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ABSTRACT 
 

DETERMINATION OF CRUCIAL PARAMETERS IN GASOLINE 

BLENDS BY USING INFRARED SPECTROSCOPY COUPLED WITH 

MULTIVARIATE CALIBRATION METHODS 

 

In petroleum refineries, converting the manual gasoline blending system to an 

automatic inline blending system provides the most economical blending in gasoline 

production, increasing efficiency, and reliability. The most important requirement for an 

automatic inline blending system is the determination of gasoline parameters in a short 

time with high reliability. For this purpose, fast and simple analytical methods have been 

developed to determine crucial parameters of gasoline blends by using Fourier Transform 

Infrared Spectroscopy (FTIR) coupled with multivariate calibration methods which are 

Partial Least Squares Regression (PLSR) and  Genetic Inverse Least Squares Regression 

(GILS) for this study. Turkey Petroleum Refinery Incorporated Company (TUPRAS) 

Izmir Refinery collected all gasoline samples and tested them using reference test 

methods at Quality Control Laboratory. Since commercial product samples were used in 

this study, the data ranges of the parameters were quite narrow. The Standard Error of 

Cross-Validation (SECV) and Standard Error of Prediction (SEP) values were acceptable, 

although the determintion coefficient (R2) value of some parameters was below the 

expectation. It has been observed that the prediction results of GILS are better in these 

parameters, whose R2 value is low because the data range is very narrow. In the 

comparison made with the reproducibility values specified in the reference measurement 

methods, it was determined that the calibration model results of most parameters were 

acceptable. Collecting more samples in a longer time interval to expand the data range of 

the parameters, or preparing a data set with experimental design can improve the 

prediction performance. 
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ÖZET 
 

BENZİN KARIŞIMLARININ ÖNEMLİ PARAMETRELERİNİN ÇOK 

DEĞİŞKENLİ KALİBRASYON METOTLARI İLE DESTEKLENMİŞ 

KIZILÖTESİ SPEKTROSKOPİSİ YÖNTEMİ İLE TAYİNİ 

 

Petrol rafinerilerinde verimliliğin ve güvenilirliğin arttırılması için sürekli 

iyileştirme çalışmaları yapılmaktadır. Benzin üretimindeki verimliliğin ve güvenilirliğin 

arttırılması için ürünlere ait önemli parametrelerin kısa süre içerisinde tayin edilmesi 

önemlidir. Bu amaçla, bu çalışmada Fourier Dönüşümü Kızılötesi Spektroskopisi (FTIR) 

ile çok değişkenli kalibrasyon yöntemleri olan Kısmi En Küçük Kareler Regresyon 

(PLSR) ve Genetik Ters En Küçük Kareler Regresyon (GILS) kullanılarak benzin 

karışımlarının önemli parametrelerini belirlemek için hızlı ve basit analitik yöntem 

geliştirilmiştir. Türkiye Petrol Rafinerileri A.Ş. (TÜPRAŞ) İzmir Rafinerisi, tüm benzin 

numunelerini toplamış ve Kalite Kontrol Laboratuvarı'nda referans test yöntemleri ile test 

etmiştir. Bu çalışmada ticari ürün numuneleri kullanıldığı için parametrelerin veri 

aralıkları dar olmasına bağlı olarak, bu parametrelerde Korelasyon Katsayısı (R2) değeri 

beklentinin altında olduğu, fakat  Standart çapraz doğrulama hatası (SECV) ve standart 

tahmin hatası (SEP) değerleri kabul edilebilir olduğu tespit edildi. Veri aralığı çok dar 

olduğu için R2 değeri düşük olan bu parametrelerde GILS model tahmin sonuçlarının 

daha iyi olduğu gözlemlenmiştir. Referans ölçüm yöntemlerinde belirtilen tekrar 

üretilebilirlik değerleri ile yapılan karşılaştırmada çoğu parametrenin kalibrasyon modeli 

tahminlerinin kabul edilebilir olduğu gözlenmiştir. Parametrelerin veri aralığını 

genişletmek için daha uzun bir zaman aralığında daha fazla örnek toplamak veya deneysel 

tasarım ile bir veri seti hazırlamak tahmin performansını iyileştirebilir. 
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CHAPTER 1 

 

INTRODUCTION 

 

The word petroleum is formed by the combination of the Latin “Petro” (Stone) 

and “Oleum” (Oil). It means stone oil. Petroleum is a very complex compound consisting 

mainly of hydrogen and carbon with small amounts of nitrogen, oxygen, and sulfur and 

has no simple formula. It can exist in gas, liquid, and solid form under normal conditions 

(National Centre for Catalysis Research, 2006). 

Crude oil is a mixture of hydrocarbon molecules containing 1 to 60 carbon atoms 

(Beşergil, 2009). The properties of hydrocarbons depend on the number and arrangement 

of carbon and hydrogen atoms in their molecules. Crude oil, for example, is not a single 

compound like water; some are a mixture of large and some small hydrocarbon 

molecules. Crude oil starts to boil at room temperature, the steam above the liquid rises 

as the boiling continues as long as it is heated; the reason is that as the temperature rises, 

various hydrocarbon molecules in crude oil leave the liquid by evaporation or boiling. 

Higher temperatures are required for the chemometricmixture to boil. These distillation 

steps are shown in Figure 1. 

The composition and appearance of crude oil differ according to the region and 

location, its fluidity varies from watery to tar-like solids, and its color varies from light 

to black. An average crude oil consists of 84% carbon, 14% hydrogen, 1-3% sulfur, and 

less than 1% nitrogen, oxygen, metals, and salts (Beşergil, 2009).  
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Figure 1: Atmospheric Distillation of Crude Oil 

 (Anton-Paar, 2009) 

 

As can be seen in Figure 1, a wide variety of products are formed by the distillation 

of petroleum. Each of these products is used for different purposes due to their different 

performances. Gasoline, which is formed by the chemical processes of crude oil, is still 

one of the largest energy sources for automobiles. Gasoline used for vehicles has some 

properties and these vary according to the structure, characteristics, and operating 

conditions of the engine.  

 One of the significant properties of gasoline is specific gravity. High specific 

gravity will increase the boiling point of gasoline, making it difficult to start, negatively 

affecting the operation of the engine at low temperatures and speeds. If the evaporation 

pressure of gasoline is low and the air is cold, it makes it difficult for the engine to start. 

The distillation feature of gasoline shows the evaporation ability of gasoline. The 

distillation temperature is highly effective on the operation of the engine. Starting the 

engine at 10% distillation temperature and in cold weather affects factors such as the 

acceleration of engine oil contamination. The higher the octane number, which shows the 
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resistance of gasoline against knocking, the less chance of self-ignition of gasoline, and 

there will be no knocking.  

For the measurements of all these parameters mentioned, different tests are carried 

out in the laboratories. These tests require both labor and time. However, with the 

developing technology, studies have been made on the use of Infrared Spectroscopy for 

the determination of all these important parameters. It is aimed to save both time and 

labor, and at the same time, higher measurement accuracy that meets international 

standards is aimed. Figure 2 shows the basic steps of the calibration models for the 

determination of fuel properties with IR spectra. 

 

 

Figure 2: Process involved in the development of the calibration models for fuel 

properties from IR spectra 

(Fodor & Hutzler, 1997) 
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1.1. Literature Review 
 

Due to the diversity of products, parameters, and methods, there are many studies 

in the literature containing infrared spectroscopy coupled with multivariate calibration 

models for the characterization of petroleum products.  

In a study by Özdemir, it was shown that near-infrared (NIR) spectroscopy and 

three different genetic algorithm-based multivariate calibration approaches (GILS, GR, 

GCLS) can be used to rate the octane number of gasoline (Özdemir, 2005). In this study, 

a data set consisting of 60 gasoline samples with known octane numbers and the 

spectrums (900 to 1700 nm spectral region) of those samples, previously created by John 

H. Kalivas (Kalivas, 1997), was used. By using a genetic algorithm, it was tried to 

improve the results of the calibration study, which was done with the least square and 

classical methods before. It was stated that the calibrations using the genetic algorithm 

were successful. Bohács and friends tried to present a feasible procedure for the prediction 

of quality parameters of gasoline from its NIR spectrum in a large and very diverse sample 

set (Bohács, Ovádi, & Salgó, 1998). They developed NIR methods with Partial Least 

Square Regression(PLSR) to predict four important gasoline properties (RON, MON, 

benzene, MTBE content, evaporation values, density, Reid vapor pressure, sulfur content) 

with reproducibilities equivalent to the standard test procedures. They used 350 gasoline 

samples. 900 to 1700 nm spectral range was used. It is stated research and motor octane 

number, benzene, and MTBE content correlation are excellent ( R2>0.97), Reid vapor 

pressure, sulfur content, initial and final boiling point and evaporated at 180°C point 

correlation as poor ( R2<0.9). Fodor& Hutzler developed to FT-IR method with PLS 

calibration for the rapid, simultaneous determination of several pertinent fuel properties, 

using less than 2 mL of sample, as an alternative to established laboratory protocols 

(Fodor & Hutzler, 1997).  They tried to confidently measure by FT-IR: research and 

motor octane numbers, aromatic, olefinic, and saturated hydrocarbon content, benzene 

content, and concentrations of ethanol, methyl tert-butyl ether, and total oxygenated 

compounds. In this study, two different FTIRs were used and compared. A spectral region 

of 4000-650 cm-1 was used. A large number of summer and winter gasoline samples 

collected from different regions were used. In this study, analyzes were made depending 

on the parameters of different season product types, different devices, baseline correction, 
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or not. It has been stated that the prediction error increases when the calibration model 

prepared in one FTIR device is used for prediction in the other FTIR device. Some 

gasoline parameters were found to have better correlation coefficients without baseline 

correction. It has been observed that the correlation of the model made in winter products 

is better.. Reboucas also tried for prediction of key gasoline properties (density, 

hydrocarbon composition) by Near-infrared Spectroscopy coupled with the PLS 

calibration method (Reboucas, Santos, Pimentel, & Teixeira, 2011). They used Doehlert 

design matrix with three input variables (wavenumber range, preprocessing technique, 

and regression/validation technique) varied at 5, 7, and 3 levels, respectively, and 

improved the efficiency of PLS modeling. 10,000 – 3900 cm−1 spectral region was used. 

They have stated that PLS modeling became more efficient because of the use of 

experimental design, which required less experimental effort and ensured the accurate 

simultaneous evaluation of important response variables. In a study by Özdemir, the 

application of genetic algorithm-based multivariate calibration to the near-infrared 

spectroscopic determination of several diesel fuel parameters was demonstrated 

(Özdemir, 2008). Genetic Inverse Least Square Regression was used in this study. It is 

tried to determine: cetane number; boiling point, °C; freezing point, °C; total aromatic, 

(w/w)%; viscosity, cSt; density, g/mL. It has been managed to keep the percent standard 

error of prediction (SEP%) below 5%. Breitkreutz  tried to determine total sulfur in diesel 

fuel employing NIR spectroscopy and multivariate calibration (Breitkreitz, et al., 2003). 

