
İki Güncel Dinamik Topluluk Takibi Yönteminin

Karşılaştırmalı Bir Çalışması

Arzum Karataş1 , Serap Şahin1

1 Izmir Institute of Technology, Izmir, Turkey

arzumkaratas@iyte.edu.tr, serapsahin@iyte.edu.tr

Özet. Gerçek dünya ağları doğaları gereği dinamiktirler ve sanal ortamlarda

çoğunlukla dinamik çizgelerle temsil edilirler. Bu dinamik ağlardaki verilerin

analizi kriminoloji, politika, sağlık, reklamcılık ve sosyal ağlar vb. gibi pek çok

alanda karar destek sistemleri için değerli bilgilerin elde edilmesine katkıda

bulunur. Toplulukların takibi, ağda bulunan toplulukların dinamizmini ve

eğilimlerini analiz etmek, anlamak ve bu toplulukların yakın geleceklerinin

kestirimi için çok önemlidir. Bu verilerin başarılı bir şekilde analiz edilmesi

halinde yazılım mühendisliği araçları ve karar destek sistemleri son kullanıcılar

için daha sağlıklı sonuçlar üretir. Bu çalışmada, seçtiğimiz iki önemli ve güncel

yöntemi doğruluğu, algoritmik karmaşası ve genel özellikleri bakımından

karşılaştırmalı olarak inceledik. Biz bu çalışmada topluluk takibi üzerine

geliştirilmiş ve her basamakta tespit edilen topluluk bilgisini içeren sentetik veri

kümeleri kullandık.

Anahtar Kelimeler: Dinamik ağlar, Toplulukların tespiti, Topluluk

gelişimlerinin takibi, Topluluk takibi.

A Comparative Analysis of Two Most Recent Dynamic
Community Tracking Methods

Arzum Karataş1 , Serap Şahin1

1 Izmir Institute of Technology, Izmir, Turkey

arzumkaratas@iyte.edu.tr, serapsahin@iyte.edu.tr

Abstract. Real world networks are intrinsically dynamic, and they are mostly
represented by dynamic graphs in virtual world. Analysis of these dynamic
network data can give valuable information for decision support systems in many

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:arzumkaratas@iyte.edu.tr
mailto:serapsahin@iyte.edu.tr
mailto:arzumkaratas@iyte.edu.tr

domains in criminology, politics, health, advertising and social networks etc.
Community tracking is important to analyze and understand the dynamics of the
group structures and predict the near futures of communities. With a successful
analysis of these data, software engineering tools and decision support systems
can produce more successful results for end users. In this study, we present a
comparative study of two important and recent community tracking methods in
terms of accuracy, algorithmic complexity and their characteristics. We use a
benchmark dataset which have ground truth community information detected
each time step as a test bed.

Keywords: Dynamic networks, Community detection, Community tracking.

1 Introduction

Real world networks such as social, biological, telecommunication etc. are dynamic
and they generally evolve gradually due to the interaction of their members. They are
mostly represented by dynamic networks constructed from a series of static networks
ordered in time.
 Community tracking is one of the important problems in the domain of Network
Science because it helps analyzing information diffusion [1] and observing change of
group dynamics etc. Researchers are interested in examining evolution of communities
to study the evolutionary trend and predict the future structure of the network for
support decision systems in many areas such as public health (to discover dynamics of
certain groups susceptible to a disease) [2], criminology (to identify criminal groups
that spread or support criminal ideas and activities like terrorism) [3] and politics (to
observe influences of political ideologies on some social group over time). Similarly,
community tracking provides valuable information for support decision systems for
targeted marketing [4] and recommendation systems [5].

