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Özet. Gerçek dünya ağları doğaları gereği dinamiktirler ve sanal ortamlarda 

çoğunlukla dinamik çizgelerle temsil edilirler. Bu dinamik ağlardaki verilerin 

analizi kriminoloji, politika, sağlık, reklamcılık ve sosyal ağlar vb. gibi pek çok 

alanda karar destek sistemleri için değerli bilgilerin elde edilmesine katkıda 

bulunur. Toplulukların takibi, ağda bulunan toplulukların dinamizmini ve 

eğilimlerini analiz etmek, anlamak ve bu toplulukların yakın geleceklerinin 

kestirimi için çok önemlidir. Bu verilerin başarılı bir şekilde analiz edilmesi 

halinde yazılım mühendisliği araçları ve karar destek sistemleri son kullanıcılar 

için daha sağlıklı sonuçlar üretir. Bu çalışmada, seçtiğimiz iki önemli ve güncel 

yöntemi doğruluğu, algoritmik karmaşası ve genel özellikleri bakımından 

karşılaştırmalı olarak inceledik. Biz bu çalışmada topluluk takibi üzerine 

geliştirilmiş ve her basamakta tespit edilen topluluk bilgisini içeren sentetik veri 

kümeleri kullandık.  
 

Anahtar Kelimeler: Dinamik ağlar, Toplulukların tespiti, Topluluk 

gelişimlerinin takibi, Topluluk takibi.  
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Abstract. Real world networks are intrinsically dynamic, and they are mostly 
represented by dynamic graphs in virtual world. Analysis of these dynamic 
network data can give valuable information for decision support systems in many 
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domains in criminology, politics, health, advertising and social networks etc. 
Community tracking is important to analyze and understand the dynamics of the 
group structures and predict the near futures of communities. With a successful 
analysis of these data, software engineering tools and decision support systems 
can produce more successful results for end users. In this study, we present a 
comparative study of two important and recent community tracking methods in 
terms of accuracy, algorithmic complexity and their characteristics. We use a 
benchmark dataset which have ground truth community information detected 
each time step as a test bed. 

Keywords: Dynamic networks, Community detection, Community tracking. 

1 Introduction 

Real world networks such as social, biological, telecommunication etc. are dynamic 
and they generally evolve gradually due to the interaction of their members. They are 
mostly represented by dynamic networks constructed from a series of static networks 
ordered in time.  
  Community tracking is one of the important problems in the domain of Network 
Science because it helps analyzing information diffusion [1] and observing change of 
group dynamics etc. Researchers are interested in examining evolution of communities 
to study the evolutionary trend and predict the future structure of the network for 
support decision systems in many areas such as public health (to discover dynamics of 
certain groups susceptible to a disease) [2], criminology (to identify criminal groups 
that spread or support criminal ideas and activities like terrorism) [3] and politics (to 
observe influences of political ideologies on some social group over time). Similarly, 
community tracking provides valuable information for support decision systems for 
targeted marketing [4] and recommendation systems [5].  

A comparative study of six selected methods that follow independent community 
detection and matching approach for tracking communities in evolving (or dynamic) 
social networks is done by He et al. [6] in 2017. However, He et al. [6] only test four 
of the methods such as Greene et al.’s [7], Takaffoli et al.’s [8], Brodka et al.’s [9] and 

Tajeuna et al.’s [10] methods between 2010 and 2015. In this study, they compare these 
methods for overlapping and disjoint communities with two specific measures (e.g. 
Average Pearson Correlation [10] and Proportion of Nodes Persisting [10]) to evaluate 
the quality of the tracked communities. As a result of their study, they state that all the 
approaches compared track communities very well. However, they neither compare 
accuracy nor do complexity analysis for these methods which are important for usage 
of community tracking software tools by end users. As an additional note, all studies 
under reference [6] work on a pool of static data, which is divided into many time slices. 
The selected methods aim to detect event relations among communities of different 
time steps. We also trace the existence of new methods in literature after the work of 
He et al. [6] till June 2019. Finally, we select Greene et al.’s method [7] and Tajeuna et 
al.’s [10] method for our study and we explain the reasons why we select them in 
Section 2.2. 