In this study, multiple linear regression (MLR) following variable selection using the 

genetic algorithm (GA) or the successive projection algorithm was compared to the 

performance of principal component regression (PCR) and partial least square (PLS) 

chemometric approaches. 97 diesel samples were used, and they used 4000 to 12,820    

cm-1 spectral region for NIR analysis. They determined that the use of variable selection 

methods increases the success of the model prediction and the genetic algorithm with 

multiple linear regression model gives the better prediction result. 

 

1.2. Structure and Purpose of The Thesis 

 

In the first chapter of the thesis, general information about petroleum products and 

crucial parameters are given with their common principles of analysis. In the second 
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chapter, the most common chemometric calibration methods are shared along with their 

motivation, mathematical background. Additionally, a study of the determination of 

crucial parameters of blended gasoline was provided in the third chapter in which 

different calibration techniques were compared. 

TUPRAS İzmir Refinery is planning to convert the existing manual Gasoline 

Blending system to an automated In‐Line Blending system for enhancing efficiency and 

reliability thus ensuring the most economical blending in gasoline production. The in-line 

blending of continuous blending is the process of mixing crude oil or petrochemical 

feedstocks (blend components) to produce a homogenous mixture of consistent quality. 

The first step of this project, which belongs to the TUPRAS İzmir Refinery, is to 

determine the parameters of the blended gasoline while the process is in progress and to 

intervene in the process in a short time. In the next steps, the samples of all the lines 

included in the mixture are modeled and the optimization system is developed and the 

blended gasoline is automatically prepared to depend on the final and intermediate 

product parameters. 

In this study, it is aimed to develop an alternative method with FTIR coupled 

PLS and GILS calibration methods to determine the important parameters of gasoline. 

The developed method was compared with both traditional methods which are CFR 

engine analysis (RON, MON), multidimensional gas chromatography (MTBE, Olefin, 

Aromatic, Benzene Content), atmospheric distillation (distillation points), automated 

densitometer (density), and the reproducibility criteria of the relevant methods specified 

in the international standards. 
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CHAPTER 2 

 

PETROLEUM AND PETROLEUM REFINING 

 
Petroleum is a fossil fuel formed over millions of years. Oil has been used for 

thousands of years in human history. The share of oil in energy consumption is 40%. This 

is followed by coal with a share of 28% and natural gas with a share of 23% (Akova, 

2019). A mixture of liquid hydrocarbons stored in porous rocks deep within the Earth is 

called crude oil. In addition to hydrocarbon compounds in its structure, petroleum also 

contains organic components containing nitrogen, oxygen, and sulfur. The term crude oil 

is used to understand that refined petroleum products are different. In today's technology, 

many intermediates and fuel products that we use in our daily life are obtained by 

separating (distilled) crude oil into its components in refineries. 

 

2.1. Petroleum Refining 

 

The purpose of the refining process is to transform the natural raw material, crude 

oil, into salable products. Products from refineries, fuel for cars, trucks, aircraft, ships, 

and other vehicles, fuel for heat and power generation for industrial, commercial, and 

domestic use, raw materials for the petrochemical and chemical industry, specialty 

products such as lubricating oils, paraffin/waxes, and bitumen Energy as by-products can 

be grouped into heat (steam) and power (electricity) (Turkey Ministry of Environment 

and Urbanization, 2019). 

For the production of petroleum products, raw materials are processed at different 

distillation plants. The combination of these processing units that convert crude oil into 

products with the help of supporting units and facilities is called a refinery. Market 

demand for the product type, available raw quality, and requirements set by authorities 

affect the size, configuration, and complexity of a refinery. Since these factors vary from 
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region to region, the facility structures of refineries also differ (Turkey Ministry of 

Environment and Urbanization, 2019). 

 

2.2. Petroleum Products 

 

2.2.1. LPG 

 

Propane, butane, and paraffinic light hydrocarbons, which are mixtures of these 

two, which are released during refinery and natural gas processes, are easily liquefied 

under pressure. Composed primarily of propane and butane, LPG is produced for fuel 

purposes and is an intermediate in the production of petrochemicals. Important 

specification control tests include vapor pressure and pollution tests. 

 

2.2.2. Gasoline 

 

Gasoline product is grouped under two general groups as motor gasoline and 

aviation gasoline. These two types of gasoline are also divided into various classes or 

grades. 

Motor gasoline, which is the most important refinery product, is a mixture of 

hydrocarbons used in internal combustion engines (other than aircraft engines) and with 

a boiling range of around 35-215 °C; Important quality characteristics of gasoline are 

octane number (anti-knock), volatility (engine running and vapor compression) and vapor 

pressure. Additives are added to gasoline to meet this performance and also to protect 

against oxidation and rust. With the development of reciprocating aircraft engines, 

aviation gasoline with different octane numbers (87, 100/130, and 115/145 octane) 

blended with lead compound additives was produced in the 1940s. 
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2.2.3. Jet Fuels 

 

Jet fuels are fuels produced by blending kerosene and/or 'wide-cut' fractions used 

in turbine aircraft engines to meet the requirements in the specifications. 

Wide-cut jet fuel is a mixture of light hydrocarbons with a distillation range of 

about 100-250 °C; It is prepared by blending kerosene, gasoline, or naphtha fractions in 

such a way that the content of aromatic hydrocarbons does not exceed 25% by volume 

and the vapor pressure is between 13.7 kPa - 20.6 kPa (Beşergil, 2009). Necessary 

additives are also added to increase the stability of the fuel and to increase its good 

flammability properties. Since wide-cut type jet fuels are a mixture of lighter 

hydrocarbons with a boiling range between gasoline and kerosene, the risk of ignition and 

evaporation losses in high flights is higher than in kerosene. 

Kerosene-type jet fuel is a medium distillate product; distillation range (150 C - 

300 °C. usually not exceeding 250 °C) and flash point are the same as kerosene. Unlike, 

some critical properties such as freezing point are changed. 

 

2.2.4. Kerosene 

 

Kerosene is a refined medium-distilled petroleum product; Its volatility is between 

gasoline and diesel fuel (boiling range is around 150-300 °C) (Beşergil, 2009). Kerosene 

is used as jet fuel and has a wide range of uses for heating purposes. Kerosene, which is 

defined by a small number of specification values, can also be evaluated by mixing it with 

diesel. 

 

2.2.3. Diesel And Fuel Oils 

 

Diesel Fuels: Diesel fuels (gas oil or diesel distillate), used as diesel engine fuel 

and heating oil, contain alkanes with 12 or more carbon atoms, boiling range is 180-380 

°C. Among the quality tests, the cetane number of diesel fuel is important, which defines 
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the flash and pour point, clean combustion, no deposits in storage tanks, and good 

combustion initiation and combustion properties. 

Distillate Fuel Oils: Heavy gas oil (distillate fuel oils) is used as an industrial fuel 

and as a raw material (starting material) in the production of some products. It contains 

long-chain (20-70 carbon atoms) alkanes, cycloalkanes, and aromatic hydrocarbons, 

boiling range 380-540 °C. 

Heavy Fuel Oil (Residues): Products in this group are distillation residues; 

densities > 900 kg/L, flashpoints >50 °C, and kinematic viscosities at 80 °C greater than 

10 cSt. 

 

2.2.5. Asphalt/Tar 

 

They are by-products obtained from the refining of petroleum. Asphalt can be 

found in different forms from highly viscous to solid. It is used in the coating of roads, 

airports, roof insulation, waterproofing in structures related to water. It is used in the paint 

industry, battery production, lining water channels, and bonding clay bricks. 

Tar, on the other hand, is very similar to asphalt in appearance. There are 

differences in the proportions of hydrocarbons in their structure. It can be used in areas 

similar to asphalt. Tar can be obtained from the refining of petroleum, as well as from 

wood and coal. 

 

2.3. Parameters of Gasoline 

 

Petroleum products have international quality criteria. For this reason, the 

analyzes to determine these criteria should be carried out by the relevant international 

standard. All gasoline samples should be tested according to the standard test methods 

given in TS EN 228 - Automotive Fuels - Unleaded Petrol Requirements and Test 

Methods – Specification. In this standard, the appropriate test methods and the reliability 

values of the relevant methods are given in Table 1. 
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Table 1: Crucial Parameters of Gasoline and Relevant Test Methods      

PROPERTY UNIT REPRODUCIBILITY NOTE TEST 
METHOD 

Density kg/m3 0.5 - TS EN ISO 
12185 

Distillation 

E  
70°C 

 v/v % ±0.02(150-X) X is the 
measured value. ASTM D 86 

E 
100°C 

E 
150°C 
FBP °C ±6.78 - 

Research Octane 
Number, RON ‐ ±0.7 - TS EN ISO 

5164 

Motor Octane 
Number, MON ‐ ±0.9 - TS EN ISO 

5163 

Benzene 

v/v % 

± (0.0777Y-0.025) Y is the mean of 
the two results 

being 
compared. 

TS EN ISO 
22854 

Olefins ± (0.1176Y+0.5118) 
Aromatics ± (0.045Y+0.1384) 

MTBE ± (0.0251Y+0.3515) 
 

 

2.3.1. Density 

 

Density (or specific gravity) is an indicator of density or weight per unit volume 

of fuel. Density is a basic parameter, it is usually given in kg/L or kg/m3 for petroleum 

products (TS EN ISO 12185, 2007). As the density increases, the amount of energy per 

unit volume increases (Rand, 2010). Given the amount of fuel injected at a constant rate, 

the energy supplied to the engine increases with intensity, which increases engine 

performance. However, exhaust emissions, and especially particulates, increase under full 

load due to the richer mixture. On the other hand, as density decreases, volumetric fuel 

consumption increases.  

Relative density is frequently used instead of absolute density. The mass of a 

given volume of fuel at a certain temperature divided by the mass of an identical volume 

of water at the same temperature is known as relative density or specific gravity. At 

15.6°C, most vehicle fuels have relative densities between 0.70 and 0.78 (Rand, 2010). 
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2.3.2. Octane Numbers 

 

The octane number is a characteristic that defines the knock-free combustion 

characteristics of gasoline; It is the ability of the engine to resist knocking when it is 

burned in the combustion chamber of the engine. There are two laboratory test methods 

for determining the octane number of gasoline; Research Octane Number (RON) and 

Motor Octane Number (MON). RON is associated with low velocity and moderate knock 

conditions, MON with high velocity, high-temperature knock conditions. In a gasoline 

example, the value of RON is always greater than MON; The difference between them is 

called “sensitivity”. The chemical structure affects the knocking tendency. Aromatics 

have a higher octane number than other types of hydrocarbons. (Sivasankar, 2008). 

