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ABSTRACT

ENHANCING EARTHQUAKE PERFORMANCE OF CIVIL
STRUCTURES VIA STRUCTURAL CONTROL

In this study, two different benchmark buildings (3 and 20-story) are employed

to attenuate structural responses under seismic disturbances. As control devices, active

(actuators), semi-active (Magneto-rheological dampers), passive (Tuned mass dampers

and Friction Pendulum Bearings), and hybrid controllers are utilized.

The 3-story structure is modeled linearly and employed to apply to different con-

trol strategies. Some control algorithms: LQR, PDD-state-feedback, pole-placement, H∞,

H2, are used with active and semi-active control devices. As passive devices, TMDs and

FPBSs are utilized on the nominal-linear model. Thereafter, hybrid controllers are em-

ployed: one composed of a TMD and actuator/MRD and one composed of an FPBS and

actuator/MRD.

A robust controller, µ-synthesis, is employed to control the same linear structure

having uncertainties in mass, stiffness, and damping matrices within reasonable ranges.

A nonlinearly-modeled 20-story benchmark structure is employed to implement

passive and hybrid control strategies. As passive devices, STMD and MTMD setups are

employed. Further, a robust control algorithm is used through an actuator serially con-

nected to the STMD. Subsequently, variations caused by nonlinearities are determined.

These variations are regarded as uncertainties, and the µ-synthesis is utilized in the design

of a robust controller on a truncated linear model. Then, the designed robust control is

employed to control the 20-story benchmark structure modeled nonlinearly. The struc-

tural responses in both frequency and time domains are discussed. Matlab, Python, and

OpenSees framework (Tcl/Tk) were employed to realize all linear and nonlinear simula-

tions throughout the study.
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ÖZET

YAPISAL KONTROL İLE İNŞAAT YAPILARININ DEPREM
PERFORMANSININ ARTIRILMASI

Bu çalışmada, sismik yükler altında yapısal tepkileri hafifletmek için iki farklı

tipte kıyaslama binası (3 ve 20 katlı) kullanılmıştır. Kontrol aygıtı olarak aktif (aktüatör),

yarı aktif (manyeto-reolojik damper), pasif (ayarlanmış kütle sönümleyicisi ve sürtünmeli

sarkaç yatağı) ve hibrit kontrolörler kullanılmaktadır.

Farklı kontrol stratejilerini uygulama amacıyla, 3 katlı yapı doğrusal modellenmiş-

tir. Aktif ve yarı aktif kontrol cihazları kullanılırken, LQR, PDD durum geri bildirimli,

kutup-yerleştirme, H∞, H2 kontrol algoritmaları uygulanmıştır. Pasif cihazlar olarak,

nominal-doğrusal modelde TMD’ler ve FPBS’ler kullanılmıştır. Kullanılan kontrolörlere

ek olarak, hibrit kontrolörler: Bir TMD + aktüatör/MRD’den oluşan, ve bir FPBS +

aktüatör/MRD’den oluşan iki farklı model kullanılmıştır.

Makul aralıklar içinde kütle, rijitlik ve sönümleme matrislerinde belirsizliklere

sahip aynı doğrusal yapının deprem performansını arttırmak için gürbüz bir kontrolör

olan µ-sentez kullanılmıştır.

Tezin son kısmında, pasif ve hibrit kontrol stratejilerini uygulamak için doğrusal

olmayan 20 katlı bir kıyaslama yapısı modellenmiştir. STMD ve MTMD pasif kontrölör

konfigurasyonları kullanılmıştır. Ayrıca, STMD’ye seri olarak bağlanmış bir aktüatör

aracılığıyla gürbüz bir kontrol algoritması kullanılır. Bunun için, doğrusal olmama du-

rumlarının neden olduğu varyasyonlar kestirilmiş ve bu varyasyonlar belirsizlik aralığının

tespitinde kullanılmıştır. Elde edilen belirsizlikleri içeren 20 katlı doğrusal yapı için

denetleyici tasarımında bir µ− sentezinden faydalanılmıştır. Daha sonra, doğrusal ol-

mayan şekilde modellenen 20 katlı kıyaslama yapısını kontrol etmek için tasarlanan gürbüz

kontrolör kullanılır. Sonuç olarak, doğrusal olmayan temelli belirsizlikler için gürbüz

bir kontrol elde edilir. Son olarak, hem frekans hem de zaman alanlarındaki yapısal

tepkiler tartışılır. Çalışma boyunca, tüm doğrusal ve doğrusal olmayan simülasyonları

gerçekleştirmek için Matlab, Python ve OpenSees (Tcl/Tk) kullanılmıştır.
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CHAPTER 1

INTRODUCTION

Construction has been an ongoing need since the existence of humanity. In the

formation of these constructions, human needs and environmental conditions are the main

factors. Human beings who want to raise their standards move to more complex and larger

dimensions e.g., skyscrapers. Growing dimensions and complexity have led to higher

costs (Burj Khalifa, 1,2 billion USD). As a result, constructions have been made more

durable and sustainable. As the structures rose, wind loads and earthquake loads were

statistically applied, and the cross-sections had been enlarged. Despite all considered

precautions, there is no guarantee that constructions can be safe against possible failure

mechanisms.

The concept of structural control for civil engineering was proposed by Yao

(1972) to meet seismic disturbance-related demands. The structural control strategies

can be classified into three major groups: passive, active, and semi-active control. In this

aspect, many studies have been done on structural vibration attenuation. Structural con-

trol is a field that has been studied over the past 30 years and is constantly developing.

The seminal studies in this area were conducted by Ahmadi (1995) for passive control,

and Roffel and Narasimhan (2014) for active control. Thereafter, hybrid control strategies

composing of two different control devices were put forward.

The notion of passive control origin can go more than 100 years back to an en-

gineering professor John Milne in Japan. He installed ball bearings under a small house

that he built. He aimed to exhibit that a building can be protected from seismic excitation.

Many scholars in different configurations have widely used it.

Semi-active controllers can be considered as a class of active control systems. On

the contrary of the active controllers i.e., actuators, the required external energy is smaller

in magnitude. A semi-active control mechanism does not introduce power-driven energy

to the structure. Hence bounded-input bounded-output (BIBO) stability is assured. These

mechanisms are often regarded as controllable passive tools. In the literature, the primary

work that proposed the so-called ’semi-active structural control’ belongs to Kobori (1991).

He indicated that an applied semi-active controller should diminish the kinetic energy in

the employed structure.
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It is noteworthy that these control strategies are compared by predefined perfor-

mance indices to see which controller is more beneficial for the corresponding structure.

The control of structures requires a fundamental structural model to start with. The math-

ematical model expressions, however, do not generally match the physical systems. These

modeling differences can be classified as uncertainties and they should be taken into ac-

count. On the contrary, if controllers are modeled based on nominal models only, un-

certainties may result in mal-performing controllers since the control systems work in a

different frequency region than the planned one. For this reason, a robust control concept

should be employed.

One problem related to the robust controller design may be the definition of the

uncertainty ranges. For linearly modeled structures, these ranges can be estimated ac-

cording to the model parameters reliability. For nonlinear structural behaviors, however,

the decision on the uncertainty ranges is not straightforward. As an example, the stiffness

of a yielding structural element may reduce to 10 percent of its initial value. Therefore,

the nonlinear structural control design needs well-determined strategies to account for the

uncertainty ranges.

1.1. Overview and the Organization of the Thesis

In the current dissertation, a method is employed to find proper control strategies

for structures with increasing complexity: from a linear system to a nonlinear-uncertain

system. This direct method is applied as summarized in the following lines.

In Chapter 2, the employed earthquake data, performance criteria to compare re-

sults, and the control devices are introduced. The comparison of these control devices is

established by implementing performance indices as well as maximum response graphs.

In Chapter 3, an existing 3-story mock-up structure and an observer design are

introduced. The structure’s seismic performance is increased by active/semi-active and

passive controllers. As active/semi-active controllers, an magneto-rheological damper

(MRD) and an actuator are employed. For the passive controller strategies, a friction

pendulum bearing system (FPBS) and a tuned mass damper (TMD) devices are utilized.

Subsequently, five different control algorithms are employed: LQR, State-Space PDD,

Pole Placement, H2, and H∞ controllers. The results are compared and discussed. Two

different hybrid systems namely combinations of a base-isolation and an MRD/actuator

(MRD/actuator+FPBS); and a TMD and MRD/actuator (MRD/actuator+TMD) were em-

ployed to benefit from both strategies’ advantages. The installment of the base isolator
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filters the lower frequencies of the earthquake excitation. Hence, the first mode of the

superstructure is not excited. The superiority of the hybrid application of the two control

systems is revealed. The effectiveness comparisons of both the control algorithms and the

configurations are established by implementing performance indices.

In Chapter 4, the possible differences between a mathematical model and a real

structure simulation results are investigated. This issue is a common problem that appears

during the dynamic motion of the structure, which might be modeled as parametric vari-

ations in the stiffness, damping, and mass matrices. These variations in parameters need

to be estimated, and the mathematical model needs to be updated to obtain higher robust-

ness and control performances. In this part of the study, a linear fractional transformation

(LFT) is employed for uncertainty modeling. Further, a general H∞ control design of an

MRD for vibration reduction in a building with mass, damping, and stiffness uncertainties

is presented.

In Chapter 5, a robust control design scheme is proposed to mitigate nonlinear

vibrations of a benchmark building. The method is presented in the following order:

I. The effectiveness of single tuned mass damper (STMD), and distributed-multi-tuned

mass dampers (MTMD), for a nonlinearly modeled benchmark structure is investigated

by comparing their dynamic responses. II. A hybrid controller device, composed of a

passive STMD and an active controller, is designed. In the control design procedure, both

the nonlinear building model and the discrepancy among the mathematical model and the

physical structural response is considered. As a novelty, differences between the linear

and nonlinear benchmark building responses are regarded as uncertainties. Accordingly,

these uncertainties are considered as perturbations existing in the linear 20-storey bench-

mark building, and µ-synthesis robust controller is designed depending on this linearly-

modeled structure. Then, the designed robust controller is utilized on the nonlinearly-

modeled structure to control during nonlinear simulations. This type of model setup be-

comes convenient, especially when changes in model parameters are expected during the

structure’s motion.
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CHAPTER 2

PERFORMANCE COMPARISON SETUP AND

CONTROL STRATEGIES

During this study, several controller algorithms are utilized via different types of

control devices. The comparison of these control devices is established by implementing

performance indices as well as maximum response graphs. Hence, in this chapter, the em-

ployed earthquake data, performance criteria to compare results, and the control devices

are introduced.

2.1. Selected Earthquakes

To evaluate the employed structures’ seismic performance, having a controller and

without a controller, they are subjected to four real earthquakes: El Centro, Hachinohe,

Kobe, and Northridge. The earthquake time records are given below in Fig. 2.1.
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Figure 2.1. Earthquakes data applied on the benchmark model
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The Fast Fourier Transform (FFT) on the earthquake records is utilized in Fig. 2.2

to see their frequency contents. Two different structures are employed under the scope of

the current study. The small structure (3-storey) is subjected to only the El Centro EQ,

and its first mode of natural frequency, 2 Hz, is depicted with the red line Fig. 2.2. All

EQs are applied on the second structure (20-storey), and its first five modal frequencies

are between 0.26 Hz and 2.40 Hz, depicted with black dotted lines. Here, it is seen

that applied earthquake contents cover the first five modes dominating the total response

of the second structure. In the literature, frequency comparisons are made via spectral

displacement diagrams, where the structure is nominal. In this dissertation, however,

nonlinearity issues are covered, and for this reason, the FFT responses are favored to

spectral response figures.

Figure 2.2. Frequency characteristics of the earthquakes data

2.2. Performance Criteria

In this section, non-dimensional performance criteria are outlined. The controlled

structural responses are proportioned with respect to the uncontrolled structure responses.

Therefore, the lower performance indices are desired, indicating a better control strategy.

Eight performance indices are selected from the work of Christenson (2001) in which

16 performance indices were introduced. Indices which are larger than 1 imply that the

applied control strategy worsens the structural responses.
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The first comparison criterion is the normalized floor displacement relative to the

ground which is defined as

J1 = max
EQs

max t
i∈η
|xi(t)|

xmax

 , (2.1)

where xi(t) is the ith floor’s displacement response, η is the set of DOFs which are of lat-

eral directions, xmax is the maximum uncontrolled displacement, EQs is the set of earth-

quakes (El Centro, Hachinohe, Kobe, Northridge), and |.| indicates absolute value. The

maximum drifts are normalized with respect to the corresponding earthquakes. The sec-

ond criterion is, therefore, given as below

J2 = max
EQs


max t

i∈η
|
di(t)
hi
|

max
{
|
dui(t)

hi
|
}
 , (2.2)

herein di is the inter-story drift of the ith floor above the ground floor, hi is the height of

the associated floor, and max
{
|
dui(t)

hi
|
}

is the maximum uncontrolled inter-story drift ratio.

The next criterion is the acceleration ratio between the controlled and uncontrolled

structures as follows

J3 = max
EQs

{
max t

i∈η|ẍai(t)|
ẍmax

a

}
, (2.3)

where the |ẍai(t)| is the maximum absolute value of the controlled structures ith floor

acceleration to the corresponding applied earthquake, and ẍmax
a is the maximum abso-

lute value of the acceleration of the uncontrolled structure. The normalized and non-

dimensionalized base shear force is given as the fourth comparison criterion as follows

J4 = max
EQs

{
maxt |

∑ns
i=1 mi ẍaηi(t)|
Fmax

b

}
, (2.4)

where mi are the masses of the above-ground floors, ẍaηi(t) are the floor accelerations,

ns is the number of stories, and Fmax
b is the maximum uncontrolled base shear for each

employed earthquake.
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To have better insight into the performance of the structure having a controller, the

comparison of the maximum responses may not be enough. The amount of energy that

enters the structure may also be detrimental criteria which have led to the formulation of

the last four performance indices. These criteria are based on 2-norm (L2) formulations.

The first criterion of the four of them is a normalized value of the maximum lateral

displacement relative to the ground level which can be given as follows

J5 = max
EQs

{
maxi∈η ‖xi(t)‖
‖xmax‖

}
, (2.5)

herein ‖xi(t)‖ =

√∫ t f

0
xi(t)2dt where t f is a time which is required to allow the response

of the structure to dissipate to less than 0.1% of its maximum value, and ‖xmax‖ is the

maximum uncontrolled displacement norm among the stories.

The sixth criterion is a normed measure of maximum drift ratios which follows as

J6 = max
EQs

maxt,i ‖
di(t)
hi
‖

‖dn
max
‖

 , (2.6)

where dn
max = maxi∈η ‖

dui(t)
hi
‖ provides the maximum normed inter-story drift ratio of the

uncontrolled structure.

The next criterion is a measure of the normed floor accelerations,

J7 = max
EQs

{
maxi∈η ‖Ẍai(t)‖

‖Ẍa
max
‖

}
, (2.7)

where ‖Ẍa
max
‖ is the maximum normed absolute acceleration of the uncontrolled structure

disturbed by the corresponding earthquake.

The last criterion is a normed base-shear measure.

J8 = max
EQs

max ‖
∑ns

i=1 miẌaηi(t)‖
‖Fmax

b ‖

 (2.8)

All aforementioned indices will be used in the comparison of the structures with different

control strategies.

7



2.3. Control Strategies and Devices

Structural control devices are utilized to reduce the structure’s response, such as

structural displacements and/or internal forces. These devices primarily aim to regulate

the lateral motions of the structures caused by earthquakes and wind because internal

forces are generally related to structural deformations. These devices can be categorized

into four main groups; active, semi-active, passive, and hybrid controllers according to

their operating mechanism.

Figure 2.3. a-b) Taipei building’s TMD, c) Active/semi-active devices
(Source: Lehigh’s Resource Center and civil.engg.world.blogspot.nl)

Fig. 2.3.c) shows actuators and MR dampers that can be utilized in structural con-

trol applications. The Taipei building is a good example of a passive control application.

Here, a heavy hanging mass is utilized as a pendulum, which acts as a passive control

device.

2.3.1. Passive Control Devices

Passive control devices aim to damp, redistribute or reduce the input energy that

enters the structure through seismic motion. In general, passive controllers can be catego-

rized into two main groups; seismic isolators and energy dissipation devices. A detailed

comparison study, including a state-of-the-art study, was already done by Saaed et al.

(2015).
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2.3.1.1. Seismic Isolators

The main concept of the base isolation systems is to decouple the structure from

the horizontal ground motion. The coupled system’s first modal response is generally

designed with a low frequency. As a result, the deformation of the first dynamic mode

happens in the base isolation system while the structure above behaves typically as a

rigid block. The deformation due to the higher modes occurs in the structure. These

higher modes generally participate with low ratios in the total motion. As a result, the

high energy transfer of the ground motion to the structure is limited. The base isolation

system does not dissipate the energy, but it is stored as potential energy, which will be

converted to kinetic energy. The role of dampers in parallel with base isolation systems is

to absorb a part of this energy. Further, the presence of dampers is also vital to suppress

resonance at the isolation frequency. Among the many base isolator sub-classes such

as lead-rubber bearings, elastomeric bearings, combined elastomeric and sliding bearing,

friction pendulum bearing systems (FPBS), the FPBS is chosen in the current dissertation.

• FPBSs

The FPBS has turned out a broadly accepted mechanism for new buildings and

industrial facilities in seismic isolation. This device’s superiority bases on the simplicity

of the principles that form its behavior. In addition, the built-in self-centering action due

to the concavity of the sliding surface increases its utility (Fig. 2.4). During a seismic

action, the slider moves on the spherical surface lifting the structure. It dissipates the

energy loaded by the seismic activity through friction between the rounded surface and

the slider while moving. Commonly, the slider is placed on a vertical stud with a spherical

hollowed end, enabling free rotation of the slider and ideal contact with the sliding surface

at all times. To retain frictional forces relatively low, the friction coefficient, µ, is aimed

at around 5-10 percent. A resistant teflon layer usually coats the slider that is preferably

stainless steel. Most of the experimental and theoretical research grown so far with the

FPBS has been settled on the small-deformation constitutive laws of the device (Zayas

et al. (1989)). The large-deformation and the related P − ∆ effects may become an issue

in the isolator design since there are several recent earthquakes where large deformations

were observed: Northridge (1994), Kobe (1995), and Taiwan (1999). As a result, the

coupling between the lateral and vertical motions needs further evaluation because it is not
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considered in the small-deformation theory and the current structural analysis software

(Tsopelas et al. (2005)).

Figure 2.4. Friction Pendulum Bearing System (FPBS) 2-D Configuration
(Source: Almazán et al. (1998))

A study by Mokha et al. (1991) showed that their investigated isolated structure

could sustain a larger excitation without yielding. For this purpose, the El Centro earth-

quake record was increasingly scaled until the uncontrolled and base-isolated structure

started yielding. The latter scaling factor was found to be six times larger than the former.

2.3.1.2. Energy dissipation devices

The energy dissipation devices’ primary role is to absorb or divert the input energy

that enters the structure, loaded by seismic disturbances. On the contrary to the base iso-

lators, these devices can be installed easily after the structures were built. Hence, they are

preferable for structures already built and do not meet the lateral resistance requirements

updated by newly developed regulations. There are many types of energy dissipation de-

vices with respect to their energy damping mechanism: hysteretic devices, visco-elastic

devices, re-centering devices (Spencer Jr and Nagarajaiah (2003)). In this study, tuned

mass dampers (TMDs), a dynamic vibration absorber, are employed.

10



• TMDs

TMDs are passive control devices that are comparatively easy to mount in new

buildings and in retrofitting the existing ones. They can be easily connected to the top-

floor diaphragm, as seen in Fig. 2.5.

Figure 2.5. 2-D Configuration of TMD

An external power source is not needed by these devices to operate. Further,

TMDs can be coupled with active and semi-active control devices to work as a hybrid

system in which the TMD serves as a backup in the case of failure of the active device.

The following considerations are notable:

1. For buildings with low damping ratios, TMDs with small mass ratios can reduce

the response.

2. For buildings with high damping ratios, TMDs with large mass ratios decrease the

response effectively.

Fig. 2.6 shows the effect of both the TMD installment and the damping ratio in-

cluding the optimum(opt damping) of the TMD. Accordingly, the damping ratio opti-

mization plays an essential role in the implementation of a TMD.

Pall et al. (1993) reported that the total cost (65 million dollars) of the Concor-

dia University library building was decreased by 1.5 % due to the enforcement of the

friction damper device (FDD). Notwithstanding, other researchers (Connor (2003); Lee

et al. (2008); Tse et al. (2012) and Wang et al. (2015)) reported that TMD reduces the

total cost by about 2% to 2.5%. In addition, TMD maintenance is relatively easier and

cost-effective than other passive controllers such as friction pendulum systems (FPBS),

passive base isolators. One maintenance check would be to identify the natural frequency
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of the device. For TMDs, this check can be easily conducted, whereas, for the devices

under the structures, this check may require a bigger effort. Therefore, many researchers:

Sadek et al. (1997); Kareem and Kline (1995); Nagarajaiah and Sonmez (2007); Roffel

and Narasimhan (2014); and Elias and Matsagar (2015), recommend the implementation

of the TMD for the earthquake response control of the benchmark building.

Figure 2.6. A Tuned Mass Damper (TMD) installed structures frequency responses
(Source: www.esm-gmbh.de)

2.3.2. Active and Semi-active Control Devices

This part summarizes active actuators and semi-active control devices such as

variable orifice dampers and magneto-rheological dampers.

2.3.2.1. Active Control Devices: Actuators

Actuators are devices producing the required forces via a power supply. They can

apply forces with high-switching frequencies; thus, they are quick in response.

These devices are mainly used on small scales objects. It is relatively hard to

come up with an actuator to stabilize a structure. In the current study, two different scale

actuators are employed. The small one has the capacity of 5000 N while the large-scale

actuators’ capacity is 2000 KN with a 750mm stroke length shown in Fig. 2.7
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Figure 2.7. Structural testing facility - Department of Civil & Mineral Engineering
(Source: utoronto.ca)

2.3.2.2. Semi-active Control Devices: VODs, MRDs

Figure 2.8. RD 1005-3 MRD (Produced by LORD Corp.) and the long-stroke MRD
(Source: Zemp et al. (2016))

Semi-active control devices are considered by some researchers as extensions of

passive devices. Such a device requires a small power supply such as batteries, which

is essential during an earthquake. On the contrary, if the main power supply fails, an

active-controlled structure may become unstable. For semi-active control applications,

the damping value is adjustable. To this extent, it works as an actuator except for housing

higher nonlinearity. Generally, the required control force happens to be in phase with the
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relative velocity of the device. Therefore, they can be conveniently used in place of the

active controllers. There are many different types of semi-active controller devices based

on their working principles, such as variable orifice dampers (VODs), (Kınay (2013)),

magneto-rheological dampers (MRDs). Two different scale MR dampers: one large-scale

and one small-scale, are given below in Fig. 2.8, and the small one is employed in the

current dissertation.