  The main contributions of this paper are to (1) detailed examination of important 
two community tracking methods (e.g., Greene et al.’s [7] from 2010 and Tajeuna et 

al.’s [10] from 2015) including their methodological steps, space and running time 
complexity analysis, (2) comparison of these methods in terms of their characteristics 
and accuracy rates and (3) at last evaluate their pros and cons.  
  The rest of the paper is organized as follows. In Section 2, we give some 
preliminary information about community tracking, and detailed information about 
Greene et al.’s [7] and Tajeuna et al.’s [10] method. In Section 3, we present our 

experimental works. In Section 4, we evaluate the experimental results and we close 
our paper by giving our final thoughts. 
 

2 Selected Methods for Tracking Community Evolutions on 
Dynamic Networks 

 

2.1 Concept Definitions 

We use a graph Gt=(Vt, Et) for representing a static network (e.g., actual snapshot of 
the dynamic network) where Vt stands for the set of members (e.g., vertices) and Et the 
set of connections (e.g., edges). We represent a dynamic network as an ordered 
sequence of static networks like G={G1, G2, …, Gs}where s is the number of static 
networks, which built the dynamic network. 
  Real world networks inherently contain a community structure inside where a 
community is a subset of members of each time graph Gt is densely connected inside 
rather than the rest of the network. There can be number of k communities belong to 
same Gt. Community detection reveals underlying group structure of the current time 
graph Gt like Ct = {Ct

1, Ct
2, …, Ct

k} where each community is 𝐶𝑡
𝑖 ∈ 𝐶𝑡

 and 𝐶𝑡
𝑖=(𝑉𝑡 , 𝐸𝑡) 

is a subset of Ct.  
  Given two communities C1 and C2 are regarded as similar when they share 
members more than a given similarity threshold in our work. The most popular 
similarity is Jaccard similarity (e.g., intersection over union) for community matching. 
  An evolving community is denoted by ordered sequence of tracked communities. 
Each community residing on this tracking chain indicates the status of evolving 
community at a specific time step. For example, 𝑆𝐶1 = {𝐶𝑡1

1 , 𝐶𝑡2
1 , . . . , 𝐶𝑡5

1 } represents the 
evolution of community C1 from time step t1 to t5. Therefore, community tracking 
problem produces evolution chains for the communities on dynamic networks.  
  As time goes on, an evolving community structure may change because of arrival 
or departure of members and connections. Therefore, an evolving community may be 
growing with arrival of new members while it may be shrinking with the departure of 
existing members or continues with nearly same members. In the same way, a 
community may split into different communities or several communities may merge 
and form a new community over time. We also observe that a new community is formed 
(e.g., birth), or a community dissolves by losing its members. Also, some communities 
can evolve non-consecutively, which means that a community observed at time t is 
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observed at time t+2 or later time steps instead of time t+1. 

2.2 Community Tracking Methods 

We select two recent community tracking methods that follow independent community 
detection and matching approach to compare. This approach detects communities on 
each time step and then match them among different time steps. We select Greene et 
al.’s method [7] because it is one of the outstanding works in the area and its source 
code is open to public. Thus, it is readable and modifiable. We select Tajeuna et al.’s 

method [10], because it has most advanced capabilities (i.e., it is the only one able to 
detect all community evolution events among existing community tracking methods 
and the other capabilities are seen in Table 6). Therefore, we present them hereunder 
as selected related works. Note that, also both methods need pre-calculated 
communities of dynamic network at each time step and we use the main variables below 
when we do complexity analysis of the methods: number of time steps (t) , number of 
nodes (n), number of communities (c), average size of communities per time 
step(avg_com_size) and number of dynamic communities (d). 

Greene et al.’s Method. A pseudocode for Greene et al.’s method [7] is provided in 

Fig. 1. The authors regard each dynamic community as a timeline(𝐷𝑖). They initialize 

a set of timelines(ⅅ) with initial communities (ℂ𝑖) on first time step (Step 1).The latest 

communities on these timelines are called as fronts (𝐹𝑖) 
of respective timeline. They 

read each time step communities (𝐶𝑡
𝑗
)  and try to match the current time step 

communities with fronts (Step 2). To do matching between  each  community of this 

time step  and fronts, they build a map for tracking the place of each node in the fronts 

and hold an array to compute and count intersections among them. They compute 

Jaccard similarity between fronts and current time step communities in constant time 

by using this array (Step 2.2.1) and if similarity is higher than similarity threshold 𝜆, 