A comparative study of six selected methods that follow independent community
detection and matching approach for tracking communities in evolving (or dynamic)
social networks is done by He et al. [6] in 2017. However, He et al. [6] only test four
of the methods such as Greene et al.’s [7], Takaffoli et al.’s [8], Brodka et al.’s [9] and

Tajeuna et al.’s [10] methods between 2010 and 2015. In this study, they compare these
methods for overlapping and disjoint communities with two specific measures (e.g.
Average Pearson Correlation [10] and Proportion of Nodes Persisting [10]) to evaluate
the quality of the tracked communities. As a result of their study, they state that all the
approaches compared track communities very well. However, they neither compare
accuracy nor do complexity analysis for these methods which are important for usage
of community tracking software tools by end users. As an additional note, all studies
under reference [6] work on a pool of static data, which is divided into many time slices.
The selected methods aim to detect event relations among communities of different
time steps. We also trace the existence of new methods in literature after the work of
He et al. [6] till June 2019. Finally, we select Greene et al.’s method [7] and Tajeuna et
al.’s [10] method for our study and we explain the reasons why we select them in
Section 2.2.

 The main contributions of this paper are to (1) detailed examination of important
two community tracking methods (e.g., Greene et al.’s [7] from 2010 and Tajeuna et

al.’s [10] from 2015) including their methodological steps, space and running time
complexity analysis, (2) comparison of these methods in terms of their characteristics
and accuracy rates and (3) at last evaluate their pros and cons.
 The rest of the paper is organized as follows. In Section 2, we give some
preliminary information about community tracking, and detailed information about
Greene et al.’s [7] and Tajeuna et al.’s [10] method. In Section 3, we present our

experimental works. In Section 4, we evaluate the experimental results and we close
our paper by giving our final thoughts.

2 Selected Methods for Tracking Community Evolutions on
Dynamic Networks

2.1 Concept Definitions

We use a graph Gt=(Vt, Et) for representing a static network (e.g., actual snapshot of
the dynamic network) where Vt stands for the set of members (e.g., vertices) and Et the
set of connections (e.g., edges). We represent a dynamic network as an ordered
sequence of static networks like G={G1, G2, …, Gs}where s is the number of static
networks, which built the dynamic network.
 Real world networks inherently contain a community structure inside where a
community is a subset of members of each time graph Gt is densely connected inside
rather than the rest of the network. There can be number of k communities belong to
same Gt. Community detection reveals underlying group structure of the current time
graph Gt like Ct = {Ct

1, Ct
2, …, Ct

k} where each community is 𝐶𝑡
𝑖 ∈ 𝐶𝑡

 and 𝐶𝑡
𝑖=(𝑉𝑡 , 𝐸𝑡)

is a subset of Ct.
 Given two communities C1 and C2 are regarded as similar when they share
members more than a given similarity threshold in our work. The most popular
similarity is Jaccard similarity (e.g., intersection over union) for community matching.
 An evolving community is denoted by ordered sequence of tracked communities.
Each community residing on this tracking chain indicates the status of evolving
community at a specific time step. For example, 𝑆𝐶1 = {𝐶𝑡1

1 , 𝐶𝑡2
1 , . . . , 𝐶𝑡5

1 } represents the
evolution of community C1 from time step t1 to t5. Therefore, community tracking
problem produces evolution chains for the communities on dynamic networks.
 As time goes on, an evolving community structure may change because of arrival
or departure of members and connections. Therefore, an evolving community may be
growing with arrival of new members while it may be shrinking with the departure of
existing members or continues with nearly same members. In the same way, a
community may split into different communities or several communities may merge
and form a new community over time. We also observe that a new community is formed
(e.g., birth), or a community dissolves by losing its members. Also, some communities
can evolve non-consecutively, which means that a community observed at time t is



observed at time t+2 or later time steps instead of time t+1.

2.2 Community Tracking Methods

We select two recent community tracking methods that follow independent community
detection and matching approach to compare. This approach detects communities on
each time step and then match them among different time steps. We select Greene et
al.’s method [7] because it is one of the outstanding works in the area and its source
code is open to public. Thus, it is readable and modifiable. We select Tajeuna et al.’s

method [10], because it has most advanced capabilities (i.e., it is the only one able to
detect all community evolution events among existing community tracking methods
and the other capabilities are seen in Table 6). Therefore, we present them hereunder
as selected related works. Note that, also both methods need pre-calculated
communities of dynamic network at each time step and we use the main variables below
when we do complexity analysis of the methods: number of time steps (t) , number of
nodes (n), number of communities (c), average size of communities per time
step(avg_com_size) and number of dynamic communities (d).