2.3.3. Hybrid Control Devices

The ”hybrid control” term commonly denotes a combined usage of active/semi-

active and passive control systems. For instance, a structure installed with several dis-

tributed TMDs and MRDs can enhance the structure’s seismic performance. There are

many advantages in the utility of a hybrid controller, such as consuming less energy and

dealing with a broader frequency bandwidth (Soong and Reinhorn (1993)). Besides, hav-

ing such a controller can increase the structural system’s robustness degree (Ali and Ra-

maswamy (2009)).

• FPBS + Actuator/MRD

Figure 2.9. Hybrid control setup of Soong and Reinhorn

A hybrid controller setup consisting of a friction pendulum bearing system and an

actuator was proposed by Soong and Reinhorn (1993). Their idea was that a base isola-
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tor would not transfer a certain amount of earthquake energy to the structure, especially

frequencies that are lower than the isolator’s natural frequency.

Figure 2.10. Hybrid control setup used by Ali and Ramaswamy

The isolator systems are designed not to let the lower frequencies pass to the

upper structure. In addition, the actuator will minimize the rest of the disturbance energy

by producing active forces. In 2009, Ali and Ramaswamy (2009) came up with a hybrid

controller model that consists of an MR Damper and a passive base isolator. As seen in

Fig. 2.10, the MR Damper is connected in parallel to the passive isolator.

• TMD + Actuator/MRD

Figure 2.11. An active+passive hybrid controller setup

Many scholars have studied the advantages and efficiency of TMDs. It is known

that TMDs are very sensitive to tuning frequency ratio, even if they are optimally de-
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signed. A hybrid control strategy composed of the TMD and active/semi-active controller

can overcome this handicap of the TMD. Fig. 2.11 shows the proposed hybrid control

setup. The TMD can work as a passive damper in a specific frequency region, whereas

the MRD can tune the TMD to its effective bandwidth.
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CHAPTER 3

LINEAR SYSTEM CONTROLLERS

In this chapter, an employed mock-up structure and a designed observer are intro-

duced. Thereafter, controller strategies to be applied are given in theory. The comparison

of these control strategies is established by implementing performance indices. The ex-

periences from this part of the study will be made use of in the implementation of larger

size in chapter 4 and chapter 5.

3.1. Structural Model and Control Setup

There are two different structures employed during this study. The small one is

a 3-story mock-up model and manufactured by Turan (2014) at the Izmir Institute of

Technology Structural Lab.

Figure 3.1. The mock-up structure of Turan (2014)

The net floor height is 80 cm, and four high-strength steel columns, 100 × 10mm,

provide the lateral stiffness. The floor beams were made of 90 × 90 × 4mm profiles. The
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structural fundamental period is aimed at 0.5 seconds, which is reached by the adding

steel plates to the floors. At the end, each floor is 200kg in mass.

The first three periods of the model building are 0.498, 0.177, and 0.122 seconds,

respectively. Assuming no rotation at the node points, the bending stiffness of the first-

story ply columns is calculated as follows,

k = 4
(
12EI

L3

)
, (3.1)

= 156250N/m,

where E is the modulus of elasticity (E = 2e11N/m2 ), I is the moment of inertia of the

column in the direction of motion (I = 8.33e − 9m4), and L is the clear span distance

of the column (L = 0.80m). Since each story has four columns, the column rigidity is

multiplied by four. Eq. 3.2 is used to calculate the shear force between the simulator and

the building.

Vb(t) = ksty1(t), (3.2)

where Vb(t) is the base shear force in the excitation direction, and y1(t) is the displace-

ment of first story. The stiffness, Ks, damping, Cs, and mass, Ms, matrices of the 3-story

building model are shown below.

Ks =


2k −k 0

−k 2k −k

0 −k k

 , Cs =


2c −c 0

−c 2c −c

0 −c c

 , Ms =


m 0 0

0 m 0

0 0 m

 . (3.3)

k = kst = 156250N/m, c = 42.25Ns/m, m = 200kg.

The beam stiffness is much larger than the column stiffness and therefore, the

degrees of freedom of rotation are reduced by using the static condensation method. As

a result, a three degree of freedom (DOF) system model emerged. ns, the number of

DOFs, numerical analyzes were made at the initial stages of the project, the damping ratio

corresponding to the first two modes of construction is assumed to be 2% and accordingly

the damping matrix is evaluated as Rayleigh damping.
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3.1.1. Mathematical Representation of the Structural Model

The structural system is modeled according to known geometry, material prop-

erties, and boundary conditions. This model will constitute the nominal model of the

structure.

Figure 3.2. Shear building model with ns floors

A sketch for the mock-up structure with a control device at the first story is illus-

trated in Fig. 3.2. The equation of motion for the given configuration can be formulated

as

Ksx(t) + Cs ẋ(t) + Ms ẍ(t) = Γu fc(t) − MsΓd ẍg(t), (3.4)

where x(t) is the 3 × 1 displacement vector of the structure relative to the ground, Γd =

[1 1 1]T , ẍg(t) is the ground acceleration, fc(t) is the control force applied to the structure,

and Γu = [1 0 0]T is the 3 × 1 control input location vector.

q̇ = Aq + B1w + B2u

yn = Cq + D1w + D2u + n. (3.5)
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Eq. 3.4 is transformed into state-space representation, with q =

x

ẋ

 being the state vector.

Further, measurements of the structural system, yn, is modeled by using the system states

and exogenous input: noise (AWGN), n, disturbance and control input.

A is the system matrix that holds relation between the states and the derivation of

the states. By means of matrix A, the second-order linear differential equation (Eq. 3.4) is

transformed into a first-order differential equation (Eq. 3.5). As a result, 3 unknowns in

the Eq. 3.4 are transformed into 6 unknowns in the Eq. 3.5.

A =

 03×3 I3×3

−M−1
s Ks −M−1

s Cs

 (3.6)

B1 and B2 are disturbance and control input weighting vectors, respectively.

B1 =

03×1

−Γd

 , B2 =

 03×1

M−1
s Γu

 (3.7)

The C, D1 and D2 are weighting matrices which are formed based on the desired

output variable, y. In this case, the outputs are inter-story drifts. As a result, these matrices

will be formed as follows,

C =


1 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

 (3.8)

D1 =


0

0

0

 , D2 =


0

0

0

 . (3.9)
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The matrix D1 weights the disturbance, w, in our case ẍg(t). Similarly, D2 indicates

the weight of the control input to the measurements. The structural system is formed as

both controllable and observable.

3.1.2. Observer Design

In controlling the systems, the state knowledge is needed for some controller de-

signs. Further, measured responses generally include noise which may have detrimental

effects on the control force output. As a remedy, observers can be used to predict the

states of the system and outputs with filtering noise. If the observer estimates all state

vectors, q, it is called a full-order observer.

The fundamental design principle for an observer is the measure of the closeness

of the observed responses to the simulated responses. Another design criterion is how fast

its modes are compared to the modes of the original system. In the literature, it is sug-

gested that an observer’s modes should be faster than those of the system (Kınay (2013)).

Extremely fast observer modes are not acceptable because of stability constraints.

Figure 3.3. Kalman filter assembly

Fig. 3.3 depicts how Kalman filter is utilized in the current simulation method.

The simulation commences with the entrance of the inputs to the structure. At that mo-

ment, potentiometers-based sensors gauge the current displacements. The noise-added

measurements and the current input signals: the earthquake excitation and the control
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force, are the inputs to the Kalman filter. Subsequently, the system states are acquired to

calculate the required control force.

In order to estimate structure story velocities, the conventional Kalman Observer

(Kalman (1960); Franklin et al. (1998); Lewis (1986); Deshpande (2017)) algorithm is

used to develop the desired estimator. Given the continuous structure model in Fig. 3.3,

the state-space equations are the same with the Eq. 3.5.

Additionally, with known inputs: the control force u, and the earthquake distur-

bance w, and the measurement noise n, expected values are given as follows

E(w) = E(n) = 0,

E(wwT ) = Q,

E(nnT ) = R,

E(wnT ) = N, (3.10)

where n stands for additive white Gaussian measurement noise (AWGN), and E() is the

expected value of the corresponding variable. Apart from these, all estimates have a mean

error of zero.

Meanwhile, a state estimate q̂ that minimizes the steady-state error covariance is

constructed:

P = lim
t→∞

E
{
(q̂ − q)(q̂ − q)T

}
, (3.11)

where t denotes the time. Consequently, the optimal solution is the Kalman filter with

differential equations:

˙̂q = Aq̂ + B1w + B2u + L(yn −Cq̂ − D2u), (3.12)

where L is the observer gain determined by the Algebraic Riccati Equation (ARE) as

follows:

L = (PCT + N̄) + R−1, (3.13)
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where

R̄ = R + D1N + NT DT
1 + D1QDT

1 ,

N̄ = B1(QDT
1 + N), (3.14)

and P solves the corresponding ARE.

At last, the Kalman observer/estimator uses the known inputs u, w and the mea-

surements y to generate the output and state estimates ŷ and q̂. It is noteworthy that ŷ

estimates the true plant output given as follows,

ŷ = Cq̂ + D1w + D2u. (3.15)

It is necessary to underline that the current study simulations are carried out in

the discrete-time domain. Thus, all the governed equations should be converted from the

continuous-time to the discrete-time with a ∆t time-step. By using the Euler method, the

states can be evaluated as follows:

q[ti+1] = q[ti] + ∆t (Aq[ti] + B1w[ti] + B2u[ti]),

yn[ti] = Cq[ti] + D1w[ti] + D2u[ti] + n[ti], (3.16)

along with the noise covariance data,

E(w) = E(n[ti]) = 0,

E(w[ti]w[ti]T ) = Q,

E(n[ti]n[ti]T ) = R,

E(w[ti]n[ti]T ) = N. (3.17)

The solution for the Kalman observer can be represented as follows (The Euler

method):
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q̂[ti|ti−1] = q̂[ti−1] + ∆t q̂[ti−1]. (3.18)

The estimator/observer brings about the current output estimates ŷ[ti|ti] and state

estimates q̂[ti|ti] employing all accessible measurements extending to y[ti]. The notation

of q̂[ti|ti] denotes that the estimate (or prediction) of q̂[ti] is made using measurements

available at time ti. The output equation is given as:

 ŷ[ti|ti]

q̂[ti|ti]

 =

 (I − My)C

I − MqC

 q̂[ti|ti−1] +

 (I − My)D My

I − MqD Mq


 u[ti]

yn[ti]

 , (3.19)

where Mq and My, the innovation gains (Deshpande (2017)), are defined as:

Mq = PCT (CPCT + R̄)−1

My = (CPCT + D1QDT
1 + D1N)(CPCT + R̄)−1. (3.20)

Employing the new measurement y[ti], Mq updates the prediction of q̂[ti|ti−1] as follows:

q̂[ti|ti] = q̂[ti|ti−1] + Mq(yn[ti] −Cq̂[ti|ti−1] − D1u[ti]). (3.21)

Fig. 3.4 illustrates a setup with inputs and outputs that we employed in the formu-

lation of the Kalman filter. The structural true output is denoted by y, yn corresponds to

the sensor output of the measurement with noise, and ŷ is the estimated output.

The Kalman filter is based on an optimization whose performance can be regulated

by adjusting the scales between the input and output. The adjusting matrix, Q, is chosen as

equally weighted among the input variables. The relative scale between input and output,

N, signals is decided by the magnitude of these weighting matrices.

Q = 1e1


1 0 0

0 1 0

0 0 1

 , R = 1e5, N =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 . (3.22)
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Figure 3.4. Kalman estimator- Structure parallel assembly

The simulations were carried out in discrete-time, and the time increment (∆t)

was taken as 0.02 sec. In addition, white noise was added to the simulated displacement

responses as sensor noise with a magnitude of 5% of their maximum displacement. Thus,

the observer gain matrix, L, and the innovation matrix, Mq are obtained as follows:

L =



−0.217 0.091 0

−0.122 −0.213 0.091

−0.121 −0.121 −0.213

−781.19 781.20 0.0093

0.0138 −781.18 781.20

0.0213 0.0118 −781.20


, Mq =



1 0 0

1 1 0

1 1 1

−0.217 0.091 0

−0.122 −0.213 0.091

−0.121 −0.121 −0.213


. (3.23)
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Figure 3.5. The performance of the designed Kalman estimator

Fig. 3.5 shows the estimator performance where both the estimated output and

measured output are given for the first-floor displacement. The error, differences between

measured and estimated outputs, is also illustrated, and it is around 1 percent and smaller

than the assumed noise, which is 5 percent. In other words, the error difference is dimin-

ished by 80 percent, which makes the Kalman observer satisfactory.

3.2. Active and Semi-active Controllers

In this section, the employed active and semi-active controller algorithms will be

introduced. These algorithms are applied to the structure through an actuator and an

MRD. Thereafter, the introduced controller performances will be given for comparison.

Herein, it is beneficial to present the control algorithm-setup and the MRD dy-

namics so as to have a brief perception about how the simulations are undertaken.
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3.2.1. MRD Dynamics

In the literature, the primary work that proposed the so-called ’semi-active struc-

tural control’ belongs to Kobori (1991). He indicated that an applied semi-active con-

troller should diminish the driven energy in a structure. As a semi-active control device,

an electrohydraulic damper was employed.

Jolly Mark R. and Munoz (1996) modeled MRDs for the first time considering

nonlinear effects. This model adds magnetic nonlinearity and saturation by creating a

mechanism that distributes the magnetic flux density in the composite material. Experi-

mental data about the viscoelastic behavior and magnetic properties of magnetic hydraulic

fluids that model development hypotheses are reasonable. The model was shown as quasi-

empirical because it has to conform to the experimental findings by specifying a parameter

that identifies unmodified magnetic interactions.

Pan et al. (2000) provided a comprehensive analytical recommendation for an

MRD. Jansen and Dyke (2000) used various control algorithms on MRDs. Semi-active

control studies are conducted and compared, including the Lyapunov controller (Zinober

(1994)), decentralized bang-bang controller, and modulated homogeneous friction algo-

rithm. Ribakov and Reinhorn (2003) used MRD as a control device in the aspect of

optimization. An LQR control algorithm was performed on MRDs placed in diagonal

directions in a 7-story structure model. Wang and Dyke (2006) compared base isolators:

smart dampers and LQG-controlled MRDs in benchmark studies. Yang Jr and BF (2002)

proposed the modified Bouc-Wen hysteresis model. This model can estimate the damper

response better in the region where the velocity and acceleration are opposite to the sign

of planes and the magnitudes are small. The MRD control force is modeled according to

the modified Bouc-Wen model. The Bouc-Wen model consists of springs, dash-pots and

evolutionary variables to produce MRD behavior.

The MRD force is calculated by using the equilibrium equation for the MRD

model in Fig. 3.6 as

fMRD(t) = c1ẏ(t) + k1(x(t) − x0). (3.24)

If this force is written for the upper part of the Modified Bouc-Wen model,

fMRD = αzMRD + c0(ẋ − ẏ) + k0(x − y) + k1(x − x0), (3.25)
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Then, the internal parameter, ẏ, can be obtained as follows,

ẏ =
1

c0 + c1
[αz + c0 ẋ + k0(x − y)]. (3.26)

Figure 3.6. The modified Bouc-Wen model

The evolutionary variable of the Bouc-Wen model, zMRD, is governed by

˙zMRD = γ|ẋ − ẏ||zMRD|
p−1 − β(ẋ − ẏ)|zMRD|

p + AMRD(ẋ − ẏ), (3.27)

where k1 is the stiffness of accumulator within the damper casing, x0 is the initial dis-

placement of the piston. There are two damper models for low and high speeds, which

are represented as c0 and c1, respectively. The shaping parameter of the hysteresis is rep-

resented with p. The linearity characteristics of the hysteresis are adjusted by AMRD, γ

and β.

α(Va) = αa + αbVa,

c0(Va) = c0a + c0bVa,

c1(Va) = c1a + c1bVa. (3.28)

where Va is the armature voltage that cannot be measured. For this reason, the MR fluid

dynamics reaching equilibrium are modeled by a first order low-pass filter presented by
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V̇a = −νMRD(Va − v), (3.29)

where v is the input voltage, and νMRD is the cut-off frequency. As an MRD, the RD−1005,

produced by Lord Co., is employed. The mechanical model parameters for the employed

MRD were given in Table. 3.1.

Table 3.1. Parameters for the modified Bouc-Wen model
(Source: Spencer Jr et al. (1997))

Parameter Value Parameter Value
c0a 2100 Ns/m αa 140000 N/m
c0b 350 Ns/mV αb 69500 NV/m
c1a 28300 Ns/m γ 3630000 m−2

c1b 295 Ns/mV β 3630000 m−2

k0 4690 N/m AMRD 301
k1 500 N/m p 2
x0 0.143 m νMRD 190 Hz

Numerical results of this individual MRD excited by sinusoidal displacement are

presented for 1 Hz excitation frequencies and 1cm displacement amplitude in Fig. 3.7.

The excitation magnitude is constant, and four different constant voltage levels are applied

(0V , 1V , 2V , and 3V).

According to the MRD force-displacement relationship in Fig. 3.7, the damper

force increases proportionally to the increasing applied voltage. The zero voltage ap-

plication results in a damper force based on the explicit damper characteristics, such as

friction force caused by the moving piston. The relation between velocity and the MRD

force is linear after a certain velocity limit.

During the simulation, the time step increment value is a critical issue for the MRD

response calculations. Larger time steps cause wrong results, while smaller ones result in

extreme calculation time. Spencer Jr et al. (1997) showed that the MRD responses were

similar to the experimental ones when the simulations were run with a maximum time

increment of 10−4 seconds. Accordingly, time step values smaller than this value give

responses similar to the experimental ones, yet they unnecessarily increase the compu-

tational time. If the time step had been chosen larger than 10−4 seconds, the responses

became unstable due to numerical issues. It is noteworthy that the time step for structural

simulations may be larger than the MRD time step. In such a case, the MRD needs to be

simulated in a loop to reach the time step of the structure.
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Figure 3.7. MRD responses under 1 Hz excitation

The applied voltage of 3V acquires the maximum absolute values of the MRD

force. Hence, it was chosen as the maximum voltage level in this chapter of the study.

Besides, the MRD will be limited by 3000N to keep the system working during further

simulations.

3.2.2. MRD Control Algorithm Setup

Different control strategies can be utilized to find the control forces required for

enhanced structural behavior. In optimal control algorithms, control signals that make the

system satisfy some physical constraints and simultaneously maximize or minimize a cho-

sen cost function are achieved. The controller consists of two stages in the present study:

a linear optimal control and a modified clipped algorithm part. The optimal controller

calculates the required control force u. Subsequently, the modified clipped algorithm

determines the voltage to be applied by comparing the required control force u and the

damper force at the previous time step. The block diagram representation of the system

is presented in Fig. 3.8.
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Figure 3.8. MRD setup

The damper’s magnetic field is set to produce damping forces equal to those ob-

tained by the optimal active control. The modified clipped control algorithm performs

this part and determines the feedback block’s output. Accordingly, the MRD generates

the required control. If the MRD force is smaller than the required control force and has

the same sign, a voltage level computed by interpolation is sent to the MRD.

The modified clipped control algorithm is graphically presented in Fig. 3.9.

Figure 3.9. Graphical representation of modified clipped control algorithm
(Source: Dyke et al. (1996))
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The required voltage level, v, is calculated according to the given equation below,

v = vre f H {(u − fMRD); fMRD} , (3.30)

where vre f is the reference voltage, and H{} is the Heaviside step function. The modified

clipped algorithm is stated as follows

vre f =


u

max( fMRD))vmax f or |u| ≤ max( fMRD))

vmax f or |u| > max( fMRD))

 , (3.31)

where u is the desired control force, and max( fMRD) is the maximum force capacity of

the MRD. The simulation of the system is undertaken in hybrid manner. It starts with the

MRD control force calculation. This calculated MRD force, the noise and the earthquake

excitation are the exogenous inputs to the structure. Accordingly, a linear simulation

(lsim) is performed to acquire the structural outputs. These outputs including the noise

and the inputs enter the Kalman filter to estimate the current states. Through these states,

the required active control force is computed, and it is filtered by a saturation function.

Herein, it gets limited for safety concerns so that the actual MRD force is below the maxi-

mum limit. This hybrid simulation is designed in the following pseudo-code Algorithm.1.

Algorithm 1 Control Application Algorithm
loop:

MRD current force:
Fmrd(i) = −MR Damper f unction(dt, x1(i − 1), ẋ1(i − 1),V(i − 1))

Control & EQ input:
W f mrd = [Fmrd((i − 1) : i),w((i − 1) : i)]

Controlled System Inter-story Drifts:
[y(i − 1 : i, :), , q(i − 1 : i, :)] = lsim(Pstrct,W f mrd, t, x(i − 1, :))

Kalman Filter:
yn(i − 1 : i, :) = y(i − 1 : i, :) + n(i − 1 : i, :) Noisy measurements
Wkalm = [Fmrd((i − 1) : i), ẍg((i − 1) : i), yv((i − 1) : i)]
[yk(i − 1 : i, :), qk(i − 1 : i, :)] = lsim(Pkalmn, Wkalm, t, qk(i − 1, :))

Observer outputs given to the controller:
FAct(i) = −Kc ∗ qk(i, :)′

If FAct(i) >= Fmax
FAct = Fmax

If FAct(i) <= −Fmax
FAct(i) = −Fmax

MRD Required Voltage:
V(i) = MRDVoltage(Fmrd(i), FAct, Vmax)

goto top.
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3.2.3. Linear Quadratic Regulator (LQR)

It is necessary to decide which behavior should be controlled when establishing

the control approach. If this behavior is expressed in terms of q, the Linear Quadratic

Regulator (LQR) control design minimizes integral of a quadratic function of q and u.

This process corresponds to optimization in terms of the energy concept. The purpose is

to minimize the value of the integration,

J =

∫ ∞

0
q(t)T Qq(t) + u(t)T Ru(t) dt, (3.32)

where J denotes the Jacobi- Bellman cost function. Q and R are weighting matrices that

scale the input and output. Subsequently, these matrices determine the level of both the

control force and output to be controlled. They must be both positive semi-definite.

The employed structure model is represented from Eq. 3.6 to Eq. 3.9. In this study,

the outputs are the inter-story drifts, y. Hence the expression to be minimized is given as

follows;

J =

∫ ∞

0
y(t)T y(t) + u(t)T u(t)dt = ‖y‖22 + ‖u‖22 . (3.33)

If the Riccati-equation is given:

AT S + S A − S BBT S + CTC = 0, (3.34)

where S is solution of the Riccati-equation.

The Lyapunov stability analysis, (Zinober (1994)), procedure gives us a definite

result about the model stability. Thus, here it will be applied. Introduce the Lyapunov

function as follows,

V(q) = qT S q, (3.35)
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Derivative of V(q) yields as,

V̇(q) = q̇T S q + qT S q̇,

V̇(q) = qT AT S q + uT BT S q + qT S Aq + qT S Bu

V̇(q) = uT BT S q + qT S Bu + qT S BBT S q − qTCTCq

V̇(q) = (u + BT S q)T (u + BT S q) − yT y − uT u (3.36)

Integrate V̇(q) ,∫ ∞

0
V̇(q)dt = V(q(∞)) − V(q(0)),

= − ‖y‖22 − ‖u‖
2
2 +

∥∥∥u + BT S q
∥∥∥2

2
. (3.37)

Thus,

‖y‖22 + ‖u‖22 =
∥∥∥u + BT S q

∥∥∥2

2
− V(q(∞)) + V(q(0))

V(q(∞)) = 0 (i f stable) (3.38)

with minimum when u = −BT S q.