 

2.3.3. Distillation Points 

 

Each hydrocarbon boils at a specific temperature called the "boiling point", which 

increases as the size of the molecule increases. For this reason, the distillation profile of 

gasoline, which is a mixture, shows the distribution of hydrocarbons it contains against 

temperature. The temperature limits of the distillation profile determine the boiling range, 

excluding low- and high-boiling compounds.  

Gasoline is a mixture of hundreds of hydrocarbon molecules with different boiling 

points, and so it boils or distills over a range of temperatures, not at a single temperature 

like pure substances. A distillation profile (or distillation curve) is drawn by measuring 

the volumes of liquid that gasify and condense against increasing temperatures when 

gasoline is heated under specific conditions. Figure 3 shows the distillation profile of 

gasoline. Various ranges of a distillation profile are associated with gasoline performance. 

Gasoline must contain a light vaporizable fraction to provide a good start in a cold engine 

and must not contain fractions with boiling points above 200°C, as they would evaporate 

and dilute the oil in the engine. 

The values of E70, E100, and E150 (evaporated at temperatures of 70, 100, and 

150°C) determine the standard range for gasoline quality according to European standard 

EN 228. Refineries try to move T95 for gasoline at temperatures 160–170 °C in the future 
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(Chevron Corporation, 2009). These features have an impact on engine starting, warm-

up, and vapor lock at high operating temperatures and altitudes in the case of fuels. 

Furthermore, the outcome is critical for the sample's safety and handling rules. 

 

 

 

Figure 3: Distillation curve of gasoline. Correlation of distillation profile ranges 

with gasoline performance 

(Chevron Corporation, 2009) 
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2.3.4. Hydrocarbon Composition 

 

The physical and chemical properties and performance of gasoline are determined 

by the hydrocarbons and additives in their composition. Different carbon numbers and 

different hydrocarbon types are present in different proportions in the composition of 

gasoline. These hydrocarbon groups have different physical and chemical properties and 

their amounts in gasoline directly affect the fuel properties, performance, and emissions 

of gasoline. Although aromatic hydrocarbons and olefins also increase the knock 

resistance of the fuel, the ratio of these hydrocarbons in gasoline is limited because 

aromatic hydrocarbons increase irregular emissions (formaldehyde, acetaldehyde, 

benzene, toluene, and xylene), cause carbon deposits in the engine, and olefins increase 

the volatility of the fuel. The molecular composition of the gasoline is connected to 

octane. Aromatics, branched paraffin, and olefins have high octane values, but straight-

chain paraffin and naphthenes (saturated cyclic hydrocarbons) have low octane values.  

 

2.3.5. Methyl Tertiary-Butyl Ether - MTBE Content 

 

The chemical compound MTBE (methyl tertiary-butyl ether) is produced by the 

reaction of methanol with isobutylene. MTBE is manufactured in enormous quantities 

and used nearly exclusively as a fuel additive in gasoline. Because it raises the oxygen 

content of gasoline, it is one among a group of compounds known as "oxygenates." 

MTBE is a volatile, flammable, colorless liquid that dissolves readily in water at ambient 

temperature. 

Since 1979, MTBE has been used as an octane enhancer in U.S. gasoline at low 

levels to replace lead (helps prevent the engine from "knocking"). Between 1992 and 

2005, higher quantities of MTBE were used in some gasoline to meet the oxygenate 

standards established by Congress in the 1990 Clean Air Act Amendments (Concawe, 

2002) 

Oxygen aids in the complete combustion of fuel, lowering hazardous tailpipe 

emissions from automobiles. In one way, oxygen dilutes or displaces gasoline 

constituents like aromatics (benzene, for example) and sulfur. Oxygen, on the other hand, 



 

 
15 

optimizes oxidation during burning. Most refiners prefer MTBE to other oxygenates 

because of its blending properties and cost. 
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CHAPTER 3 

 

CHEMOMETRICS 

 

Advances in computers, software, statistics, and applied mathematics have led to 

the birth of a new discipline called chemometrics for the solution of complex systems in 

the field of chemistry, especially analytical chemistry. These developments have created 

new fields of study with chemometric methods using multidimensional and multivariate 

parameters, which provide new possibilities for analytical chemistry and researchers in 

neighboring branches to solve analytical problems. 

 Chemometrics is a chemistry discipline that encompasses the processing of 

chemical data using computers, along with statistics and mathematics. This discipline is 

a powerful tool in chemical analysis that allows the extraction of real information from 

chemical data or the revealing of hidden information. One of the main application areas 

of chemometrics in analytical chemistry. 

In a word, chemometrics started to be mentioned in the 1970s for its applications 

in chemistry, where computers and software are used, along with statistical and 

mathematical methods. The concept of chemometrics was put forward by Swedish Svante 

Wold and American Bruce R. Kowalski in 1972, and the first official explanation of this 

discipline was made by the International Chemometrics Association in 1974. In the 

following years, it is observed that national and international chemometrics conferences 

were also organized in the world (Dinç, 2007).  

Chemometrics includes concepts and applications such as Descriptive and 

Inference Statistics, Signal Processing, Experimental Design, Modeling, Calibration, 

Optimization, Pattern Recognition, Classification, Artificial Intelligence Methods, Image 

Processing, Information and System Theory. 
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3.1. Infrared Spectroscopy 

 

Infrared (IR) spectroscopy is one of the spectroscopic methods developed based 

on the interaction between light rays and the analyzed chemical molecule. In IR 

spectroscopy, radiation in a certain part of the electromagnetic spectrum (at a certain 

frequency) is used. The region between 12800-10 cm-1 of the electromagnetic spectrum 

is the infrared area, the region between 12800-4000 cm-1 is known as the near IR, the 

region between 4000-200 cm-1 is known as the mid-IR, and the region between 200-10 

cm-1  is known as the far IR (Thomson, 2007). 

The IR spectrum gives characteristic peaks for many groups. Thus, it contributes 

to the analysis of which characteristic groups are present in the substance whose spectrum 

we have taken, and therefore to the analysis of the structure of the substance. It is also 

important for us that the characteristic group peaks shift with the change in the molecular 

structure. For example, the C=O group gives a peak between 1900-1600 cm-1 in the IR, 

but the side of the peak in this region depends on the structure of the molecule (Ankara 

University, 2021). 

It can be used IR spectroscopy for quantitative analysis. The analysis application 

can be carried out in two ways; 

• According to Lambert-Beer law: In such an application, the cell thickness must be 

known exactly to be able to calculate. Measuring this is both very difficult and not 

very sensitive. 

• By drawing a calibration curve: This method is more sensitive but time-consuming. 

In this method, firstly, solutions of many different concentrations are prepared from 

the substance whose concentration will be found (as in UV spectroscopy), and the 

observed absorption for each concentration at a characteristic peak of this substance 

is plotted against the concentration. The graphing equivalent of the absorption of the 

solution, whose concentration we do not know, at the same frequency and under the 

same conditions, gives us the concentration of this substance. 

Fourier transform infrared (FTIR) spectrometry was developed to overcome the 

limitations encountered with dispersive instruments. FTIR is a chemical analytical 

method that measures the number of waves against the infrared intensity of light using 
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the mathematical Fourier transform method. Figure 4 shows typical FTIR 

instrumentation. 

 

 

Figure 4: FTIR Simple block diagram for the instrumentation of FTIR Spectroscopy 

(Thermo Fisher Scientific Inc., 2013) 

 

3.2. Calibration 

 

Calibration is the process of transforming the signals received from the 

instruments into meaningful data in both quantitative and qualitative measurements. It is 

done by mathematical and statistical processing of signals. 

 

3.2.1. Univariate Calibration 

 

In univariate calibration, the aim is to correlate the property of matter with the 

spectral density. It is defined by the Beer-Lambert Law (Eq. 1). The law states that the 

concentration of a chemical is directly proportional to the absorbance of a solution. The 

relationship can be used to determine the concentration of a chemical species in a solution 
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using a colorimeter or spectrophotometer. The relationship is most commonly used in 

UV-visible absorption spectroscopy. 

 

 𝐀 = 𝛆𝐛𝐜 Eq. (1) 
 

Where A is absorbance, ε is molar absorption coefficient, b is optic path length c 

is molar concentration. There is a linear relationship between the concentration and the 

absorbance of the solution, which enables the concentration of a solution to be calculated 

by measuring its absorbance. 

 

3.2.2. Multivariate Calibration 

 

Multivariate calibrations are obtained by applying chemometric algorithms to the 

concentration set and corresponding multivariate measurement data. In chemometrics, 

various mathematical algorithms are used for multivariate calibrations. 

The model may appear to be very optimistic for the data used for modeling, even 

though the actual performance is far worse, this is a big risk with mathematical 

assumptions and parameter tuning (Brereton 2003). Overfitting is the term for this 

phenomenon. On the other hand, the opposite situation can occur on occasion. The model 

fails to capture relevant data, in this case, resulting in a poor fit and poor prediction 

performance. As a result, validating the model against data that isn't used for modeling is 

critical for determining model performance. This data set is known as a validation set, an 

independent data set, or a test set, while the data used for modeling is known as a 

calibration set or a training set. Splitting the data into calibration and validation sets is 

common practice rather than using the entire data set for calibration. While the splitting 

ratio is optional, the calibration set and validation set should cover as much variance as 

possible. 

The most common performance metric is the root-mean-squared-error 

(Brereton,2003). Root-Mean-Squared-Error of Calibration (RMSEC) is defined in Eq.(2) 

and is used for the calibration set. 
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𝐑𝐌𝐒𝐄𝐂 = +∑ (ŷ𝐢	− 	𝐲𝐢)𝟐𝐧

𝐢$𝟏
𝐧 − 𝟐  

Eq. (2) 

 

 

Above in Eq.(2), yi is the actual variable of an observation belonging to the 

calibration set (i.e., concentration, activity, or another property) and ŷi is the predicted 

variable that is obtained by the model. For the validation set, Root-Mean-Squared-Error 

of Prediction (RMSEP) is defined in Eq.(3). 

 

 
𝐑𝐌𝐒𝐄𝐏 = +∑ (ŷ𝐢 − 𝒚𝐢)𝟐𝐧

𝐢$𝟏
𝐧  

Eq. (3) 

 

 In Eq.(3), yi now refers to the actual variable of a sample from the validation 

set and ŷi is its model prediction. The overfitting can now be defined as having very low 

RMSEC and high RMSEP value whereas underfitting is evident with low RMSEC value. 

