

are used to project the new data into this space.

Partially least squares (PLS), like PCA, is a projection method that not only
projects absorbances but also concentrations in such a way that their covariance is
maximized. PLS also eliminates the multicollinearity problem because the number of
latent variables can be adjusted as easily as the number of principal components in PCA.
The maximization of the covariance ensures that the projected variables contain the
information for response prediction, whereas PCA may not account for the information
that explains the responses even if the majority of the variance is explained. PLS assumes

that errors are distributed evenly across absorbances and concentrations.

Egs. (12) and (13) for absorbances and concentrations, respectively, are the PLS

model equations.

A=T.B+E Eq. (12)

c=T.r + e, Eq. (13)

A matrix has the same dimensions as CLS and ILS in this case. T is an nxh score
matrix, and B is a ~xm loading matrix derived from PCA decomposition. The E matrix is
now different from the one in CLS because it comes from PCA, but the size is the same
as the one in CLS. The term ¢ is an nx/ vector of calibration concentrations for the
component being modeled, and the term r is a ~x/ vector of PLS regression coefficients
obtained by iteratively solving Egs. (12) and (13). Figure 5 shows a schematic diagram
of Eq. (12) and Eq. (13).
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Figure 5: PLS Calibration

A successful model requires the selection of the optimal number of components
(Number of PC: h). This number is optimized using the Predicted Residual Error Sum of
Squares (PRESS) value. As a general rule, the number of components are chosen before
the increment in PRESS is observed or when the PRESS stops decreasing. The addition
of extra latent variables may cause modelling of interferences.PRESS can be calculated

as Eq.(14).

n Eq. (14)
PRESS = Z(ei —¢;)?
i=1

Where € is the predicted component concentration. An example for the plot of

PRESS values vs. number of principal components is illustrated in Figure 6.
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Figure 6: A sample plot of the number of components vs. PRESS values

3.2.2.4. Genetic Inverse Least Squares

Genetic Algorithms (GAs) are a type of research and optimization method based
on Darwin's principles of natural evolution and selection. Genetic regression (GR) is a
technique for creating linear calibration models that use GA to select wavelengths and
mathematical operators. GR is a hybrid calibration method that optimizes simple linear
regression models using evolving wavelength selection and simple mathematical
operators, combining univariate and multivariate calibration techniques (Ozdemir &

Oztiirk, 2003).

Inverse Least Squares (ILS) and Genetic Algorithms method (GA) are combined
in the Genetic Inverse Least Squares (GILS). The purpose of combining the genetic
algorithm (GA) with the inverse least squares (ILS) method is to avoid multicollinearity,
which can lead to overfitting and wavelength selection issues if the ILS method is used

alone without GA.

The GA consists of 5 basic steps, namely initialization of a gene population,

evaluation of the population, selection of the parent genes for breeding and mating,
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crossover and mutation, and replacing parents with their offspring. These steps are named

after the biological basis of the algorithm (Ozdemir & Oztiirk, 2003).

(from the collection of instrumental response )

_.[Evuululc & Rank the Popul;uion]

|
[ Selection of the Genes for Breeding ]

[ Initilization of Gene Population ]

1
Single Point Crossover & Mutation ]

[ Replacing the Parent Genes with their Offspring ]

TERMINATE ?
NO | ves

_’[ Selection of the Best Gene ]

Figure 7: Flow Chart of Typical Genetic Algorithm for Multivariate Calibration
(Ozdemir & Oztiirk, 2006)

The terms used in GILS and their definitions are listed below:
¢ Gene: Combination of absorbances at specific wavenumbers
e Fitness: Inverse of the standard error of cross-validation
e Cross-over: Exchange of half of the variables between two genes.

e Mutation: Excessive or deficient number of variables in a gene that may

result after many iterations.

3.2.2.4.1. Selection of Initial Genes

The first step in GA 1is to populate a gene pool. A gene is a collection of variables
whose counts are randomized within a specific range to minimize bias and maximize the
number of possible recombination (Ozdemir & Oztiirk, 2003). A gene is shown below as

an example of spectral data.
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Gi: [Asi4, A2sgs, Asgss, Aoar, At1190, A3zes0]

G1 is made up of six variables, and A is the variable that represents absorbance at
a specific wavelength. A specified number of genes are chosen at random with the
condition that their squared Pearson Correlation Coefficient (R?) is greater than a certain

threshold (e.g 0.5). R? can be calculated as follows:

@i —y)? Eq. (15)

R?=1-
Z?=1(yi — ¥)?

Above in Eq.(15), the prediction i is obtained by Cross Validation.

3.2.2.4.2. Evaluation of the Population

A fitness definition of genes is required, as it is in all genetic algorithms. The
standard error of cross-validation (SECV) is calculated by comparing the real values and
the values obtained from ILS models during cross-validation where the selected variables

are contained in the gene.

1
Fitness = SECV Eq. (16)
And SECV is defined as:
N Eq. (17
Y Gl (0
n—2

Where n is the number of samples, c; is the property of the sample while & is the
prediction. The fitness of each gene is saved and the genes are sorted in ascending order

by their finesses.
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3.2.2.4.3. Selection of the Parent Genes for Breeding and Mating

While there are a variety of methods for selecting genes for breeding, including
top-down and tournament selection, the roulette wheel method is used. This method uses
a roulette wheel to assign each gene an area proportional to its fitness. After that, the
wheel is spun a number of friable times. The genes selected by this random spinning are
then paired top-down, with the first gene paired with the second, the third gene with the

fourth gene, and so on. Figure 8 shows the roulette wheel selection method.

