
Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:46 
https://doi.org/10.1007/s12044-021-00643-6

© Indian Academy of Sciences

Dedekind harmonic numbers
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Abstract. For any number field, we define Dedekind harmonic numbers with respect
to this number field. First, we show that they are not integers except finitely many of them.
Then, we present a uniform and an explicit version of this result for quadratic number
fields. Moreover, by assuming the Riemann hypothesis for Dedekind zeta functions, we
prove that the difference of two Dedekind harmonic numbers are not integers after a
while if we have enough terms, and we prove the non-integrality of Dedekind harmonic
numbers for quadratic number fields in another uniform way together with an asymptotic
result.

Keywords. Harmonic numbers; prime number theory; Dedekind zeta function;
number fields.

2010 Mathematics Subject Classification. 11B83, 11R42, 11R04.

1. Introduction

Let K be a number field, the set of primes be P and p always denote a prime number. An
element of K which is a root of a monic polynomial with integer coefficients is called an
algebraic integer. The set of algebraic integers of K is called the ring of integers of K and
is denoted by OK . It is well-known that OK is a Dedekind domain, in other words, it is
Noetherian, integrally closed and its prime ideals are maximal. Thus, its non-zero proper
ideals factor into prime ideals uniquely. Moreover, for any non-zero ideal I of OK , the
norm of I is defined as NK/Q(I ) = |OK /I | which is always finite. We will use N (I ) in
short.

Given a prime ideal p ⊆ OK , one sees that p ∩ Z is a prime ideal of Z. Therefore,
p ∩ Z = pZ for some p ∈ P and we say that p lies above p. To add, OK /p is a field
extension of Fp and since it is finite, N (p) = |OK /p| is a power of p. In particular,
N (p) = p fp where fp is the inertial degree of p and defined as the dimension of the Fp

vector space OK /p.
Now, take any prime p and let p be a prime ideal of OK that lies above p. The exact

power of p dividing pOK is called the ramification index of p and is denoted by ep. If we
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write

pOK = p
ep1
1 . . . p

epm
m

for some prime ideals p1, . . . , pm and a positive integer m, we say that p is ramified if
epi > 1 for some i and unramified otherwise. Also, since the norm is multiplicative, we
have the following identity

d =
m∑

i=1

epi fpi , (1)

where d is the degree of the number field K . Moreover, if epi = fpi = 1 for every i , then
we say that p splits completely. Finally, if m = 1 and ep1 = 1, then we say that p is inert
in K . It is known that for any n > 1, the n-th harmonic number hn which is defined as

n∑

i=1

1

i

is not an integer, see [8]. Moreover, if n > m ≥ 1, the difference hn − hm is never an
integer by [4].

Extending the definition of harmonic numbers, we define the n-th Dedekind harmonic
number as follows.

DEFINITION 1.1

The n-th Dedekind harmonic number hK (n) is defined as

∑

0 �=I⊆OK
N (I )≤n

1

N (I )
, (2)

where the sum ranges over all non-zero ideals of OK with norm less than or equal to n.

Note that the sum in Equation (2) is finite as for any n ≥ 1, the set

{0 �= I ⊆ OK : N (I ) ≤ n}
is finite by (1). The idea of this analogue of harmonic numbers comes from the Dedekind

zeta function of a number field. The Dedekind zeta function of K is defined as

ζK (s) =
∑

0 �=I⊆OK

1

N (I )s

for any complex number s with Re(s) > 1. Notice that when K = Q, we have

ζQ(s) = ζ(s) and hQ(n) = hn .

As s → 1+, ζK (s) diverges to infinity so that the integrality of hK (n) rises a reasonable
question. Also, note that for any positive integer n, the rational number hK (n) can be
written as

hK (n) =
n∑

i=1

ai
i

where ai is the number of ideals 0 �= I ⊆ OK of norm exactly i .
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1.1 Order of growth of Dedekind harmonic numbers

We know that the order of growth of the n-th harmonic number is log n. The aim of this
section is to show that the order of growth of the n-th Dedekind harmonic number is
cK log n for some constant cK depending on the number field K . After showing this fact,
we will express cK explicitly. Then, we state our results. We start by setting A(x) to be

∑

n≤x

an .

It is known that (see [6])

A(x) = cK x + OK
(
x1− 1

d
)

where cK is a constant depending on K and d is the degree of the number field K . To write

cK explicitly, first, let us say that A(x) = cK x + R(x) where R(x) = OK (x1− 1
d ). Now,

the partial summation gives us the following equality

∑

n≤x

an
ns

= A(x)

xs
+ s

∫ x

1

A(t)

t s+1 dt = A(x)

xs
+ s

∫ x

1

cK t + R(t)

t s+1 dt.