In a perfect scenario, both RMSEC and RMSEP values are expected to be small and close. 

  

3.2.2.1. Classical Least Squares 

 

The classical least squares calibration method is the application of the Beer-

Lambert law to linear equation systems consisting of measurement data obtained from 

spectrophotometric or another analytical instrument. Explanations here are made for 

spectrophotometric studies.  

 

 𝐀 = 𝐊x𝐂 + 𝐄𝐀 Eq. (4) 

   

Where A is the nxm matrix of absorbance values, C is the nxl matrix of 

concentration values of the calibration set. Here, l is the number of parameters that is 

predicted, n is the number of samples in the calibration set and m is the number of 
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wavelengths in a given spectrum. The unknown in this equation is the K matrix which is 

the lxm matrix of absorptivity coefficients that relates the absorbance values at m number 

of wavelengths to the concentrations of l parameters of the n number of calibration 

samples. The term EA stands for the absorbance residuals that are not fitted by the model 

equation. The least-square solution of K is given as Eq.(5) 

 

 𝐊 = (𝐂′. 𝐂)#𝟏. 𝐂′. 𝐀 Eq. (5) 

   

Here Cˊ is the transpose of C matrix and superscript -1 on the upper right corner 

of the parenthesis stands for matrix inversion. Once the K matrix is obtained 

concentrations of the components in a given unknown sample can be predicted by Eq.(6) 

as: 

 𝐜 = (𝐊. 𝐊')(𝟏. 𝐊. 𝐚		 Eq. (6) 

 

Here c is the lx1 vector of component concentrations in a given unknown sample 

and a is an mx1 matrix of absorbance values from the spectrum of the unknown sample. 

 

3.2.2.2. Inverse Least Squares 

 

In spectroscopy of the system of linear equations, the ILS method involves 

applying the inverse of the Beer-Lambert law to the system of linear equations:     	

 

 𝐂	 = 	𝐀. 𝐏	 + 	𝐄𝐂	 Eq. (7) 

 

C and A are the same as they are in the CLS. EC is the matrix of concentration 

residuals, and P is the mxl matrix of regression coefficients that relate the absorbance 

values to the concentrations of the components in the calibration set. P is calculated as 

Eq.(8) using pseudo-inverse. 
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 𝐏 = (𝐀'. 𝐀)(𝟏. 𝐀'. 𝐂	 Eq. (8) 

 

Unlike CLS, the ILS model has the advantage of modeling one component at a time as 

given in Eq.(9) 

 

 𝐩 = (𝐀'. 𝐀)(𝟏. 𝐀'. 𝐜	 Eq. (9) 

 

 

Where p is an mx1 vector of the regression coefficient for the component being 

modeled and c is an nx1 vector of concentrations of the component model in the 

calibration set. Once the p vector is obtained, the predictions of an unknown sample are 

determined by using Eq.(10). 

 

 𝑐 = 𝐚. 𝐩 Eq. (10) 

 

Here the concentration of the unknown sample and a is an mx1 matrix of 

absorbance values from the spectrum of the unknown sample. 

 

3.2.2.3. Partial Least Squares Regression 

 

Because of the way the multicollinearity problem is handled, projection methods 

are very popular among chemometricians. They also allow for multi-compound 

predictions. The data is projected to a new space using principal components analysis 

(PCA) in such a way that there is no correlation between the new variables in this space. 

This decomposes the original absorbance data matrix (A) into two smaller matrices 

known as scores (T) and loadings (B). The variance in independent variables is defined 

by principal components, which can be described as Eq. (11). 

 

 𝑨 = 𝑻.𝑩	 Eq. (11) 
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The variables in PCA projected data are also sorted by how much variance they 

explain from the original data. This allows, for the most part, to be accounted for by only 

a few first projected variables (scores) while leaving others out helps to remove 

instrumental noise. The first few columns of scores can then be used in a regression model 

with these variables. The loadings, which have the same number of columns as scores, 

are used to project the new data into this space. 

Partially least squares (PLS), like PCA, is a projection method that not only 

projects absorbances but also concentrations in such a way that their covariance is 

maximized. PLS also eliminates the multicollinearity problem because the number of 

latent variables can be adjusted as easily as the number of principal components in PCA. 

The maximization of the covariance ensures that the projected variables contain the 

information for response prediction, whereas PCA may not account for the information 

that explains the responses even if the majority of the variance is explained. PLS assumes 

that errors are distributed evenly across absorbances and concentrations. 

Eqs. (12) and (13) for absorbances and concentrations, respectively, are the PLS 

model equations. 

 

 𝐀	 = 	𝐓	. 𝐁	 + 𝐄		 Eq. (12) 

 𝐜	 = 	𝐓	. 𝐫	 +	𝐞𝐜			 Eq. (13) 

 

A matrix has the same dimensions as CLS and ILS in this case. T is an nxh score 

matrix, and B is a hxm loading matrix derived from PCA decomposition. The E matrix is 

now different from the one in CLS because it comes from PCA, but the size is the same 

as the one in CLS. The term c is an nx1 vector of calibration concentrations for the 

component being modeled, and the term r is a hx1 vector of PLS regression coefficients 

obtained by iteratively solving Eqs. (12) and (13). Figure 5 shows a schematic diagram 

of Eq. (12) and Eq. (13). 
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Figure 5: PLS Calibration 

 

A successful model requires the selection of the optimal number of components 

(Number of PC: h). This number is optimized using the Predicted Residual Error Sum of 

Squares (PRESS) value. As a general rule, the number of components are chosen before 

the increment in PRESS is observed or when the PRESS stops decreasing. The addition 

of extra latent variables may cause modelling of interferences.PRESS can be calculated 

as Eq.(14). 

 

 
𝐏𝐑𝐄𝐒𝐒 =E(ĉ𝒊 − 𝒄𝒊)𝟐

𝒏

𝒊$𝟏

	
Eq. (14) 

 

Where ĉ is the predicted component concentration. An example for the plot of 

PRESS values vs. number of principal components is illustrated in Figure 6. 
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Figure 6: A sample plot of the number of components vs. PRESS values 

 

 

3.2.2.4. Genetic Inverse Least Squares 

 

Genetic Algorithms (GAs) are a type of research and optimization method based 

on Darwin's principles of natural evolution and selection. Genetic regression (GR) is a 

technique for creating linear calibration models that use GA to select wavelengths and 

mathematical operators. GR is a hybrid calibration method that optimizes simple linear 

regression models using evolving wavelength selection and simple mathematical 

operators, combining univariate and multivariate calibration techniques (Özdemir & 

Öztürk, 2003).  

Inverse Least Squares (ILS) and Genetic Algorithms method (GA) are combined 

in the Genetic Inverse Least Squares (GILS). The purpose of combining the genetic 

algorithm (GA) with the inverse least squares (ILS) method is to avoid multicollinearity, 

which can lead to overfitting and wavelength selection issues if the ILS method is used 

alone without GA. 

The GA consists of 5 basic steps, namely initialization of a gene population, 

evaluation of the population, selection of the parent genes for breeding and mating, 
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crossover and mutation, and replacing parents with their offspring. These steps are named 

after the biological basis of the algorithm (Özdemir & Öztürk, 2003). 

 

 

Figure 7: Flow Chart of Typical Genetic Algorithm for Multivariate Calibration  

(Özdemir & Öztürk, 2006) 

 

The terms used in GILS and their definitions are listed below: 

• Gene: Combination of absorbances at specific wavenumbers 

• Fitness: Inverse of the standard error of cross-validation 

• Cross-over: Exchange of half of the variables between two genes. 

• Mutation: Excessive or deficient number of variables in a gene that may 

result after many iterations. 

 

3.2.2.4.1. Selection of Initial Genes 

 

The first step in GA is to populate a gene pool. A gene is a collection of variables 

whose counts are randomized within a specific range to minimize bias and maximize the 

number of possible recombination (Özdemir & Öztürk, 2003). A gene is shown below as 

an example of spectral data. 



 

 
27 

 

G1: [A514, A2585, A855, A941, A1190, A3650] 

 

G1 is made up of six variables, and A is the variable that represents absorbance at 

a specific wavelength. A specified number of genes are chosen at random with the 

condition that their squared Pearson Correlation Coefficient (R2) is greater than a certain 

threshold (e.g 0.5). R2 can be calculated as follows: 

 

 
𝐑𝟐 = 𝟏 −

∑ (ŷ𝒊 − 𝒚𝒊)𝟐𝒏
𝒊$𝟏

∑ (𝒚𝒊	−	𝒚)𝟐𝒏
𝒊$𝟏

		
Eq. (15) 

 

Above in Eq.(15), the prediction ŷi is obtained by Cross Validation. 

 

3.2.2.4.2. Evaluation of the Population 

 

A fitness definition of genes is required, as it is in all genetic algorithms. The 

standard error of cross-validation (SECV) is calculated by comparing the real values and 

the values obtained from ILS models during cross-validation where the selected variables 

are contained in the gene. 

 

 𝐅𝐢𝐭𝐧𝐞𝐬𝐬 =
𝟏

𝐒𝐄𝐂𝐕
	 Eq. (16) 

 

And SECV is defined as: 

 
𝐒𝐄𝐂𝐕 = +∑ (𝒄𝒊 − ĉ𝒊)𝟐𝒎

𝒊$𝟏
𝐧 − 𝟐 		

Eq. (17) 

 

Where n is the number of samples, 𝑐𝑖 is the property of the sample while ĉi is the 

prediction. The fitness of each gene is saved and the genes are sorted in ascending order 

by their finesses. 
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3.2.2.4.3. Selection of the Parent Genes for Breeding and Mating 

 

While there are a variety of methods for selecting genes for breeding, including 

top-down and tournament selection, the roulette wheel method is used. This method uses 

a roulette wheel to assign each gene an area proportional to its fitness. After that, the 

wheel is spun a number of friable times. The genes selected by this random spinning are 

then paired top-down, with the first gene paired with the second, the third gene with the 

fourth gene, and so on. Figure 8 shows the roulette wheel selection method. 

 

 

Figure 8: Example of Roulette Wheel selection method  

(Reguant, 2021) 

 

3.2.2.4.4. Cross-Over and Mutations 

 

The selected parent gene pairs are cut from the middle in this step to exchange 

variables and create a new pair of offspring 

Parent Gene Pair:  
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G1: [A514, A2585, A855 # A941, A1190, A3650] 

G1: [A677, A2001 # A1955, A555] 

Offspring: 

NEWG1 = [A514, A2585, A855, A1955, A555]  

NEWG2 = [A677, A2001, A941, A1190, A3650] 

 

The # symbol indicates where the genes are broken. The fitness of each gene is 

determined after each pair of parent genes is subjected to cross-over, as explained in the 

evaluation section. There is a small chance that a gene will exceed the given number of 

variable thresholds or become too small to model the data during the cross-over. In this 

case, the process described in the initialization of the gene population part is used to 

replace this gene with a new one. 