«“eel is rotate o

selection
point

Fittest individual
has largest share of Weakest individual

e O s - has smallest share of
the roulette wheel

Figure 8: Example of Roulette Wheel selection method

(Reguant, 2021)

3.2.2.4.4. Cross-Over and Mutations

The selected parent gene pairs are cut from the middle in this step to exchange

variables and create a new pair of offspring

Parent Gene Pair:
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Gi1: [Asi4, A2sss, Asss # Aoar, A1190, Aze50]
Gi1: [A677, A2001 # A19ss, Asss)

Offspring:

NEWG! = [As14, A2sss, Asss, A1955, Asss]

NEWG: = [A677, A2001, Aoa1, A1190, Aseso]

The # symbol indicates where the genes are broken. The fitness of each gene is
determined after each pair of parent genes is subjected to cross-over, as explained in the
evaluation section. There is a small chance that a gene will exceed the given number of
variable thresholds or become too small to model the data during the cross-over. In this
case, the process described in the initialization of the gene population part is used to

replace this gene with a new one.

3.2.2.4.5. Replacing Parents with Offspring

The parents are replaced with their offspring after all gene pairs have crossed over.
This effectively eliminates unfit genes, allowing fitter genes to take over the population.
Even after the parent genes are replaced, the one with the best fitness is always kept and
used in the final model. Because of the stochastic nature of breeding, GA can suddenly

move away from the minimum.

3.3. Preprocessing Techniques

Data preprocessing is used to make the data to be used more suitable for
processing and to obtain more reliable and precise results. Before constructing a
calibration model, preprocessing of the data is usually performed to not only address

apparent or potential problems but also to improve interpretability.
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3.3.1. Mean Centering And Scaling

For numerical variables, it is common to either normalize or standardize your data.
Normalization means scaling a dataset so that its minimum is 0 and its maximum is 1. To

achieve this we transform each data point x to;

Xnormalized = X — H Eq. (18)

Standardization is slightly different; its job is to center the data around 0 and to

scale concerning the standard deviation:

X— | Eq. (19)
(¢)

Xstandardized =

where p and o are the mean and standard deviation of the dataset, respectively.

3.3.1. Removing Variables

In many cases, even if a wide variety of variables are obtained, some may be
unnecessary. Some parts of the data may contain large and distinctly noisy parts.

Removing such unnecessary parts can improve model performance.

3.3.2. Baseline Correction

Detrend is one of the baseline correction methods. A fixed-order polynomial is
fitted into the spectrum and then subtracted from the polynomial spectrum (R. J.

BARNES, 1989).

The derivative can be used for baseline correction. A fixed baseline offset is
obtained by taking the first-degree derivative, and the baseline offset, and baseline slope

are subtracted from the spectrum by taking the second-degree derivative. The Savitzky-

30



Golay algorithm is frequently applied by taking the derivatives of the fit polynomials

since derivatization can reduce the signal-to-noise ratio (A. Savitzky, 1964).

There is a certain amount of noise in almost every analytical technique. To remove
the noise, the signal is corrected using some algorithms. The Savitzky-Golay algorithm
is one of the most frequently used for this purpose. Here, the polynomials are fitted to

each of the plurality of data windows, one polynomial to one data window (Temiz, 2019).
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CHAPTER 4

EXPERIMENTATION AND INSTRUMENTATION

4.1. Experimentation

4.1.1. Sample Collection And Sample Preparation

In this study, sample collection, reference analyzes, and FTIR spectra of the same
samples were performed at TUPRAS Izmir Refinery. 110 commercial gasoline samples
were collected. To preserve the stability of the sample, it was stored in the dark and at 4
°C. Reference analyzes were also carried out in accordance with the criteria specified in
the international standards of the relevant analysis methods. These methods are specified
in TS EN 228 - Automotive Fuels - Unleaded Petrol Requirements and Test Methods —

Specification.

4.2. Instrumentation

TUPRAS Izmir Refinery's Quality Control Laboratory performed all reference
analyses. The information about the instruments used in the reference analyzes and the

FTIR used for the model development are given in detail in the following.

4.2.1. Density

Density measurements were performed using a density meter (DMA
4500M/Anton Paar) by the standard test method TS EN ISO 12185. As a reference
temperature, the measurement temperature was set to 15°C. Figure 9 shows the example

of an instrument.
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Figure 9: Density meter

(Anton Paar)

4.2.2. Octane Numbers — RON and MON

There are two laboratory test methods (TS EN ISO 5164 and TS EN ISO 5163)
to measure octane numbers called Research Octane Number (RON) and Motor Octane
Number (MON). In accordance with these test methods, Cooperative Fuel Research
(CFR) engines (Waukesha, CFR Engines Inc.), were used to test RON and MON
capability in the 40-120 octane number range. Variable compression ratio cylinder (4:1
to 18:1) and sleeve assembly, four-bowl falling level carburetor, CFR crankcase, intake
air humidity equipment, exhaust surge system, and knock meter are the main components

of the CFR engine. Figure 10 shows the example of an instrument.
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Figure 10: CFR Engine

(Waukesha CFR)

4.2.3. Distillation Points

The distillation analysis was carried out using atmospheric distillation instruments
(OptiDist/PAC) in accordance with the standard test method TS EN ISO 3405 (ASTM D
86). While performing distillation analysis, Sample Temperature was set below 10°C,
Temperature of Cooling Bath was set at 0.5°C, Temperature of Bath Around Receiving
Cylinder was set at 13°C, and Distillation Rate was set 4.5mL/min. Figure 11 shows the

example of an instrument.
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Figure 11: Atmospheric Distillation Instrument

(PAC)

4.2.4. Hydrocarbon Content

Multidimensional gas chromatography (7890B Reformulyzer/AGILENT) was
used to analyze hydrocarbon types, aromatics, olefins, and benzene, according to the TS
N ISO 22854 standard test method. The auto-injector, FID detector, capillary/micro
packed columns and traps all contribute to a good separation and reduced analysis time.