As s → 1+, we have that

∑

n≤x

an
n

= A(x)

x
+ cK

∫ x

1

1

t
dt +

∫ x

1

R(t)

t2 dt

= cK log x + cK + R(x)

x
+

∫ ∞

1

R(t)

t2 dt −
∫ ∞

x

R(t)

t2 dt

= cK log x + cK + OK (x− 1
d ) +

∫ ∞

1

R(t)

t2 dt −
∫ ∞

x

R(t)

t2 dt.

Here, since R(t) = OK (x1− 1
d ) the integral

∫ ∞

1

R(t)

t2 dt

is convergent so that it is a constant c′
K depending on K . Therefore,

∑

n≤x

an
n

= cK log x + cK + c′
K −

∫ ∞

x

R(t)

t2 dt + OK (x− 1
d )

= cK log x + cK + c′
K + OK

(∫ ∞

x

1

t1+ 1
d

dt

)
+ OK (x− 1

d )

= cK log x + bK + OK (x− 1
d )

where bK = cK + c′
K . To sum up,

hK (n) ∼ cK log n. (3)

Now, we are ready to find cK . For s > 1, as x → ∞,

A(x)

xs
→ 0
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and we have the following equality:

lim
x→∞

∑

n≤x

an
ns

= ζK (s) = s
∫ ∞

1

cK t + R(t)

t s+1 dt

= cK s
∫ ∞

1

1

t s
dt + s

∫ ∞

1

R(t)

t s+1 dt

= cK
s

s − 1
+ s

∫ ∞

1

R(t)

t s+1 dt.

Note that the last integral is finite for s ≥ 1 since R(t) = OK
(
t1− 1

d
)
. Therefore,

multiplying both sides by s − 1, we have that

(s − 1)ζK (s) = cK s + s(s − 1)

∫ ∞

1

R(t)

t s+1 dt.

Taking limit as s → 1+, by the analytic class number formula (see [5, Chapter 8
Theorem 5]),

lim
s→1+(s − 1)ζK (s) = cK = 2r1+r2πr2 RK

|μ(K )|√�K
hK ,

where r1 is the number of real embeddings of K , r2 is the number of non-conjugate complex
embeddings, RK is the regulator of K , hK is the class number of K , �K is the absolute
value of the discriminant of K and μ(K ) is the group of roots of unity in K .

In conclusion, as n → ∞, hK (n) diverges by Equation (3) so that the integrality of the
n-th Dedekind harmonic number seems to be an intriguing question. Here, we first prove
the following theorem.

Theorem A. Let K be a number field. Then, there exists a positive integer nK depending
only on K such that for any n ≥ nK , the n-th Dedekind harmonic number hK (n) is not
an integer.

The first part of our next result is a uniform and an explicit version of Theorem A for
quadratic number fields.

Theorem B.

(i) For any quadratic number field K = Q(
√
d) where d �≡ 1, 17 (mod 24) is a square-

free integer, the n-th Dedekind harmonic number is not an integer for any n ≥ 4.
(ii) For any quadratic number field K = Q(

√
d)where d ≡ 1 (mod 24) is a square-free

integer, the n-th Dedekind harmonic number hK (n) is not an integer for n ≥ 4 if

• n ∈ [2e, 2e+1) for some positive even integer e or,
• n ∈ [2e, 2e+1) for some positive integer e ≡ 3 (mod 4) or,
• n ∈ [3y, 3y+1) for some positive integer y �≡ 2 (mod 3).

(iii) For any quadratic number field K = Q(
√
d) where d ≡ 17 (mod 24) is a square-

free integer, the n-th Dedekind harmonic number hK (n) is not an integer for n ≥ 9
if

• n ∈ [2e, 2e+1) for some positive even integer e or,
• n ∈ [2e, 2e+1) for some positive integer e ≡ 3 (mod 4) or,
• n ∈ [3y, 3y+1) for some positive even integer y.
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In particular, when K = Q(i) or Q(
√

2), then the corresponding Dedekind harmonic
number is not an integer for any n ≥ 2 so that the bound for nK in Theorem B can be
lowered. However, this can be seen in the first case analysis of the theorem, namely, when
d ≡ 2, 3 (mod 4).