Greene et al.’s Method. A pseudocode for Greene et al.’s method [7] is provided in

Fig. 1. The authors regard each dynamic community as a timeline(𝐷𝑖). They initialize

a set of timelines(ⅅ) with initial communities (ℂ𝑖) on first time step (Step 1).The latest

communities on these timelines are called as fronts (𝐹𝑖)
of respective timeline. They

read each time step communities (𝐶𝑡
𝑗
) and try to match the current time step

communities with fronts (Step 2). To do matching between each community of this

time step and fronts, they build a map for tracking the place of each node in the fronts

and hold an array to compute and count intersections among them. They compute

Jaccard similarity between fronts and current time step communities in constant time

by using this array (Step 2.2.1) and if similarity is higher than similarity threshold 𝜆,

they add the compared step community to the matched community’s timeline (Step

2.2.2). If there is no match, they append the set of timelines with a new dynamic

community containing currently matched community (Step 2.2.3). Then, they update

the fronts (Step 2.3).
 As it seen from Table 1, the most time-consuming task in this method is building

and filling a map for tracking the place of each node in the fronts in Step 2.2.1 for

preparation of matching process. Note that traversing nodes for each time step takes at

most 𝑂(𝑡 × 𝑛) computation time and adding them into a map requires at most

𝑂(𝑙𝑜𝑔 𝑛) computation time. Therefore, time complexity of the method is 𝑂(𝑡 × 𝑛 ×
𝑙𝑜𝑔 𝑛); in overall. The most space-consuming steps are Step 2.1. and Step 2.2.1.

Therefore, the method needs memory space as 𝑂(𝑛 + (𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒) × 𝑙𝑜𝑛𝑔)

type for storing nodes at each time step and nodes at front communities.



 Fig. 1. A pseudocode for Greene et al.’s method

Table 1. Complexity values of each step at pseudocode in Fig. 1.

Step Time Complexity Space Complexity

1 𝑂(𝑛) ; traverse all nodes of
communities at t=1

𝑂(𝑛 × 𝑙𝑜𝑛𝑔 𝑖𝑛𝑡); store all nodes of
communities at t=1

2.1 𝑂(𝑡 × 𝑛) ; read all nodes in the
network

𝑂(𝑛 × 𝑙𝑜𝑛𝑔 𝑖𝑛𝑡); store all nodes of
communities at t

2.2.1 𝑂(𝑡 × 𝑛 × 𝑙𝑜𝑔 𝑛); read all nodes of
communities at t and put them into a
map

𝑂(𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒 ×
𝑙𝑜𝑛𝑔 𝑖𝑛𝑡) ; store all nodes in the
front

+ 𝑂(𝑑 × 𝑖𝑛𝑡); store intersection of
a community in the array with fronts
where array indices refer to front
indices

2.2.2 𝑂(𝑡 ×
1

𝜆
) ; process every matched

community (e.g., their count equals
at most 1

𝜆
) for each t

𝑂(
1

𝜆
× 𝑖𝑛𝑡) ; holds the indices of

matched communities

2.2.3 𝑂(𝑐 × 𝑡) ; append each unmatched
community (e.g., their count equals
𝑐 at worst case) at each t to ⅅ

𝑂(𝑐 × 𝑖𝑛𝑡) ; store indices of
communities to be appended.