Figure 12 shows the example of an instrument.
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|

Figure 12: Gas Chromatograph
(Agilent, 2018)

4.2.5. Fourier Transform Infrared Spectrometer — FTIR

The FTIR (ANALECTS, Diamond 20) analyzer is a specific instrument
manufactured for private use. Figure 13 shows the example of an instrument. It is used
for the calibration and application development of the online FTIR analyzer used in the
process. It is an exact copy of the FTIR analyzer used in the process, as it is used for

calibration. The specifications of the infrared spectrometer used in the analysis are given

in Table 2.
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Figure 13: FTIR Analyser

(Schneider Electric, 2021)

Table 2 FTIR Specifications

Spectral Range 6000 cm™! - 1000 cm!

Sample Cell Fixed cells — 0.1 mm thickness

Detector Standard DTGS pyroelectric

Interferometer Patented Transept® Interferometer

Infrared Source Internal, air-cooled, high-efficiency Reflex Sphere
Resolution 8 cm’!

4.3. Data Analysis

The collected spectra in ASF format were transferred to Microsoft® Excel® in
2016. Then the data analysis is performed by chemometric calibration toolbox 29(OBA
Quantifier, OBA Kemometri Inc. Turkey) which is developed in the MATLAB R2018b
(Math Works Inc., MA) environment. Genetic Inverse Least Squares (GILS) and Partial
Least Squares Regression (PLSR) were performed for this study. In this study, as
mentioned before, 110 commercial gasoline samples were used and 11 important
parameters of gasoline were tried to be determined. For calibration, 70 gasoline samples,

70x862 absorbance matrix of these samples, and reference measurements were used.
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CHAPTER S

RESULTS AND DISCUSSION

5.1. FTIR Spectra

Fourier Transform Near-Infrared spectra of 110 gasoline samples were collected
for 3 months. Figure 14 shows the raw FTIR absorbance spectra, which were recorded in
the 6000 cm™ — 1000 cm™! wavenumber region for gasoline samples. This spectral region
studied is different from the common range. Between 6000 cm™ — 4000 cm™ s in the
near-infrared region, between 4000 cm™ — 1000 cm™! is in the middle infrared region.

This region is defined as an "extended mid-IR region" by the device manufacturer.
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Figure 14: FTIR spectra of 110 Gasoline Sample

Absorbance value between 3150 cm™! - 2670 cm™! and 1600 cm™ — 1000 cm’!
spectral region was removed because the absorbance value is found to be greater than 2
which can cause nonlinearity problems. In addition, this removed region shows some
noisy futures. In Figure 15, FTIR spectra total of 110 gasoline samples with narrowed

intervals are shown.
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Absorbance

Wavenumber, cm'!

Figure 15: FTIR spectra of 110 Gasoline Samples with Narrowed Range

When using the FTIR spectrometer to analyze samples, there is a lot of chemical
information that may be used to identify the sample. However, because the overtones in
the IR spectra have such a broad structure, it's difficult to link these bands with the
chemical bonds in the sample. Furthermore, in spectral analyses, deviations are known as
noise frequently occur, which contain no information about the sample and are generated
by scattering from the light source, sample cell, or particles of heterogeneous mixtures in
the sample during measurement. As a result, without doing any mathematical operations

on the spectrum, qualitative and quantitative analysis of the sample will be impossible.

There was no preprocessing was performed in this study, except for the extraction
of a small spectral region. For each parameter of the gasoline sample, a model was created
with PLS and GILS methods and performance analysis was made. In each model, 70

gasoline samples were used for calibration and 40 gasoline samples for validation.

5.2. Partial Least Squares Regression

For finding the best fitting number of LVs, Predicted residual error sum of squares
(PRESS) values were calculated for the first 30 LVs and the results are given in Figure
16. The coefficient of determination (R?) of the calibration data set, the root mean square
error of cross validation (SECV), and the root mean square of validation errors (SEP) data
were used to evaluate the prediction performances of the developed model. For the

following part, the results are Density, E70, E100, E150, FBP, MTBE content, Benzene
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content, Olefin content, Aromatic contents, RON, MON PLS model results will be given

for a clear explanation.
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(1) G)

PRESS

Number of LV

(k)
Figure 16: Number of PCs vs. PRESS plot for selecting the optimal number of

LVs a) Density, b) E70, c) E100, d) E150, e) FBP, f) MTBE content, g) Benzene
content, h) Olefin content, i) Aromatic content, j) RON, k) MON

By using Figure 16, 18 LVs, 12 LVs, 12 LVs, 19 LVs, 16 LVs, 19 LVs, 13 LVs,
19 LVs, 9 LVs, 1 LVs, 3 LVs were selected respectively for Density, E70, E100, E150,
FBP, MTBE content, Benzene content, Olefin content, Aromatic content, RON, MON.

5.3. Genetic Inverse Least Square Regression

Genetic Inverse Least Square (GILS) was used using 10 genes, 20 iterations, and
8 runs, with an R? threshold of 0.5 for initial gene selection and a 1-fold CV for fitness
determination. The coefficient of determination (R?) of the calibration data set, the root
mean square error of cross validation (SECV), and the root mean square of validation
errors (SEP) data were used to evaluate the prediction performances of the developed
model. For the following part, the results are Density, E70, E100, E150, FBP, MTBE
content, Benzene content, Olefin content, Aromatic content, RON, MON PLS model

results will be given for a clear explanation.
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5.4. Multivariate Calibration Results and Comparison

Two calibration methods (PLS and GILS) were used and compared for the

determination of each parameter. The results are given in detail for each parameter

separately.