they add the compared step community to the matched community’s timeline (Step 

2.2.2).  If there is no match, they append the set of timelines with a new dynamic 

community containing currently matched community (Step 2.2.3). Then, they update 

the fronts (Step 2.3). 
  As it seen from Table 1, the most time-consuming task in this method is building 

and filling a map for tracking the place of each node in the fronts in Step 2.2.1 for 

preparation of matching process. Note that traversing nodes for each time step takes at 

most 𝑂(𝑡 × 𝑛)  computation time and adding them into a map requires at most 

𝑂(𝑙𝑜𝑔 𝑛) computation time. Therefore, time complexity of the method is 𝑂(𝑡 × 𝑛 ×
𝑙𝑜𝑔 𝑛 ); in overall. The most space-consuming steps are Step 2.1. and Step 2.2.1. 

Therefore, the method needs memory space as 𝑂(𝑛 + (𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒) × 𝑙𝑜𝑛𝑔) 

type for storing nodes at each time step and nodes at front communities. 





 Fig. 1. A pseudocode for Greene et al.’s method 

Table 1. Complexity values of each step at pseudocode in Fig. 1. 

Step Time Complexity Space Complexity 

1 𝑂(𝑛) ; traverse all nodes of 
communities at t=1 

𝑂(𝑛 × 𝑙𝑜𝑛𝑔 𝑖𝑛𝑡); store all nodes of 
communities at t=1 

2.1 𝑂(𝑡 × 𝑛) ; read all nodes in the 
network 

𝑂(𝑛 × 𝑙𝑜𝑛𝑔 𝑖𝑛𝑡); store all nodes of 
communities at t 

2.2.1 𝑂(𝑡 × 𝑛 × 𝑙𝑜𝑔 𝑛); read all nodes of 
communities at t and put them into a 
map 

𝑂(𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒 ×
𝑙𝑜𝑛𝑔 𝑖𝑛𝑡) ; store all nodes in the 
front  

+ 𝑂(𝑑 × 𝑖𝑛𝑡); store intersection of 
a community in the array with fronts 
where array indices refer to front 
indices 

2.2.2 𝑂(𝑡 ×
1

𝜆
 ) ; process every matched 

community (e.g., their count equals 
at most  1

𝜆
) for each t 

𝑂(
1

𝜆
× 𝑖𝑛𝑡) ; holds the indices of 

matched communities 

2.2.3 𝑂(𝑐 × 𝑡) ; append each unmatched 
community (e.g., their count equals 
𝑐 at worst case) at each t to ⅅ  

𝑂(𝑐 × 𝑖𝑛𝑡) ; store indices of 
communities to be appended. 

2.3 𝑂(𝑑) ; traverse all dynamic 
communities at worst case 

𝑂(𝑑 × 𝑖𝑛𝑡); store the front indices 

 



Tajeuna et al.’s Method. A pseudocode for the method is shown in Fig. 2. The authors 
first build a binary matrix(A) between nodes and communities to represent 
memberships of nodes at Step 1. They create a Burt matrix(B) where 𝐵 = 𝐴𝑇 × 𝐴  to 
define the number of common nodes between communities in Step 2; keeping mind we 
use Eigen library residing http://eigen.tuxfamily.org website for fast matrix 
multiplication. They transform B into a transition matrix to calculate the transition 
probabilities between communities by normalizing entries of B in Step 3. They track 
communities in Step 4. For this reason, they hold a set S and initialize S with currently 
tracked community (𝐶𝑖) to hold evolution chain of  at Step 4.1. They check mutual 
transition (e.g. sim()) between each community with most recent time (𝑡𝑥) in S(𝐶𝑡𝑥

𝑘 )and 
each community at time step 𝑡𝑗(𝐶𝑡𝑗

𝑚) and check Jaccard similarity(JS) between 𝐶𝑡𝑗

𝑚 and 
𝐶𝑖 . If both mutual transition and JS is greater than the similarity threshold 𝜆, 𝐶𝑡𝑗

𝑚 is 
added to evolution chain, S at Step 4.2.1.1. Mutual transition between two communities 
is sum of harmonic means of each entries of correspondent transition matrix rows. 
Jaccard similarity is directly computed correspondent entries of normalized Burt 
matrix. 
 