2.3 𝑂(𝑑) ; traverse all dynamic
communities at worst case

𝑂(𝑑 × 𝑖𝑛𝑡); store the front indices

Tajeuna et al.’s Method. A pseudocode for the method is shown in Fig. 2. The authors
first build a binary matrix(A) between nodes and communities to represent
memberships of nodes at Step 1. They create a Burt matrix(B) where 𝐵 = 𝐴𝑇 × 𝐴 to
define the number of common nodes between communities in Step 2; keeping mind we
use Eigen library residing http://eigen.tuxfamily.org website for fast matrix
multiplication. They transform B into a transition matrix to calculate the transition
probabilities between communities by normalizing entries of B in Step 3. They track
communities in Step 4. For this reason, they hold a set S and initialize S with currently
tracked community (𝐶𝑖) to hold evolution chain of at Step 4.1. They check mutual
transition (e.g. sim()) between each community with most recent time (𝑡𝑥) in S(𝐶𝑡𝑥

𝑘)and
each community at time step 𝑡𝑗(𝐶𝑡𝑗

𝑚) and check Jaccard similarity(JS) between 𝐶𝑡𝑗

𝑚 and
𝐶𝑖 . If both mutual transition and JS is greater than the similarity threshold 𝜆, 𝐶𝑡𝑗

𝑚 is
added to evolution chain, S at Step 4.2.1.1. Mutual transition between two communities
is sum of harmonic means of each entries of correspondent transition matrix rows.
Jaccard similarity is directly computed correspondent entries of normalized Burt
matrix.

Fig. 2. A pseudocode of Tajeuna et al.’s method

 In Table 2, complexity values of each step in Fig. 2 are seen. Specifically, the
most time-consuming task is similarity calculation between tracked communities and
prospective next time step communities at Step 4.2.1.1. This calculation is done for all
communities at next time step (𝑂(𝑐)) for each tracked community (𝑂(𝑐 × 𝑡)) and the
similarity calculation cost between two community is 𝑂(𝑐 × 𝑡). Therefore, the running
time complexity of the method is 𝑂((𝑐 × 𝑡)2 × 𝑐). The space complexity of the work
is 𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒)) because of the storage of Burt matrix.

http://eigen.tuxfamily.org/

Table 2. Complexity values of each step at pseudocode in Fig. 2.

Step # Time complexity Space Complexity

1 𝑂(𝑡 × 𝑛); traverse the nodes of
all communities

 𝑂(𝑐 × 𝑡 × (𝑖𝑛𝑡)) ; store time
information of communities

+ 𝑂(𝑛 × 𝑡 × (𝑑𝑜𝑢𝑏𝑙𝑒)) ; Eigen stores
non-zero coefficients of A

2 𝑂(𝑡 × 𝑐 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒);
Eigen multiplies only non-zero
coefficients of AT and A

 𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒)) ; store
correlations between all communities
(matrix B)

3 𝑂((𝑐 × 𝑡)2) ; traverse each cell
of matrix B

 No need extra space because
normalization of B is done in place

4 𝑂((𝑐 × 𝑡)2 × 𝑐) ; traverse all
communities to be tracked
(𝑂(𝑐 × 𝑡)) and for each of them
traverse each next time step
community 𝐶𝑡𝑗

𝑚 (𝑂(𝑐)) and
traverse each cell of normalized
Burt matrix for similarity
calculation (𝑂(𝑐 × 𝑡)).

 𝑂(𝑐 × (𝑠𝑡𝑟𝑖𝑛𝑔)) ; to store names of 𝐶𝑡𝑗

𝑚
communities
 𝑂((𝑐 × 𝑡) × (𝑠𝑡𝑟𝑖𝑛𝑔)) ; store
community names to be tracked and list
of tracked communities

3 Experiments & Results

3.1 Data Sets, Assumptions and Environment for Experiments

In this section, we test Greene et al.’s method and Tajeuna et al.’s method on a dynamic
benchmark dataset. This dataset is generated by Greene et al. The dataset is constructed
from four different synthetic graphs where each of them contains five static networks
(e.g., five time steps) with 15000 nodes to simulate nonconsecutively evolving
communities and includes six different community evolution events such as birth,
death, growing, shrinking, merge and split. The dataset can be found online at
http://mlg.ucd.ie/dynamic.

• The ‘Intermittent’ dataset contains the nonconsecutively evolving communities.

• The ‘BirthDeath’ dataset is created to simulate form and dissolution of communities.