 

3.2.2.4.5. Replacing Parents with Offspring 

 

The parents are replaced with their offspring after all gene pairs have crossed over. 

This effectively eliminates unfit genes, allowing fitter genes to take over the population. 

Even after the parent genes are replaced, the one with the best fitness is always kept and 

used in the final model. Because of the stochastic nature of breeding, GA can suddenly 

move away from the minimum. 

 

3.3. Preprocessing Techniques 

 

Data preprocessing is used to make the data to be used more suitable for 

processing and to obtain more reliable and precise results. Before constructing a 

calibration model, preprocessing of the data is usually performed to not only address 

apparent or potential problems but also to improve interpretability. 
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3.3.1. Mean Centering And Scaling 

 

For numerical variables, it is common to either normalize or standardize your data. 

Normalization means scaling a dataset so that its minimum is 0 and its maximum is 1. To 

achieve this we transform each data point x to; 

 

 𝐱𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝 = 𝐱 − µ Eq. (18) 

 

Standardization is slightly different; its job is to center the data around 0 and to 

scale concerning the standard deviation: 

	

 𝐱𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐢𝐳𝐞𝐝 =
𝐱 − µ
𝛔

 Eq. (19) 

where μ and σ are the mean and standard deviation of the dataset, respectively.  

 

3.3.1. Removing Variables 

 

In many cases, even if a wide variety of variables are obtained, some may be 

unnecessary. Some parts of the data may contain large and distinctly noisy parts. 

Removing such unnecessary parts can improve model performance. 

 

3.3.2. Baseline Correction 

 

Detrend is one of the baseline correction methods. A fixed-order polynomial is 

fitted into the spectrum and then subtracted from the polynomial spectrum (R. J. 

BARNES, 1989).  

The derivative can be used for baseline correction. A fixed baseline offset is 

obtained by taking the first-degree derivative, and the baseline offset, and baseline slope 

are subtracted from the spectrum by taking the second-degree derivative. The Savitzky-
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Golay algorithm is frequently applied by taking the derivatives of the fit polynomials 

since derivatization can reduce the signal-to-noise ratio (A. Savitzky, 1964). 

There is a certain amount of noise in almost every analytical technique. To remove 

the noise, the signal is corrected using some algorithms. The Savitzky-Golay algorithm 

is one of the most frequently used for this purpose. Here, the polynomials are fitted to 

each of the plurality of data windows, one polynomial to one data window (Temiz, 2019). 
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CHAPTER 4 

 

EXPERIMENTATION AND INSTRUMENTATION 

 

4.1. Experimentation 

 

4.1.1. Sample Collection And Sample Preparation 

 

In this study, sample collection, reference analyzes, and FTIR spectra of the same 

samples were performed at TUPRAS Izmir Refinery. 110 commercial gasoline samples 

were collected. To preserve the stability of the sample, it was stored in the dark and at 4 

°C. Reference analyzes were also carried out in accordance with the criteria specified in 

the international standards of the relevant analysis methods. These methods are specified 

in TS EN 228 - Automotive Fuels - Unleaded Petrol Requirements and Test Methods – 

Specification.  

 

4.2. Instrumentation 

 

TUPRAS Izmir Refinery's Quality Control Laboratory performed all reference 

analyses. The information about the instruments used in the reference analyzes and the 

FTIR used for the model development are given in detail in the following. 

 

4.2.1. Density 

 

Density measurements were performed using a density meter (DMA 

4500M/Anton Paar) by the standard test method TS EN ISO 12185. As a reference 

temperature, the measurement temperature was set to 15°C. Figure 9 shows the example 

of an instrument. 
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Figure 9: Density meter  

(Anton Paar) 

 

4.2.2. Octane Numbers – RON and MON 

 

There are two laboratory test methods (TS EN ISO 5164 and TS EN ISO 5163) 

to measure octane numbers called Research Octane Number (RON) and Motor Octane 

Number (MON). In accordance with these test methods, Cooperative Fuel Research 

(CFR) engines (Waukesha, CFR Engines Inc.), were used to test RON and MON 

capability in the 40-120 octane number range. Variable compression ratio cylinder (4:1 

to 18:1) and sleeve assembly, four-bowl falling level carburetor, CFR crankcase, intake 

air humidity equipment, exhaust surge system, and knock meter are the main components 

of the CFR engine. Figure 10 shows the example of an instrument. 
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Figure 10: CFR Engine  

(Waukesha CFR) 

 

4.2.3. Distillation Points 

 

The distillation analysis was carried out using atmospheric distillation instruments 

(OptiDist/PAC) in accordance with the standard test method TS EN ISO 3405 (ASTM D 

86). While performing distillation analysis, Sample Temperature was set below 10°C, 

Temperature of Cooling Bath was set at 0.5°C, Temperature of Bath Around Receiving 

Cylinder was set at 13°C, and Distillation Rate was set 4.5mL/min. Figure 11 shows the 

example of an instrument. 
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Figure 11: Atmospheric Distillation Instrument   

(PAC) 

 

4.2.4. Hydrocarbon Content 

 

Multidimensional gas chromatography (7890B Reformulyzer/AGILENT) was 

used to analyze hydrocarbon types, aromatics, olefins, and benzene, according to the TS 

N ISO 22854 standard test method. The auto-injector, FID detector, capillary/micro 

packed columns and traps all contribute to a good separation and reduced analysis time. 

Figure 12 shows the example of an instrument. 
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Figure 12: Gas Chromatograph  

(Agilent, 2018) 

 

4.2.5. Fourier Transform Infrared Spectrometer – FTIR 

 

The FTIR (ANALECTS, Diamond 20) analyzer is a specific instrument 

manufactured for private use. Figure 13 shows the example of an instrument. It is used 

for the calibration and application development of the online FTIR analyzer used in the 

process. It is an exact copy of the FTIR analyzer used in the process, as it is used for 

calibration. The specifications of the infrared spectrometer used in the analysis are given 

in Table 2. 
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Figure 13: FTIR Analyser  

(Schneider Electric, 2021) 

 

Table 2 FTIR Specifications 

Spectral Range 6000 cm-1 - 1000 cm-1 
Sample Cell Fixed cells – 0.1 mm thickness 
Detector Standard DTGS pyroelectric 
Interferometer Patented Transept® Interferometer 
Infrared Source Internal, air-cooled, high-efficiency Reflex Sphere 
Resolution 8 cm-1 

 

 

4.3. Data Analysis 

 

The collected spectra in ASF format were transferred to Microsoft® Excel® in 

2016. Then the data analysis is performed by chemometric calibration toolbox 29(OBA 

Quantifier, OBA Kemometri Inc. Turkey) which is developed in the MATLAB R2018b 

(Math Works Inc., MA) environment. Genetic Inverse Least Squares (GILS) and Partial 

Least Squares Regression (PLSR) were performed for this study. In this study, as 

mentioned before, 110 commercial gasoline samples were used and 11 important 

parameters of gasoline were tried to be determined. For calibration, 70 gasoline samples, 

70x862 absorbance matrix of these samples, and reference measurements were used. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1. FTIR Spectra 
 

 Fourier Transform Near-Infrared spectra of 110 gasoline samples were collected 

for 3 months. Figure 14 shows the raw FTIR absorbance spectra, which were recorded in 

the 6000 cm-1 – 1000 cm-1 wavenumber region for gasoline samples. This spectral region 

studied is different from the common range. Between 6000 cm-1 – 4000 cm-1  is in the 

near-infrared region, between 4000 cm-1 – 1000 cm-1  is in the middle infrared region. 

This region is defined as an "extended mid-IR region" by the device manufacturer. 

 

 

Figure 14: FTIR spectra of 110 Gasoline Sample 

 

Absorbance value between 3150 cm-1 - 2670 cm-1  and 1600 cm-1 – 1000 cm-1 

spectral region was removed because the absorbance value is found to be greater than 2 

which can cause nonlinearity problems. In addition, this removed region shows some 

noisy futures. In Figure 15, FTIR spectra total of 110 gasoline samples with narrowed 

intervals are shown. 
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Figure 15: FTIR spectra of 110 Gasoline Samples with Narrowed Range 

 

When using the FTIR spectrometer to analyze samples, there is a lot of chemical 

information that may be used to identify the sample. However, because the overtones in 

the IR spectra have such a broad structure, it's difficult to link these bands with the 

chemical bonds in the sample. Furthermore, in spectral analyses, deviations are known as 

noise frequently occur, which contain no information about the sample and are generated 

by scattering from the light source, sample cell, or particles of heterogeneous mixtures in 

the sample during measurement. As a result, without doing any mathematical operations 

on the spectrum, qualitative and quantitative analysis of the sample will be impossible. 

There was no preprocessing was performed in this study, except for the extraction 

of a small spectral region. For each parameter of the gasoline sample, a model was created 

with PLS and GILS methods and performance analysis was made. In each model, 70 

gasoline samples were used for calibration and 40 gasoline samples for validation. 

 

5.2. Partial Least Squares Regression 
 

For finding the best fitting number of LVs, Predicted residual error sum of squares 

(PRESS) values were calculated for the first 30 LVs and the results are given in Figure 

16. The coefficient of determination (R2) of the calibration data set, the root mean square 

error of cross validation (SECV), and the root mean square of validation errors (SEP) data 

were used to evaluate the prediction performances of the developed model. For the 

following part, the results are Density, E70, E100, E150, FBP, MTBE content, Benzene 
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content, Olefin content, Aromatic contents, RON, MON PLS model results will be given 

for a clear explanation. 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 
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(i) 
 

(j) 

 

(k) 

Figure 16: Number of PCs vs. PRESS plot for selecting the optimal number of 

LVs a) Density, b) E70, c) E100, d) E150, e) FBP, f) MTBE content, g) Benzene 

content, h) Olefin content, i) Aromatic content, j) RON, k) MON 

 

By using Figure 16, 18 LVs, 12 LVs, 12 LVs, 19 LVs, 16 LVs, 19 LVs, 13 LVs, 

19 LVs, 9 LVs, 1 LVs, 3 LVs were selected respectively for Density, E70, E100, E150, 

FBP, MTBE content, Benzene content, Olefin content, Aromatic content, RON, MON. 