It is well-known that the Dedekind zeta function ζK (s) can be extended to the entire
complex plane, see [5, Chapter 8]. The Riemann hypothesis for ζK (s), DRH for short,
states that if ζK (s) = 0 and 0 < Re(s) < 1, then Re(s) = 1

2 . Assuming DRH, we obtain
the following result. The first part of the following result is in the same spirit that of [4].
The second part yields the non-integrality of Dedekind harmonic numbers for quadratic
number fields in a uniform way, and this puts some light on the cases d ≡ 1 (mod 24)

and d ≡ 17 (mod 24) in Theorem B. The second part of the following theorem implies
its third part which states that for almost all pairs (d, n), where d is a square-free integer
and n ≥ 1 and K = Q(

√
d), the corresponding Dedekind harmonic number hK (n) is not

an integer.

Theorem C. For any number field K, let dK and �K denote the degree and the absolute
value of the discriminant of K, respectively.

(1) Assume DRH for the number field K. There exist constants β, x1 > 0 such that the
difference

hK (n) − hK (m)

is never an integer for any positive integers n > m ≥ x1 whenever

n − m ≥ β(dK logm + log �K )
√
m.

(2) Assume DRH for all quadratic number fields Kd = Q(
√
d) where d is a square-free

integer. Let 0 < c < 1 be given. Then, there exists a constant nc > 0 such that
whenever n ≥ nc and |d| ≤ ec

√
n/2, the n-th Dedekind harmonic number hKd (n) is

not an integer.
(3) Assume DRH for all quadratic number fields Kd = Q(

√
d) where d is a square-free

integer and let Q be the set of square-free integers in Z. Set

S(x) = |{(d, n) ∈ ([−x, x] ∩ Q) × [1, x] | hKd (n) /∈ Z}|.
That is, S(x) counts the number of pairs (d, n) ∈ Q × Z>0 inside the rectangle
[−x, x] × [1, x], where the corresponding Dedekind harmonic number hKd (n) is not
an integer. Then,

S(x) = 2xQ(x) + O(x log2 x),

where Q(x) = |Q ∩ [0, x]|. In other words, for almost all such pairs (d, n), the
corresponding Dedekind harmonic number hKd (n) is not an integer as

S(x) ∼ 2xQ(x).

Note that in the third part of Theorem C, the error term O(x) is inevitable as for n = 1
we have that hK (n) = 1 for any number field K . Thus under DRH, we are very close to
that error term. Furthermore, the third part of Theorem C yields that

S(x) ∼ 12

π2 x
2

as Q(x) ∼ 6
π2 x .
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2. Proof of Theorem A

Let K be a number field of degree d. For any positive integer n, recall that hK (n) can be
written as

hK (n) =
n∑

i=1

ai
i

,

where ak is the number of ideals 0 �= I ⊆ OK of norm k. We set

π1 = {p ∈ P : ap �= 0}
and

π2 = {p ∈ P : ap = 0}.
Note that P = π1 ∪ π2. Also, define

π1(x) = |π1 ∩ [1, x]|.
By the prime ideal theorem (see [2,6]), we know that

πK (x) = |{p ⊆ OK : N (p) ≤ x}| ∼ x

log x
.

Observe that the prime ideal theorem is an extension of the prime number theorem (see
[1]), which states that

π(x) ∼ x

log x
,

where π(x) = |{p ∈ P : p ≤ x}| is the prime counting function. Notice that

πK (x) =
∑

p⊆OK
N (p)=p≤x

1 +
∑

p:N (p)=p2

p≤√
x

1 + · · · +
∑

p:N (p)=pd

p≤ d√x

1

=
∑

p≤x

ap +
∑

p≤√
x

ap2 + · · · +
∑

p≤ d√x

apd .

Moreover, by Equation (1), we know that

api ≤ d

i
,

for any i ≥ 1. Therefore, for any i ≥ 1, one has that
∑

p≤√
x

api ≤ d

i
π(

√
x). (4)

Thus
∑

p≤√
x

ap2 + · · · +
∑

p≤ d√x

apd = Od(
√
x).

This in turn yields that

|{p ⊆ OK : N (p) ∈ P, N (p) ≤ x}| ∼ x

log x
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so that

q(x) =
∑

p≤x

ap ∼ x

log x
.

To add, we have

lim
x→∞

q(2x)

q(x)
= lim

x→∞

2x
log 2x

x
log x

= 2.

This gives that limx→∞ q(2x) − q(x) = ∞. Therefore,
∑

x<p≤2x
p∈π1

ap → ∞ as x → ∞.

On the other hand,

π1(2x) − π1(x) =
∑

x<p≤2x
p∈π1

1 ≥ 1

d

∑

x<p≤2x
p∈π1

ap = 1

d
(q(2x) − q(x))

since ap ≤ d for any prime p ∈ P. Hence, we also have that

lim
x→∞ π1(2x) − π1(x) = ∞.