Greene et al. create birth of 40 additional communities by transferring nodes of
other existing communities and randomly remove 40 existing communities along
the network.

http://mlg.ucd.ie/dynamic

• The ‘ExpandContraction’ dataset is created to simulate growing and shrinking of
communities. Greene et al. make growing and shrinking for randomly chosen 40
communities by 25% of their previous sizes.

• The ‘MergeSplit’ dataset is created to simulate merge of two existing communities
and splitting of an existing community into two new communities. Greene et al.
introduce 40 split and 40 merge events.

 We design the following experiment to compare their accuracies and running
speeds under the same conditions. For the equality of similar steps of both algorithms
(e.g. detection of existing communities at each step); we use Louvain algorithm [11]
and we remove the communities that have less than 3 nodes for both approaches.
 We download executable and source code of Greene et al.’s method [7] and use

for experimental results. But, since neither source code nor executable of Tajeuna et
al.’s method is open to public, we implement their method with same programming
language (C++) with Greene et al.’s. We use a laptop with Core i7 2.30 GHz CPU and

8GB memory with our testbeds. Note that similarity threshold is taken as 0.1 for both
methods because Greene et al. use this value in their experiment.

3.2 Results of Experiments

It is possible to evaluate the quality of detected communities by using Normalized
Mutual Information (NMI) [12], if the ground-truth community information is already
known. NMI measures accuracy of detected community structure by comparing them
with the ground-truth structure and it produces a real value in [0,1]. The higher NMI
values show that community detection done is better. The measurements are seen in
Table 3 and Table 4 for each benchmark dataset.
 The NMI values recorded in Table 3 are values with 92% accuracy rate. For the
work of Tajeuna et al.[10], the NMI values reside in Table 4 with 98% accuracy rate.
We calculate them via an NMI calculation software [13], by feeding of ground truth
and detected community information for each step.

Table 3. NMI values for Greene et al.’s method[7]

Time-
steps

BirthDeath
NMI

ExpandContraction
NMI

Intermittent
NMI

MergeSplit
NMI

t=1 0,88 0,88 0,88 0,88
t=2 0,93 0,94 0,91 0,94
t=3 0,92 0,93 0,94 0,92
t=4 0,92 0,96 0,93 0,91
t=5 0,94 0,96 0,92 0,88

 In the light of accuracy values that we obtain, we can say that Tajeuna et al.’s

method performs better than Greene et al.’s method in terms of accuracy.

Table 4. NMI values for Tajeuna et al.’s method[10]

Timesteps BirthDeath
NMI

ExpandContraction
NMI

Intermittent
NMI

MergeSplit
NMI

t=1 0,996729 0,998628 0,99493 0,995583
t=2 0,995638 0,99618 0,987166 0,974798
t=3 0,995151 0,981107 0,98827 0,944636

t=4 0,991624 0,977629 0,992919 0,934176
t=5 0,994112 0,974361 0,989547 0,905201

4 Discussion of the Methods and Conclusion

Table 5. Overview of the methods

Capabilities Greene et al.’s method

(2010)
Tajeuna et al.’s method

(2015)

1 Threshold setting Manually set Automatically set

2 Tracking Consecutive & partially
nonconsecutive

Consecutive &
nonconsecutive

3 Missing Event type Continue event type is
not defined.

All event types are defined.

4 Merge events Identification is limited
to two communities.

There is no limitation. n
communities can merge.

5 Split events A community can only
be split into two
communities.

There is no limitation. A
community can be split into
m communities

6 Space Complexity 𝑂(𝑛

+ (𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒)

× (𝑙𝑜𝑛𝑔))

𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒))