The feedback system is described by A−BBT S . The aim is to obtain stable eigen-

values in the left-hand plane (LHP) of the complex coordinate system.

The Riccati-equation yields as follows,

AT S + S A − S BBT S + CTC = 0, (3.39)

or more generally,

AT X + XA + XRX + Q = 0. (3.40)

Eq. 3.40 has ((2n)!/(n!)2)/2 solutions (n represents the number of states). A solution

matrix (X) can be evaluated for each defined weighting matrix pair, Q and R. Here we

have to choose Q and R that make the solution A + RX or (A − BBT S ) stable.

It is desired to design a controller to limit the control input (the MRD force) at 3

KN. To achieve this goal, the weighting matrices, Q and R, are selected as follows,
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, R = 1e − 6. (3.41)

According to the uncontrolled structure results, the maximum inter-story displace-

ments are found on the first floor. For this reason, the first element of the Q weighting

matrix, matching the first-floor inter-story drift, is chosen larger than the remaining terms.

The last three values corresponding to the velocities, which are larger in amplitude, are

determined smaller than displacements to get them balanced.
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Figure 3.10. LQR-controlled structure responses
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The structure with the designed controller was simulated by applying the 1940

El Centro earthquake data as a ground motion. The resulting roof, inter-story drifts, and

the control force are given below. Fig.3.10 shows the maximum inter-story drifts, the

top story displacements, and the active control force, Fact. According to the results, the

adopted controller approach in the current model results in quite-promising response. The

control effectiveness is higher in reducing the oscillatory behaviors which occur towards

the end of the simulations.

Table. 3.2 and Fig.3.10 have demonstrated the time-domain performance compar-

isons. The frequency-domain characteristics for the LQR-controlled and the uncontrolled

structures should be discussed to examine a controller performance appropriately. The

Bode diagram for the current controller is given below.
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Figure 3.11. The Bode diagram of the LQR-controlled structure

Fig. 3.11 illustrates the relation between the earthquake and the top-floor displace-

ment. For the LQR, there is roughly a 20dB decrement, one-tenth of the actual values, at

the first mode frequency. Similar decrements exist in the higher modes. On the contrary,
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in the time history simulation, there is no such significant top-floor displacement reduc-

tion because the excitation frequency content does not equally cover the entire frequency

domain. Accordingly, local decrements on the frequency domain do not account for equal

decrements on the time domain.

Table 3.2. Performance indices of LQR controller

J1 J2 J3 J4 J5 J6 J7 J8

LQR 0.6606 0.6547 0.6707 0.7905 0.3971 0.3452 0.7594 0.4259

In Table. 3.2, performance indices are computed for the uncontrolled and LQR-

MRD controlled structures. Results for the active controller are not shown because it

is readily seen in Fig.3.10 that the responses of the MRD and the actuator are almost

identical. According to the results given in Table. 3.2, it is confirmed that the structure

empowered with an LQR outperforms the uncontrolled structure in J1 and J5 indices.

These indices are the crucial ones in representing the controller’s efficiency since they

stand for the maximum inter-story and 2-norm of the displacements, respectively.
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Figure 3.12. LQR weight optimization
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In the implementation of the LQR control algorithm, an optimization study for

weight selection is undertaken. As implied before, the ratio between the weights deter-

mines the level of the control force. To investigate the effect of weight ratio, R values

versus the maximum control forces, and the performance indices are plotted in Fig. 3.12.

Table. 3.3 shows the performance indices, and all indices are worse than the LQR

controlled structure performances given in Table. 3.2.

Table 3.3. Performance indices of 0V-driven MRD

J1 J2 J3 J4 J5 J6 J7 J8

0V MRD 0.7486 0.7399 0.6539 0.8096 0.4255 0.4051 0.7839 0.4378

As seen in Fig. 3.12, R values smaller than 10e-8 do not affect the level of control

values. Similarly, the performance indices, J1 and J2, cannot be reduced more than 0.2

for the same R-value range. Thus, R is chosen as 1e− 8 to compute the control gains, and

the simulations are carried out.
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Figure 3.13. LQR-controlled structure responses for R = 1e − 8
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Fig. 3.13 shows the responses of the LQR-controlled structure. In this particular

case, the active control algorithm works as expected; however, the MRD cannot follow

the actuator. The reason behind this may be the low level of displacements and velocities

that form the required control forces. Since the demand is huge, the given voltage level is

not able to get the MRD to produce the control force. For this reason, the first applicable

R-value is chosen as 1e − 6.

An implemented semi-active control strategy may be substituted for a passive de-

vice. For instance, in our case, the employed MRD can be driven by a constant voltage

or even without a power supply. Accordingly, a passive device is tested in which there is

no need for measurements and a control setup. It should be examined whether the MRD

with a constant voltage is better than the actively controlled MRD.
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Figure 3.14. Responses of structure with a 0V-driven MRD
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Fig. 3.14 shows the response of the structure having an MRD without a power

supply. As expected, the MRD cannot produce the required control force, and hence the

applied passive controller strategy results in larger displacements. In other words, the

actively driven voltage MRD outperforms the MRD utilized as a passive controller.

3.2.4. PDD Controller

A state-space representation can be shown as the following equations. Here, the

control input, u, is demonstrated by multiplying the states by the gain vector, K, as de-

picted in Fig. 3.15.

q̇ = Aq + B1w + B2u

y = Cq + D1w + D2u

u = −Kq (3.42)

Figure 3.15. State-space feedback proportional control

The proportional gain allows us to control disturbances in terms of error multiples.

At first sight, the system state variable, q, consists of the structural displacements and their

derivatives, which may appear as if a PD controller exists already. However, it must be

considered that the state equations have been derived from a second-order differential

equation, and thus, an error correction for the acceleration variables is not proportionally

considered. To see the acceleration effect on the control, a PDD controller is employed as

shown in Fig. 3.16. Therefore, 3 measurements are required.
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Figure 3.16. State-space feedback proportional-derivative (PD) control

The control input with the proportional, derivative and double derivative of the

displacements (PDD) yields,

u = −Kq − Pq̇. (3.43)

The closed loop state space representation becomes as follows;

q̇ = (I + B2P)−1(A − B2K)q + (I + B2P)−1B1w, (3.44)

where P and K are formed as follows;

K = [Kd1 Kd2 Kd3 Kv1 Kv2 Kv3],

P = [Pv1 Pv2 Pv3 Pa1 Pa2 Pa3], (3.45)

where Kdi is the proportional gain that corresponds to the i’th floor displacement, Kvi = Pvi

are the gains for velocities, and Pai is the proportional gain for the accelerations. These

values are tuned regarding the uncontrolled structure response amplitudes, di, vi and ai,

given in Fig. 3.17 to achieve a classical PD control approach in a heuristic way which was

proposed by Ziegler and Nichols (1993).
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Figure 3.17. The uncontrolled structure responses

After the fine-tuning process, K and P are updated as follows,

K = [187500 262500 375000 4425 6195 8850],

P = [4425 6195 8850 156.2500 218.7500 312.5]. (3.46)

The structure with the PDD controller was simulated, and the maximum inter-story drifts

and the top story displacements are shown in Fig. 3.18. At a glance, the current controller

reduces the input energy significantly. Regardless of the control devices; active vs semi-

active, results are alike. Besides, the MRD control force tries to mimic the active control

force. A bias of 70 N is visible which seems to correspond to the internal unbalanced

force of the MRD. It is noteworthy to mention that the LQR control force in Fig. 3.10 is

smaller than the PDD force. One of the reasons can be associated to the PDD controller,

which does not consider the control force as an optimization criterion.
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Figure 3.18. The PDD-controlled structure responses

Table 3.4. Performance indices of the PDD controller

J1 J2 J3 J4 J5 J6 J7 J8

PDD cont. 0.7020 0.6584 0.8127 0.8127 0.4226 0.4020 0.7883 0.4417

To inquire the frequency-domain characteristics for both structures; controlled and

uncontrolled; the Bode magnitude diagram is given as follows,

Fig. 3.19 illustrates the ratio between the excitation input and the top-floor output.

There is more than 20dB decrement at the first mode frequency. Besides, a frequency-

shift occurs because of the addition of the acceleration errors. This frequency-shift may

be why the current controller does not outperform the LQR even if it does not restrict the

control input.
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Figure 3.19. The Bode diagram of the PDD-controlled structure

3.2.5. Pole-Placement Controller

The pole-placement controller is one of the conventional control algorithms and

a frequency-based control approach. The pole-placement (PP) control, is tested by em-

ploying the Ackermann formula (Ackermann (1928)). In this approach,the Ackermann

formulation enables the designer to place the poles at any desired locations in theory. The

i’th pole that corresponds to the i’th natural frequency of the uncontrolled structure is

expressed as follows,

pi = −|ωi| ∗ ζi + ωi j, (3.47)

where the imaginary part is equal to the natural frequency, ωi, and the reel part consists

of the natural frequency multiplied by the damping ratio ζi. Accordingly, the poles of the

3-story structure yield,
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P =



−0.2099 + 50.3653i

−0.2099 − 50.3653i

−0.1332 + 34.8539i

−0.1332 − 34.8539i

−0.0706 + 12.4391i

−0.0706 − 12.4391i


. (3.48)

These given poles can be placed such that the structural modal frequency response mag-

nitudes are smaller than the uncontrolled structure. In this particular application, the aim

is to modify the damping ratio.

P̄ =



− f ∗ 0.2099 + 50.3653i

− f ∗ 0.2099 − 50.3653i

− f ∗ 0.1332 + 34.8539i

− f ∗ 0.1332 − 34.8539i

− f ∗ 0.0706 + 12.4391i

− f ∗ 0.0706 − 12.4391i


, (3.49)

where f represents the ratio of the decrement for the new poles. In our model, it is

aimed to decrease the amplitude of the corresponding natural mode frequencies by 20dB

( f = −20dB). Consequently, to achieve the poles of P̄, the Ackermann formula results in

the controller gains, K, as follows:

K = 1.0e + 03 ∗
[
4.7077 − 7.0639 3.3515 1.4893 − 0.2613 0.6024

]
.

To inquire the frequency-domain characteristics for both structures; the controlled

and the uncontrolled; the frequency relation between earthquake input and the roof dis-

placement is given below.

Fig. 3.20 shows that there are 20dB decrements at all natural frequencies without

effecting pole locations significantly. As in the PDD controller, the control input optimiza-

tion is not considered in the current controller. During the tuning of the decrement ratio, f ,

it was increased incrementally and the closed-loop system is simulated. f = 20dB value

was chosen because higher values resulted in some upthrusts between the 4Hz and 5Hz

bandwidth. As a result, the structural response worsens since the implemented controller
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does not take disturbances into account. To be more precise, there is no disturbance mod-

eling consideration in the control implementation, such as the Kanai-Tajimi spectrum.
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Figure 3.20. The Bode diagram of PP-controlled structure

The structure with the pole-placement controller was simulated. Table. 3.5 con-

firms that the controlled structure results in better performance than the uncontrolled

structure in every index. It is seen that the current control strategy shows better per-

formance than the passively-used MRD (Table. 3.3).

Table 3.5. Performance indices of the pole-placement controller

J1 J2 J3 J4 J5 J6 J7 J8

Pole-pl. 0.6944 0.7053 0.6560 0.8081 0.4162 0.4036 0.7778 0.4226

Fig. 3.21 shows the maximum inter-story drifts, the top story displacements, and

the control forces. At first sight, the current controller conduces similar results to the

former controllers. The MRD successfully followed up the active control force except for

the 70N offset.
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Figure 3.21. Responses of the PP-controlled structure

In Fig. 3.22, the normal stress, σ, for the first floor column is shown. It can be

seen that, the stresses are well-below the yielding stress, σy , under the El Centro EQ.
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Figure 3.22. Maximum stresses
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3.2.6. H∞ controller

In this section, a design procedure of H∞ controller for a generalized civil struc-

ture plant will be explained. H∞ methods are utilized in control theory applications to

synthesize the required controllers in regulating structural system output. To employ an

H∞ method, the designer puts forward the optimization criteria, and then solves this ex-

pression by minimizing the H∞-norm. H∞ controllers outperform classical controllers

because they can be utilized for MIMO systems including cross-coupling between chan-

nels (Glover and Doyle (1988), Doyle et al. (1989), Skogestad and Postlethwaite (2007)).

However, it requires a certain level of mathematical knowledge to implement the condi-

tions successfully and to express the model with reasonable assumptions. It is noteworthy

that the resulting controller will be the best solution for the current structure with the

pre-assumed cost function.

Figure 3.23. H∞ control problem statement

If the problem formulation is stated, the general structure plant has to be repre-

sented according to the standard configuration above in Fig. 3.23.

The structure plant P has two inputs, the exogenous input w including noises and

disturbances, and the control force u. There are two outputs, the error signals (exoge-

nous outputs), z, composed of the responses that the designer wants to minimize, and the

measurement signals, y. It should be kept in mind that all these inputs and outputs are

generally vectors, whereas P and K are system matrices.
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zy
 =

[
P(s)

] wu
 =

P11(s) P12(s)

P21(s) P22(s)


wu


u = K(s)y, (3.50)

where s denotes the Laplace domain (s − domain). The input-output relation from w to z

is called the lower linear fractional transformation (LFT):

z = FL(P,K) w (3.51)

Here, FL(P,K) is the lower LFT, which can be derived as follows

FL(P,K) = P11 + P12K(I − P22K)−1P21. (3.52)

The aim of the H∞ controller is similar to quadratic-based ones, but it also satisfies

to minimize the H∞ norm with the condition:

‖FL(P,K)‖∞ = sup
ω

σ̄ (FL(P,K) ( jω)) (3.53)

where σ̄ is the maximum singular value of the matrix FL(P,K)( jω), and sup
ω

refers to the

maximum value over the frequency domain.

The system plant can be represented by implementing the equation of motion for

the structure, the measurement and output dynamics as a state-space representation.

ẋ = Ax + B1w + B2u

z = Cx + D11w + D12u

y = Cx + D21w + D22u (3.54)

The closed-loop system’s satisfactory H∞ norm is achieved through the matrix D11 in the

P’s state-space form (A, B1, B2, C1, C2, D11, D12, D21, D22). To solve this optimization

problem, there are three different main approaches:
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• Linear matrix inequality (LMI): It requires the fewest number of assumptions (Boyd

et al. (1994)).

• Riccati-based equations: Two AREs are needed to be able to solve the problem.

• Youla-Kucera parameterization: It generally results in a high number of states

(Kucera and Outrata (1988)).

A block diagram depiction of the civil structure system for the current study is

represented in Fig. 3.24. G represents the 3-story structure with force inputs and measure-

ment outputs. The frequency-domain weighting function Wg forms the spectral content

of the disturbance, ẍg, modeling the earthquake excitation.

G

K

n

y
̈

ẍg W g

Wu

z1

z2

Wn

W p

u

Figure 3.24. The generalized plant for a seismically excited nominal civil structure

The Kanai-Tajimi spectrum is illustrated in Fig. 3.25, Lin and Yong (1987), which

is designed according to the implemented earthquakes, given in Chapter 2. A decent fit is

obtained by employing the parameters ζg = 0.25 and ωg = 8.65rad/s in a second-order

model. A higher degree model may be used as well, but this penalizes the controller by a

higher number of states.

The matrix Wp is weighting the controlled response, and Wu is weighting the con-

trol force signal. Wn is used to weight the measurement noise n. The signal to noise ratio

(SNR) and cut-off frequency was set as 10 and 100Hz, respectively.

The exogenous input signal w consists of the earthquake excitation ẍg and the

measurement noise n. The exogenous output z consists of the frequency weighted con-

trolled response and the control force input. These signals are weighted by a performance,

and a control weight: Wp and Wu, respectively. The aforementioned weights are chosen
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after a few trials as, Wp = diag( [ 500 100 100 ] ) and Wu = 5e − 4. Above all, by

these chosen weights, the signal magnitudes are brought to a common ground based on

the chosen units. Accordingly, the designer can fine-tune the controller.

Figure 3.25. The designed Kanai-Tajimi filter

Simulations for the structure with the H∞ controller were undertaken in the Matlab

environment. While constructing the generalized structure plant, the iconnect function

in the Robust Control Toolbox is made use of. This function helps the designer build

large plants, including complex channel relations easily. The satisfactory controller is

achieved by employing the 2 AREs. The yielding controller solution for the given problem

statement, K∞, has 11 states, whereas the structure system, G, has only 6 states. The

difference comes from the included weighting functions, Wg and Wn, in the generalized

structure plant.

Fig. 3.26 shows the maximum inter-story drifts and the top story displacements.

Apparently, the H∞ controller yields better results compared to the previous controllers

in the structural responses. Also, the current controller requires higher controller force

input.

Table. 3.6 confirms that the H∞-controlled structure outperforms the any other

controller and results in better performance than the uncontrolled structure in every index.
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Figure 3.26. The H∞-controlled structure responses

Even though the control force for this controller is much larger than previous control

applications, the performance indices J3, J4, J7 and J8 do not seem to be affected that

much.

Table 3.6. Performance indices of the H∞ controller

J1 J2 J3 J4 J5 J6 J7 J8

H∞ cont. 0.6447 0.6205 0.7434 0.7550 0.3836 0.3556 0.7407 0.4053

At last, to compare the frequency-domain characteristics for both structures; con-

trolled and uncontrolled; the Bode diagram is given in Fig. 3.27. It is seen that there is

more than 30 dB decrement at the dominant modal frequency. Thus, the theory of the

H∞-norm technique can be counted valid, since the first mode corresponds to the supre-
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mum of the σ. Moreover, the current controller takes into account the controller input

force optimization in the range of the designer’s priorities.
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Figure 3.27. The bode diagram of H∞-controlled structure

3.2.7. H2 controller

The H2 control, one of the quadratic control algorithms, is tested in this section.

Similar to the H∞-controller, it takes into account the control input optimization in theory.

Also, the same mathematical model, including all the weights, Wp, Wu, Wg, and Wn, are

employed to form the H2 control problem.

The aim of the H2 controller is similar to the LQR, and it tries to minimize the H2

norm with the condition of:

‖FL(P,K)‖2 =

√
1

2π

∫ ∞

−∞

(FL(P,K) ( jω)) (FL(P,K) ( jω))† dω, (3.55)

where † is the Hermitian operator.

An advantage of the H2-controller over the conventional quadratic controllers is

that it does not require all the states data. In other words, as long as it is a controllable
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system (Rubio (1971)), the number of outputs achieved is enough, and, thus, no need

for an observer design. H2 controller can be interpreted as a combination of a Linear

Quadratic Estimator (LQE), and an (LQR), which are connected serially. The output of

the system enter the LQE, and the estimated states proceed to the LQR. Accordingly, the

required control input is achieved. In the H2 controller, all these separate operations are

handled at once by a weighted LQE-LQR-like controller.
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Figure 3.28. Responses of the H2-controlled structure

The current structure within the given problem definition defined in H∞ section

and the optimization criteria was simulated, and a satisfactory controller, H2, is achieved.

Similarly, H2 has 11 states as the H∞-controller has. Fig. 3.28 shows the maximum inter-

story drifts, the top story displacements, and the control forces. Results are quite akin to

the LQR controller implementation. Even though all the weights are the same with the

H∞ algorithm, the controller force is smaller than the H∞ in magnitude.
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Table 3.7. Performance indices of the H2 controller

J1 J2 J3 J4 J5 J6 J7 J8

H2 controller 0.6645 0.6404 0.6400 0.7552 0.3796 0.3536 0.7342 0.3953

Table. 3.7 shows that the controlled structure results in as good performance as

the H∞-controlled structure in J1, J2, J5 and J6 indices by slight differences.

The Bode diagram is given to compare the frequency-domain characteristics for

the controlled and the uncontrolled structures.
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Figure 3.29. The Bode diagram of the H2-controlled structure

Fig. 3.29 shows that there is more than 20dB decrement at the first mode and

around 5dB at the second mode. Seemingly, it works like the H∞-controller. However,

there are also certain reductions in the following modes, as expressed in the cost function

of the H2-controller. In addition, the current controller upthrusts the frequency response

amplitudes before the first mode by 5dB.

The FFT values of the El Centro earthquake is multiplied by the system frequency

response in Fig. 3.30. It is seen that the H∞-controller shows smaller inter-story drifts

than the H2-controller.
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Figure 3.30. H2 and H∞-controlled structures response spectra

3.3. Passive Controllers

In this section, the passive controllers: a friction pendulum bearing system and

a tuned mass damper, will be implemented on the 3-story structure. Subsequently, the

responses of the structure with these passive controllers will be compared to the uncon-

trolled reference structure.

3.3.1. Friction Pendulum Bearing System (FPBS)

The FPBS acts like a fuse triggered only when the seismic forces get bigger than

the static friction. After the motion, the bearing promotes a lateral force equivalent to

the summation of the mobilized frictional force and the restoring force. The rise of the

structure throughout the rounded surface produces this restoring force. There is a linear

relationship between this force and the weight, and this force is inversely proportional to

the radius of the rounded surface.

In Fig. 3.31, the 3-story structure equipped with an FPBS is illustrated. A notable

aspect in expressing the complete equations of motion of the structure isolated with the

FPBS is to define the isolator’s force-deformation constitutive relationship. The complex-

ity involved in formulating this relationship is linearly related to the model’s certainty.

56



Figure 3.31. The FPBS-installed structure

The matrices that form the equation of motions are updated as follows,

KFPBS =


kb + k −k 0 0

−k 2k −k 0

0 −k 2k −k

0 0 −k k


,CFPBS =


cb + c −c 0 0

−c 2c −c 0

0 −c 2c −c

0 0 −c c


,MFPBS =


mb 0 0 0

0 m 0 0

0 0 m 0

0 0 0 m


,

(3.56)

where m = mb = 200kg, cb = 348Ns/m, and kb = 18312N/m are the base mass, the FPBS

damping, and stiffness, respectively. For a radius of curvature, Ro, the restoring force can

be evaluated according to Eq.3.57.

f =
W
Ro

xb + µWsgn(ẋb), (3.57)

where W represents the total weight of the structure moving on the isolator; xb and ẋb are

the lateral deformation and velocity of the isolator relative to the ground, k is the friction

coefficient; sign(·) is the signum function, and f is the horizontal restoring force. The

vertical component of ground motion was neglected in our experimental set-up as Zayas

et al. (1989) proposed in Eq. 3.57, because taking into account the vertical component
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caused a reduction of 1.2 percent of the total ground motion’s magnitude. All the approx-

imations made above are valid as long as the vertical component of the ground excitation

is overlooked.

The natural period of the FPBS is considered as the most important criterion for

the passive control of the structures in terms of feasibility.

Tb = 2π

√
Ro

g
, (3.58)

where Tb is the natural period of the FPBS and g is the gravitational acceleration. Ac-

cording to El Centro earthquake response spectra given in Fig. 3.32, Tb is aimed at 1.4

seconds.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

T
n

0

1

2

3

4

5

S
A

/
a

m
a
x

S
A

/a
max

Figure 3.32. The response spectra of the El Centro earthquake

Tb = 1.4s is larger than the structure’s first mode period (0, 5sec). Accordingly,

the FPBS will work as a low-pass filter that isolates the structure from the ground motion.