5.4.1. Density

Reference values obtained from density meter (DMA 4500M/Anton Paar) vs
model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in

Figure 17 for Density parameter.
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Figure 17: Reference Density Value vs Predicted Density Value; a) PLS, B)GILS

As can be seen in Figure 17, the calibration predictions and validation set
predictions of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP
values are found to be 0.2803 (kg/m?) and 0.5700 (kg/m?), respectively. The R? value for
calibration set predictions are calculated as 0.9982, and the R? value for the validation set

is 0.9948. For GILS model, SECV and SEP values are found to be 0.3518 (kg/m?) and
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0.4067 (kg/m?), respectively. The R? value for calibration set predictions are calculated
as 0.9972, and the R? value for the validation set is 0.9973. Prediction performances of

the developed model for Density parameters are given in Table 3.

Table 3: Calibration Model Performance for Density

PLS Calibration GILS Calibration Data Range
Model Results Model Results (kg/m®)
SECV (kg/m®) 0.2803 SECV (kg/m®) 0.3518 Max 757.8
SEP (kg/m®) 0.5700 SEP (kg/m®) 0.4067 Min 727.4
R? calibration 0.9982 R? calibration 0.9972 Interval 304
R’ validation 0.9948 R’ validation 0.9973
Number of LVs 18

To determine the error range and possible residual trends, the residuals for both
calibration and validation samples are given in Figure 18. All validation data are very

close to calibration data which shows model prediction efficiency.
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Figure 18: Reference Density vs. Corresponding Model Prediction Density Residuals; a)
PLS, b)GILS

As mentioned earlier, the determination of gasoline parameters is made in

accordance with certain international standards. Measurement performance must meet the
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quality and reliability criteria specified in these standards. For this reason, the
reproducibility values in the standards to which the parameters are subject are accepted
as limits and the absolute differences (ranges) between the model predictions and

reference analysis are examined.

The Reproducibility, R, for Density given in TS EN ISO 12185 is described as
0.5 (kg/m?). The R-chart with absolute differences between GILS and PLS model

predictions and reference analysis is given in Figure 19.
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Figure 19: Density Residual R-Chart; a)PLS, b)GILS

As seen in Figure 19, 7 of the GILS prediction values were out of the limit, while
14 of the PLS prediction values were out of the limit. Although the model performance
criteria (SEP, SEC, R?) gave successful results, the PLS model gave 35% and the GILS

model 17.5% results out of the limit for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 3.
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Table 4: Paired t-test Results for Density

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -0.762 -0.573 0.512
p-value two-tail 0.451 0.570 0.611
t Critical two-tail 2.023

According to Table 4, it can be said that, with 95% confidence, there is no

statistically significant difference between reference density values and model prediction,

nor between GILS and PLS prediction.

5.4.2. E70 - Evaporated at 70 °C

Reference values obtained from distillation instruments (OptiDist/PAC) vs model

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure

20 for the E70 parameter.
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Figure 20: Reference E70 Value vs Predicted E70 Value; a) PLS, B)GILS
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As can be seen in Figure 20, the calibration predictions and validation set
predictions of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP
values are found to be 0.5589 (v/v%) and 0.8380 (v/v%), respectively. The R? value for
calibration set predictions are calculated as 0.9815, and the R? value for the validation set
is 0.9768. For GILS model, SECV and SEP values are found to be 0.4884 (v/v%) and
0.7476 (v/v%) respectively. The R? value for calibration set predictions are calculated as
0.9860, and the R? value for the validation set is 0.9802. Prediction performances of the

developed model for the E70 parameter are given in Table 5.

Table 5: Calibration Model Performance for E70

PLS Calibration Model GILS Calibration Data Range
Results Model Results (v/v %)
SECV (v/v %) 0.5589 SECV (v/v %) 0.4884 Max 47.3
SEP (v/v %) 0.8380 SEP (v/v %) 0.7476 Min 27.0
R? calibration 0.9815 R? calibration 0.9860 Interval 20.3
R’ validation 0.9768 R’ validation 0.9802 -
Number of LVs 12 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 21. All validation data are

very close to calibration data which shows model prediction efficiency.
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Figure 21: Reference E70 vs. Corresponding Model Prediction E70 Residuals; a) PLS,
b)GILS

The Reproducibility, R, for E70 given in ASTM D 86 is described as Eq. (20).
The R-chart with absolute differences between GILS and PLS model predictions and

reference analysis is given in Figure 22.

+0.02 * (150 — X) Eq. (20)

Where X is the measured value.
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Figure 22: E70 Residual R-Chart; a)PLS, b)GILS

As seen in Figure 22, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 6.

Table 6: Paired t-test Results for E70

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -0.642 -0.031 1.995
p-value two-tail 0.524 0.975 0.053
t Critical two-tail 2.023

According to Table 6, it can be said that, with 95% confidence, there is no
statistically significant difference between reference E70 values and model prediction,

nor between GILS and PLS prediction.
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5.4.3. E100 - Evaporated at 100 °C

Reference values obtained from distillation instruments (OptiDist/PAC) vs model
predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure
23 for the E100 parameter.
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Figure 23: Reference E100 Value vs Predicted E100 Value; a) PLS, B)GILS

As can be seen in Figure 23, the calibration predictions and validation set
predictions of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP
values are found to be 0.5589 (v/v%) and 0.8380 (v/v%), respectively. The R? value for
calibration set predictions are calculated as 0.9815, and the R? value for the validation set
is 0.9768. For GILS model, SECV and SEP values are found to be 0.4884 (v/v%) and
0.7476 (v/v%) respectively. The R? value for calibration set predictions are calculated as
0.9860, and the R? value for the validation set is 0.9802. Prediction performances of the

developed model for the E100 parameter are given in Table 7.
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Table 7: Calibration Model Performance for E100