 

5.3. Genetic Inverse Least Square Regression 
 

Genetic Inverse Least Square (GILS) was used using 10 genes, 20 iterations, and 

8 runs, with an R2 threshold of 0.5 for initial gene selection and a 1-fold CV for fitness 

determination. The coefficient of determination (R2) of the calibration data set, the root 

mean square error of cross validation (SECV), and the root mean square of validation 

errors (SEP) data were used to evaluate the prediction performances of the developed 

model. For the following part, the results are Density, E70, E100, E150, FBP, MTBE 

content, Benzene content, Olefin content, Aromatic content, RON, MON PLS model 

results will be given for a clear explanation. 
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5.4. Multivariate Calibration Results and Comparison 
 

Two calibration methods (PLS and GILS) were used and compared for the 

determination of each parameter. The results are given in detail for each parameter 

separately. 

 

5.4.1. Density 
 

Reference values obtained from density meter (DMA 4500M/Anton Paar)  vs 

model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in 

Figure 17 for Density parameter.  

 

 

(a) 

 

(b) 

Figure 17: Reference Density Value vs Predicted Density Value; a) PLS, B)GILS 

 

As can be seen in Figure 17, the calibration predictions and validation set 

predictions of both models (PILS, GILS) are quite close.  For PLS model, SECV and SEP 

values are found to be 0.2803 (kg/m3) and 0.5700 (kg/m3), respectively. The R2 value for 

calibration set predictions are calculated as 0.9982, and the R2 value for the validation set 

is 0.9948. For GILS model, SECV and SEP values are found to be 0.3518 (kg/m3) and 
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0.4067 (kg/m3), respectively. The R2 value for calibration set predictions are calculated 

as 0.9972, and the R2 value for the validation set is 0.9973. Prediction performances of 

the developed model for Density parameters are given in Table 3. 

 

Table 3: Calibration Model Performance for Density 

PLS Calibration  
Model Results 

GILS Calibration  
Model Results 

Data Range 
(kg/m3) 

SECV (kg/m3) 0.2803 SECV (kg/m3) 0.3518 Max 757.8 
SEP (kg/m3) 0.5700 SEP (kg/m3) 0.4067 Min 727.4 
R2 calibration 0.9982 R2 calibration 0.9972 Interval 30.4 
R2 validation 0.9948 R2 validation 0.9973  

Number of LVs 18   
 

To determine the error range and possible residual trends, the residuals for both 

calibration and validation samples are given in Figure 18. All validation data are very 

close to calibration data which shows model prediction efficiency. 

 

 

(a) 

 

(b) 

Figure 18: Reference Density vs. Corresponding Model Prediction Density Residuals; a) 

PLS, b)GILS 

 

As mentioned earlier, the determination of gasoline parameters is made in 

accordance with certain international standards. Measurement performance must meet the 
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quality and reliability criteria specified in these standards. For this reason, the 

reproducibility values in the standards to which the parameters are subject are accepted 

as limits and the absolute differences (ranges) between the model predictions and 

reference analysis are examined.  

The Reproducibility, R, for Density given in TS EN ISO 12185 is described as 

0.5 (kg/m3). The R-chart with absolute differences between GILS and PLS model 

predictions and reference analysis is given in Figure 19. 

 

 

(a) 

 

(b) 

Figure 19: Density Residual R-Chart; a)PLS, b)GILS  

 

As seen in Figure 19, 7 of the GILS prediction values were out of the limit, while 

14 of the PLS prediction values were out of the limit. Although the model performance 

criteria (SEP, SEC, R2) gave successful results, the PLS model gave 35% and the GILS 

model 17.5% results out of the limit for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 3. 
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Table 4: Paired t-test Results for Density 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -0.762 -0.573 0.512 
p-value two-tail 0.451 0.570 0.611 

t Critical two-tail 2.023 
 

According to Table 4, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference density values and model prediction, 

nor between GILS and PLS prediction. 

 

5.4.2. E70 - Evaporated at 70 °C 
 

Reference values obtained from distillation instruments (OptiDist/PAC)  vs model 

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure 

20 for the E70 parameter.  

 

 

(a) 

 

(b) 

Figure 20: Reference E70 Value vs Predicted E70 Value; a) PLS, B)GILS 
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As can be seen in Figure 20, the calibration predictions and validation set 

predictions of both models (PILS, GILS) are quite close.  For PLS model, SECV and SEP 

values are found to be 0.5589 (v/v%) and 0.8380 (v/v%), respectively. The R2 value for 

calibration set predictions are calculated as 0.9815, and the R2 value for the validation set 

is 0.9768. For GILS model, SECV and SEP values are found to be 0.4884 (v/v%) and 

0.7476 (v/v%) respectively. The R2 value for calibration set predictions are calculated as 

0.9860, and the R2 value for the validation set is 0.9802. Prediction performances of the 

developed model for the E70 parameter are given in Table 5. 

 

Table 5: Calibration Model Performance for E70 

PLS Calibration Model 
Results 

GILS Calibration 
 Model Results 

Data Range 
(v/v %) 

SECV (v/v %) 0.5589 SECV (v/v %) 0.4884 Max 47.3 
SEP (v/v %) 0.8380 SEP (v/v %) 0.7476 Min 27.0 

R2 calibration 0.9815 R2 calibration 0.9860 Interval 20.3 

R2 validation  0.9768 R2 validation  0.9802 - 
Number of LVs 12 - - 

 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 21. All validation data are 

very close to calibration data which shows model prediction efficiency. 
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(a) 

 

(b) 

Figure 21: Reference E70 vs. Corresponding Model Prediction E70 Residuals; a) PLS, 

b)GILS 

The Reproducibility, R, for E70 given in ASTM D 86 is described as Eq. (20). 

The R-chart with absolute differences between GILS and PLS model predictions and 

reference analysis is given in Figure 22. 

 

 ±	𝟎. 𝟎𝟐 ∗ (𝟏𝟓𝟎 − 𝐗)		 Eq. (20) 

 

Where X is the measured value. 
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(a) 

 

(b) 

Figure 22: E70 Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 22, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 6. 

 

Table 6: Paired t-test Results for E70 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -0.642 -0.031 1.995 
p-value two-tail 0.524 0.975 0.053 

t Critical two-tail 2.023 
 

According to Table 6, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference  E70 values and model prediction, 

nor between GILS and PLS prediction. 
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5.4.3. E100 - Evaporated at 100 °C 
 

Reference values obtained from distillation instruments (OptiDist/PAC) vs model 

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure 

23 for the E100 parameter.  

 

 

(a) 

 

(b) 

Figure 23: Reference E100 Value vs Predicted E100 Value; a) PLS, B)GILS 

 

As can be seen in Figure 23, the calibration predictions and validation set 

predictions of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP 

values are found to be 0.5589 (v/v%) and 0.8380 (v/v%), respectively. The R2 value for 

calibration set predictions are calculated as 0.9815, and the R2 value for the validation set 

is 0.9768. For GILS model, SECV and SEP values are found to be 0.4884 (v/v%)  and 

0.7476 (v/v%) respectively. The R2 value for calibration set predictions are calculated as 

0.9860, and the R2 value for the validation set is 0.9802. Prediction performances of the 

developed model for the E100 parameter are given in Table 7. 
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Table 7: Calibration Model Performance for E100 

PLS Calibration 
 Model Results 

GILS Calibration  
Model Results 

Data Range 
(v/v %) 

SECV (v/v %) 0.2989 SECV (v/v %) 0.2856 Max 67.3 
SEP (v/v %) 0.6326 SEP (v/v %) 0.5606 Min 49.1 

R2 calibration 0.9912 R2 calibration 0.9920 Interval 18.2 

R2 validation 0.9807 R2 validation 0.9838 - 
Number of LVs 12 - - 

 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 24. All validation data are 

very close to calibration data which shows model prediction efficiency. 

 

 

(a) 

 

(b) 

Figure 24: Reference E100 vs. Corresponding Model Prediction E100 Residuals; a) 

PLS, b)GILS 

 

The Reproducibility, R, for E100 given in ASTM D 86 is described as Eq. (20). 

The R-chart with absolute differences between GILS and PLS model predictions and 

reference analysis is given in Figure 25. 
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(a) 

 

(b) 

Figure 25: E100 Residual R-Chart; a)PLS, b)GILS 

 

            As seen in Figure 25, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 8. 

 

Table 8: Paired t-test Results for E100 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -1.555 -1.171 1.820 
p-value two-tail 0.128 0.248 0.076 

t Critical two-tail 2.023 
 

According to Table 8, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference  E100 values and model prediction, 

nor between GILS and PLS prediction. 
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5.4.4. E150 - Evaporated at 150 °C 
 

Reference values obtained from distillation instruments (OptiDist/PAC)  vs model 

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure 

26 for the E100 parameter.  

 

 

(a) 

 

(b) 

Figure 26: Reference E150 Value vs Predicted E150 Value; a) PLS, B)GILS 

 

As can be seen in Figure 26, both models (PILS, GILS) have differences in 

validation and calibration predictions. When the R2 values of the validation and 

calibration series in the table are examined, it is observed that there are more differences 

in the validation prediction. For PLS model, SECV and SEP values are found to be 0.2400 

(v/v%) and 0.9358 (v/v%), respectively. The R2 value for calibration set predictions are 

calculated as 0.9362, and the R2 value for the validation set is 0.5292. For GILS model, 

SECV and SEP values are found to be 0.3216 (v/v%) and 0.6604 (v/v%) respectively. 

The R2 value for calibration set predictions are calculated as 0.8901, and the R2 value for 

the validation set is 0.6132. Prediction performances of the developed models for the 

E150 parameter are given in Table 9. It is seen that R2 of the calibration of the PLS model,  

is better, while R2 of the validation of the GILS model is better. 

 

y = 0.9362x + 5.7915
R² = 0.9362

86.0

87.0

88.0

89.0

90.0

91.0

92.0

93.0

86.0 88.0 90.0 92.0 94.0

PL
S 

Pr
ed

ic
te

d 
E1

50
 (v

/v
)%

Reference E150 (v/v)%
Validation Calibration

y = 0.8259x + 15.808
R² = 0.8901

86.0

87.0

88.0

89.0

90.0

91.0

92.0

93.0

86.0 88.0 90.0 92.0 94.0

G
IL

S 
Pr

ed
ic

te
d 

E1
50

 (v
/v

)%

Reference E150 (v/v)%
Validation Calibration



 

 
53 

Table 9: Calibration Model Performance for E150 

PLS Calibration  
Model Results 

GILS Calibration 
 Model Results 

Data Range  
(v/v %) 

SECV (v/v %) 0.2400 SECV (v/v %) 0.3216 Max 92.5 
SEP (v/v %) 0.9358 SEP (v/v %) 0.6604 Min 87.9 

R2 calibration 0.9362 R2 calibration 0.8901 Interval 4.6 
R2 validation 0.5292 R2 validation 0.6132 - 

Number of LVs 19 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 27. Some validation data is 

far from calibration data. This may indicate that the model performance is not good 

enough. As seen in Figure 28, there are also values outside the reliability limits specified 

in ASTM D86. 