Thus it is feasibly to be used for the 3-story structure.

For the existing structure, µ = 0.05 and Ro = 0.5m were taken. Then, if it is

desired to calculate the damping ratio,
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ξb =
2µ/π

xbmax/Ro + µ
,

cb = 2ξb

√
mbkb, (3.59)

where kb is the instantaneous base stiffness, which depends on the base displacement.
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Figure 3.33. The Bode diagram of the FPBS-installed structure

Fig. 3.33 depicts the frequency-domain characteristics (Bode magnitude diagrams)

for both controlled and uncontrolled structures. There is more than 10 dB decrement at

the first mode frequency corresponding to the FPBS’s design frequency, whereas there

is more than 20 dB reduction at all modes of the superstructure. As a result, with the

condition of not discussing the earthquake frequency content, the FPBS outperformed

the previous controllers. Yet, this passive-controller has a disadvantage that it cannot be

installed on existing structures.
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Figure 3.34. Responses of the FPBS-installed structure

The structure with the FPBS was simulated under El Centro earthquake. Fig. 3.34

shows the maximum inter-story drifts and the top story displacements. The current passive

control device conduces the best results in the structural responses.

Table 3.8. Performance indices of the FPBS

J1 J2 J3 J4 J5 J6 J7 J8

FPBS 0.1622 0.1688 0.1533 0.1792 0.1593 0.1747 0.1678 0.1750

Table 3.8 confirms that the controlled structure results in better performance than

any other scenario in every index, including the J4 and J8 indices. The reason behind

why the FPBS control strategy is better than the previous controllers is that the structure
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equipped with an FPBS is no longer the same in a model characteristic manner. The

FPBS causes the structure to have one additional mode. This added mode is slower than

the structure fundamental mode and behaves like a low-pass filter. As a result, higher

frequencies get attenuated. The structural frequency response is changed by a significant

amount, as seen in Fig. 3.33.

3.3.2. Tuned Mass Damper (TMD)

A TMD is employed as a passive-control device for the current structure. In the

literature, two common models with the TMD model parameters are employed within this

framework. The first one was suggested by Ormondroyd (1928);

f =
1

1 + µ
and ζ =

√
3µ

8(1 + µ)
, (3.60)

where f represents the frequency ratio between the TMD and the structure, ζ represents

the damping ratio of the TMD, and µ is the mass ratio. These equations are valid while the

structures damping ratio, β, is zero. In other cases, the parameter values were proposed

by Sadek et al. (1997), which were obtained by curve fitting techniques.

Figure 3.35. The TMD-installed structure

The below two equations are for the single degree of freedom (SDOF) structures.

Yet, our models are not SDOF.
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f =
1

1 + µ

[
1 − β

√
µ

(1 + µ)

]
, ζ =

β

1 + µ
+

√
µ

(1 + µ)
(3.61)

An approach that can be implemented on a multiple degree of freedom (MDOF)

structure modeling should be employed. Such an approach was also proposed by Sadek

et al. (1997), including the mode shapes, Φi.

µ =
m

Φi
T [M]Φi

f =
1

1 + µΦi j

1 − β
√

µΦi j

(1 + µΦi j)

 and ζ = Φi j

[
β

1 + µ
+

√
µ

(1 + µ)

]
,

(3.62)

where Φi is generally implemented as the normalized fundamental modal shape (Φi
T ·Φi =

1), but it may also be any other modal shape which is desired to be controlled. Φi j is the

amplitude of the corresponding mode of vibration for a unit modal participation factor

computed at the location of the TMD. As an alternative, Feng and Mita (1995) proposed

an optimum damping ratio formulation. The formulation is given as,

ζ =
1
2

√
µ(1 − µ/4)

(1 + µ)(µ/2)
, (3.63)

and the damping coefficients for all the proposed TMD models above are calculated by

ci = 2ζmiωi. (3.64)

The model parameters for the 3-story structure are given as follows,

Ms =


200 0 0 0

0 200 0 0

0 0 200 0

0 0 0 30


,
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Ks = 1e5


3.1250 −1.5625 0 0

−1.5625 3.1250 −1.5625 0

0 −1.5625 1.5816 −0.0191

0 0 −0.0191 0.0191


,

Cs =


61.7600 −18.2000 0 0

−18.2000 61.0200 −18.2000 0

0 −18.2000 176.3215 −133.6215

0 0 −133.6215 133.6215


.

The structure with the TMD simulation was undertaken. Fig. 3.36 shows the maxi-

mum inter-story drifts and the top story displacements. The current passive control device

yields better results compared to the uncontrolled structure in the structural responses. On

the other hand, its performance is not as promising as the FPBS.
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Figure 3.36. Responses of the TMD-installed structure
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The performance difference can be diminished by increasing the mass ratio of

the TMD. (It was taken 0.05 according to the Ormondroyd (1928) formula, and 0.15

according to the Sadek et al. (1997) formulae for the current structure.) This method does

not always guarantee a better result because of the implementation issues. Contrarily, the

FPBS is not a solution for the structures that already exist.

Table 3.9 confirms that the controlled structure results in better performance than

the uncontrolled structure in every index. The performance values are similar to the struc-

ture with the 0V-driven MRD located at the first floor in Table 3.3.

Table 3.9. Performance indices of the TMD

J1 J2 J3 J4 J5 J6 J7 J8

TMD 0.7674 0.7553 0.7188 0.8286 0.4545 0.4583 0.7870 0.4646
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Figure 3.37. The Bode diagram of the TMD-installed structure

Fig. 3.37 depicts the frequency-domain characteristics for both structures; con-

trolled and uncontrolled. The TMD decreases the frequency response amplitudes of the

modes by more more than 10dB. The fundamental frequency is shifted slightly to right,
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and the TMD induced first mode of the total structure is hard to depict around 1.1Hz. Due

to the induced damping of the TMD, the zero point in between the first and the second

modal responses is increased by a significant amount.

As a worst-case scenario, the TMD mass is considered to be stuck such that it

cannot move. In this case, the top floor mass is regarded a summation of both the TMD

and the top floor. Accordingly, the previous simulation is repeated and the results are

shown in Fig. 3.38.
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Figure 3.38. The structure equipped with a stuck TMD responses

The stuck TMD worsens the structural response and the performance indices are

represented in Table 3.10. As can be seen, all performance indices are larger than 1. As a

designer, the TMD mass ratio should be limited by considering this worst-case scenario.

Table 3.10. Performance indices of the stuck TMD

J1 J2 J3 J4 J5 J6 J7 J8

Stuck-TMD 1.3021 1.3589 1.1970 1.2828 1.2803 1.2480 1.2312 1.1697
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3.4. Hybrid Controllers

In this section, two-hybrid controllers, one composed of an FPBS and an MRD,

and one composed of a TMD and an MRD, will be employed for the current structure.

Thereafter, the results to be obtained will be compared to the uncontrolled and the single

device-controlled structure responses.

3.4.1. FPBS+MRD/Actuator

In using a hybrid controller, there are many advantages, such as consuming less

energy and having an occasion that satisfies the wider frequency bandwidth. In this partic-

ular controller, the FPBS decreases the structure’s fundamental modal frequency, whereas

the MRD/Actuator reduces the amplitudes of all modes. Consequently, both form a con-

troller that work in union within a broader bandwidth.

Figure 3.39. The structure equipped with both an MRD and an FPBS

As depicted in Fig. 3.39, the FPBS and the MRD are the same devices employed

in the study’s earlier stage. The modal parameters of the structure are already given in the

FPBS part. Besides the control input location vector, Γc, is updated as follows:
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Γc =


0

0

1

−1


. (3.65)

The structure equipped with the H∞-hybrid controller is simulated under the El

Centro ground motion. Fig. 3.40 shows the maximum inter-story drifts and the top story

displacements. Apparently, the hybrid control fades away the vibrations thanks to the

active control force being part of the hybrid controller.
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Figure 3.40. Responses of the FPBS+MRD-installed structure

Table 3.11 shows the controlled structure performance indices. These given results

are akin to the structure having mere FPBS and there is a small increment in J4 because

of the additional MRD force.
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Table 3.11. Performance indices of the FPBS+MRD

J1 J2 J3 J4 J5 J6 J7 J8

FPBS 0.1622 0.1688 0.1533 0.1792 0.1593 0.1747 0.1678 0.1750
FPBS+MRD 0.1534 0.1468 0.2041 0.2000 0.0927 0.0945 0.1906 0.1267

According to Fig. 3.41, the additional MRD effect results in a 20dB decrement

at the first mode frequency of the structure installed mere FPBS. In contrast, there are

upthrusts in between the higher modes of the superstructure’s frequency responses. In

summary, the formed hybrid controller enhances the performance, where the passive con-

troller is not effective.
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Figure 3.41. The Bode diagram of FPBS+MRD/Actuator-installed structure

3.4.2. TMD+MRD/Actuator

The performance of the TMD can be improved by an additional MRD/Actuator

controller as shown in Fig. 3.42.
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Figure 3.42. The TMD+MRD-installed structure

It is a hybrid model in which an MRD is connected serially to a TMD. The main

idea of this proposal is that TMD can work as a passive damper in a specific frequency

region, while MRD can tune the TMD concerning uncertainties that will be handled as

the study continues.

The H∞ control algorithm was chosen because it conduced the best results among

all applied active/semi-active controllers. As a controller, it aims to regulate the dominant

modes. At the same time, the less dominant modes have less contribution to the total

response, and therefore, they are disregarded.
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Figure 3.43. The Bode diagram of the TMD+MRD/Actuator-installed structure
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In Fig. 3.43, it can be seen how MRD/Actuator installation affects the 3-story civil

structure frequency response. MRD pulls down the first and the second modal peaks while

it increases the bandwidth response between the modal frequency values.

0 5 10 15 20 25 30 35 40 45

Time(s)

-0.04

-0.02

0

0.02

0.04

In
te

r-
st

or
y 

d
ri

ft
 (

m
)

TMD-MRD

TMD

Uncontrolled

5 10 15 20 25 30 35 40 45 50

Time(s)

-0.05

0

0.05

0.1

R
oo

f 
D

is
p

la
ce

m
en

t 
(m

)

0 5 10 15 20 25 30 35 40 45 50

Time(s)

-200

0

200

400

F
or

ce
(N

)

F
Act

F
MRD

Figure 3.44. Responses of the TMD+MRD/Actuator-installed structure

The roof displacements and maximum inter-story drifts of the 3-story structure

are given in Fig. 3.44. According to Table 3.12, the indices J1 and J5 are equivalent to

0.7543 and 0.4807, respectively. It can be said that the hybrid controller is of slightly

better performance in decreasing the roof displacements than the mere TMD installed

structure performance. It should be noted that since the internal dynamics have an offset

force value and it is larger than the required control force, the employed MRD is scaled

down to 1/10.

Table 3.12. Performance indices of the TMD+MRD

J1 J2 J3 J4 J5 J6 J7 J8

TMD 0.7674 0.7553 0.7188 0.8286 0.4545 0.4583 0.7870 0.4646
TMD-stuck 1.3021 1.3589 1.1970 1.2828 1.2803 1.2480 1.2312 1.1697
TMD+MRD 0.7543 0.7532 0.7358 0.7855 0.4807 0.4839 0.7806 0.4906
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3.4.3. General Comments on Applied Controllers

The performance indices of all the controllers are given in Table 3.13. Among all

the implemented active/semi-active controllers, we observe that H∞ controller results in

slightly better performance.

As seen in Table 3.13, the active/semi-active controllers performed well and im-

proved the earthquake performance of the 3-story structure. The FPBS-installed structure

outperformed all the controllers. However, the physical implementation of the FPBS

is relatively complex, especially for the already existing structure. For an easy imple-

mentation, TMDs can be chosen. When looking at the frequency characteristics of the

passive controllers (FPBS), they act like low-pass filters. Especially in some frequency

bandwidths, their addition may worsen the responses. For robust performances, hybrid

controllers can be employed.

Table 3.13. Performance indices of all controllers

J1 J2 J3 J4 J5 J6 J7 J8

Uncontrolled 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
LQR 0.6606 0.6547 0.6707 0.7905 0.3971 0.3452 0.7594 0.4259
LQR-0V 0.7486 0.7399 0.6539 0.8096 0.4255 0.4051 0.7839 0.4378
PDD 0.7020 0.6584 0.8127 0.8127 0.4226 0.4020 0.7883 0.4417
PP 0.6944 0.7053 0.6560 0.8081 0.4162 0.4036 0.7778 0.4226
H∞ 0.6447 0.6205 0.7434 0.7550 0.3836 0.3556 0.7407 0.4053
H2 0.6645 0.6404 0.6400 0.7552 0.3796 0.3536 0.7342 0.3953
FPBS 0.1622 0.1688 0.1533 0.1792 0.1593 0.1747 0.1678 0.1750
TMD 0.7674 0.7553 0.7188 0.8286 0.4545 0.4583 0.7870 0.4646
TMD-stuck 1.3021 1.3589 1.1970 1.2828 1.2803 1.2480 1.2312 1.1697
FPBS+MRD 0.1534 0.1468 0.2041 0.2000 0.0927 0.0945 0.1906 0.1267
TMD+MRD 0.7543 0.7532 0.7358 0.7855 0.4807 0.4839 0.7806 0.4906

Another outcome that should be considered is the uncertainties. Up to now, we

assumed that the structure is nominal and linear. However, in reality, there is no such

case. For instance, in the stuck-TMD application, the performance of the structure became

deteriorated because of the mass change at the top floor where the TMD got stuck. It can

be classified as mass uncertainty in the system. Likewise, the performances of the passive

controllers are highly sensitive to model parameters of the structure. For this reason, in the

next chapter, the uncertainties in the model are considered and a robust control technique

is designed to solve this problem.
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CHAPTER 4

LINEAR ROBUST CONTROLLER

Civil structures can be modeled as second-order differential equations. However,

due to the modeling and/or nonlinearity effects, it may not fully represent the physical

systems and their behaviors. Hence, uncertainties should be considered in modeling so

that the simulation behaviors cover the physical responses. Kar et al. (2000) studied

the topic of the robust control method with models having uncertainties in system and

control input matrices. Moreover, a robust controller based on state-feedback control was

designed by Wang (2003). As an observer, he equipped his controller with a modified

Kalman filter. Nevertheless, the parametric uncertainties were implemented as a linear

increase of state-space representation matrices. Thus, uncertainties cannot be recognized

whether those exist in inertia, damping, or stiffness model matrices.

In developing a mathematical model of a real structure, the simulation results may

not match the real structural response. This matter is a general problem that arises during

the structure’s dynamic motion, which may be modeled by means of parameter variations

in the stiffness, damping, and mass matrices. These changes in parameters need to be

estimated within a bandwidth, and the mathematical model is updated to obtain higher

control performances and robustness.

Huo et al. (2016) modeled these uncertainties as distinguishable with reasonable

percentages. Thanks to the work of Zhou and Doyle (1998), upper linear fractional trans-

formation (LFT) can be implemented to civil structures uncertainties. In this part of the

study, an MRD device is applied to stabilize the civil structure. Parametric uncertainties

are used for mass, stiffness, and damping matrices.

4.1. Uncertain Structure Model

Every mathematical model is an approximation of the true system. These mod-

els have always unmodeled effects such as neglected nonlinearity, deliberately truncated

number of modes and variations in system parameters owing to environmental fluctua-

tions.
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Figure 4.1. Standard M-∆ Configuration

These differences could adversely affect controller performance. In order to inves-

tigate uncertainty within the civil structure, the model is converted to state space repre-

sentation. Subsequently, the relation of the uncertainty effect to the mathematical model

is constructed. Fig. 4.1 shows the input-output relations of the 3-story building struc-

ture and its uncertainties. They are represented as two different systems. Here, w stands

for the exogenous input which includes earthquake disturbance, measurement noise, and

control input. z denotes the exogenous output to be controlled, which are selected as

inter-story drifts and the control input. δu and δy are the input vector and output vector of

uncertainties. The relation between δu and δy is

δu = ∆δy. (4.1)

The relation between the inputs and the outputs yields:

δy

z

 =

[
M

] δu

w

 , (4.2)

where M can be represented by subsystems,

M =

M11 M12

M21 M22

 . (4.3)

The transfer function of exogenous input to exogenous output can be written as

follows,

z = FU(M,∆)w (4.4)
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Here, FU(M,∆) is the Linear Fractional Transformation (LFT ), which can be de-

rived as follows

FU(M,∆) = M22 + M21∆(I − M11∆)−1M12. (4.5)

In a real civil structure, the model parameters of Ms, Cs, and Ks are not accurately

known. What we can assume is that their actual values are varying with known intervals

around nominal values.

Ms = M̄s + PMδM M̄s = (I + PMδM)M̄s,

Cs = C̄s + PCδCC̄s = (I + PCδC)C̄s,

Ks = K̄s + PKδK K̄s = (I + PKδK)K̄s, (4.6)

where M̄s, C̄s, and K̄s represent nominal values of Ms, Cs, and Ks. The possible per-

turbations are δM, δC, and δK on model parameters. Further, PM, PC, and PK represent

the maximum ratio of differences between the real structure and the mathematical model.

The matrices δM, δC and δK typically are diagonal matrices with uncertain varying values

bounded within the range of [−1, 1]. These types of uncertainties are named structured

uncertainties since they have zero off-diagonal elements. A brief description of the struc-

tured and the unstructured uncertainties was done by Zhou and Kimura (1994). We note

that Ms, Cs, and Ks could be represented as an LFT in δM, δC, and δK , respectively. Simi-

lar to the representation of the building model upper LFT, given in Eq. 4.6, MM, MC, and

MK are represented;

MM =

 PM I

−M̄s
−1PM M̄s

−1

 , MC =

 0 C̄s

PC C̄s

 , MK =

 0 K̄s

PK K̄s

 . (4.7)

These matrices can be illustrated by standard M − ∆ representation as shown in

Fig. 4.2. It is noteworthy that MM is given in the inverse form of Ms since it will be

employed in that scheme while constructing the overall structural dynamics.
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Figure 4.2. Representation of uncertainties as LFT

The uncertainties ∆M, ∆C and ∆K shown in the block diagrams in Fig. 4.2 depict

the inputs and outputs of δM, δC and δK as δu, and δy as shown in Fig. 4.3.

Figure 4.3. Block diagram of the controlled civil structure system with uncertainties

Let the states be

x

ẋ

 and the measurement y be the story displacements of the

structure and earthquake excitation ẍg. The general state-space relation for Fig. 4.3 can

be constructed as;



ẋ

ẍ

. . .

δy

. . .

y


=



A
... B1 B2

. . . . . . . . . . . .

C1
... D11 D12

C2
... D21 D22





x

ẋ

. . .

δu

. . .

ẍg

u


, (4.8)
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where

A =

 0 I

−M̄s
−1K̄s −M̄s

−1C̄s

 ,
B1 =

 0 0 0

−M̄s
−1PM −M̄s

−1PC −M̄s
−1PK

 ,
B2 =

 0 0

−Γd M̄s
−1

Γu

 , (4.9)

and C1 , C2, D11, D12, D21, and D22 can be constructed according to measurements and

exogenous outputs.

The input/output dynamics that take into account the uncertainty of the system

parameters can be indicated by M, as shown in Fig. 4.4, housing all uncertainties and

perturbations.

Figure 4.4. Input/output block diagram of the system

4.2. Generalized Structure Plant

The computation of an optimal robust controller for the structural system is trans-

formed into a generalized control plant frame in Fig.4.5. Here, P stands for the plant(the

structure) including the weights, and K is the achieved controller in the figure. In order

to adjust the plant performance, weighting functions are used (Gu et al. (2005)). As it is

known, there are many advantages in using weighting functions, such as eliminating mea-

surement unit differences and/or rejecting errors which are expected to occur in certain

frequency ranges.

A block diagram representation of the civil structure system is represented in

Fig.4.6. The Tajimi Spectrum, Wg, and the noise input filter, Wn, are introduced in the

H∞-controller part. Similarly, the performance and control weights, Wp and Wu, are em-

ployed as given in the same part.
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Figure 4.5. General structure plant configuration including uncertainties

Different control strategies can be utilized in order to find the control forces re-

quired for enhanced structural behavior. In the control algorithm, the stabilizing control

forces that also optimize a preferred cost function are determined.

Figure 4.6. Control block diagram for a seismically excited civil structure
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4.2.1. Robustness for Stability

Robust stability analysis is a tool that shows how much uncertainty exists in the

system and how far the system resides from the instability limits. In other words, it shows

the stability margins for the system having uncertainty.

Figure 4.7. Robust stability

In Fig.4.7, the structure including uncertainties is depicted by P∆ and the K is the

controller. P∆ can be split into the nominal plant P and the structured uncertainty block

∆.

Robustness for stability can be summarized as the stability of the P−∆ connection

by the following inequality,

‖FL(P,K)‖∞ < γ, γ > 0, γ ∈ R, (4.10)

where K represents a controller such that satisfies the condition of Eq. 4.10. The system is

stable for all ‖∆‖∞ < 1/γ (Skogestad and Postlethwaite (2007)). The cost function of the

study is to minimize the introduced γ value. The small gain approach is not easy to imple-

ment to achieve a proper controller since it is highly conservative and does not consider

the diagonal block pattern of the uncertainties ∆. Therefore, the controller based on the

small gain theorem may lose some control ability to provide stability. In the application

of the control theory, structures do not have stability issues since they are fixed against

rigid body motions. However, we may represent their stability margins and interpret how

close to instability they are.
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Figure 4.8. Robust stability analysis via the upper LFT

Through upper LFT, the robust stability for the civil structure is depicted in Fig.4.8,

where the structure model without weights, M, is employed. After upper LFT implemen-

tation, the structure closed-loop system between the structure and uncertainties, M11, is

achieved, and its stability for robustness is examined.

Figure 4.9. a) Probability density function of the parameters, b) Cumulative distribution
function

In this study, the uncertainty ratios are assumed as 20%, for mass and stiffness

(PM, PK) and 60% for damping matrix, PC. These uncertainties are represented as uniform

distribution as shown in Fig.4.9, where p represents the modal parameters: mass, stiffness,

and damping. In the range of uncertainties, any parameter value possibility of occurrence

is equal because in robust control technique, we would like determine the ranges but not

how they distributed are. The uniform distribution is a common approach and validated by

many scholars in robust control implementations (Calafiore et al. (2013)). Accordingly,
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the uncertainty block infinity norm cannot be larger than 1, and the possible perturbed

structures and the worst-case perturbation can be calculated.

The robust stability margin is the reciprocal of the singular values of the ‖FU(M11,∆)‖,

µ. Therefore upper bounds from the structured uncertainty matrix become lower bounds

on the robust stability margin. We need to make these conversions and find the destabiliz-

ing frequency where the µ upper bound peaks. It should be noted that frequency is where

the robust stability margin is smallest.