PLS Calibration GILS Calibration Data Range
Model Results Model Results (v/v %)
SECV (v/v %) 0.2989 SECV (v/v %) 0.2856 Max 67.3

SEP (v/v %) 0.6326 SEP (v/v %) 0.5606 Min 49.1

R? calibration 0.9912 R? calibration 0.9920 Interval 18.2

R? validation 0.9807 R? validation 0.9838 -
Number of LVs 12 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 24. All validation data are

very close to calibration data which shows model prediction efficiency.
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Figure 24: Reference E100 vs. Corresponding Model Prediction E100 Residuals; a)
PLS, b)GILS

The Reproducibility, R, for E100 given in ASTM D 86 is described as Eq. (20).
The R-chart with absolute differences between GILS and PLS model predictions and

reference analysis is given in Figure 25.
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Figure 25: E100 Residual R-Chart; a)PLS, b)GILS

As seen in Figure 25, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 8.

Table 8: Paired t-test Results for E100

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -1.555 -1.171 1.820
p-value two-tail 0.128 0.248 0.076
t Critical two-tail 2.023

According to Table 8, it can be said that, with 95% confidence, there is no
statistically significant difference between reference E100 values and model prediction,

nor between GILS and PLS prediction.
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5.4.4. E150 - Evaporated at 150 °C

Reference values obtained from distillation instruments (OptiDist/PAC) vs model
predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure
26 for the E100 parameter.
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Figure 26: Reference E150 Value vs Predicted E150 Value; a) PLS, B)GILS

As can be seen in Figure 26, both models (PILS, GILS) have differences in
validation and calibration predictions. When the R? values of the validation and
calibration series in the table are examined, it is observed that there are more differences
in the validation prediction. For PLS model, SECV and SEP values are found to be 0.2400
(v/v%) and 0.9358 (v/v%), respectively. The R? value for calibration set predictions are
calculated as 0.9362, and the R? value for the validation set is 0.5292. For GILS model,
SECV and SEP values are found to be 0.3216 (v/v%) and 0.6604 (v/v%) respectively.
The R? value for calibration set predictions are calculated as 0.8901, and the R? value for
the validation set is 0.6132. Prediction performances of the developed models for the
E150 parameter are given in Table 9. It is seen that R? of the calibration of the PLS model,
is better, while R? of the validation of the GILS model is better.
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Table 9: Calibration Model Performance for E150

PLS Calibration GILS Calibration Data Range
Model Results Model Results (v/v %)
SECV (v/v %) 0.2400 SECV (v/v %) 0.3216 Max 92.5
SEP (v/v %) 0.9358 SEP (v/v %) 0.6604 Min 87.9
R? calibration 0.9362 R? calibration 0.8901 Interval | 4.6
R? validation 0.5292 R? validation 0.6132 -
Number of LVs 19 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 27. Some validation data is
far from calibration data. This may indicate that the model performance is not good
enough. As seen in Figure 28, there are also values outside the reliability limits specified

in ASTM DS86.
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Figure 27: Reference E150 vs. Corresponding Model Prediction E150 Residuals;
a) PLS, b)GILS

The Reproducibility, R, for E150 given in ASTM D 86 is described as Eq. (20).
The R-chart with absolute differences between GILS and PLS model predictions and

reference analysis is given in Figure 28.
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Figure 28: E150 Residual R-Chart; a)PLS, b)GILS

As seen in Figure 28, 4 of the GILS prediction values were out of the limit, while
8 of the PLS prediction values were out of the limit.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 10.

Table 10: Paired t-test Results for E150

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat 1.245 0.927 -1.196
p-value two-tail 0.221 0.359 0.239
t Critical two-tail 2.023

According to Table 10, it can be said that, with 95% confidence, there is no
statistically significant difference between reference E150 values and model prediction,

nor between GILS and PLS prediction.
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5.4.5. FBP — Final Boiling Point

Reference values obtained from distillation instruments (OptiDist/PAC) vs model

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure

29 for FBP parameter.
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Figure 29: Reference FBP Value vs Predicted FBP Value; a) PLS, B)GILS

As can be seen in Figure 29, the calibration predictions and validation set
predictions of both models (PILS, GILS) are quite close. For the PLS model, SECV and
SEP values are found to be 1.0792 (°C) and 1.7317 (°C), respectively. The R? value for
calibration set predictions are calculated as 0.8953, and the R? value for the validation set
is 0.7031. For the GILS model, SECV and SEP values are found to be 0.9926 (°C) and
1.6801 (°C), respectively. The R? value for calibration set predictions are calculated as
0.9153, and the R? value for the validation set is 0.8065. Prediction performances of the

developed model for the FBP parameter are given in Table 11.



Table 11: Calibration Model Performance for FBP

PLS Calibration GILS Calibration Data Range
Model Results Model Results (°O)
SECV (°C) 1.0792 SECV (°C) 0.9926 Max 193.6
SEP (°C) 1.7317 SEP (°C) 1.6801 Min 176.8
R? calibration 0.8953 R? calibration 0.9153 Interval 16.8
R? validation 0.7031 R? validation 0.8065 -
Number of LVs 16 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 30. As seen in Figure 30, some
validation residuals are not close to calibration residual. However, both SEP and SEC

values meet the deviation criteria of the reference measurement method.
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Figure 30: Reference FBP vs. Corresponding Model Prediction FBP Residuals;
a) PLS, b)GILS

The Reproducibility, R, for FBP given in ASTM D 86 is described as 6.8 (°C).
The R-chart with absolute differences between GILS and PLS model predictions and

reference analysis is given in Figure 31.
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Figure 31: FBP Residual R-Chart; a)PLS, b)GILS

As seen in Figure 31, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 12.