Fig. 2. A pseudocode of Tajeuna et al.’s method 

  In Table 2, complexity values of each step in Fig. 2 are seen. Specifically, the 
most time-consuming task is similarity calculation between tracked communities and 
prospective next time step communities at Step 4.2.1.1. This calculation is done for  all 
communities at next time step (𝑂(𝑐)) for each tracked community (𝑂(𝑐 × 𝑡)) and the 
similarity calculation cost between two community is 𝑂(𝑐 × 𝑡). Therefore, the running 
time complexity of the method is 𝑂((𝑐 × 𝑡)2 × 𝑐).  The space complexity of the work 
is 𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒)) because of the storage of Burt matrix.  

http://eigen.tuxfamily.org/


Table 2. Complexity values of each step at pseudocode in Fig. 2. 

Step # Time complexity Space Complexity 

1  𝑂(𝑡 × 𝑛); traverse the nodes of 
all  communities 

 𝑂(𝑐 × 𝑡 × (𝑖𝑛𝑡)) ; store time 
information of communities 

+ 𝑂(𝑛 × 𝑡 × (𝑑𝑜𝑢𝑏𝑙𝑒)) ;  Eigen stores 
non-zero coefficients of A 

2  𝑂(𝑡 × 𝑐 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒); 
Eigen multiplies only non-zero 
coefficients of AT and A 

 𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒)) ; store 
correlations between all communities 
(matrix B) 

3  𝑂((𝑐 × 𝑡)2) ; traverse each cell 
of matrix B 

 No need extra space because 
normalization of B is done in place 

4  𝑂((𝑐 × 𝑡)2 × 𝑐)  ;  traverse all 
communities to be tracked 
(𝑂(𝑐 × 𝑡)) and for each of them 
traverse  each next time step 
community 𝐶𝑡𝑗

𝑚  ( 𝑂(𝑐) ) and 
traverse each cell of normalized 
Burt matrix for similarity 
calculation (𝑂(𝑐 × 𝑡)). 

 𝑂(𝑐 × (𝑠𝑡𝑟𝑖𝑛𝑔)) ; to store names of 𝐶𝑡𝑗

𝑚 
communities 
 𝑂((𝑐 × 𝑡) × (𝑠𝑡𝑟𝑖𝑛𝑔)) ; store 
community names to be tracked and list 
of tracked communities 

3 Experiments & Results 

3.1 Data Sets, Assumptions and Environment for Experiments 

In this section, we test Greene et al.’s method and Tajeuna et al.’s method on a dynamic 
benchmark dataset. This dataset is generated by Greene et al. The dataset is constructed 
from four different synthetic graphs where each of them contains five static networks 
(e.g., five time steps) with 15000 nodes to simulate nonconsecutively evolving 
communities and includes six different community evolution events such as birth, 
death, growing, shrinking, merge and split. The dataset can be found online at 
http://mlg.ucd.ie/dynamic.  
 

• The ‘Intermittent’ dataset contains the nonconsecutively evolving communities.   
 
• The ‘BirthDeath’ dataset is created to simulate form and dissolution of communities. 

Greene et al. create birth of 40 additional communities by transferring nodes of 
other existing communities and randomly remove 40 existing communities along 
the network. 

http://mlg.ucd.ie/dynamic


• The ‘ExpandContraction’ dataset is created to simulate growing and shrinking of 
communities. Greene et al. make growing and shrinking for randomly chosen 40 
communities by 25% of their previous sizes. 

• The ‘MergeSplit’ dataset is created to simulate merge of two existing communities 
and splitting of an existing community into two new communities. Greene et al. 
introduce 40 split and 40 merge events.  

  We design the following experiment to compare their accuracies and running 
speeds under the same conditions. For the equality of similar steps of both algorithms 
(e.g. detection of existing communities at each step); we use Louvain algorithm [11] 
and we remove the communities that have less than 3 nodes for both approaches.  
  We download executable and source code of Greene et al.’s method [7] and use 

for experimental results. But, since neither source code nor executable of Tajeuna et 
al.’s method is open to public, we implement their method with same programming 
language (C++) with Greene et al.’s. We use a laptop with Core i7 2.30 GHz CPU and 

8GB memory with our testbeds. Note that similarity threshold  is taken as 0.1 for both 
methods because Greene et al. use this value in their experiment. 