10
-1

10
0

10
1

10
2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
a
g
n

it
u

d
e 

(a
b

s)

1/
l

1/
u

Frequency (rad/sec)  (rad/s)

Figure 4.10. µ-values which represents the robust stability

Fig. 4.10 shows the inverse-scale upper and lower bound of structured uncertainty

matrix, ∆. According to the figure, the robust stability margin can be deduced for desired

frequency range. As seen, the upper and lower bounds are around 0.2 under 1rad/sec,

which means that the stability margin is 1/0.2 = 5 and therefore, an uncertainty ratio of

400% is expected to be manageable below 1rad/sec. For the bandwidth between 10 and

100rad/sec, these reciprocal values go down to 1, 33(1/0.6), and the uncertainties in this

region can be increased by 33%. If the uncertainties are actually larger than these values,

the controller may cause the structure to become unstable.

On the contrary, if the structure closed-loop γ value is smaller than 1, we can

guarantee that the proposed system is robustly stable.
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4.2.2. Robust Performance

Robust performance means that the performance objective can be satisfied under

all disturbances and noises for all possible civil structure systems in the uncertainty set.

To achieve robust performance, a method called µ-synthesis is employed.

4.2.3. µ− synthesis & DK-iteration

As known, the infinity norm of the uncertainty matrix, ∆ is always smaller than 1.

However, depending on the uncertainty characteristics, the infinity norm of the remaining

system that uncertainty are pulled-out, M, can be bigger than 1.

Accordingly, to achieve a better controller, the D-K iteration approach is em-

ployed. D is an artificial system matrix that is introduced into the uncertainty block.

In addition, the inverse of the system D is also applied to the input uncertainty block. The

norm of the overall system remains unchanged. At the same time, the norm of the system

matrix is decreased. As a result, a satisfactory controller can be achieved. The method

iterates between solving an upper bound µ analysis problem and control design via H∞

optimization techniques.

max ρ(M) ≤ µ(M) ≤ inf
D
σ̄(DMD−1) (4.11)

In Eq. 4.11, the lower bound is equity, but it is difficult to compute since it is not

convex (difficult to find the global maximum). The upper bound is relatively easy to find

(convex). For this reason, the upper bound is employed to stay on the safe side even if it

means lower robustness.

An example can summarize this method. In this example, let G1( jw) and G2( jw)

be the two different scaled matrices,

G1( jw) = 0.5

1 1

1 1

 , ‖G1‖∞ = 1

(4.12)

G2( jw) = 0.5

 1 10

0.1 1

 , ‖G2‖∞ = 5.5
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These matrices become equivalent if we implement the upper LFT ‖FU(G, δ)‖∞ as given

in the following figure:

Figure 4.11. D Scaling example

‖FU(G1, δ)‖∞ = ‖FU(G2, δ)‖∞ (4.13)

At last, D scaling does not change the norm of the system matrices having uncertainties.

It only manipulates the norm of the separated matrices in which the control performance

depends on the norm of the system remitted from uncertainties.

In Fig. 4.12, the small-signal analysis was introduced. D-K iteration theory is

based on this small-signal analysis. The procedure followed in the D-K algorithm is that

a proper controller is calculated by H∞ controller, which combines the DK iteration and

µ-synthesis. Then, D scaling is chosen to minimize the infinity norm of the generalized

M structure. This iteration is done until that the infinity norm of M becomes smaller than

1 (Skogestad and Postlethwaite (2007)).

The structured singular value µ is a powerful tool for the analysis of robust per-

formance with a defined controller. Yet, one may also seek to find the controller that

minimizes a defined µ-condition: the µ-synthesis problem (Packard (1989)).

µ∆ (FL(P,K)) =
1

min
{
σ̄ (∆)

∣∣∣det (I − FL(P,K)∆) = 0
} , (4.14)

where σ̄ (∆) corresponds to the ∆’s largest singular value; det stands for the abbrevia-

tion of determinant. The expression of det (I − FL(P,K)∆) = 0 means that ∆, the un-
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Figure 4.12. D Scaling
(Source: Helmerson (2017))

certainty matrix, destabilizes FL(P,K). Eq. 4.14 shows that the biggest singular value of

FL(P,K) is the reciprocal of smallest singular value of the uncertainty matrix ∆ to desta-

bilize FL(P,K).

Apparently, µ∆ (FL(P,K)) is linked the closed-loop (CL) and the structured uncer-

tainties ∆. A robust controller can be achieved by minimizing the largest µ∆ (FL(P,K))

value to replace ‖FL(P,K)‖∞ in Eq. 4.11. Nevertheless, there is no available method to

calculate µ∆ (FL(P,K)). Accordingly, an iterative method studied by Mackenroth (2004)

is utilized; D-K iteration.

µ∆ (FL(P,K) ( jω)) ≤ inf
D∈Ξ

σ̄
(
DFL(P,K)D−1 ( jω)

)
, (4.15)

where D is a scaling matrix in Ξ which is a set of diagonal scaling matrices, the entries

of which are a combination of system and constant matrices. The D-K iteration can use

inf σ̄
(
DFL(P,K)D−1

)
to replace µ∆ (FL(P,K)) and aims to solve the following optimiza-

tion problem:

min
K( jω),D∈Ξ

σ̄
(
DFL(P,K)D−1 ( jω)

)
. (4.16)

If the D matrix is known, Eq.4.16 is a generic H∞ optimization problem. After
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solving the given optimization problem covering the interested frequency range with a

known K, a series of D( jω) at every corresponding frequency point ωi is formed by

curve-fitting the rational transfer function matrix D( jω). Thereafter, D( jω) is kept steady

to solve the controller K in the next iteration. Huo et al. (2016) formulated the D-K

iteration as follows,

• Step I: Start with initial D (identity matrix usually).

• Step II: Keep D fixed and compute the optimization problem below

K = min
K( jω),D∈Ξ

σ̄
(
DFL(P,K)D−1 ( jω)

)
. (4.17)

• Step III: After solving the given convex optimization problem, fix K this time and

solve the following problem,

D( jω) = min
K( jω),D∈Ξ

σ̄
(
DFL(P,K)D−1 ( jω)

)
. (4.18)

• Step IV: Curve fit the values to get a sequence of D( jω). Then, get rid of the

imaginary parts to get a new transfer function Dnew

• Step V: Compare Dnew with the previous one. If they are close enough to each other,

stop the iteration. Otherwise, go back to Step II.

4.3. 3-Storey Robust Control Application

In this part, performances of the designed robust H∞ controller with and without

consideration of the uncertainties will be compared. A 3-storey civil structure is equipped

with the MRD mounted to the first floor.

Uncertainties may change the model significantly. Fig. 4.13 shows the nominal

and perturbed civil structure singular values. As can be seen in the figure, the singular

values of the structures vary and deviate from the nominal value. Let us have a look at

how to model the modal parameters having uncertainties.
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Figure 4.13. Singular values of possible perturbed structures

Ks =


2k + Pk(δk1 + δk2)k −k − Pkδk2k 0

−k − Pkδk2k 2k + Pk(δk2 + δk3)k −k − Pkδk3k

0 −k − Pkδk3k k + Pkδk3k

 ,

Cs =


2c + Pc(δc1 + δc2)c −c − Pcδc2c 0

−c − Pcδc2c 2c + Pc(δc2 + δc3)c −c − Pcδc3c

0 −c − Pcδc3c c + Pcδc3c

 ,

Ms =


m + Pmδm1m 0 0

0 m + Pmδm2m 0

0 0 m + Pmδm3m

 . (4.19)

All the possible perturbed structures have uncertainties in their system matrix, A,

with different ratios. The worst-case scenario is achieved through the maximum gain

85



(the maximum singular value) computed according to the varying uncertainties. After the

worst-case gain computations, the structure having worst uncertainties yields as;

Ks =


1.6k −0.8k 0

−0.8k 1.6k −0.8k

0 −0.8k 0.8k

 , Cs =


0.8c −0.4c 0

−0.4c 0.8c −0.4c

0 −0.4c 0.4c

 , Ms =


1.2m 0 0

0 1.2m 0

0 0 1.2m

 .
k = kst = 156250N/m, c = 42.25Ns/m, m = 200kg.
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Figure 4.14. H∞-controlled structure’s responses

The structure having worst-case uncertainty has no instability issues for the struc-

ture without a controller. However, this does not mean that all structures will show small

deformations under an earthquake. A controller aimed for a nominal structure may be

destructive if existing uncertainties are not considered.

86



The roof displacements, the maximum inter-story drifts, and control forces for

the worst-case nominal control feedback (WCNCF) and nominal-case nominal control

feedback (NCNCF) structures are given in Fig. 4.14. The responses for the worst-case

structure without a controller, which is depicted by a black line in the figure, are larger

than the nominal-case responses given in the earlier chapters.

As seen in Fig. 4.14, a nominal controller may cause instability if the designer ne-

glects uncertainties. In other words, in control implementations, the uncertainties should

be taken into account seriously. The control forces increase thoroughly since the con-

troller computes the required force considering the nominal-case structure modal param-

eters. As a result, instability occurs.
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Figure 4.15. The Bode diagram of the robust-controlled structure

Fig. 4.15 shows the uncontrolled and controlled structure frequency responses.

The nominal-case robust control feedback (NCRCF) frequency magnitudes are reduced

by around 30dB at the first mode. Similarly, the worst-case robust control feedback

(WCRCF) response magnitudes are decreased by more than 30dB. The achieved robust
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controller can control both structures regardless of their modal parameters. Its stability

margins are much wider than the nominal-case H∞ controller.

The robust controller decreases the frequency amplitudes at peaks, but at the same

time, it causes around 5dB upthrusts in between 2.5 and 5Hz. As a result, the closed-loop

responses in the time domain increase.
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Figure 4.16. The robust controller-installed structure’s responses

Simulations for the structures equipped with the robust controller are undertaken.

In these simulations, the MRD is employed as the control device. The roof displacements

and maximum inter-story drifts of the 3-story structure are given in Fig. 4.16. Accord-

ing to Table 4.1, the indices J1 and J5 for the nominal-case structure are equivalent to

0.7311 and 0.3137, respectively. Besides, the indices with the same robust controller are

decreased to 0.4679 and 0.2436 for the worst-case structure. It can be said that the robust

controller shows a satisfactory performance for the structure within given uncertainties.
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Table 4.1. Performance indices of the robust controller

J1 J2 J3 J4 J5 J6 J7 J8

Uncontrolled 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
NCRCF 0.7311 0.6690 0.6685 0.7720 0.3137 0.2637 0.7666 0.3156
WCRCF 0.4679 0.4578 0.3778 0.5429 0.2436 0.2280 0.5047 0.2512

In this chapter, a robust controller is put forward for a linear structure with un-

certainties, and its efficiency is proven. In the following chapter, this robust controller is

tested on a nonlinear structure, assuming that the nonlinearities can be treated as uncer-

tainties.
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CHAPTER 5

ROBUST CONTROLLERS FOR NONLINEAR

SYSTEMS

In this chapter, a nonlinear 20-storey benchmark building will be controlled by a

robust controller. In the determination process of the uncertainty ratios, changes formed

by model nonlinearity is considered.

Gu and Quan (2004) reported that as the aspect ratio of buildings increases, the

horizontal movements are getting large during the seismic excitation such as wind and

earthquake. The resistance of tall structures against seismic loads can be tuned by chang-

ing mass, stiffness, and damping. Apart from these adjustments, passive, active, semi-

active control devices, and the composition of these devices, hybrid controllers, were

developed to increase tall buildings’ seismic performances. Those controllers helped the

structures to minimize the inter-story displacements and dissipate seismic energy.

In the literature, benchmark studies are developed to distinguish among the ben-

efits of various controllers. Such studies are crucial for the successful improvements of

both structural control devices and algorithms. Consequently, to compare which type of

controllers are superior to others, benchmark studies were put forward.

Spencer Jr et al. (1998, 1997) proposed the first generation control problems. A

3-story civil structure model was used as a benchmark model to compare results. In these

studies, the active mass damper (AMD) was employed as a controller device.

In the second generation of benchmark studies, a 20-Story building and a 76-story

concrete tower were employed. Moreover, tuned mass dampers (TMD) were installed

on the top floor of these structures. In the third generation, Yang et al. (2004) proposed

a wind-excited benchmark model for a tall building. In order to perform realistic simu-

lations, wind tunnel testing was developed. Further, the cable-stayed bridge benchmark

problem was studied by several researchers ( Dyke et al. (2003);Ali and Ramaswamy

(2009); Wang (2004); and Yoshida and Dyke (2004)).

In vibration control of buildings, base isolators are one of the simplest devices

that can be utilized in structures. However, these devices cannot be implemented in struc-

tures with low frequencies. For the control of high-rise buildings, therefore, Tuned-mass

dampers (TMDs) were utilized as an alternative to base-isolators. The first TMD was pro-
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posed by Ormondroyd (1928). TMD was employed by several researchers (Kareem and

Kline (1995);Nagarajaiah and Sonmez (2007); Roffel and Narasimhan (2014); and Elias

and Matsagar (2015)). Besides, it was reported that the buildings having TMD showed

better responses than the buildings without TMD. Sadek et al. (1997) and Feng and Mita

(1995) studied the optimization of TMDs. Yang et al. (2004) proposed the optimum lo-

cation of passive TMDs regarding H∞ and H2 norms by employing the Linear Matrix

Inequality method. The proposed optimal designs are capable of detecting both the op-

timal damper locations and the complementary optimum capacities.In their procedure,

there is no need for simulations to obtain responses. Thus, the computational costs are

decreased drastically compared to heuristic methods.

Yang et al. (2003, 2004) also proposed H∞ and H2 controllers for vibration control.

They used accelerometers to measure the outputs. These outputs were not measured on

all stories. The minimum number was chosen by considering the observability criteria.

However, high noise issues were formed. The Kalman filter was employed to overcome

this problem. (Yang et al. (1987, 1995, 1996, 2003, 2004))

Elias et al. (2016) proposed multi-mode control by utilizing distributed-TMDs

instead of a single-TMD. Their aim was to distribute the heavy masses on different floors,

and control higher vibrational modes besides the fundamental mode.

In the current study, we inquire how different types of TMD implementation af-

fect the structure’s behavior. Firstly, distributed-TMDs composing of 5 equal masses are

implemented following the work of Elias et al. (2016). The 20-story benchmark build-

ing is nonlinearly-modeled, and simulated under seismic loads. Secondly, the benchmark

building having a mere single-TMD (STMD) configuration is simulated to observe dif-

ferences in responses. Compared by some pre-defined performance indices, the most im-

proving TMD configuration, STMD, is chosen to implement on the benchmark structure.

Thereafter, the study focuses on how to deal with nonlinearity-oriented uncertainties. The

variation of the first five structural natural frequencies during the nonlinear simulations

are utilized to determine the level of uncertainty.

In the last stage, the benchmark building with the STMD is empowered with a

serially-connected actuator. The aim is to increase the performance of the STMD, where

it falls out of the working frequency range. In this case, a generalized structure plant

housing the control force, the disturbance, and the noise is designed. Herein, the Kanai-

Tajimi filter is employed to mimic the corresponding earthquake data. The structural

performances with the two different controllers: a) STMD and b) hybrid controllers are

discussed at the end of this study. In this part, it is observed that the structure with hybrid
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controllers outperforms the structure with mere passive dampers. Among these hybrid

controllers, the robust controller considering the uncertainties, results in the best perfor-

mance.

5.1. Mathematical Modeling

There are two different types of mathematical models for the structures: nominal

and uncertain models. The former is modeled according to known geometry, material

properties, and boundary conditions. Firstly, this nominal structure is modeled linearly

and nonlinearly to observe responses such as displacement and inter-story drifts. These

responses are compared for a set of selected earthquakes, and it will be shown below

that the nonlinear model should be employed. The controller is based on an uncertain

model of the structure system having deviations in mass, damping, and stiffness matrices

from the nominal model. These uncertainties are removed from the structural model, and

implemented as perturbations to the nominal structure system. As a result, the designer

can model a robust controller that copes with these perturbations.

5.1.1. Nominal-Structure Models

The 20-story benchmark structure designed by Brandow & Johnston Associates

for the SAC Phase II Steel Project was used for this benchmark study (Ohtori et al.

(2004)). This structure was designed according to the requirements of the Los Angeles,

California region. It represents a mid to high rise building.

The 20-story building is 80.77m in height and 30.48m by 36.58m in plan dimen-

sions. Distances between the axes are 6.10m at the center, in two directions, with five

axes in the north-south (N-S) direction and six axes in the east-west (E-W) direction. The

lateral load resisting mechanism of the building is comprised of steel moment-resisting

frames (MRFs). The following assumptions are made to represent the model: (i) The

columns are hinge-connected at the base; (ii) In contrast to the benchmark study, static

condensation was not utilized to decrease the degrees of freedom.
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Figure 5.1. 20-storey benchmark building

• Linear Model

The linear model consists of 526 degrees of freedom (DOFs), including the splice

locations where the column sections change. As mentioned above, all node locations and

sections values are presented in the study of (Ohtori et al. (2004)).

Figure 5.2. Mode shapes of the 20-storey benchmark building
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The mode shapes are presented in Fig. 5.2 for the first five modes. The maximum

dimensionless modal displacements are marked with black dots for the positioning of the

tuned mass dampers.

• Nonlinear Model

The benchmark structure is modeled by implementing material and geometric

nonlinearities.

Figure 5.3. Nonlinear characteristic of the steel material

Fig. 5.3 shows a general uni-axial material with combined kinematic and isotropic

hardening and optional non-symmetric behavior in the current study. Fy is the yield stress

(235 MPa), and E0 is the Young’s Modulus (2.1 × 1011 N/m2). The post-yield modulus

is employed as one tenth of the initial elastic modulus value in this study ( b = 0.1) (Yun

and Gardner (2017)). Ro = 20.9, r1 = 0.91 and r2 = 0.12 are the control parameters of the

exponential transition from linear elastic to the hardening asymptote. For a more realistic

material characteristics, Roc, r1c and r2c are chosen as 18.9, 0.91 and 0.12 a non-symmetric

behavior is achieved (Zsarnóczay and Baker (2020)).

The maximum inter-story drifts can be shown as an example of why the nonlin-

ear model is employed. Fig. 5.4 shows that the nonlinear benchmark model shows larger
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inter-story drifts at the lower stories than the linear model under the Northridge earth-

quake.

Figure 5.4. Responses of the benchmark building subjected to Northridge EQ
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Figure 5.5. Responses of the benchmark building subjected to El Centro and Hachinohe
EQs

Fig. 5.5 shows the differences between the roof displacements of the linear and

the nonlinear models subjected to El Centro and Hachinohe earthquakes relative to the

ground. Since the exerted earthquakes do not cause the structure to yield, these responses

are similar in the linear and nonlinear cases.
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Figure 5.6. Responses of the benchmark building subjected to Northridge and Kobe EQs

Apparently, these two earthquakes are rather destructive. This outcome can be

explained by the fact that these earthquakes have more frequency contents matching the

structure’s first two frequencies with higher amplitude. As expected, the nonlinear model

shows unrestored displacement after the linear force capacity is exceeded.

Fig. 5.7 shows the frequency values of the structures during earthquakes. The

damage that occurred in the structure subjected to the Northridge EQ is beyond the re-

versible limits. As a result, it is concluded that the nonlinear effects should be taken into

account to achieve more realistic results in the simulation of the benchmark model.
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Figure 5.7. Natural frequencies of the benchmark building subjected to Northridge and
El Centro EQs
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5.1.2. TMD Design & Location

A comparison of the TMDs designs for the linear benchmark model is presented

by Elias et al. (2017). Accordingly, the proposed TMDs by Sadek et al. (1997) et al

outperformed the remaining designs. Therefore, in this study, the TMD design by Sadek

et al. (1997) is employed for the simulation of the nonlinear benchmark model.

The following equations were proposed by Sadek et al. (1997) presented as equa-

tions between Eq. 5.1-Eq. 5.3 and here they are repeated.

µ =
m

Φi
T [M]Φi

f =
1

1 + µΦ

1 − β
√

µΦ

(1 + µΦ)

 and ζ = Φ

[
β

1 + µ
+

√
µ

(1 + µ)

]
,

(5.1)

where Φi and β are the modal displacement of the corresponding mode and the structure

damping. Apart from this, there is also another optimum damping ratio formulation which

was proposed by Feng and Mita (1995). The formulation is given as

ζ =
1
2

√
µ(1 − µ/4)

(1 + µ)(µ/2)
, (5.2)

and the damping coefficients for all the proposed TMD models above are calculated by

ci = 2ζmiωi. (5.3)

Fig. 5.8.d and Fig. 5.8.e show the configuration of the distributed multi-TMDs

(MTMD) and the STMD, respectively. In the structure with the MTMD, the locations of

the TMDs are chosen by regarding the largest amplitudes of mode shape likewise Elias

et al. (2017) did, whereas STMD is located at the top of the structure. The MTMD number

is limited by 5 since 5 modes cover more than %90 of the total response. All of the TMD

parameters were calculated by regarding Sadek et al. (1997). The mass ratio, µ, is taken

as 0.05 to make results comparable with the previous studies (Elias et al. (2017); Gill

et al. (2017)). This study’s main focus is to understand the role of the nonlinearity-based

uncertainties, to make use of it, and to have better vibration control by employing a hybrid

controller composed of TMDs and actuators.
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Figure 5.8. 20-storey benchmark building having MTMDs

The equation of motion is modified as the TMD system is attached to the bench-

mark model. Eq.(5.4) represents system dynamics of the nonlinear benchmark building

model, where uncertainties in mass, stiffness, and damping exist.

Ktmd x(t) + Ctmd ẋ(t) + Mtmd ẍ(t) = Γctmd fc(t) − MtmdΓdtmd ẍg(t), (5.4)

where Mtmd,Ctmd and Ktmd are the (N + n)× (N + n) mass, damping and stiffness matrices

of the structure installed with TMDs, Γdtmd is the (N + n) × 1 identity vector, fc(t) is the

active control force applied to the structure, and Γctmd is the (N + n) × 1 actuator location

vector.

Mtmd =

[Ms]N×N 0

0 [Mn]n×n

 ,
Ktmd =

[Ks]N×N − [Kn]N×N −[Kn]N×n

−[Kn]n×N [Kn]n×n

 ,
Ctmd =

[Cs]N×N − [Cn]N×N −[Cn]N×n

−[Cn]n×N [Cn]n×n

 (5.5)
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where n is the number of the installed TMDs. N is the number of the degrees of freedom

of the building without TMDs. In order to decide where to place TMDs, modal analysis

is conducted by considering the nominal model only. Subsequently, n number of TMDs

are placed at the building’s stories, where modal displacements are maximum in first n

dominant modes(Elias et al. (2016)).

5.1.3. TMD Selection

Herein, our goal is to see which passive TMD configuration results in a better

response. This is considered to be important for the ultimate control design since a control

failure will result in the pure structure with TMD only.
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Figure 5.9. TMDs performances comparison

To make a fair comparison, the two different TMD-setups, STMD and MTMD,

are simulated by using the Northridge Earthquake. This record is one of the earthquakes
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employed in the benchmark studies, and it is selected in this study because it results in

the largest structural response compared to the remaining benchmark EQ records.

Fig. 5.9.a shows the roof displacements of the nonlinear structure model. It can be

seen that the maximum displacement during the earthquake pulses do not show major dif-

ferences for the three structural configurations. The main pulses fade after approximately

12 seconds, resulting in structural free-vibrations. Here it can be seen that the STMD

is more efficient than the MTMD setup. In fact, the MTMD setup and the uncontrolled

structure shows the same free-oscillation magnitudes.