Table 12: Paired t-test Results for FBP

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -2.192 -4.909 -3.000
p-value two-tail 0.034 0.00001 0.005
t Critical two-tail 2.023

According to Table 12, it can be said that, with 95% confidence, there is a
statistically significant difference between reference FBP values and model predictions,

and between GILS and PLS prediction.
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5.4.6. MTBE Content - Methyl Tertiary Butyl Ether

Reference values obtained from multidimensional gas chromatography (7890B
Reformulyzer/AGILENT) vs model predicted values (PLS and GILS) of FTIR spectra

of gasoline sample are given in Figure 32 for MTBE content.
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Figure 32: Reference MTBE Value vs Predicted MTBE Value; a) PLS, B)GILS

As can be seen in Figure 32, the performance of both models (PILS, GILS) is
quite close to the calibration and validation set predictions. For PLS model, SECV and
SEP values are found to be 0.0648 (v/v%) and 0.1791 (v/v%), respectively. The R? value
for calibration set predictions are calculated as 0.9989, and the R? value for the validation
set is 0.9946. For GILS model, SECV and SEP values are found to be 0.0876 (v/v%) and
0.0852 (v/v%) respectively. The R? value for calibration set predictions are calculated as
0.9980, and the R? value for the validation set is 0.9986. Prediction performances of the

developed model for MTBE content are given in Table 13.

58



Table 13: Calibration Model Performance for MTBE Content

PLS Calibration GILS Calibration Data Range
Model Results Model Results v/v %)
SECV (v/v %) 0.0648 SECV (v/v %) 0.0876 Max 10.12
SEP (v/v %) 0.1791 SEP (v/v %) 0.0852 Min 0.8
R? calibration 0.9989 R? calibration 0.9980 | Interval | 9.32
R? validation 0.9946 R? validation 0.9986 -
Number of LVs 19 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 33. All validation data are

very close to calibration data which shows model prediction efficiency.
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Figure 33: Reference MTBE vs. Corresponding Model Prediction MTBE
Residuals; a) PLS, b)GILS

The Reproducibility, R, for MTBE content given in TS EN ISO 22854 is
described as Eq. (21). The R-chart with absolute differences between GILS and PLS

model predictions and reference analysis is given in Figure 34.

+0.0251Y + 0.3515 Eq. (21)

Where Y is the mean of the two results being compared.
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Figure 34: MTBE Residual R-Chart; a)PLS, b)GILS

As seen in Figure 34, there is only one out-of-limit predicted value for 40 samples
in PLS predictions.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 14.

Table 14: Paired t-test Results for MTBE

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -2.000 -0.763 2.141
p-value two-tail 0.052 0.450 0.039
t Critical two-tail 2.023

According to Table 14, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and both
model predictions. However, with the same confidence, there is a statistical difference

between PLS and GILS predictions.
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5.4.7. Benzene Content

Reference values obtained from Multidimensional gas chromatography (7890B
Reformulyzer/AGILENT) vs model predicted values (PLS and GILS) of FTIR spectra

of gasoline sample are given in Figure 35 for Benzene content.
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Figure 35: Reference Benzene Value vs Predicted Benzene Value; a) PLS,
b)GILS

As can be seen in Figure 35, the calibration predictions and validation predictions
of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are
found to be 0.0164 (v/v%) and 0.0259 (v/v%), respectively. The R? value for calibration
set predictions are calculated as 0.9783, and the R? value for the validation set is 0.9461.
For GILS model, SECV and SEP values are found to be 0.0163 (v/v%) and 0.0261 (v/v%)
respectively. The R? value for calibration set predictions are calculated as 0.9790, and the
R? value for the validation set is 0.9478. Prediction performances of the developed model

for Benzene content are given in Table 15.
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Table 15: Calibration Model Performance for Benzene Content

PLS Calibration GILS Calibration Data Range
Model Results Model Results (vIv %)
SECV (v/v %) 0.0164 SECV (v/v %) 0.0163 Max 0.93
SEP (v/v %) 0.0259 SEP (v/v %) 0.0261 Min 0.6
R? calibration 0.9783 R? calibration 0.9790 Interval | 0.33
R? validation 0.9461 R? validation 0.9478 -
Number of LVs 13 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 36. Most of the validation data

are very close to calibration data which shows model prediction efficiency.
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Figure 36: Reference Benzene vs. Corresponding Model Prediction Benzene

Residuals; a) PLS, b)GILS

The Reproducibility, R, for Benzene content given in TS EN ISO 22854 is
described as Eq. (22). The R-chart with absolute differences between GILS and PLS

model predictions and reference analysis is given in Figure 37.

+0.0777Y — 0.025 Eq. (22)

Where Y is the mean of the two results being compared.
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Figure 37: Benzene Residual R-Chart; a)PLS, b)GILS

As seen in Figure 37, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 16.