 

 

(a) 

 

(b) 

Figure 27: Reference E150 vs. Corresponding Model Prediction E150 Residuals;                 

a) PLS, b)GILS 

 

The Reproducibility, R, for E150 given in ASTM D 86 is described as Eq. (20). 

The R-chart with absolute differences between GILS and PLS model predictions and 

reference analysis is given in Figure 28. 
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(a) 

 

(b) 

Figure 28: E150 Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 28, 4 of the GILS prediction values were out of the limit, while 

8 of the PLS prediction values were out of the limit. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 10. 

 

Table 10: Paired t-test Results for E150 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat 1.245 0.927 -1.196 
p-value two-tail 0.221 0.359 0.239 

t Critical two-tail 2.023 
 

According to Table 10, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference  E150 values and model prediction, 

nor between GILS and PLS prediction.  
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5.4.5. FBP – Final Boiling Point 
 

Reference values obtained from distillation instruments (OptiDist/PAC)  vs model 

predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in Figure 

29 for FBP parameter.  

 

 

(a) 

 

(b) 

Figure 29: Reference FBP Value vs Predicted FBP Value; a) PLS, B)GILS 

 

As can be seen in Figure 29, the calibration predictions and validation set 

predictions of both models (PILS, GILS) are quite close. For the PLS model, SECV and 

SEP values are found to be 1.0792 (°C) and 1.7317 (°C), respectively. The R2 value for 

calibration set predictions are calculated as 0.8953, and the R2 value for the validation set 

is 0.7031. For the GILS model, SECV and SEP values are found to be 0.9926 (°C) and 

1.6801 (°C), respectively. The R2 value for calibration set predictions are calculated as 

0.9153, and the R2 value for the validation set is 0.8065. Prediction performances of the 

developed model for the FBP parameter are given in Table 11. 
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Table 11: Calibration Model Performance for FBP 

PLS Calibration  
Model Results 

GILS Calibration 
 Model Results 

Data Range 
 (°C) 

SECV (°C) 1.0792 SECV (°C) 0.9926 Max 193.6 
SEP (°C) 1.7317 SEP (°C) 1.6801 Min 176.8 

R2 calibration 0.8953 R2 calibration 0.9153 Interval 16.8 
R2 validation 0.7031 R2 validation 0.8065 - 

Number of LVs 16 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 30. As seen in Figure 30, some 

validation residuals are not close to calibration residual. However, both SEP and SEC 

values meet the deviation criteria of the reference measurement method. 

 

 

(a) 

 

(b) 

Figure 30: Reference FBP vs. Corresponding Model Prediction FBP Residuals; 

a) PLS, b)GILS 

 

The Reproducibility, R, for FBP given in ASTM D 86 is described as 6.8 (°C). 

The R-chart with absolute differences between GILS and PLS model predictions and 

reference analysis is given in Figure 31. 
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(a) 

 

(b) 

Figure 31: FBP Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 31, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 12. 

 

Table 12: Paired t-test Results for FBP 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -2.192 -4.909 -3.000 
p-value two-tail 0.034 0.00001 0.005 

t Critical two-tail 2.023 
 

According to Table 12, it can be said that, with 95% confidence, there is a 

statistically significant difference between reference  FBP values and model predictions, 

and between GILS and PLS prediction. 
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5.4.6. MTBE Content - Methyl Tertiary Butyl Ether 
 

Reference values obtained from multidimensional gas chromatography (7890B 

Reformulyzer/AGILENT)  vs model predicted values (PLS and GILS) of FTIR spectra 

of gasoline sample are given in Figure 32 for MTBE content.  

 

 

(a) 

 

(b) 

Figure 32: Reference MTBE Value vs Predicted MTBE Value; a) PLS, B)GILS 

 

As can be seen in Figure 32, the performance of both models (PILS, GILS) is 

quite close to the calibration and validation set predictions. For PLS model, SECV and 

SEP values are found to be 0.0648 (v/v%) and 0.1791 (v/v%), respectively. The R2 value 

for calibration set predictions are calculated as 0.9989, and the R2 value for the validation 

set is 0.9946. For GILS model, SECV and SEP values are found to be 0.0876 (v/v%) and 

0.0852 (v/v%) respectively. The R2 value for calibration set predictions are calculated as 

0.9980, and the R2 value for the validation set is 0.9986. Prediction performances of the 

developed model for MTBE content are given in Table 13. 
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Table 13: Calibration Model Performance for MTBE Content 

PLS Calibration  
Model Results 

GILS Calibration  
Model Results 

Data Range 
 (v/v %) 

SECV (v/v %) 0.0648 SECV (v/v %) 0.0876 Max 10.12 
SEP (v/v %) 0.1791 SEP (v/v %) 0.0852 Min 0.8 

R2 calibration 0.9989 R2 calibration 0.9980 Interval 9.32 
R2 validation 0.9946 R2 validation 0.9986 - 

Number of LVs 19 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 33. All validation data are 

very close to calibration data which shows model prediction efficiency. 

 

 

(a) 

 

(b) 

Figure 33: Reference MTBE vs. Corresponding Model Prediction MTBE 

Residuals;    a) PLS, b)GILS 

 

The Reproducibility, R, for MTBE content given in TS EN ISO 22854  is 

described as Eq. (21). The R-chart with absolute differences between GILS and PLS 

model predictions and reference analysis is given in Figure 34. 
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Where Y is the mean of the two results being compared. 
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(a) 

 

(b) 

Figure 34: MTBE  Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 34, there is only one out-of-limit predicted value for 40 samples 

in PLS predictions. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 14. 

 

Table 14: Paired t-test Results for MTBE 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -2.000 -0.763 2.141 
p-value two-tail 0.052 0.450 0.039 

t Critical two-tail 2.023 
 

According to Table 14, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference measurements values and both 

model predictions. However, with the same confidence, there is a statistical difference 

between PLS and GILS predictions. 
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5.4.7. Benzene Content 
 

Reference values obtained from  Multidimensional gas chromatography (7890B 

Reformulyzer/AGILENT)  vs model predicted values (PLS and GILS) of FTIR spectra 

of gasoline sample are given in Figure 35 for Benzene content.  

 

 

(a) 

 

(b) 

Figure 35: Reference Benzene Value vs Predicted Benzene Value; a) PLS, 

b)GILS 

 

As can be seen in Figure 35, the calibration predictions and validation predictions 

of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are 

found to be 0.0164 (v/v%) and 0.0259 (v/v%), respectively. The R2 value for calibration 

set predictions are calculated as 0.9783, and the R2 value for the validation set is 0.9461. 

For GILS model, SECV and SEP values are found to be 0.0163 (v/v%) and 0.0261 (v/v%) 

respectively. The R2 value for calibration set predictions are calculated as 0.9790, and the 

R2 value for the validation set is 0.9478. Prediction performances of the developed model 

for Benzene content are given in Table 15. 
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Table 15: Calibration Model Performance for Benzene Content 

PLS Calibration  
Model Results 

GILS Calibration  
Model Results 

Data Range  
(v/v %) 

SECV (v/v %) 0.0164 SECV (v/v %) 0.0163 Max 0.93 
SEP (v/v %) 0.0259 SEP (v/v %) 0.0261 Min 0.6 

R2 calibration 0.9783 R2 calibration 0.9790 Interval 0.33 
R2 validation 0.9461 R2 validation 0.9478 - 

Number of LVs 13 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 36. Most of the validation data 

are very close to calibration data which shows model prediction efficiency. 

 

 

(a) 

 

(b) 

Figure 36: Reference Benzene vs. Corresponding Model Prediction Benzene 

Residuals; a) PLS, b)GILS 

 

The Reproducibility, R, for Benzene content given in TS EN ISO 22854  is 

described as Eq. (22). The R-chart with absolute differences between GILS and PLS 

model predictions and reference analysis is given in Figure 37. 

 

 ±	𝟎. 𝟎𝟕𝟕𝟕𝐘 − 𝟎. 𝟎𝟐𝟓		 Eq. (22) 

Where Y is the mean of the two results being compared. 
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(a) 

 

(b) 

Figure 37: Benzene Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 37, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 16. 

 

Table 16: Paired t-test Results for Benzene Content 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat 0.551 -0.044 -1.364 
p-value two-tail 0.585 0.965 0.180 

t Critical two-tail 2.023 
 

According to Table 16, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference measurements values and both 

model predictions, and also between the PLS and GILS predictions. 
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5.4.8. Olefin Content 
 

Reference values obtained from multidimensional gas chromatography (7890B 

Reformulyzer/AGILENT)  vs model predicted values (PLS and GILS) of FTIR spectra 

of gasoline sample are given in Figure 38 for Olefin content.  

 

 

(a) 

 

(b) 

Figure 38: Reference Olefin Value vs Predicted Olefin Value; a) PLS, B)GILS 

 

As can be seen in Figure 38, the calibration predictions and validation predictions 

of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are 

found to be 0.0953 (v/v%) and 0.2675 (v/v%), respectively. The R2 value for calibration 

set predictions are calculated as 0.9965, and the R2 value for the validation set is 0.9745. 

For GILS model, SECV and SEP values are found to be 0.1102 (v/v%) and 0.1523 (v/v%) 

respectively. The R2 value for calibration set predictions are calculated as 0.9954, and the 

R2 value for the validation set is 0.9910. Prediction performances of the developed model 

for Olefin content are given in Table 17. 
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Table 17: Calibration Model Performance 

PLS Calibration  
Model Results 

GILS Calibration 
 Model Results 

Data Range 
 (v/v %) 

SECV (v/v %) 0.0953 SECV (v/v %) 0.1102 Max 10.2 
SEP (v/v %) 0.2675 SEP (v/v %) 0.1523 Min 2.6 

R2 calibration 0.9965 R2 calibration 0.9954 Interval 7.6 
R2 validation 0.9745 R2 validation 0.9910 - 

Number of LVs 19 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 39. Most of the validation data 

are very close to calibration data which shows model prediction efficiency. It is observed 

that the residual values increase as you move away from the points where the reference 

values are concentrated. 

 

 

(a) 

 

(b) 

Figure 39: Reference Olefin vs. Corresponding Model Prediction Olefin 

Residuals; a) PLS, b)GILS 

 

The Reproducibility, R, for Olefin content given in TS EN ISO 22854  is described 

as Eq. (23). The R-chart with absolute differences between GILS and PLS model 

predictions and reference analysis is given in Figure 40. 
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 ±	𝟎. 𝟏𝟏𝟕𝟔𝐘 + 𝟎. 𝟓𝟏𝟏𝟖		 Eq. (23) 

Where Y is the mean of the two results being compared. 