In contrast, Fig. 5.9.b shows that there is not much difference in the absolute story

accelerations, which can be interpreted as no significant difference in the lateral forces

acting on the stories.

The maximum story displacements and max drift ratios are given in Fig. 5.9.c-d,

respectively. These maximum values occur at t = 4s at which the TMD is not satisfactory.

It can be concluded that the STMD leads to a relatively better performance, and therefore,

the hybrid controller design is setup for the nonlinear benchmark building with the STMD.

5.2. Controller Design

The considered control device consists of a TMD that can be fine-tuned by using

active control. Here, the STMD is considered to provide passive-control to the building,

and the active control force will be designed to fine-tune the system response.

5.2.1. Configuration

Figure 5.10. Hybrid controller setup
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The conceptual design of an active tuned mass damper (ATMD) is shown in

Fig. 5.10. The hybrid control is based on a setup consisting of a STMD. The required

control force, fc, is provided through an actuator, and a H∞ controller is designed in order

to mitigate vibrations of the 20-story benchmark building.

5.2.2. Generalized Plant Construction

The computation of an optimal controller for the structure system is transformed

into a generalized control plant frame. To adjust the plant (the structure) performance (the

building earthquake performance), weighting functions are used (Gu et al. (2005)).

5.2.3. Controller Design for Case I: Nominal Model

A block diagram representation of the civil structure system is presented in Fig. 5.11.

Figure 5.11. The generalized plant for a seismically excited nominal civil structure

In Fig. 5.11, K represents the controller, which to be designed. The frequency-

domain weighting function Wg shapes the spectral content of the disturbance, ẍg, model-

ing the earthquake excitation. Wg is designed as a second-order system that mimics the

frequency content of the implemented earthquakes.
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Figure 5.12. The designed Kanai-Tajimi filter

Fig. 5.12 shows the Kanai-Tajimi spectrum implementation to obtain F(s), which

is the transfer function of Wg, Lin and Yong (1987). A higher degree model for F(s) may

be used as well, but this penalizes the controller by a higher number of states.

The matrix Wp = 5 diag( [ ones(1,N) 0 ] ) is weighting the regulated response,

which is assumed to be the inter-story drift for each story, Wu = 10e − 6 is weighting

the control signal, and Wn is weighting the measurement noise n. The signal to noise ratio

(SNR) and cut-off frequency was set as 10 and 100 Hz, respectively. The 0.06 s delay in

the actuator is modeled by Wd.
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Figure 5.13. Delay effects
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The negligence of the delay in the modeling for the current model can be well

perceived through Fig. 5.13. As seen, the required control forces are always almost larger

since the delay causes instability.

The input excitation, w, consists of the earthquake excitation ẍg and the measure-

ment noise n. The output z is composed of the frequency weighted-regulated response and

the control force. This control system which is based on the nominal benchmark model

has a comparatively low computational cost compared to the uncertain structural model.

Consequently, to keep modeling relatively simple and make both cases comparable, N is

chosen as 20. On the controller design part, to achieve the required controller size, Guyan

reduction is employed. While doing so, only the lateral displacements are considered.

Thus, the reduced-order nominal model diverges from the real one on the controller side

as shown in Fig. 5.14. However, this variance is compensated by the H∞ controller, thanks

to its stability margins.

Figure 5.14. Full vs Truncated Models

In the control algorithm, control forces that will cause the system to satisfy the

desired exogenous output, and at the same time, maximize or minimize a chosen cost

function are determined. The study’s cost function is to minimize the infinity-norm of the

ratio between exogenous inputs and outputs, γ value.
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5.2.4. Controller Design for Case II: Uncertain Model

The uncertain model can be represented as shown in Fig. 5.15. The robust con-

troller can be designed through small gain theorem, Zhou and Doyle (1998). According

to the small gain theorem, the generalized civil structure plant is internally stable for all

∆ with

‖∆‖∞ ≤ 1/γ ⇐⇒ ‖FL(P,K)‖∞ < γ,

‖∆‖∞ < 1/γ ⇐⇒ ‖FL(P,K)‖∞ ≤ γ, (5.6)

where P represents the generalized civil structure plant. The value γ has the sense of

energy ratio between exogenous output vector z and exogenous input vector w.

Figure 5.15. The generalized plant for a seismically excited uncertain civil structure

As γ tends to its minimal value, the above formulation can also be named as an

optimal H∞ control problem according to Skogestad and Postlethwaite (2007) as given in

Chapter 4. The structured singular value µ is a powerful tool for analyzing robust perfor-

mance with a defined controller. Nevertheless, one may also seek to find the controller

that minimizes a defined µ-condition: the µ-synthesis problem, (Packard (1989)). As a

result, it becomes possible to minimize the peak γ value by penalizing the controller by a
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higher number of states. In other words, the less the peak value the controller achieves, the

higher number of states the controller has. For this reason, the designed robust controller

that satisfies the criteria given in Eq.5.6 results in 127 states, whereas the H∞ controller

has only 65 states.
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Figure 5.16. Bode responses of the structure with and without uncertainties

Fig. 5.16 shows the linear structure with and without H∞ controllers for both the

nominal-case and worst-case uncertainties. The nominal controller amplifies the worst-

case structure frequency responses at around 1 Hz.
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These frequency responses were tested by the El Centro earthquake, and the re-

sults are given in Fig. 5.17. It is seen that the nominal-case uncertainty considered con-

troller might drive the structure to instability depending on its uncertainty ratio.

5.2.5. Nonlinearity-Based Uncertainty Ratio Definition

Herein, a new approach will be put forward to cope with the nonlinearities in the

structures in a robust manner. As known, during an earthquake, if the structure does not

remain in the linear region, some of its parameters change, such as stiffness and related

modal frequencies, and modal shapes. These stiffness shifts can be classified as uncer-

tainty. It is possible to develop a new approach covering these uncertainties based on

nonlinearities to robustly stabilize the structure.
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Figure 5.18. The first two modes of the structure having STMD during the earthquakes

In Fig. 5.18, the first two modal frequencies of the benchmark building are given

under the corresponding earthquakes. The results are achieved via eigenvalue analysis

undertaken at every time interval.
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Fig. 5.18 clearly shows that some earthquakes put the structure in the nonlinear

region, while others do not. It can be because of the peak ground acceleration and/or the

earthquake frequency content matching the structure’s lower modes. (See Fig. 2.2)

It is observed that, the frequency values face a reduction up to 20 percent (from

0.21Hz to 0.17 Hz). This corresponds roughly to a %30-35 stiffness degradation, assum-

ing that the mass of inertia remains unchanged.

ω

ωo
� %80 −→

k
ko
� %65. (5.7)

Hence, we treat these variations as uncertainty and insert them into the uncer-

tainty block. Accordingly, these nonlinearity-based uncertainties are taken into account

to design a robust controller, which is satisfactory for nonlinear cases. In addition, %10

uncertainty is considered for the control input. Apart from all, the uncertainties in damp-

ing values are neglected since it increase computational-cost drastically. To compensate

it, the uncertainty ratio of the stiffness are increased to %40 in the current study.

In robust controller design, the truncated linear model is employed. Thereafter,

this robust controller is installed on the nonlinearly-modeled structure.
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Figure 5.19. Frequency response of possible perturbed structures
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Fig. 5.19 shows how the uncertainties inserted into the linear structure change

its frequency characteristics. It is obviously seen that the worst-case structural model

frequencies are matching the nonlinear model’s lowest frequency values. The possible

perturbed structures, which are the structures with uncertainties in different proportions,

represent the benchmark building modeled nonlinearly during the earthquakes. What we

assume is that these possible perturbed structures can be interpreted as the different phases

of the structure at different time steps during the earthquakes are exerted. In other words,

the nonlinearly modeled structure is varying within the range between the nominal and

the worst-case model representations. However, it does not mean that all these possible

perturbed represent the model at the varying nonlinear model at different time intervals. In

contrast, they only cover all the yielded structure characteristics. The gap between these

two models is relatively much and should be taken into account seriously. Our approach is

to test whether the designed robust controller based on linear uncertain model can control

the nonlinearly modeled benchmark structure.

5.3. Simulation Setup & Analysis

In the current study, the benchmark structure is nonlinearly modeled in the OpenSees

framework (Welch et al. (2003)). The controller is designed in the Matlab environment.

Figure 5.20. Hybrid Simulation Setup
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These two different environments create a coupling problem that requires both

controller and time history analysis simulations to await each other’s results to finish. This

problem mainly occurs in such systems containing structural control, wind-structure, and

soil-structure interactions, in which Finite Element Analysis is used for simulating the

structural responses.

An efficient integration of a FEA program into various other software platforms

is eminent for the development of coupling systems. The complexity of the existing in-

tegration methods makes this process burdensome. OpenSees is a TCL-based framework

in which an API engine was not found. Such an engine is strongly needed to undertake

nested simulations. Vice-versa, a similar engine within Matlab could not be established

to revoke OpenSees. These conditions forces us to use a method that integrates both the

controller (Matlab) and the FEA framework (OpenSees) into another software environ-

ment. Subsequently, the OpenSees.py library is employed in the Python 3.7 environment

to establish a direct link between OpenSees and Python. Similarly, the Matlab API engine

is implemented to use Matlab functions directly within Python. As a result, a hybrid sim-

ulation method is developed to integrate Matlab and Opensees into each other to realize

nonlinear structural response simulations together with optimal and robust control force

implementations.

5.4. Results & Discussions
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Figure 5.21. Bode responses of the structure
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The benchmark building model is controlled by four different control strategies;

STMD, MTMD, ATMD-H∞, and ATMD-Robust. The performance of these controllers

is investigated by using earthquake simulations. The uncontrolled mere structure results

are shown in the response figures as a reference.

Fig. 5.21 shows the Bode response of the robust- and nominal-controlled bench-

mark building with and without uncertainties. The robust controller outperforms the nom-

inal controller for the worst-case uncertainty structure.
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Figure 5.22. Structural responses under the El Centro earthquake

110



Fig. 5.22 shows the results of the structure with different control strategies sub-

jected to the El Centro earthquake. Recall that the structure remains in the linear region

(See Fig. 5.18) and the responses reflect the control performances on the nominal model.

Admittedly, the structures with hybrid controllers show higher maximum acceleration

values on the top floors due to the actuator forces. It can be concluded that these values

are still lower than the top floors’ elastic shear capacity, because the structure remains in

its elastic region.

All controllers yield better responses than the uncontrolled structure according to

the maximum story displacements relative to the ground. The applied hybrid controllers

minimize the peak displacement values better at the higher stories, especially after the

sixth floor. However, the same is not valid for the maximum inter-story drifts. For the un-

controlled and the TMD-cases, there is relatively an unvarying trend all the way up to the

20th floor. On the other hand, the structure with the ATMD-H∞ hybrid controller shows

a bigger variance, whereas the ATMD-robust hybrid controller case shows a uniform re-

sponse between the first and the 16th stories. According to Fig. 5.22.a, the free vibration

amplitudes are lowest for the ATMD-robust controller. The STMD leads to lower stored

energy than the uncontrolled structure. The MTMD, however, increases the stored energy.

The ratios of the controlled energies with respect to the uncontrolled stored energies can

be depicted in Table. 5.1 as index J5.

The actuator force is limited by 1000 KN to eliminate the possibility of shear

failure at the top floor’s columns.

Table 5.1. El Centro earthquake performance indices

Uncontrolled STMD MTMD ATMD - H∞ ATMD-Robust
J1 1.00 0.87 0.94 0.73 0.65
J2 1.00 0.86 0.93 1.22 0.92
J3 1.00 0.99 0.99 1.10 1.00
J4 1.00 1.00 1.01 1.02 0.98
J5 1.00 0.80 1.08 0.62 0.53
J6 1.00 0.75 1.04 0.76 0.64
J7 1.00 0.91 0.94 1.03 0.92
J8 1.00 0.97 0.99 0.97 0.97

In Table. 5.1, the performance indices are given for all control strategies. Accord-

ing to these values, it can be claimed that the MTMD shows the worst performance in

terms of minimization of the peak displacement, J1, whereas the robust controller results
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in the best performance. In all performance indices, the robust controller outperforms any

other controller strategy for the El Centro earthquake.
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Figure 5.23. Structural responses under the Hachinohe earthquake

Similar comments can be made for the Hachinohe earthquake. In Fig. 5.23.a,

the top floor responses are shown. Since the earthquake excitation ends at the 36th sec-

ond, oscillatory behavior prevails. It is seen that the amplitudes decrease in all control

strategies, with the robust controller outperforming the remaining controllers. Here, the

vibrational response of the top-floor is almost equal to zero. When the control force di-
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agram in Fig. 5.23.e is observed, it can be seen that an oscillatory control force is still

applied. From here, it can be deduced that the top-floor has no displacement but the lower

floors should undergo oscillatory responses.

According to Fig. 5.23.b, the structures with hybrid controllers show varying max-

imum acceleration values over the height of the structure. This behavior is different from

the remaining control responses in which the maximum story accelerations do not show

important variations over the height. Additionally, by the consideration of the maximum

drift ratios in Fig. 5.23.d, in which sharp variations are present around the 16th story, it

can be concluded that the hybrid controllers activate the structures’ higher modes.

In Fig. 5.23.e, a biased response of the ATMD-H∞ controlled actuator force is

noted in the last seconds of simulations where it does not vary. This can be accounted for

the fact that the structure yields for less than 0.1 seconds at the 4th second of the simula-

tion according to Fig. 5.18. Although the ATMD-H∞ control force does not oscillate in

the last seconds, this is not true for the structural response. The robust ATMD controller’s

performance (Table. 5.2) superiority to the ATMD-H∞ is larger than the performances

with respect to the El Centro earthquake. In addition, the STMD is of better performance

than the MTMD in every aspect.

Table 5.2. Hachinohe earthquake performance indices

Uncontrolled STMD MTMD ATMD - H∞ ATMD-Robust
J1 1.00 0.84 0.91 0.76 0.67
J2 1.00 0.92 0.96 1.20 1.05
J3 1.00 0.83 0.89 1.01 0.99
J4 1.00 0.97 0.98 0.95 0.94
J5 1.00 0.88 1.05 0.71 0.63
J6 1.00 0.82 1.04 0.75 0.76
J7 1.00 0.89 0.94 0.89 0.85
J8 1.00 0.95 0.97 0.92 0.92

Fig. 5.24 shows the results for the Kobe Earthquake. Nonlinear behaviors can be

noticed at the top floor displacement responses in Fig. 5.24.a because of the existing off-

sets. As the earthquake progresses, the structure with MTMD shows oscillatory behavior

with the highest amplitudes. In contrast, the STMD results in a rather better performance

among the passive controllers. The hybrid controllers drastically reduce the inter-story

drifts with higher percentages compared to the TMDs for almost all stories. They also

result in better responses in decreasing the peak displacements.
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Fig. 5.24.e shows the control force responses. It is seen that both actuators became

saturated between the 7th and 13th seconds. In addition, the ATMD-H∞ controller is

biased after the 20th second.To tackle the formed bias, a 3rd order Butter-worth high-

pass filter employed. Structural yielding leads to this offset, since the H∞ control stability

margins are not capable of compensating structural nonlinear behavior.
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Figure 5.24. Structural responses under the Kobe earthquake
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According to Table. 5.3, the hybrid controllers showed similar results in reduction

of the peak displacements, while the ATMD-robust controller is of slightly better perfor-

mance than the ATMD-H∞. Besides, the lowest improvement regarding the indices was

realized in the MTMD system.

Table 5.3. Kobe earthquake performance indices

Uncontrolled STMD MTMD ATMD - H∞ ATMD-Robust
J1 1.00 0.95 0.97 0.82 0.82
J2 1.00 0.88 0.94 0.95 0.82
J3 1.00 0.98 0.98 0.95 0.92
J4 1.00 1.00 1.00 1.01 1.00
J5 1.00 0.76 0.99 0.57 0.46
J6 1.00 0.75 0.96 0.63 0.58
J7 1.00 0.96 0.98 0.98 0.96
J8 1.00 0.98 1.00 0.99 0.98

According to Table. 5.4, the ATMD-Robust controller does not put forward any

superiority in the minimization of the peak displacement. However, it does show a con-

tribution in the reduction of the energy input in the structure based on performance index,

J5.

Table 5.4. Northridge earthquake performance indices

Uncontrolled STMD MTMD ATMD - H∞ ATMD-Robust
J1 1.00 0.97 0.99 0.89 0.86
J2 1.00 0.98 0.99 0.98 0.98
J3 1.00 0.97 0.98 0.97 0.97
J4 1.00 1.00 0.99 1.01 1.01
J5 1.00 0.91 0.97 0.83 0.75
J6 1.00 1.03 0.97 0.96 0.77
J7 1.00 0.91 0.95 0.88 0.88
J8 1.00 0.98 0.99 1.01 1.00

For the Northridge earthquake, the results and the performance indices are given in

Fig. 5.25 and Table. 5.4, respectively. For this earthquake, the highest peak displacements

(around 0.7m) are observed as seen in Fig. 5.25.c.
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Figure 5.25. Structural responses under the Northridge earthquake

The maximum story accelerations and maximum displacements are about the

same for all controller strategies. According to Fig. 5.25.a, the top story responses are

quickly attenuated by the hybrid controllers.

In Fig. 5.25.d, it can be seen that the hybrid controllers result in smaller inter-story

drifts above mid-height. It is also noteworthy that the hybrid controllers increase the drift

ratios at the top two floors because of the existing control forces. Further, the controllers

do not seem to have a significant contribution below the 12th story. The ATMD-Robust

controller algorithm introduces a force offset caused by the irreversible displacements of
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the structure. Such an offset was not seen in the prior earthquakes, which may indicate that

the nonlinearity structural response is larger in this earthquake compared to the previous

ones. The offset may have been reduced by increasing the current uncertainty range.

However, when this is executed, a satisfactory achievable controller could not be reached.
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CHAPTER 6

CONCLUSION

The results of each chapter were already presented. In the current section, the

results will be mentioned briefly, and some concluding remarks will be drawn.

A Kalman estimator/observer design was introduced in Chapter 3. The observer

was proven to be successful by the implementation of the observer-dependent controllers:

LQR, PDD, PP controller algorithms. Seismic response attenuations by various control

strategies were also performed in the same chapter. For a linear and nominal structural

system, all applied strategies showed satisfactory results. As a passive control strategy,

the FPBS resulted in the best performance among the mere control strategies. In every

control implementation, the employed MRD forces went along with the actuator forces. It

was also observed that the MRD could not produce the peak value of the actuator because

of the low-velocity values. Besides, the hybrid controllers could not outperform the single

controllers by huge differences and showed small improvements in the performances. The

designed passive controllers were already optimum and it is not applicable in theory to

improve their performance by large differences.

In Chapter 4, the 3-story shear frame with model parameter uncertainties was

aimed to control. For this purpose, the civil structure was modeled as uncertain in reason-

able ranges regarding mass, stiffness, and damping. The nominal and worst-case uncer-

tainty models were chosen to verify the designed controllers, based on H∞ norm. It was

observed that the controller reduces the response of the structure. However, the mere H∞

controller’s performances were not as satisfactory as expected. Besides, it amplified the

oscillating responses and led the structure to fail.

A robust controller was designed by µ synthesis for selected possible perturba-

tions, and it covers all perturbations. It was observed that the proposed µ controller could

be a solution to stabilize the structure that has parametric uncertainties.

In Chapter 5, two different tuned mass dampers (TMDs), single-, and multi-

TMDs, for a nonlinearly modeled benchmark structure were presented. The effectiveness

of these two TMDs was investigated. Accordingly, a hybrid controller device, composed

of a passive TMD and an active controller, was introduced. The conclusions below are

drawn under the light of the performed numerical study in this part of the thesis;

a) The current benchmark building undergoes yielding during simulations with
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the selected earthquake records. Therefore, the nonlinear model must be employed.

b) The MTMD installed nonlinear benchmark model has not been found to exhibit

robust performance under the corresponding earthquakes.

c) The ATMD-H∞ controller operates well even if the structure does enter the

nonlinear region since it has relatively wide stability margins. The actuator, however,

may become saturated and therefore consuming large amounts of energy.

d) The ATMD-Robust controller outperforms other presented controllers and pushes

the STMD back to the optimum performance zone.

e) Installing either an STMD or ATMD always results in better responses than the

uncontrolled structure.

f) The installed ATMDs provide limited performance since the maximum control

force is limited by the story shear force capacity of the structure.
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CHAPTER 7

NOVELTIES

In this study, the following novelties are put forward:

-A new approach to cope with structural nonlinearities in the control design is

developed. Accordingly, the uncertainty ranges can be determined so that the designer

models the controller for more likely hazards in practice.

-A new hybrid robust control technique for TMDs is developed to replace passive

robust control approaches composed of several TMDs having different optimum charac-

teristics. All MTMDs can be modeled according to linear system model parameters to

get highest decrement in the frequency response, and the robust controller can tune them

during the earthquake. This method can be used to enhance any passive control device

performance.
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CHAPTER 8

FUTURE WORK

Different possible ways exist as future work for the current study. First of all, an

MRD that can produce higher forces in amplitude can be employed, or such a system can

be aimed. These required forces can be achieved through higher voltage values, but this

should be tested first experimentally.

Among the passive controllers, the TMDs are very sensitive to the structure modal

parameters. Any change during an earthquake may diverge its efficiency drastically. For

this reason, a robust implementation that depends on a bandwidth frequency, not a single

frequency value, can be put forward.

The robust control computational cost is too large because of the uncertainties in

the model parameters. It can be improved in a way that the designer checks the nonlin-

ear performance of the civil structure and locates the members where yielding occurs.

Accordingly, uncertainties can exist in those members instead of all of the members.