Therefore, if x is sufficiently large, then there is always a prime number p in π1 ∩ (x, 2x].
Thus, there exists a positive integer nK greater than 2d such that if we take any n ≥ nK
and choose a prime p ∈ π1 ∩ ( n2 , n], then p does not divide ap since 1 ≤ ap ≤ d < p. As

hK (n) = 1 + a2

2
+ · · · + ap

p
+ · · · + an

n

and 2p > n, this yields that the only multiple of p lying in [1, n] is just p itself. Hence,
we obtain that the p-adic order of hK (n) is −1. This completes the proof. �

3. Proof of Theorem B

Suppose that K is a quadratic number field, namely,

K = Q(
√
d),

where d is a square-free integer. Now, our goal is to compute nK ’s explicitly and then
show that it is at most 4 uniformly in K except for the cases that d ≡ 1, 17 (mod 24). For
these cases, a uniform bound for nK in d may not be possible as one may observe from
the concluding remark at the end. Let us denote the discriminant of K by D. It is known
that if d ≡ 1 (mod 4), then D = d and if d ≡ 2, 3 (mod 4), then D = 4d. The Dirichlet
L-function associated to a given Dirichlet character χ modulo q is given by

L(s, χ) =
∞∑

k=1

χ(k)

ks
.

Now, for any prime number p, let us define

χD(p) =

⎧
⎪⎨

⎪⎩

1 if p splits,

−1 if p is inert,

0 if p ramifies.
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Then, χD yields a Dirichlet character modulo |D| (see [1,6]). It can be extended to all
integers. Moreover, we have the following identity

ζK (s) = ζ(s)L(s, χD).

Note that these Dirichlet series converge absolutely in the half plane Re(s) > 1. In this
half plane, if we write the Dirichlet series ζK (s) as

∞∑

n=1

an
ns

then, since it is a multiplication of two Dirichlet series ζ(s) and L(s, χD), we have that

an = (1 ∗ χD)(n),

where 1 ∗ χD is the Dirichlet convolution of the unit function 1 and χD . As a result,

an =
∑

b|n
χD(b).

Here, χD(n) is actually the Kronecker symbol
( D
n

)
K where it is defined as follows:

(I)
(
D
p

)

K
= 0 when p | d,

(II)

(
D

2

)

K
=

{
1 when D ≡ 1 (mod 8),

−1 when D ≡ 5 (mod 8),

(III) For any odd prime,
(
D
p

)

K
is the usual Legendre symbol modulo p,

(IV)

(
D

−1

)

K
=

{
1 when D > 0,

−1 when D < 0,

(V)
( D
n

)
K is totally multiplicative.

At this point, we refer the reader to check [6]. To add, since an is the Dirichlet convolution
of multiplicative functions, it is also multiplicative. Now, we are ready to prove the first
part of the theorem. We present nK ’s explicitly so that hK (n) is not an integer for any
n ≥ 4 and for K = Q(

√
d) where d is a square-free integer with

d �≡ 1, 17 (mod 24).

From now on, χ will represent χD .

Case 1: d ≡ 2, 3 (mod 4). For any positive integer k, we have the following coefficients:

a2k =
∑

b|2k
χ(b) = χ(1) + χ(2) + · · · + χ(2k) = 1

since when d ≡ 2, 3 (mod 4), we have D = 4d so that 2 | D. Therefore,

χ(2k) = χ(2) = 0.
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For n ≥ 2, we have 2m ≤ n < 2m+1 for some positive integer m. Then

hK (n) = a1

1
+ a2

2
+ · · · + an

n

= 1 +
(
a2

2
+ a3

3

)
+

(
a4

4
+ a5

5
+ a6

6
+ a7

7

)

+ · · · +
(
a2m

2m
+ · · · + an

n

)

= 1 +
(

1

2
+ a3

3

)

︸ ︷︷ ︸
of 2-adic val:−1

+
(

1

4
+ a5

5
+ a6

6
+ a7

7

)

︸ ︷︷ ︸
of 2-adic val:−2

+ · · · +
(

1

2m
+ · · · + an

n

)

︸ ︷︷ ︸
of 2-adic val:−m

.

Thus, whenever n > 1, we have ν2(hK (n)) < 0 so that hK (n) is not an integer. In other
words, nK can be chosen to be 2.

Case 2: d ≡ 1 (mod 4). Recall that when d ≡ 1 (mod 4), we have D = d. Also,
(
D

2

)

K
=

{
1 when D ≡ 1 (mod 8),

−1 when D ≡ 5 (mod 8),

(
D

3

)

K
=

⎧
⎪⎨

⎪⎩

−1 when D ≡ 2 (mod 3),

0 when D ≡ 0 (mod 3),

1 when D ≡ 1 (mod 3).