 

 

(a) 

 

(b) 

Figure 40: Olefin Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 40, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 18. 

 

Table 18: Paired t-test Results for Olefin Content 
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Comparison 
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Comparison 

Observations 40 
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p-value two-tail 0.038 0.077 0.068 

t Critical two-tail 2.023 
 

According to Table 18, it can be said that, with 95% confidence, there is no 
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same confidence, there is a statistical difference between reference measurements and 

PLS predictions. 

 

5.4.9. Aromatic Contents 
 

Reference values obtained from multidimensional gas chromatography (7890B 

Reformulyzer/AGILENT)  vs model predicted values (PLS and GILS) of FTIR spectra 

of gasoline sample are given in Figure 41 for Aromatic content. 

 

 

(a) 

 

(b) 

Figure 41: Reference Aromatic Value vs Predicted Aromatic Value; a) PLS, 

B)GILS 

 

As can be seen in Figure 41, the calibration predictions and validation predictions 

of both models (PILS, GILS) are quite close. For PLS model, SECV and SEP values are 

found to be 0.2262 (v/v%) and 0.2421 (v/v%), respectively. The R2 value for calibration 

set predictions are calculated as 0.9925, and the R2 value for the validation set is 0.9949. 

For GILS model, SECV and SEP values are found to be 0.1801 (v/v%) and 0.2619 (v/v%) 

respectively. The R2 value for calibration set predictions are calculated as 0.9952, and the 

R2 value for the validation set is 0.9940. Prediction performances of the developed model 

for Aromatic content are given in Table 19. 
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Table 19: Calibration Model Performance for Aromatic Content 

PLS Calibration  
Model Results 

GILS Calibration  
Model Results 

Data Range 
 (v/v %) 

SECV (v/v %) 0.2262 SECV (v/v %) 0.1801 Max 41.9 
SEP (v/v %) 0.2421 SEP (v/v %) 0.2619 Min 27.3 

R2 calibration 0.9925 R2 calibration 0.9952 Interval 14.6 
R2 validation 0.9949 R2 validation 0.9940 - 

Number of LVs 9 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 42. Most validation data are 

very close to calibration data which shows model prediction efficiency. It is observed that 

the residual values increase as you move away from the points where the reference values 

are concentrated. 

 

 

(a) 

 

(b) 

Figure 42: Reference Aromatic vs. Corresponding Model Prediction Aromatic 

Residuals; a) PLS, b)GILS 

 

The Reproducibility, R, for Aromatic content given in TS EN ISO 22854  is 

described as Eq. (24). The R-chart with absolute differences between GILS and PLS 

model predictions and reference analysis is given in Figure 43. 
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 ±	𝟎. 𝟎𝟒𝟓𝐘 + 𝟎. 𝟏𝟑𝟖𝟒		 Eq. (24) 

Where Y is the mean of the two results being compared. 

 

 

(a) 

 

(b) 

Figure 43: Aromatic Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 43, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 20. 

 

Table 20: Paired t-test Results for Aromatic Content 
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Comparison 
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Comparison 

PLS-GILS 
Comparison 
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df 39 

t Stat 0.054 -0.399 -1.529 
p-value two-tail 0.958 0.692 0.134 

t Critical two-tail 2.023 
 

According to Table 20, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference measurements values and both 

model predictions, and also between the PLS and GILS predictions. 
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5.4.10.  RON - Research Octane Number 
 

Reference values obtained from  Cooperative Fuel Research (CFR) engines vs 

model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in 

Figure 44 for RON parameter.  

 

 

(a) 

 

(b) 

Figure 44: Reference RON Value vs Predicted RON Value; a) PLS, B)GILS 

 

For PLS model, SECV and SEP values are found to be 0.0802 (v/v%) and 0.0453 

(v/v%), respectively. The R2 value for calibration set predictions are calculated as 0.0083, 

and the R2 value for the validation set is 9*10-8. For GILS model, SECV and SEP values 

are found to be 0.0750 (v/v%) and 0.0453 (v/v%) respectively. The R2 value for 

calibration set predictions are calculated as 0.2000, and the R2 value for the validation set 

is 0.0007. Prediction performances of the developed model for the RON parameter are 

given in Table 21. 
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Table 21: Calibration Model Performance for RON 

PLS Calibration Model Results GILS Calibration Model Results Data Range 
SECV 0.0802 SECV 0.0750 Max 95.443 
SEP 0.0453 SEP 0.0453 Min 94.800 

R2 calibration 0.0083 R2 calibration 0.2000 Interval 0.643 
R2 validation 0.00000009 R2 validation 0.0007 - 

Number of LVs 1 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 45. When the residuals are 

examined, there seems to be a systematic error, as in Figure 45. Since the octan number 

is one of the most important parameters of gasoline, it is not a very variable parameter 

from product to product. It is seen in Table 21 that, the reference value range is very 

narrow. The narrow reference value range in the calibration set causes the R2 value to be 

very low and a systematic error to appear, although the residual values are proportionally 

very small. 

 

 

(a) 

 

(b) 

Figure 45: Reference RON vs. Corresponding Model Prediction RON Residuals; 

a) PLS, b)GILS 

 

The Reproducibility, R, for RON given in TS EN ISO 5164  is described as 0.7. 

Since the octane number parameters directly represent the product quality, precision in 
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its measurement uncertainty is important. For this reason, TS EN ISO 5164   repeatability, 

r, value (described as 0.2), and measurement differences were also compared. The R-chart 

with absolute differences between GILS and PLS model predictions and reference 

analysis is given in Figure 46. 

 

 

(a) 

 

(b) 

Figure 46: RON Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 46, there is no out-of-limit predicted value for 40 samples. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 22. 

 

Table 22: Paired t-test Results for RON 
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Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -1.771 -1.049 2.385 
p-value two-tail 0.084 0.301 0.022 

t Critical two-tail 2.023 
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According to Table 22, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference measurements values and both 

model predictions. However, with the same confidence, there is a statistical difference 

between PLS and GILS predictions. 

 

5.4.11.  MON - Motor Octane Number 
 

Reference values obtained from  Cooperative Fuel Research (CFR) engines vs 

model predicted values (PLS and GILS) of FTIR spectra of gasoline sample are given in 

Figure 47 for MON parameter.  

 

 

(a) 

 

(b) 

Figure 47: Reference MON Value vs Predicted MON Value; a) PLS, B)GILS 

 

For PLS model, SECV and SEP values are found to be 0.0815 (v/v%) and 0.0900 

(v/v%), respectively. The R2 value for calibration set predictions are calculated as 0.1438, 

and the R2 value for the validation set is 0.1733. For GILS model, SECV and SEP values 

are found to be 0.0589 (v/v%) and 0.0724 (v/v%) respectively. The R2 value for 

calibration set predictions are calculated as 0.6545, and the R2 value for the validation set 

is 0.3989. Prediction performances of the developed model for MON parameter are given 

in Table 23. 
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Table 23: Calibration Model Performance for MON 

PLS Calibration Model Results GILS Calibration Model Results Data Range 
SECV 0.0815 SECV 0.0589 Max 85.6 
SEP 0.0900 SEP 0.0724 Min 85.1 

R2 calibration 0.1438 R2 calibration 0.6545 Interval 0.5 
R2 validation 0.1733 R2 validation 0.3989 - 

Number of LVs 3 - - 
 

In order to determine the error range and possible residual trends, the residuals for 

both calibration and validation samples are given in Figure 48. When the residuals are 

examined, there seems to be a systematic error. Since the octan number is one of the most 

important parameters of gasoline, it is not a very variable parameter from product to 

product. It is seen in Table 23 that, the reference value range is very narrow. The narrow 

reference value range in the calibration set causes the R2 value to be very low and a 

systematic error to appear, although the residual values are proportionally very small. 

 

 

(a) 

 

(b) 

Figure 48: Reference MON vs. Corresponding Model Prediction MON 

Residuals; a) PLS, b)GILS 
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The Reproducibility, R, for MONs given in TS EN ISO 5163  is described as 0.9, 

and repeatability, r, value is described as 0.2. The R-chart with absolute differences 

between GILS and PLS model predictions and reference analysis is given in Figure 49. 

 

(a) 

 

(b) 

Figure 49: MON Residual R-Chart; a)PLS, b)GILS 

 

As seen in Figure 49, there is no value outside the reproducibility limit from both 

model predictions. One of the GILS predictions and two of the PLS predictions are 

outside the repeatability limit. 

Paired t-test was performed to evaluate whether there was a significant difference 

between both the PLS and GILS model predicted values and between the reference 

measurements of each. The results are given in Table 24. 

 

Table 24: Paired t-test Results for MON 

  Reference-PLS 
Comparison 

Reference-GILS 
Comparison 

PLS-GILS 
Comparison 

Observations 40 
df 39 

t Stat -2.433 -1.025 4.173 
p-value two-tail 0.020 0.312 0.0002 

t Critical two-tail 2.023 
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According to Table 24, it can be said that, with 95% confidence, there is no 

statistically significant difference between reference measurements values and  GILS 

model predictions. However, with the same confidence, there is a statistical difference 

between PLS and GILS predictions and also between PLS and reference values.   
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CHAPTER 6 

 

CONCLUSION 
 

In this study, a new, fast and simple analytical method has been developed to 

determine crucial parameters of gasoline blends. For this purpose, molecular 

spectroscopic techniques, namely FTIR spectroscopy was used along with two different 

chemometric multivariate calibration methods which are GILS and PLS. All gasoline 

samples were collected at Tupras Izmır Refinery. The gasoline samples were analyzed at 

the Tupras Izmir Refinery Quality Control Laboratory by the reference test methods. GC, 

density meter, distillation instrument were used for reference analysis.  

When the results were examined, it was observed that although there were 

significant differences in some parameters, in general, two multivariate calibration 

methods (PLS, GILS) gave close results, these results can be reached by looking at their 

SECV and SEP with R2 values. Since working with commercial gasoline samples, sample 

specs are in a very narrow range. It is obvious that this situation has a negative effect on 

the calibration model performances. Although the R2 value is found to be very small in 

parameters with a very small data range such as RON and MON, the SECV and SEP 

values are proportionally very small and meet the relevant international standard 

requirements. It has been observed that the GILS results are better in these parameters 

where the data range is narrow. Except for Density and E150 parameters, all parameters 

have met the reproducibility limits specified in the relevant international standards.  

Although the data range used for calibration is very narrow, it can be accepted 

that the calibration models created are significantly successful, especially considering the 

reproducibility limits in the relevant reference measurement methods of the parameters. 

Using an experimental design while creating a calibration data set, or collecting a large 

number of samples for a long time to expand the data range can improve model 

performance. 
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