A large-scale MRD can be substituted for the employed actuator since actuators

require large external power supplies. Besides, the number of control devices might be

increased so that the neighboring floor shear forces occurred by the control devices are

decreased.
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APPENDIX A

KALMAN OBSERVER

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Kalman Observer f o r 3− S t o r y Mockup s t r u c t u r e %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Author : Senol , Vedat

%c r e a t e d : 4 . 2 0 1 8 , upda ted : 12 .2020

c l o s e a l l ; c l e a r v a r s ; c l c

%%MODAL PARAMETERS

3 m o d e l s t o r y .m

gama = [1 0 0 ] ’ ; % C o n t r o l I n p u t L o c a t i o n V e c t o r

gama d= [1 1 1 ] ’ ; % D i s t u r b a n c e E x c i t a t i o n V e c t o r

n= l e n g t h ( gama ) ;

%S t a t e Space M a t r i c e s

% d o t x = Ax + B1w + B2u

% z = C1x + D12u exegenous o u t p u t s

% ym = C2x + D21w measured o u t p u t s

A=[ z e r o s ( 3 , 3 ) eye ( 3 , 3 )

−M\K −M\C ] ;

B1=[ z e r o s ( 3 , 1 )

M\gama ] ;

B2=[ z e r o s ( 3 , 1 )

−gama d ] ;

C1=[ 1 0 0 0 0 0 ; 0 1 0 0 0 0 ; 0 0 1 0 0 0 ] ;

D = [0 0 ; 0 0 ; 0 0 ] ;

%% Kalman Observer

P l a n t = s s (A , [ B1 B2 ] , C1 , 0 , 0 . 0 2 , ’ inpu tname ’ , { ’ u ’ ’w’ } , ’ ou tpu tname ’ , ’ y ’ ) ;

Q = 1 e1 * eye ( 3 , 3 ) ; R = 1 e5 ; N = z e r o s ( 3 , 6 ) ;

[ kalmf , L , ˜ , Mo] = kalman ( P l a n t , Q, R ,N) ;

Mo; % Updat ing m a t r i x ( Deshpande , 2 0 1 7 )

%% P a r a l l e l mode l ing

a = A; b = [ B1 B2 0*B1 ] ; c = [ C1 ; C1 ] ;

d = [0 0 0 ; 0 0 0 ; 0 0 0 ; 0 0 1 ; 0 0 1 ; 0 0 1 ] ;

P = s s ( a , b , c , d , −1 , ’ inpu tname ’ , { ’ u ’ ’w’ ’ v ’ } , ’ ou tpu tname ’ , { ’ y ( 1 ) ’ ’ y ( 2 ) ’

’ y ( 3 ) ’ ’ yv ( 1 ) ’ ’ yv ( 2 ) ’ ’ yv ( 3 ) ’ } ) ;
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s y s = p a r a l l e l ( P , kalmf , 1 , 1 , [ ] , [ ] ) ; f e e d i n =[4 5 6 ] ; f e e d o u t =[4 5 6 ] ;

SimModel = f e e d b a c k ( sys , eye ( 3 , 3 ) , f e e d i n , f e e d o u t , 1 ) ; % Close loop

around i n p u t #4 and o u t p u t #2

SimModel = SimModel ( [ 1 2 3 7 : 1 5 ] , [ 1 2 3 ] ) ;

SimModel . InputName

SimModel . OutputName

%% Loading D i s t u r b a n c e s

d t = 0 . 0 2 ;

load e l c e n t r o

w = eq ( 2 , : ) ’ ; % Ear thquake D i s t u r b a n c e s

t = eq ( 1 , : ) ’ ; % Time Array 50Hz 50 sn

l g= l e n g t h (w) ;

u=z e r o s ( 1 , l g ) ’ ;

v = s q r t (R) *randn ( lg , 1 ) ;% a d d i t i v e w h i t e g a u s s i a n n o i s e

v = 1e−4* radn ( 1 , l g ) ’ ;

i n p =[u ,w ] ;

%% S i m u l a t e t h e r e s p o n s e s .

[ out , ˜ ] = l s i m ( SimModel , [ w, v , u ] ) ;

y = o u t ( : , 1 : 3 ) ; % t r u e r e s p o n s e

ye = o u t ( : , 4 : 6 ) ; % f i l t e r e d r e s p o n s e

yv = y + v *[5 3 2 ] ; % measured r e s p o n s e

Pu= s s (A, B2 , C1 ,D ( : , 1 ) ) ; % U n c o n t r o l l e d Sys tem S t a t e Space M at r i x

[ y , ˜ , x ]= l s i m ( Pu , w, t ) ; % U n c o n t r o l l e d Sys tem A c c e l a r i t o n s

%% C o n t r o l l e d S t r u c t u r e L i n e a r S i m u l a t i o n s

Acl= A−B1*Kcc ; % Lqr C o n t r o l l e d Closed Loop Sys tem

Pc= s s ( Acl , B2 , C1 ,D ( : , 2 ) ) ; % C o n t r o l l e d Sys tem S t a t e Space M at r i x

[ yc , t , xc ]= l s i m ( Pc , w, t ) ; % C o n t r o l l e d Sys tem A c c e l a r i t o n s

Fc=(−Kcc*xc ’ ) ’ ;

%% MRD I n p u t s

Vmax=3; %Max V o l t a g e

%% MRD C o n t r o l l e d P l a n t L i n e a r S i m u l a t i o n s

% Acl= A−B2*Kcc ; % Lqr C o n t r o l l e d Closed Loop Sys tem

% Pc= s s ( Acl , B1 , C1 ,D) ; % C o n t r o l l e d Sys tem S t a t e Space M at r i x

% [ yc , t , xc ]= l s i m ( Pc , w , t ) ; % C o n t r o l l e d Sys tem Responses

V=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d V o l t a g e Va lue s

F mrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD Force Va lue s ( Obta ined form

MRD)
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x0=z e r o s ( s i z e (A, 1 ) , 1 ) ;

B3=[B1 B2 ] ;

D2=[D z e r o s ( 3 , 1 ) ] ;

Pcmrd= s s (A, B3 , C1 ,D) ; % MRD C o n t r o l l e d Sys tem S t a t e Space M at r i x

x c f=z e r o s ( lg , 6 ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d S t a t e s

xk=z e r o s ( lg , 6 ) ; % Pre−a l l o c a t e d MRD Observer S t a t e s

Fcmrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d Optimum Forces (

R e q u i r e d )

y c f=z e r o s ( lg , 3 ) ; % MR Damper− c o n t r o l l e d s y s t e m o u t p u t s

yk=z e r o s ( lg , 9 ) ; % Kalman o b s e r v e r s y s t e m o u t p u t s

yv=z e r o s ( lg , 3 ) ; % Noise

warn ing ( ’OFF ’ , ’ALL ’ )

f o r i =2: l g

F mrd ( i ) =0; % Using as a keyboard

Wfmrd=[ F mrd ( ( i −1) : i ) ,w( ( i −1) : i ) ] ;

[ y c f ( i −1: i , : ) , ˜ , x c f ( i −1: i , : ) ]= l s i m ( Pcmrd , Wfmrd , t ( ( i −1) : i ) , x c f ( i

−1 , : ) ) ;

. . . C o n t r o l l e d System I n t e r − s t o r y D r i f t s

%Kalman F i l t e r

yv ( i −1: i , : ) =y c f ( i −1: i , : ) +v ( i −1: i , : ) ;

Wkalm=[ F mrd ( ( i −1) : i ) , yv ( i −1: i , : ) ] ’ ;

[ yk ( i −1: i , : ) , ˜ , xk ( i −1: i , : ) ]= l s i m ( kalmf , Wkalm , t ( ( i −1) : i ) , xk ( i −1 , : ) )

;

% Observer o u t p u t s g i v e n t o t h e c o n t r o l l e r

Fcmrd ( i )=−Kcc*yk ( i , 4 : 9 ) ’ ;

end

warn ing ( ’ON’ , ’ALL ’ )

y t = x c f ( : , 3 ) ; % t r u e r e s p o n s e

ye = yk ( : , 3 ) ; % f i l t e r e d r e s p o n s e

yv ; % measured r e s p o n s e

MeasErr = y c f ( : , 3 )−yv ( : , 3 ) ;

MeasErrCov = sum ( MeasErr . * MeasErr ) / l e n g t h ( MeasErr ) ;

% The e r r o r c o v a r i a n c e a f t e r f i l t e r i n g ( e s t i m a t i o n e r r o r ) i s r educed :

E s t E r r = yt −ye ;

Es tEr rCov = sum ( E s t E r r . * E s t E r r ) / l e n g t h ( E s t E r r ) ;
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APPENDIX B

LINEAR QUADRATIC REGULATOR (LQR)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% LQR D i s p l a c e m e n t C o n t r o l l e r f o r Lab Model %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Author : Senol , Vedat

%c r e a t e d : 1 2 . 2 0 1 7 , upda ted : 12 .2020

c l o s e a l l ; c l e a r v a r s ; c l c

K a l m a n o b s e r v e r .m

%% Optimum C o n t r o l l e r Gains

Qlqr = 1 e0 *[5 e1 * eye ( n , n ) z e r o s ( n , n )

z e r o s ( n , n ) eye ( n , n ) ] ;

Nlqr = z e r o s (2* n , 1 ) ;

R lq r = 1e −8;

[ Kcc , ˜ , ˜ ] = l q r (A, B1 , Qlqr , Rlqr , Nlqr ) ;

%% U n c o n t r o l l e d S t r u c t u r e L i n e a r S i m u l a t i o n s

Pu= s s (A, B2 , C1 ,D ( : , 1 ) ) ; % U n c o n t r o l l e d Sys tem S t a t e Space M at r i x

[ y , ˜ , x ]= l s i m ( Pu , w, t ) ; % U n c o n t r o l l e d Sys tem D i s p l a c e m e n t s

%% C o n t r o l l e d S t r u c t u r e L i n e a r S i m u l a t i o n s

Acl= A−B1*Kcc ; % Lqr C o n t r o l l e d Closed Loop Sys tem

Pc= s s ( Acl , B2 , C1 ,D ( : , 2 ) ) ; % C o n t r o l l e d Sys tem S t a t e Space M at r i x

[ yc , t , xc ]= l s i m ( Pc , w, t ) ; % C o n t r o l l e d Sys tem D i s p l a c e m e n t s

Fc=(−Kcc*xc ’ ) ’ ;

%% MRD I n p u t s

Vmax=3; %Max V o l t a g e

Fmax=3000; % Max Force N

%% MRD C o n t r o l l e d P l a n t L i n e a r S i m u l a t i o n s

% Acl= A−B2*Kcc ; % Lqr C o n t r o l l e d Closed Loop Sys tem

% Pc= s s ( Acl , B1 , C1 ,D) ; % C o n t r o l l e d Sys tem S t a t e Space M at r i x

% [ yc , t , xc ]= l s i m ( Pc , w , t ) ; % C o n t r o l l e d Sys tem D i s p l a c e m e n t s

V=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d V o l t a g e Va lue s

F mrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD Force Va lue s ( Obta ined from

MRD)

B3=[B1 B2 ] ;
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D2=[D z e r o s ( 3 , 1 ) ] ;

Pcmrd= s s (A, B3 , C1 ,D) ; % MRD C o n t r o l l e d Sys tem S t a t e Space M at r i x

x c f=z e r o s ( lg , 6 ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d S t a t e s

xk=z e r o s ( lg , 6 ) ; % Pre−a l l o c a t e d Kalman S t a t e s

Fcmrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d Optimum Forces (

R e q u i r e d )

y c f=z e r o s ( lg , 3 ) ; % MR Damper− c o n t r o l l e d s y s t e m o u t p u t s

yk=z e r o s ( lg , 9 ) ; % Kalman o b s e r v e r s y s t e m o u t p u t s

yv=z e r o s ( lg , 3 ) ; % Kalman o b s e r v e r s y s t e m n o i s e

warn ing ( ’OFF ’ , ’ALL ’ )

f o r i =2: l g

F mrd ( i ) = . . .

−M r f l u i d D a m p e r h y s t e r e s i s f u n c t i o n ( 0 . 0 0 0 2 , x c f ( i −1 ,1) , x c f ( i −1 ,4) ,

V( i −1) ) ;

Wfmrd=[ F mrd ( ( i −1) : i ) ,w( ( i −1) : i ) ] ;

[ y c f ( i −1: i , : ) , ˜ , x c f ( i −1: i , : ) ]= l s i m ( Pcmrd , Wfmrd , t ( ( i −1) : i ) , x c f ( i

−1 , : ) ) ;

. . . C o n t r o l l e d System I n t e r − s t o r y D r i f t s

%Kalman F i l t e r

yv ( i −1: i , : ) =y c f ( i −1: i , : ) +v ( i −1: i , : ) ; % Measurements

Wkalm=[ F mrd ( ( i −1) : i ) , yv ( i −1: i , : ) ] ’ ;

[ yk ( i −1: i , : ) , ˜ , xk ( i −1: i , : ) ]= l s i m ( kalmf , Wkalm , t ( ( i −1) : i ) , xk ( i −1 , : ) )

;

% Observer o u t p u t s g i v e n t o t h e c o n t r o l l e r

Fcmrd ( i )=−Kcc*yk ( i , 4 : 9 ) ’ ;

i f Fcmrd ( i )>=Fmax

Fcmrd ( i )=Fmax ;

e l s e i f Fcmrd ( i )<=−Fmax

Fcmrd ( i )=−Fmax ;

end

% MRD V o l t a g e

V( i ) = M r f l u i d D a m p e r v o l t a g e f u n c t i o n ( F mrd ( i ) , Fcmrd ( i ) ,Vmax ) ;

% V ( i ) = 0;

end

warn ing ( ’ON’ , ’ALL ’ )
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APPENDIX C

H2 & H∞ CONTROLLER

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Hin f C o n t r o l l e r f o r 3− s t o r y Lab Model %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Author : Senol , Vedat

%c r e a t e d : 1 0 . 2 0 1 8 , upda ted : 12 .2020

c l o s e a l l ; c l e a r v a r s ; c l c

%% T h i s s c r i p t i n c l u d e s w e i g h t s and G e n e r a l i z e d Del ta −P−K l i k e p l a n t

W e i g h t s a n d G e n e r a l i z e d P l a n t

%% Loading D i s t u r b a n c e s

d t = 0 . 0 2 ;

load e l c e n t r o

w = eq ( 2 , : ) ’ ; % Ear thquake D i s t u r b a n c e s

t = eq ( 1 , : ) ’ ; % Time Array 50Hz 50 sn

l g= l e n g t h (w) ;

u=z e r o s ( 1 , l g ) ’ ;

v = s q r t (R) *randn ( lg , 1 ) ;% AWGN

v = 1e−4* radn ( 1 , l g ) ’ ;

i n p =[u ,w ] ;

% U n c o n t r o l l e d Nominal S t r u c t u r e L i n e a r S i m u l a t i o n s

Pu=CSP . Nominal ; % U n c o n t r o l l e d Sys tem S t a t e Space M at r i x

[ yn , ˜ , x ]= l s i m ( Pu , inp , t ) ; % U n c o n t r o l l e d Sys tem A c c e l a r i t o n s

%% Hin f s y n t h e s i s

nmeas =3;

ncon =1;

gamTry = 0 . 1 ;

% gamRange=[ gmin gmax ] ;

o p t s = h i n f s y n O p t i o n s ( ’ D i s p l a y ’ , ’ on ’ ) ;

% % s y s t e m c o n t r o l g a i n s

[ Knsinf , CLnsinf , g i n f n s ] = h i n f s y n ( CSPns , nmeas , ncon , gamTry , o p t s ) ;

h in fnorm ( Kn s in f )

%% Genera l P l a n t S i m u l a t i o n s w i t h o u t Wg

% I n p u t Channe ls

xgdd = i c s i g n a l ( 1 ) ; % EQ a c c e l e r a t i o n d i s t u r b a n c e
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v = i c s i g n a l ( 4 ) ; % Noise d i s t u r b a n c e

u = i c s i g n a l ( 1 ) ; % C o n t r o l i n p u t

% Outpu t Channe ls

y = i c s i g n a l ( 4 ) ; % Measurement c h a n n e l

% A s s e m b l i n g o f Nominal G e n e r a l i z e d P l a n t

Pns = i c o n n e c t ;

Pns . I n p u t = [ xgdd ; v ; u ] ;

ug=xgdd ;

Pns . E q u a t i o n { 1 } = e q u a t e ( y , CSP . Nominal * [ u ; ug ] ) ;

n=Wn*v ;

Pns . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

CSPns1 =( Pns . System ) ;

%% MRD I n p u t s

Vmax=3; %Max V o l t a g e

Fmax=3000; % Max Force N

%% MRD C o n t r o l l e d P l a n t L i n e a r S i m u l a t i o n s

V=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d V o l t a g e Va lue s

F mrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD Force Va lue s ( Obta ined form

MRD)

Pcmrd=CSPns1 ; % MRD C o n t r o l l e d Sys tem S t a t e Space M at r i x

x c f=z e r o s ( lg , l e n g t h ( Pcmrd .A) ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d

S t a t e s

x0=z e r o s ( s i z e ( Pcmrd . A, 1 ) , 1 ) ;

Fcmrd=z e r o s ( lg , 1 ) ; % Pre−a l l o c a t e d MRD C o n t r o l l e d Optimum Forces (

R e q u i r e d )

y c f=z e r o s ( lg , l e n g t h ( Pcmrd ) ) ;

yk=z e r o s ( lg , 1 0 ) ;

xk=z e r o s ( lg , l e n g t h ( ka lmf .A) ) ;

Fx=z e r o s ( lg , l e n g t h ( Kn s i n f .A) ) ;

f o r i =2: l g

F mrd ( i ) = . . .

−M r f l u i d D a m p e r h y s t e r e s i s f u n c t i o n ( 0 . 0 0 0 0 2 , y c f ( i −1 ,6) , y c f (

i −1 ,5) , V( i −1) ) ;

Wfmrd=[w( ( i −1) : i ) , v ( ( i −1) : i , : ) , F mrd ( ( i −1) : i ) ] ;

[ y c f ( i −1: i , : ) , ˜ , x c f ( i −1: i , : ) ]= l s i m ( Pcmrd , Wfmrd ’ , t ( i −1: i ) , x c f ( i −1 , : )

) ;

% Kalman F i l t e r

Wkalm=[ F mrd ( ( i −1) : i ) , y c f ( i −1: i , 5 : 8 ) ] ’ ;

[ yk ( i −1: i , : ) , ˜ , xk ( i −1: i , : ) ]= l s i m ( kalmf , Wkalm , t ( ( i −1) : i ) , xk ( i −1 , : ) ) ;
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% Observer o u t p u t s g i v e n t o t h e c o n t r o l l e r

[ Fcmrd ( i −1: i ) , ˜ , Fx ( i −1: i , : ) ]= l s i m ( Knsinf , y c f ( i −1: i , 6 : 8 ) , t ( i −1: i ) ,

Fx ( i −1 , : ) ) ;

i f Fcmrd ( i −1)>= Fmax

Fcmrd ( i −1)= Fmax ;

e l s e i f Fcmrd ( i −1)<=−Fmax

Fcmrd ( i −1)=−Fmax ;

end

% MRD V o l t a g e

V( i ) = M r f l u i d D a m p e r v o l t a g e f u n c t i o n ( F mrd ( i ) , Fcmrd ( i ) ,Vmax ) ;

i f V( i )>= 3

V( i )= 3 ;

end

end
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APPENDIX D

UNCERTAIN MODELING

%% MODEL PARAMETERS

%Author : Senol , Vedat %c r e a t e d : 1 0 . 2 0 1 8 , upda ted : 12 .2020

% U n c e r t a i n i t y r a t i o s

Pm = 0 . 2 ; Pc = 0 . 6 ; Pk = 0 . 2 ; Pu = 0 ;

%U n c e r t a i n t i e s

d e l t a m 1 = Pm* u r e a l ( ’ d e l t a m 1 ’ , 0 ) ;

d e l t a m 2= Pm* u r e a l ( ’ d e l t a m 2 ’ , 0 ) ;

d e l t a m 3 = Pm* u r e a l ( ’ d e l t a m 3 ’ , 0 ) ;

d e l t a c 1 = Pc* u r e a l ( ’ d e l t a c 1 ’ , 0 ) ;

d e l t a c 2 = Pc* u r e a l ( ’ d e l t a c 2 ’ , 0 ) ;

d e l t a c 3 = Pc* u r e a l ( ’ d e l t a c 3 ’ , 0 ) ;

d e l t a k 1 = Pk* u r e a l ( ’ d e l t a k 1 ’ , 0 ) ;

d e l t a k 2 = Pk* u r e a l ( ’ d e l t a k 2 ’ , 0 ) ;

d e l t a k 3 = Pk* u r e a l ( ’ d e l t a k 3 ’ , 0 ) ;

m=200; %kg

Ms=[m*(1+ d e l t a m 1 ) 0 0

0 m*(1+ d e l t a m 2 ) 0

0 0 m*(1+ d e l t a m 3 ) ] ;

k = 156250;%N /m

Ks = [ k *(2+ d e l t a k 1 + d e l t a k 2 ) −k *(1+ d e l t a k 2 ) 0 %

S t i f f n e s s

−k *(1+ d e l t a k 2 ) k *(2+ d e l t a k 2 + d e l t a k 3 ) −k *(1+ d e l t a k 3 )

0 −k *(1+ d e l t a k 3 ) k *(1+ d e l t a k 3 ) ] ;

Cs = [ 6 1 . 7 6 + 0 . 5 * 6 1 . 7 6 * ( d e l t a c 1 + d e l t a c 2 ) −18.20*(1+ d e l t a c 2 )

0

−18.20*(1+ d e l t a c 2 ) 6 1 . 0 2+0 . 5 * 6 1 . 0 2 * (+ d e l t a c 2 + d e l t a c 3 )

−18.20*(1+ d e l t a c 3 )

0 −18.20*(1+ d e l t a c 3 ) 42 .70*(1+

d e l t a c 3 ) ] ; %Ns /m

gama = [1 0 0 ] ’ ; % C o n t r o l I n p u t L o c a t i o n V e c t o r

gama d= [1 1 1 ] ’ ; % D i s t u r b a n c e E x c i t a t i o n V e c t o r

n= l e n g t h ( gama ) ;

%% S t a t e Space R e p r e s a n t a t i o n
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% d o t x = Apx + B1pu + B2pw

% y = Cpx + D1pu + D2pw

%% S t a t e −Space M a t r i c e s

Ap=[ z e r o s ( n , n ) eye ( n , n )

−Ms\Ks −Ms\Cs ] ;

B1p=[ z e r o s ( n , 1 )

Ms\gama ] ;

B2p=[ z e r o s ( n , 1 )

−gama d ] ;

Bp=[B1p B2p ] ;

Cp = [ 0 0 0 1 0 0

1 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0 ] ;

D1p = z e r o s ( 1 , 4 ) ’ ; D2p = z e r o s ( 1 , 4 ) ’ ; Dp=[D1p D2p ] ;

CSP = s s ( Ap , Bp , Cp , Dp ) ;
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APPENDIX E

WEIGHTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% Weigh t s f o r 3− s t o r y Lab Model%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% T h i s s c r i p t s i n c l u d e s w e i g h t s and G e n e r a l i z e d Del ta −P−K l i k e p l a n t

%% LFT

%Author : Senol , Vedat

%c r e a t e d : 1 0 . 2 0 1 8 , upda ted : 12 .2020

% The o u t p u t s which are aimed ;

% M : Sys tem m a t r i x which was f r e e d from u n c e r t a i n t y

% D e l t a : P u l l e d o u t u n c e r t a i n t y b l o c k m a t r i x

% B l k S t r u c t : S t r u c t u r e d b l o c k o f u n c e r t a i n t y m a t r i x

Model

[M, De l t a , B l k S t r u c t ] = l f t d a t a ( CSP ) ;

[ wcg , wcug ] = wcgain ( CSP ) ;

CSPwst = usubs ( CSP , wcug ) ;

%% Weigh t s

% Outpu t per fo rmance w e i g h t

Wp=1e2 * diag ( [ 5 1 1 ] ) ;

% C o n t r o l i n p u t w e i g h t

Wu=5e −4;

% E x c i t a t i o n w e i g h t T a j i m i Spec t rum

So = 0 . 0 9 ; wg= 8 . 6 5 ; z e t a g = 0 . 2 5 ; Wg=1;

Wg= t f ( So ˆ ( 0 . 5 ) *[2* z e t a g *wg wg ˆ 2 ] , [ 1 2* z e t a g *wg wg ˆ 2 ] ) ;

% Noise Weight

Wn=makeweight ( 1 0 , 1 0 0 0 , 0 . 0 1 ) ;

Wnk=1e −6; Wn=Wn*Wnk;