Table 16: Paired t-test Results for Benzene Content

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat 0.551 -0.044 -1.364
p-value two-tail 0.585 0.965 0.180
t Critical two-tail 2.023

According to Table 16, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and both

model predictions, and also between the PLS and GILS predictions.
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5.4.8. Olefin Content

Reference values obtained from multidimensional gas chromatography (7890B
Reformulyzer/AGILENT) vs model predicted values (PLS and GILS) of FTIR spectra

of gasoline sample are given in Figure 38 for Olefin content.
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Figure 38: Reference Olefin Value vs Predicted Olefin Value; a) PLS, B)GILS

As can be seen in Figure 38, the calibration predictions and validation predictions
of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are
found to be 0.0953 (v/v%) and 0.2675 (v/v%), respectively. The R? value for calibration
set predictions are calculated as 0.9965, and the R? value for the validation set is 0.9745.
For GILS model, SECV and SEP values are found to be 0.1102 (v/v%) and 0.1523 (v/v%)
respectively. The R? value for calibration set predictions are calculated as 0.9954, and the
R? value for the validation set is 0.9910. Prediction performances of the developed model

for Olefin content are given in Table 17.
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Table 17; Calibration Model Performance

PLS Calibration GILS Calibration Data Range
Model Results Model Results v/v %)
SECV (v/v %) 0.0953 SECV (v/v %) 0.1102 Max 10.2
SEP (v/v %) 0.2675 SEP (v/v %) 0.1523 Min 2.6
R? calibration 0.9965 R? calibration 0.9954 Interval 7.6
R? validation 0.9745 R? validation 0.9910 -
Number of LVs 19 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 39. Most of the validation data
are very close to calibration data which shows model prediction efficiency. It is observed
that the residual values increase as you move away from the points where the reference

values are concentrated.
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Figure 39: Reference Olefin vs. Corresponding Model Prediction Olefin
Residuals; a) PLS, b)GILS

The Reproducibility, R, for Olefin content given in TS EN ISO 22854 is described
as Eq. (23). The R-chart with absolute differences between GILS and PLS model

predictions and reference analysis is given in Figure 40.
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+0.1176Y + 0.5118 Eq. (23)

Where Y is the mean of the two results being compared.
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Figure 40: Olefin Residual R-Chart; a)PLS, b)GILS

As seen in Figure 40, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 18.

Table 18: Paired t-test Results for Olefin Content

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat 2.150 1.818 -1.878
p-value two-tail 0.038 0.077 0.068
t Critical two-tail 2.023

According to Table 18, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and GILS

model predictions, and also between the PLS and GILS predictions. However, with the
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same confidence, there is a statistical difference between reference measurements and

PLS predictions.

5.4.9. Aromatic Contents

Reference values obtained from multidimensional gas chromatography (7890B
Reformulyzer/AGILENT) vs model predicted values (PLS and GILS) of FTIR spectra

of gasoline sample are given in Figure 41 for Aromatic content.
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Figure 41: Reference Aromatic Value vs Predicted Aromatic Value; a) PLS,
B)GILS

As can be seen in Figure 41, the calibration predictions and validation predictions
of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are
found to be 0.2262 (v/v%) and 0.2421 (v/v%), respectively. The R? value for calibration
set predictions are calculated as 0.9925, and the R? value for the validation set is 0.9949.
For GILS model, SECV and SEP values are found to be 0.1801 (v/v%) and 0.2619 (v/v%)
respectively. The R? value for calibration set predictions are calculated as 0.9952, and the
R? value for the validation set is 0.9940. Prediction performances of the developed model

for Aromatic content are given in Table 19.
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Table 19: Calibration Model Performance for Aromatic Content

PLS Calibration GILS Calibration Data Range
Model Results Model Results (v/v %)
SECV (v/v %) 0.2262 SECV (v/v %) 0.1801 Max 419
SEP (v/v %) 0.2421 SEP (v/v %) 0.2619 Min 273
R? calibration 0.9925 R? calibration 0.9952 Interval | 14.6
R? validation 0.9949 R? validation 0.9940 -
Number of LVs 9 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 42. Most validation data are
very close to calibration data which shows model prediction efficiency. It is observed that
the residual values increase as you move away from the points where the reference values

are concentrated.
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Figure 42: Reference Aromatic vs. Corresponding Model Prediction Aromatic

Residuals; a) PLS, b)GILS

The Reproducibility, R, for Aromatic content given in TS EN ISO 22854 is
described as Eq. (24). The R-chart with absolute differences between GILS and PLS

model predictions and reference analysis is given in Figure 43.



+ 0.045Y + 0.1384 Eq. (24)

Where Y is the mean of the two results being compared.
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Figure 43: Aromatic Residual R-Chart; a)PLS, b)GILS

As seen in Figure 43, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 20.

Table 20: Paired t-test Results for Aromatic Content

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat 0.054 -0.399 -1.529
p-value two-tail 0.958 0.692 0.134
t Critical two-tail 2.023

According to Table 20, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and both

model predictions, and also between the PLS and GILS predictions.
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5.4.10. RON - Research Octane Number

Reference values obtained from Cooperative Fuel Research (CFR) engines vs
model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in
Figure 44 for RON parameter.
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Figure 44: Reference RON Value vs Predicted RON Value; a) PLS, B)GILS

For PLS model, SECV and SEP values are found to be 0.0802 (v/v%) and 0.0453
(v/v%), respectively. The R? value for calibration set predictions are calculated as 0.0083,
and the R? value for the validation set is 9*10%. For GILS model, SECV and SEP values
are found to be 0.0750 (v/v%) and 0.0453 (v/v%) respectively. The R? value for
calibration set predictions are calculated as 0.2000, and the R? value for the validation set
is 0.0007. Prediction performances of the developed model for the RON parameter are

given in Table 21.