7 Time Complexity 𝑂(𝑡 × 𝑛 × 𝑙𝑜𝑔 𝑛) 𝑂((𝑐 × 𝑡)2 × 𝑐))

8 Accuracy on the
benchmark dataset

92 % 98%

In this study; we have presented a comparative study of two recent community tracking
methods. Greene et al.’s method [7] is published in 2010 and Tajeuna et al.’s [10]

method is published in 2015. Both methods focus on dynamically evolving data
networks, to analyze their community relations on static and time sliced data pools. We
test them on ground truth benchmark datasets in terms of accuracy and do their

complexity analysis. Hereunder, Table 5 summarizes a comparative analysis for
selected criteria between both methods.
 Criteria 1 & 2 & 3 & 4 & 5 are satisfied by Tajeuna et. al.’s method with
higher accuracy. Threshold setting is automatically tuned according to the average
number of nodes shared among all detected communities. Which is requirement overall
high accuracy on continuing analyses among communities for long time series.
Tracking of each community with all possible event types on non-consecutive time
steps is important.
 Criteria 6 & 7: Running times obtained from our experimental study are matched
with time complexity analysis. Greene et. al.’s method should be preferred in very fast

computation with predetermined similarity threshold requirement, but results are less
accurate. On the other hand, Tajeuna et al.’s method should be preferred in the need of
high accuracy and automatic similarity threshold requirements, but it needs high
computation time with sufficient memory space.
 In future, we will focus on tracking communities on real world networks and
predicting community evolution events.

References
1. S. Lin, Q. Hu, G. Wang, and S. Y. Philip: Understanding community effects on information

diffusion. pp. 82-95. In Proceedings of Pacific-Asia Conference on Knowledge Discovery
and Data Mining(PAKDD), pp. 82-95, Springer, Ho Chi Minh City, Vietnam (2015)

2. D. A. Luke, and J. K. Harris: Network analysis in public health: history, methods, and
applications. Annu. Rev. Public Health 28, 69-93(2007)

3. A. Calvó‐Armengol, and Y. Zenou: Social networks and crime decisions: The role of social

structure in facilitating delinquent behavior. International Economic Review 45(3), 939-
958(2004)

4. D. Kempe, J. Kleinberg, and É. Tardos: Maximizing the spread of influence through a social

network. pp. 137-146. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137-146, ACM, Washington DC, USA(2003)

5. M. Zanin, P. Cano, J. M. Buldú, and O. Celma: Complex networks in recommendation

systems. pp 120-124. In Proceedings of second International Conference on Computer
Engineering and Applications, World Scientific Advanced Series In Electrical And
Computer Engineering(WSEAS), pp 120-124, Acapulco, Mexico(2008)

6. Z. He, E. G. Tajeuna, S. Wang, and M. Bouguessa: A Comparative Study of Different
Approaches for Tracking Communities in Evolving Social Networks. pp. 89-98. In
Proceedings of 2017 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pp 89-98, Tokyo, Japan(2017)

7. D. Greene, D. Doyle and P. Cunningham: Tracking the evolution of communities in dynamic
social networks. pp. 176-183. In Proceedings of International conference on Advances in
social networks analysis and mining (ASONAM), pp. 176-183,IEEE,Odense,
Denmark(2010)

8. M. Takaffoli, J. Fagnan, F. Sangi, and O. R. Za¨ıane: Tracking changes in dynamic

information networks. Pp 94-101. In Proceedings of International Conference on
Computational Aspects of Social Networks (CASoN), pp. 94–101, Salamanca, Spain(2011)

9. P. Brodka, S. Saganowski, and P. Kazienko: Ged: the method for group evolution discovery
in social networks. Social Network Analysis and Mining 3(1), 1–14(2013)

10. E. G. Tajeuna, M. Bouguessa, and S. Wang: Tracking the evolution of community structures
in time-evolving social networks. pp 1-10. In Proceedings of International Conference on
Data Science and Advanced Analytics (DSAA), pp. 1–10, Paris, France(2015)

11. V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre E.:Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment
2008(10), 10008(2008)

12. L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas: Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 2005(09),
P09008(2005)

13. A. Lancichinetti, S. Fortunato and J. Kertesz:Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3), 033015(2009)

	UYMS 2019
	‎C:\Users\Zafer\OneDrive\Belgeler\Turkish National Software Engineering Symposium 2019.pdf‎
	‎C:\Users\Zafer\OneDrive\Belgeler\UYMS 2019.pdf‎
	‎C:\Users\Zafer\Desktop\13\xpreface.pdf‎
	page02.pdf
	page03