3.2 Results of Experiments 

It is possible to evaluate the quality of detected communities by using Normalized 
Mutual Information (NMI) [12], if the ground-truth community information is already 
known. NMI measures accuracy of detected community structure by comparing them 
with the ground-truth structure and it produces a real value in [0,1]. The higher NMI 
values show that community detection done is better. The measurements are seen in 
Table 3 and Table 4 for each benchmark dataset. 
  The NMI values recorded in Table 3 are values with 92% accuracy rate. For the 
work of Tajeuna et al.[10], the NMI values reside in Table 4 with 98% accuracy rate. 
We calculate them via an NMI calculation software [13], by feeding of ground truth 
and detected community information for each step. 
 

Table 3. NMI values for Greene et al.’s method[7] 

Time-
steps 

BirthDeath 
NMI 

ExpandContraction 
NMI 

Intermittent 
NMI 

MergeSplit 
NMI 

t=1 0,88 0,88 0,88 0,88 
t=2 0,93 0,94 0,91 0,94 
t=3 0,92 0,93 0,94 0,92 
t=4 0,92 0,96 0,93 0,91 
t=5 0,94 0,96 0,92 0,88 

    
  In the light of accuracy values that we obtain, we can say that Tajeuna et al.’s 

method performs better than Greene et al.’s method in terms of accuracy. 



Table 4. NMI values for Tajeuna et al.’s method[10] 

Timesteps BirthDeath 
NMI 

ExpandContraction 
NMI 

Intermittent 
NMI 

MergeSplit 
NMI 

t=1 0,996729 0,998628 0,99493 0,995583 
t=2 0,995638 0,99618 0,987166 0,974798 
t=3 0,995151 0,981107 0,98827 0,944636 

 
t=4 0,991624 0,977629 0,992919 0,934176 
t=5 0,994112 0,974361 0,989547 0,905201 

    

4 Discussion of the Methods and Conclusion  

Table 5. Overview of the methods 

Capabilities Greene et al.’s method 

(2010) 
Tajeuna et al.’s method 

(2015) 

1 Threshold setting Manually set Automatically set 

2 Tracking Consecutive & partially 
nonconsecutive 

Consecutive &  
nonconsecutive 

3 Missing Event type Continue event type is 
not defined. 

All event types are defined. 

4 Merge events Identification is limited 
to two communities. 

There is no limitation. n 
communities can merge. 

5 Split events A community can only 
be split into two 
communities. 

There is no limitation. A 
community can be split into 
m communities 

6 Space Complexity 𝑂(𝑛

+ (𝑑 × 𝑎𝑣𝑔_𝑐𝑜𝑚_𝑠𝑖𝑧𝑒)      

× (𝑙𝑜𝑛𝑔)) 

𝑂((𝑐 × 𝑡)2 × (𝑑𝑜𝑢𝑏𝑙𝑒)) 

7 Time Complexity 𝑂(𝑡 × 𝑛 × 𝑙𝑜𝑔 𝑛) 𝑂((𝑐 × 𝑡)2 × 𝑐)) 

8 Accuracy on the 
benchmark dataset 

92 % 98% 

 
In this study; we have presented a comparative study of two recent community tracking 
methods. Greene et al.’s method [7] is published in 2010 and Tajeuna et al.’s [10] 

method is published in 2015. Both methods focus on dynamically evolving data 
networks, to analyze their community relations on static and time sliced data pools. We 
test them on ground truth benchmark datasets in terms of accuracy and do their 



complexity analysis. Hereunder, Table 5 summarizes a comparative analysis for 
selected criteria between both methods.  
  Criteria 1 & 2 & 3 & 4 & 5 are satisfied by Tajeuna et. al.’s method with 
higher accuracy. Threshold setting is automatically tuned according to the average 
number of nodes shared among all detected communities. Which is requirement overall 
high accuracy on continuing analyses among communities for long time series. 
Tracking of each community with all possible event types on non-consecutive time 
steps is important. 
  Criteria 6 & 7: Running times obtained from our experimental study are matched 
with time complexity analysis. Greene et. al.’s method should be preferred in very fast 

computation with predetermined similarity threshold requirement, but results are less 
accurate. On the other hand, Tajeuna et al.’s method should be preferred in the need of 
high accuracy and automatic similarity threshold requirements, but it needs high 
computation time with sufficient memory space. 
  In future, we will focus on tracking communities on real world networks and 
predicting community evolution events. 
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