Table 21: Calibration Model Performance for RON

PLS Calibration Model Results | GILS Calibration Model Results Data Range
SECV 0.0802 SECV 0.0750 Max 95.443
SEP 0.0453 SEP 0.0453 Min 94.800
R? calibration 0.0083 R? calibration 0.2000 Interval | 0.643
R? validation 0.00000009 R? validation 0.0007 -
Number of LVs 1 - -

In order to determine the error range and possible residual trends, the residuals for

both calibration and validation samples are given in Figure 45. When the residuals are

examined, there seems to be a systematic error, as in Figure 45. Since the octan number

is one of the most important parameters of gasoline, it is not a very variable parameter

from product to product. It is seen in Table 21 that, the reference value range is very

narrow. The narrow reference value range in the calibration set causes the R? value to be

very low and a systematic error to appear, although the residual values are proportionally

very small.
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Figure 45: Reference RON vs. Corresponding Model Prediction RON Residuals;

a) PLS, b)GILS

The Reproducibility, R, for RON given in TS EN ISO 5164 is described as 0.7.

Since the octane number parameters directly represent the product quality, precision in
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its measurement uncertainty is important. For this reason, TS EN ISO 5164 repeatability,
r, value (described as 0.2), and measurement differences were also compared. The R-chart

with absolute differences between GILS and PLS model predictions and reference

analysis is given in Figure 46.
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Figure 46: RON Residual R-Chart; a)PLS, b)GILS

As seen in Figure 46, there is no out-of-limit predicted value for 40 samples.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 22.

Table 22: Paired t-test Results for RON

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -1.771 -1.049 2.385
p-value two-tail 0.084 0.301 0.022
t Critical two-tail 2.023
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According to Table 22, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and both
model predictions. However, with the same confidence, there is a statistical difference

between PLS and GILS predictions.

5.4.11. MON - Motor Octane Number

Reference values obtained from Cooperative Fuel Research (CFR) engines vs
model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in
Figure 47 for MON parameter.
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Figure 47: Reference MON Value vs Predicted MON Value; a) PLS, B)GILS

For PLS model, SECV and SEP values are found to be 0.0815 (v/v%) and 0.0900
(v/v%), respectively. The R? value for calibration set predictions are calculated as 0.1438,
and the R? value for the validation set is 0.1733. For GILS model, SECV and SEP values
are found to be 0.0589 (v/v%) and 0.0724 (v/v%) respectively. The R? value for
calibration set predictions are calculated as 0.6545, and the R? value for the validation set
is 0.3989. Prediction performances of the developed model for MON parameter are given

in Table 23.
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Table 23: Calibration Model Performance for MON

PLS Calibration Model Results | GILS Calibration Model Results Data Range
SECV 0.0815 SECV 0.0589 Max 85.6
SEP 0.0900 SEP 0.0724 Min 85.1
R? calibration 0.1438 R? calibration 0.6545 Interval 0.5
R’ validation 0.1733 R’ validation 0.3989 -
Number of LVs 3 - -

In order to determine the error range and possible residual trends, the residuals for
both calibration and validation samples are given in Figure 48. When the residuals are
examined, there seems to be a systematic error. Since the octan number is one of the most
important parameters of gasoline, it is not a very variable parameter from product to
product. It is seen in Table 23 that, the reference value range is very narrow. The narrow
reference value range in the calibration set causes the R? value to be very low and a

systematic error to appear, although the residual values are proportionally very small.
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Figure 48: Reference MON vs. Corresponding Model Prediction MON
Residuals; a) PLS, b)GILS

74



The Reproducibility, R, for MONs given in TS EN ISO 5163 is described as 0.9,
and repeatability, r, value is described as 0.2. The R-chart with absolute differences

between GILS and PLS model predictions and reference analysis is given in Figure 49.
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Figure 49: MON Residual R-Chart; a)PLS, b)GILS

As seen in Figure 49, there is no value outside the reproducibility limit from both
model predictions. One of the GILS predictions and two of the PLS predictions are

outside the repeatability limit.

Paired t-test was performed to evaluate whether there was a significant difference
between both the PLS and GILS model predicted values and between the reference

measurements of each. The results are given in Table 24.

Table 24: Paired t-test Results for MON

Reference-PLS Reference-GILS PLS-GILS
Comparison Comparison Comparison
Observations 40
df 39
t Stat -2.433 -1.025 4.173
p-value two-tail 0.020 0.312 0.0002
t Critical two-tail 2.023




According to Table 24, it can be said that, with 95% confidence, there is no
statistically significant difference between reference measurements values and GILS
model predictions. However, with the same confidence, there is a statistical difference

between PLS and GILS predictions and also between PLS and reference values.
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CHAPTER 6

CONCLUSION

In this study, a new, fast and simple analytical method has been developed to
determine crucial parameters of gasoline blends. For this purpose, molecular
spectroscopic techniques, namely FTIR spectroscopy was used along with two different
chemometric multivariate calibration methods which are GILS and PLS. All gasoline
samples were collected at Tupras Izmir Refinery. The gasoline samples were analyzed at
the Tupras Izmir Refinery Quality Control Laboratory by the reference test methods. GC,

density meter, distillation instrument were used for reference analysis.

When the results were examined, it was observed that although there were
significant differences in some parameters, in general, two multivariate calibration
methods (PLS, GILS) gave close results, these results can be reached by looking at their
SECV and SEP with R? values. Since working with commercial gasoline samples, sample
specs are in a very narrow range. It is obvious that this situation has a negative effect on
the calibration model performances. Although the R? value is found to be very small in
parameters with a very small data range such as RON and MON, the SECV and SEP
values are proportionally very small and meet the relevant international standard
requirements. It has been observed that the GILS results are better in these parameters
where the data range is narrow. Except for Density and E150 parameters, all parameters

have met the reproducibility limits specified in the relevant international standards.

Although the data range used for calibration is very narrow, it can be accepted
that the calibration models created are significantly successful, especially considering the
reproducibility limits in the relevant reference measurement methods of the parameters.
Using an experimental design while creating a calibration data set, or collecting a large
number of samples for a long time to expand the data range can improve model

performance.
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