% Wn= e l l i p f i l t ( 1 , 1 . 1 , 2 0 , 100*2* p i ) ;

%% Genera l P l a n t Assembly

% d o t x = Apx + B1pw + B2pu

% d e l t a y = C1px + D11pw + D12pu

% z = C2px + D21pw + D22pu

% y = C3px + D31pw + D32pu

% where z = [Wp* y ; Wp*u ] ,
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% w = [ xgdd ; v ]

% I n p u t Channe ls

p e r t u = i c s i g n a l ( 9 ) ; % U n c e r t i n t y p e r t u r b a t i o n s

xgdd = i c s i g n a l ( 1 ) ; % EQ a c c e l e r a t i o n d i s t u r b a n c e

v = i c s i g n a l ( 4 ) ; % Noise d i s t u r b a n c e

u = i c s i g n a l ( 1 ) ; % C o n t r o l i n p u t

% Outpu t Channe ls

d e l t a y = i c s i g n a l ( 9 ) ; % U n c e r t a i n t i e s

y = i c s i g n a l ( 4 ) ; % Measurement c h a n n e l

% A s s e m b l y i n g

P = i c o n n e c t ;

P . I n p u t = [ p e r t u ; xgdd ; v ; u ] ;

ug=Wg* xgdd ;

P . E q u a t i o n { 1 } = e q u a t e ( [ d e l t a y ; y ] ,M*[ p e r t u ; u ; ug ] ) ;

n=Wn*v ;

P . Outpu t = [ d e l t a y ; Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

GP=(P . System ) ; %G e n e r a l i z e d P l a n t

%% Genera l P l a n t S i m u l a t i o n s

% A s s e m b l i n g o f G e n e r a l i z e d P l a n t

GP = i c o n n e c t ;

GP . I n p u t = [ xgdd ; v ; u ] ;

ug=Wg* xgdd ;

GP . E q u a t i o n { 1 } = e q u a t e ( y , CSP *[ u ; ug ] ) ;

n=Wn*v ;

GP . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

GP=(GP . System ) ;

% A s s e m b l i n g o f WC G e n e r a l i z e d P l a n t

Pwc = i c o n n e c t ;

Pwc . I n p u t = [ xgdd ; v ; u ] ;

ug=Wg* xgdd ;

Pwc . E q u a t i o n { 1 } = e q u a t e ( y , CSPwst * [ u ; ug ] ) ;

n=Wn*v ;

Pwc . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

CSPwc=(Pwc . System ) ;

% A s s e m b l i n g o f Nominal G e n e r a l i z e d P l a n t

Pns = i c o n n e c t ;

Pns . I n p u t = [ xgdd ; v ; u ] ;

ug=Wg* xgdd ;

Pns . E q u a t i o n { 1 } = e q u a t e ( y , CSP . Nominal * [ u ; ug ] ) ;
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n=Wn*v ;

Pns . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

CSPns =( Pns . System ) ;

h in fnorm ( CSPns ) ; h in fnorm (Wg)
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APPENDIX F

ROBUST CONTROLLER

%% Robus t c o n t r o l l e r f o r 3− s t o r e y Lab model

%Author : Senol , Vedat

%c r e a t e d : 4 . 2 0 1 9 , upda ted : 12 .2020

c l o s e a l l ; c l e a r v a r s ; c l c

%% T h i s s c r i p t s i n c l u d e s w e i g h t s and G e n e r a l i z e d Del ta −P−K l i k e p l a n t

W e i g h t s a n d G e n e r a l i z e d P l a n t

%% Mu− s y n t h e s i s

nmeas =3;

ncon =1;

% o p t=d k s y n O p t i o n s ( ’ FrequencyVec tor ’ , l o g s p a c e ( −2 ,3 ,80 ) , ’

A u t o I t e r S m a r t T e r m i n a t e ’ , ’ on ’ , ’ A u t o I t e r S m a r t T e r m i n a t e T o l ’ , 0 . 0 1 )

% [ Kdk , CLdk , CLPERF] = musyn (GP, nmeas , ncon , o p t ) ;

[ Kdk , CLdk , CLPERF] = musyn (GP , nmeas , ncon ) ;

%% Genera l P l a n t s S i m u l a t i o n s w i t h o u t Wg

% Nominal Sys tem

% I n p u t Channe ls

xgdd = i c s i g n a l ( 1 ) ; % EQ a c c e l e r a t i o n d i s t u r b a n c e

v = i c s i g n a l ( 4 ) ; % Noise d i s t u r b a n c e

u = i c s i g n a l ( 1 ) ; % C o n t r o l i n p u t

% Outpu t Channe ls

y = i c s i g n a l ( 4 ) ; % Measurement c h a n n e l

% A s s e m b l i n g o f Nominal G e n e r a l i z e d P l a n t

Pns = i c o n n e c t ;

Pns . I n p u t = [ xgdd ; v ; u ] ;

ug=xgdd ;

Pns . E q u a t i o n { 1 } = e q u a t e ( y , CSP . Nominal * [ u ; ug ] ) ;

n=Wn*v ;

Pns . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

CSPns1 =( Pns . System ) ;

% Worst−Case Sys tem

% I n p u t Channe ls

xgdd = i c s i g n a l ( 1 ) ; % EQ a c c e l e r a t i o n d i s t u r b a n c e

v = i c s i g n a l ( 4 ) ; % Noise d i s t u r b a n c e

136



u = i c s i g n a l ( 1 ) ; % C o n t r o l i n p u t

% Outpu t Channe ls

y = i c s i g n a l ( 4 ) ; % Measurement c h a n n e l

% A s s e m b l i n g o f Worst−Case G e n e r a l i z e d P l a n t

Pns = i c o n n e c t ;

Pns . I n p u t = [ xgdd ; v ; u ] ;

ug=xgdd ;

Pns . E q u a t i o n { 1 } = e q u a t e ( y , CSPwst * [ u ; ug ] ) ;

n=Wn*v ;

Pns . Outpu t = [Wp*y ( 2 : 4 ) ; Wu*u ; y+n ] ;

CSPwc1=( Pns . System ) ;

% Robus t S t a b i l i t y A n a l y s i s w i t h M−D e l t a s t r u c t u r e

N= s t a r (GP , K ns in f ) ;

s z D e l t a = s i z e ( D e l t a ) ;

M g = N( 1 : s z D e l t a ( 2 ) , 1 : s z D e l t a ( 1 ) ) ;

M g = N( 1 : s z D e l t a ( 2 ) , 1 : s z D e l t a ( 1 ) ) ;

omega = l o g s p a c e ( −3 ,3 ,100) ;

M g = f r d (N( 1 : 5 , 1 : 5 ) , omega ) ;

mubnds = mussv ( M g , B l k S t r u c t , ’ s ’ ) ;

f i g u r e ( )

LinMagopt = b o d e o p t i o n s ;

LinMagopt . P h a s e V i s i b l e = ’ o f f ’ ;

LinMagopt . XLim = [1 e−1 1 e2 ] ;

LinMagopt . MagUnits = ’ abs ’ ;

b o d e p l o t ( mubnds ( 1 , 1 ) , mubnds ( 1 , 2 ) , LinMagopt ) ;

x l a b e l ( ’ F requency ( r a d / s e c ) ’ ) ;

y l a b e l ( ’Mu upper / l ower bounds ’ ) ;

t i t l e ( ’Mu p l o t o f r o b u s t s t a b i l i t y marg ins ( i n v e r t e d s c a l e ) ’ ) ;

[ pkl , wPeakLow ] = ge tPeakGa in ( mubnds ( 1 , 2 ) ) ;

[ pku ] = ge tPeakGa in ( mubnds ( 1 , 1 ) ) ;

SMfromMU . LowerBound = 1 / pku ;

SMfromMU . UpperBound = 1 / p k l ;

SMfromMU . C r i t i c a l F r e q u e n c y = wPeakLow ;
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APPENDIX G

VOLTAGE FUNCTION (MODIFIED CLIPPED

ALGORITHM)

%MR F l u i d Dampers H y s t e r e s i s Loop Cyc le M o d i f i e d Bouc−Wen Model

f u n c t i o n [ V ] = M r f l u i d D a m p e r v o l t a g e f u n c t i o n ( F mrd , u , Vmax)

maxF mrd =4448;

i f abs ( u )<= maxF mrd

Vref=u*Vmax / maxF mrd ;

e l s e i f abs ( u )> maxF mrd

Vref=Vmax ;

end

V=Vref * h e a v i s i d e ( ( u−F mrd ) * F mrd ) ;

V=abs (V) ;

end
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APPENDIX H

BOUC-WEN HYSTERESIS FUNCTION

%MR F l u i d Dampers H y s t e r e s i s Loop Cyc le M o d i f i e d Bouc−Wen Model

f u n c t i o n [ F mrd ] = M r f l u i d D a m p e r h y s t e r e s i s f u n c t i o n ( dt , x , xd ,V )

c l o s e a l l

c l c

%% D e f i n i n g t h e c o n s t a n t c o e f f i c i e n t s

c0a =2100; % Ns /m

c0b =350; % Ns /mV

c1a =28300; % Ns /m

c1b =295; % Ns /mV

k0 =4690; % N /m

k1 =500; % N /m

x00 =0 . 1 4 3 ; % m

% x00=0; % m

a l f a a =14000; % N /m

a l f a b =69500; % N /mV

gama =3630000; % mˆ−2

beta =3630000; % mˆ−2

A=301; %

n =2; % Modal parame te r

nu =190; % s ˆ−1 ( Hz )

% f o =0; % O f f s e t f o r c e

Fmax=3000;

%% D e f i n i n g o f t h e d i s p l a c e m e n t and v e l o c i t y as a f u n c t i o n s

%C o n s t r u c t i o n o f loop

e p s =0 .0000000001; %e r r o r

nx= l e n g t h ( x ) ;

y=z e r o s ( 1 , nx ) ;

yd=z e r o s ( 1 , nx ) ;

F mrd=z e r o s ( 1 , nx ) ;

Va=z e r o s ( 1 , nx ) ;

% keyboard
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f o r j =1: nx

s =0; %i n i t i a l s f o r u s i n g a t loop

nn =1000;

d s =z e r o s ( 1 , nn ) ;

f o r i =1: nn

d s ( i )= −gama* abs ( xd ( j )−yd ( j ) ) * s * abs ( s ) ˆ ( n−1) . . .

− beta *( xd ( j )−yd ( j ) ) * abs ( s ) ˆ ( n )+A*( xd ( j )−yd ( j ) ) ;

s=s+d s ( i ) * d t / nn ;

dVa=z e r o s ( 1 , nn ) ;

f o r k =1: nn

dVa ( k )=−nu *( Va ( j )−V) ;

Va ( j )=Va ( j )+dVa ( k ) * d t / nn ;

i f ( ( k>1) && ( abs ( dVa ( k )−dVa ( k−1) ) < abs ( e p s ) ) )

break ;

end

end

a l f a = a l f a a + a l f a b *Va ( j ) ;

c0= c0a+c0b *Va ( j ) ;

c1= c1a+c1b *Va ( j ) ;

yd ( j )= ( a l f a * s+c0 *xd ( j )+k0 *( x ( j )−y ( j ) ) ) / ( c0+c1 ) ;

y ( j )=y ( j )+yd ( j ) * d t / nn ;

i f ( ( i >1) && ( abs ( d s ( i )−d s ( i −1) ) < abs ( e p s ) ) )

break ;

end

end

% C a l c u l a t i n g o f d e s i r e d f o r c e

F mrd ( j )= a l f a * s+c0 *( xd ( j )−yd ( j ) )+k0 *( x ( j )−y ( j ) )+k1 *( x ( j )−x00 ) ;

end

end
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APPENDIX I

ROBUST CONTROL OF THE 20-STORY

NONLINEAR MODEL

##################################################################

## 2D s t e e l f rame .

## 20 s t o r y s t e e l b u i l d i n g wi th r i g i d beam−column c o n n e c t i o n s .

## Th i s s c r i p t u s e s W− s e c t i o n command i n Opensees t o c r e a t e s t e e l . .

## . . beam−column f i b e r s e c t i o n s .

##

## By − Vedat SENOL, PhD Cand ida t e , I z t e c h .

## Date − 2 1 / 0 9 / 2 0 2 0

##################################################################

# i m p o r t s y s

# s y s . modules [ n a m e ] . d i c t . c l e a r ( )

p r i n t (”=========================================================”)

p r i n t ( ” Loading 20− s t o r e y Benchmark Model ” )

from o p e n s e e s p y . o p e n s e e s i m p o r t *

i m p o r t m a t l ab . e n g i n e

eng = ma t l ab . e n g i n e . s t a r t m a t l a b ( )

i m p o r t numpy as np

i m p o r t m a t p l o t l i b . p y p l o t a s p l t

i m p o r t os

i m p o r t math

# os . c h d i r ( ”C : \ Users . . ” )

r u n f i l e ( ’ 20 s to reybenchmarkNonl inear TMD . py ’ )

#######################################

##### DAMPING #####

#######################################

# c a l c u l a t e e i g e n v a l u e s & p r i n t r e s u l t s

f r e q 2 = e i g e n ( ’− f u l l G e n L a p a c k ’ , 10)

f r e q =np . f l o a t p o w e r ( f r e q 2 [ 0 ] , 0 . 5 )

f r e q = f l o a t ( f r e q ) / 2 / pi

omega=math . pow ( f r e q 2 [ 0 ] , 0 . 5 )
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dampRatio = 0 . 0 2

r a y l e i g h ( 0 , 0 , 0 , f l o a t (2* dampRatio / omega ) )

p r i n t ( ” e i g e n v a l u e s a t s t a r t o f t r a n s i e n t : ” , f r e q )

#######################################

##### EARTHQUAKE SETUP #####

#######################################

# S e t some p a r a m e t e r s

r e c o r d = ’ N o r t h r i d g e ’

d t =0.02

# S e t t ime s e r i e s t o be p a s s e d t o un i fo rm e x c i t a t i o n

t i m e S e r i e s ( ’ Pa th ’ , 1 , ’− f i l e P a t h ’ , r e c o r d+ ’ . t x t ’ , ’−d t ’ , d t , ’− f a c t o r ’ ,

1 )

# C r e a t e U n i f o r m E x c i t a t i o n load p a t t e r n

p a t t e r n ( ’ U n i f o r m E x c i t a t i o n ’ , 1 , 1 , ’− a c c e l ’ , 1 )

# EQ d a t a load

wnn = np . l o a d t x t ( ” N o r t h r i d g e . t x t ” , d e l i m i t e r = ’ , ’ )

#######################################

##### ANALIZ SETUP #####

#######################################

# D e l e t e t h e o l d a n a l y s i s and a l l i t ’ s component o b j e c t s

w i p e A n a l y s i s ( )

# C r e a t e t h e sys tem of e q u a t i o n , a banded g e n e r a l s t o r a g e scheme

sys tem ( ’ F u l l G e n e r a l ’ )

# C r e a t e t h e c o n s t r a i n t h a n d l e r , a p l a i n h a n d l e r a s homogeneous

boundary

c o n s t r a i n t s ( ’ P l a i n ’ )

# C r e a t e t h e c o n v e r g e n c e t e s t , t h e norm of t h e r e s i d u a l w i th a

t o l e r a n c e o f

# 1e−12 and a max number o f i t e r a t i o n s o f 10

t e s t ( ’ NormDispIncr ’ , 1 . 0 e−8 , 10 )

# C r e a t e t h e s o l u t i o n a l g o r i t h m , a Newton−Raphson a l g o r i t h m

a l g o r i t h m ( ’ Newton ’ )
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# C r e a t e t h e DOF numberer , t h e r e v e r s e C u t h i l l −McKee a l g o r i t h m

# numberer ( ’ P l a i n ’ )

numberer ( ’ P l a i n ’ )

# C r e a t e t h e i n t e g r a t i o n scheme , t h e Newmark wi th a l p h a =0.5 and beta

= .25

i n t e g r a t o r ( ’Newmark ’ , 0 . 5 , 0 . 2 5 )

# C r e a t e t h e a n a l y s i s o b j e c t

a n a l y s i s ( ’ T r a n s i e n t ’ )

######################################

#### RECORDERS #####

######################################

s t o r y n o d e s = np . l i n s p a c e ( 1 , 1 8 0 , 180)

tmd node =301

o b s v n d s = [ 2 1 , 33 , 39 , 45 , 57 , 63 , 69 , 81 , 87 , 93 , 105 , 111 , 117 , 129 ,

135 , 141 , 153 , 159 , 171 , 177 , 3 0 1 ] ;

#######################################

##### ANALYZE #####

#######################################

# s e t some v a r i a b l e s

n P t s= l e n ( wnn )

x = np . z e r o s ( ( nPts , 3 * l e n ( s t o r y n o d e s ) ) )

v = np . z e r o s ( ( nPts , 3 * l e n ( s t o r y n o d e s ) ) )

a = np . z e r o s ( ( nPts , 3 * l e n ( s t o r y n o d e s ) ) )

xo = np . z e r o s ( ( nPts , l e n ( o b s v n d s ) ) )

vo = np . z e r o s ( ( nPts , l e n ( o b s v n d s ) ) )

ao = np . z e r o s ( ( nPts , l e n ( o b s v n d s ) ) )

h = np . z e r o s (3* l e n ( s t o r y n o d e s ) )

xdr = np . z e r o s ( ( nPts , 3 * l e n ( s t o r y n o d e s ) ) )

Fdy = np . z e r o s ( ( nPts , 3 * l e n ( s t o r y n o d e s ) ) )

FREQQ = np . z e r o s ( ( nPts , 5 ) )

FREQ = np . z e r o s ( ( nPts , 5 ) )

Fx = np . z e r o s ( ( nPts , 1 2 7 ) )
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Fc = np . z e r o s ( ( nPts , ) )

Vc = np . z e r o s ( ( nPts , ) )

y c f = np . z e r o s ( ( nPts , l e n ( o b s v n d s ) ) ) # p r e f i l l e d a r r a y

t F i n a l = n P t s * d t

ok = 0

t C u r r e n t = getTime ( )

t ime = [ t C u r r e n t ]

# Per fo rm t h e t r a n s i e n t a n a l y s i s

f o r i i n r a n g e ( 1 , i n t ( n P t s ) ) :

# Fc

t C u r r e n t = getTime ( )

t ime . append ( t C u r r e n t )

i f i >4:

v a l u e s F = Fc [ i −4] # 0 . 0 6 s e c d e l a y added

t ime0 = t ime [ i ]

t ime0 = f l o a t ( t ime0 )

t ime1 = t ime [ i ]+ d t

t ime1 = f l o a t ( t ime1 )

t i m e S e r i e s ( ’ R e c t a n g u l a r ’ , i , t ime0 , t ime1 , ’− f a c t o r ’ , 1 )

#

l o a d v a l u e s 1 = [− va luesF , 0 , 0 ]

l o a d v a l u e s 2 = [ va luesF , 0 , 0 ]

p a t t e r n ( ’ P l a i n ’ , i , i )

load ( 1 7 8 , * l o a d v a l u e s 1 )

load ( 3 0 1 , * l o a d v a l u e s 2 )

ok = a n a l y z e ( 1 , d t )

i f i >3:

remove ( ’ l o a d P a t t e r n ’ , i −2)

remove ( ’ t i m e S e r i e s ’ , i −2)

# i f t h e a n a l y s i s f a i l s t r y i n i t i a l t a n g e n t i t e r a t i o n

i f ok != 0 :

p r i n t ( ” r e g u l a r newton f a i l e d . . l e t s t r y an i n i t a i l s t i f f n e s s

f o r t h i s s t e p ” )

t e s t ( ’ NormDispIncr ’ , 1 . 0 e−8 , 10)

a l g o r i t h m ( ’ Modif iedNewton ’ , ’− i n i t i a l ’ )
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ok =a n a l y z e ( 1 , d t )

i f ok == 0 :

p r i n t ( ” t h a t worked . . back t o r e g u l a r newton ” )

t e s t ( ’ NormDispIncr ’ , 1 . 0 e−8 , 10 )

a l g o r i t h m ( ’ Newton ’ )

# O u t p u t s

f o r k i n r a n g e ( 1 , 1 8 1 ) :

x [ i , 3 * ( k−1) ] = nodeDisp ( s t o r y n o d e s [ k −1 ] , 1 )

v [ i , 3 * ( k−1) ] = nodeVel ( s t o r y n o d e s [ k −1 ] , 1 )

a [ i , 3 * ( k−1) ] = nodeAcce l ( s t o r y n o d e s [ k −1 ] , 1 )

f o r k i n r a n g e ( 0 , l e n ( o b s v n d s ) ) :

xo [ i , ( k ) ] = nodeDisp ( o b s v n d s [ ( k ) ] , 1 )

vo [ i , ( k ) ] = nodeVel ( o b s v n d s [ ( k ) ] , 1 )

ao [ i , ( k ) ] = nodeAcce l ( o b s v n d s [ ( k ) ] , 1 )

# o u t p u t t o be g i v e n t o c o n t r o l l e r a s input

y c f [ i , : ] = xo [ i , : ]

yc= y c f [ i −1: i +1 , : ]

yc= ma t l ab . d oub l e ( yc . t o l i s t ( ) )

# C o n t o l l e r s t a t e s Fx i

Fx i= Fx [ i −1 , : ]

Fx i= ma t l ab . do ub l e ( Fx i . t o l i s t ( ) )

# C o n t r o l l e r t ime t o go t o l s i m

t i m e i = [ t ime [ i ] −0 .02 , t ime [ i ] ]

t i m e i = ma t l ab . do ub l e ( t i m e i )

# Outpu t A c t i v e c o n t r o l f o r c e and c o n t r o l l e r s t a t e s comes from

ma t l ab

# Fci , Fx i1 = eng . S t m d h i n f c o n t r o l l e r f n c ( yc , t i m e i , Fxi , nargout =2)

Fci , Fx i1 = eng . S t m d r o b u s t c o n t r o l l e r f n c ( yc , t i m e i , Fxi , nargout =2)

Fc [ i ] = np . a s a r r a y ( F c i [ 1 ] )

Fx [ i , : ] = np . a s a r r a y ( Fxi1 [ 1 ] )

Fmax=1000000

i f Fc [ i ]>Fmax :
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Fc [ i ]=Fmax

e l i f Fc [ i ]<−Fmax :

Fc [ i ]=−Fmax

e l s e :

Fc [ i ]= Fc [ i ]

# Frequency d a t a

FREQQ[ i , : ] = e i g e n ( ’− f u l l G e n L a p a c k ’ , 5 )

f r e q =np . f l o a t p o w e r (FREQQ[ i , : ] , 0 . 5 )

FREQ[ i , : ] = f r e q / 2 / pi

# N o r t h r i d g e Robus t

np . s a v e t x t ( ’ Nonl inearNrt xTMDrob . d a t ’ , xo )

np . s a v e t x t ( ’ NonlinearNrt FREQTMDrob . d a t ’ , FREQ)

np . s a v e t x t ( ’ Nonl inearNrt FcATMDhinf . d a t ’ , Fc )

np . s a v e t x t ( ’ Nonl inearNr t aTMDrob . d a t ’ , ao )

np . s a v e t x t ( ’ Nonl inearNrt vTMDrob . d a t ’ , vo )
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