	‎C:\Users\Zafer\Desktop\13\keynote.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper6.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper64.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper80.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper90.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper19.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper25.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper67.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper16.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper46.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper21.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper70.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper22.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper56.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper59.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper55.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper62.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper53.pdf‎
	Meta-Modelleme Araçlar�n�n Uygulay�c�lar�n Ihtiyaçlar� Aç�s�ndan Analizi
	Towards Analysing the Meta-Modeling Tools for the Needs of Practitioners

	‎C:\Users\Zafer\Desktop\13\paper41.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper49.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper66.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper27.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper3.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper82.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper65.pdf‎
	1 Introduction
	2 High Level System View
	2.1 High Level View for the Learning Mode
	2.2 High Level View for the Emulation Mode

	3 Architecture
	3.1 Model Learner
	3.2 Device Communicator
	3.3 Parser
	3.4 Device Emulator

	4 An Example Run
	4.1 Learning Mode
	4.2 Emulation Mode

	5 Discussion
	6 Conclusion
	Acknowledgement
	References

	‎C:\Users\Zafer\Desktop\13\paper13.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper63.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper47.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper68.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper85.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper72.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper74.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper57.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper54.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper58.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper45.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper48.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper89.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper33.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper29.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper12.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper32.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper71.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper75.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper86.pdf‎
	1 Giriş
	2 Gereksinim Belirlemede Başarıyı Arttıracak Bir Yöntem
	2.1 As�l Amaç ve Hedef Kullan�c� Kitlesinin Belirlenmesi
	2.2 Kullan�lacak Teknolojilerin Belirlenmesi
	2.3 Benzer Uygulamaların İncelenmesi
	Barındırdığı Özelliklerin Tespit Edilmesi
	Olumlu Yorumlara Sahip Özelliklerin Tespit Edilmesi
	Olumsuz Yorumların Değerlendirilmesi

	2.4 Kullanıcıların Temel İhtiyaçlarının Belirlenmesi
	Asıl Amaca Uygun İhtiyaçlar
	Mobil Platforma Uygunluğu
	Karars�z Kal�nan Özellikler

	2.5 Fark Yaratacak İhtiyaçlarının Belirlenmesi
	2.6 Gereksiz İhtiyaçlarının Belirlenmesi
	2.7 Nötr İhtiyaçlarının Belirlenmesi
	2.8 Prototip Tasar�mlar� Yard�m�yla Kullan�labilirlik Testleri Yap�lmas�

	3 Kitap Paylaşım Uygulaması
	3.1 As�l Amaç ve Hedef Kullan�c� Kitlesi
	3.2 Kullan�lacak Teknolojilerin Belirlenmesi
	3.3 Benzer Uygulamaların İncelenmesi
	Barındırdığı Özelliklerin Tespit Edilmesi
	Olumlu Yorumlara Sahip Özelliklerin Tespit Edilmesi
	Olumsuz Yorumların Değerlendirilmesi

	3.4 Kullanıcıların Temel İhtiyaçlarının Belirlenmesi
	Asıl Amaca Uygun İhtiyaçlar
	Mobil Platforma Uygunluğu
	Karars�z Kal�nan Özellikler

	3.5 Fark Yaratacak İhtiyaçlarının Belirlenmesi
	3.6 Gereksiz İhtiyaçlarının Belirlenmesi
	3.7 Nötr İhtiyaçlarının Belirlenmesi
	3.8 Prototip Tasar�mlar� Yard�m�yla Kullan�labilirlik Testleri Yap�lmas�

	4 Sonuçlar
	Kaynakça

	‎C:\Users\Zafer\Desktop\13\paper20.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper37.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper18.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper23.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper15.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper17.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper11.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper42.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper52.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper14.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper39.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper83.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper1.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper76.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper43.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper34.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper26.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper84.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper50.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper36.pdf‎
	‎C:\Users\Zafer\Desktop\13\paper78.pdf‎