Subcase 1. First, suppose that d ≡ 5 (mod 8). Then, χ(2) = −1.

Subcase 1.1. Assume that χ(3) = −1. We have

a22m = 1, a22m+1 = 0, a3 = 0 and a3·22m = 0.

Now, take any positive integer n ≥ 4 so that 22e ≤ n < 22e+2 for some integer e ≥ 1.
Then, we can write

hK (n) = (1 + 0 + 0)

plus blocks of the form
(

1

22m + a22m+1

22m + 1
+ · · · + a22m+1

22m+1 + · · · + a3·22m

3 · 22m + · · · + a22m+2−1

22m+2 − 1

)
(5)

and plus the last block
(

1

22e + · · · + an
n

)
.

However, since a22m+1 and a3·22m vanish, the block in (5) has 2-adic valuation −2m. Thus,

hK (n) =
(

1 + 0

2
+ 0

3

)
+

(
1

4
+ · · · + 0

8
+ · · · + 0

12
+ · · · + a15

15

)
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+
(

1

16
+ · · · + a63

63

)
+ · · · +

(
1

22e + · · · + an
n

)

is not an integer for any n ≥ 4. In other words, nK can be chosen to be 4 in this case.

Subcase 1.2. When χ(2) = −1 and χ(3) = 0, we have that

a22m = 1, a22m+1 = 0, a3m = 1 and a2·3m = 0.

Therefore, given n ≥ 3 where 3m ≤ n < 3m+1 and m ≥ 1, we can write

hK (n) =
(

1 + 2

2

)
+

(
1

3
+ · · · + 0

2 · 3
+ · · · + a32−1

32 − 1

)

+ · · · +
(

1

3m
+ · · · + an

n

)
.

Note that hK (n) consists of blocks of the form (or some part of it possibly for the last
block)

(
1

3m
+ · · · + 0

2 · 3m
+ · · · + a3m+1−1

3m+1 − 1

)

which has 3-adic valuation −m. Thus, nK can be chosen 3 in this case.

Subcase 1.3. When χ(2) = −1 and χ(3) = 1, we have

a22m = 1, a22m+1 = 0 and a3 = 2.

For any n ≥ 3, we can write

hK (n) =
(

1 + 0 + 2

3

)

plus blocks of the form (or some part of it possibly for the last block)
(

1

22m + · · · + 0

22m+1 + · · · + 2

3 · 22m + · · · + a22m+2−1

22m+2 − 1

)

which has 2-adic valuation −2m for each block. Therefore, by the same argument as in
the previous case, nK can be chosen 3.

Subcase 2. Suppose that d ≡ 1 (mod 8) so that χ(2) = 1. If d �≡ 1, 17 (mod 24), then
χ(3) = 0.

When χ(2) = 1 and χ(3) = 0, we have

a2m = m + 1, a3m = 1 and a2·3m = 2.

Thus

hK (n) =
(

1 + 2

2

)
+

(
1

3
+ · · · + 2

2 · 3
+ · · · + a32−1

32 − 1

)

+ · · · +
(

1

3m
+ · · · + an

n

)
.

Hence hK (n) consists of blocks of the form (or some part of it possibly for the last
block)

(
1

3m
+ · · · + 2

2 · 3m
+ · · · + a3m+1−1

3m+1 − 1

)
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which has 3-adic valuation −m. Thus, nK can be chosen 3 in this case.
Hence, we proved the first part of Theorem B.
Now, we prove the second part of the theorem by analysing the case d ≡ 1 (mod 24).

In this case, χ(2) = 1 and χ(3) = 1 so that

a2m = m + 1, a3m = m + 1 and a2m1 ·3m2 = (m1 + 1)(m2 + 1).

We investigate the 2-adic and the 3-adic valuation of hK (n). Let us start with the 2-adic
valuation of it. Given n ≥ 4, we can write 2e ≤ n < 2e+1 for some positive integer e.
Therefore,

hK (n) =
(

1 + 2

2
+ 2

3

)

plus blocks of the form (or some part of it possibly for the last block)
(
m + 1

2m
+ · · · + a2m+1−1

2m+1 − 1

)
.

Consequently, the last block will be
(
e + 1

2e
+ · · · + an

n

)

such that if e is even, then e + 1 is odd and the 2-adic valuation of hK (n) will be −e < 0.
Thus, hK (n) is not an integer in this case.

Now, suppose that e is odd. We have 2e ≤ n < 3 ·2e−1 or 3 ·2e−1 ≤ n < 2e+1, provided
that e ≥ 3 as n ≥ 4 is assumed.

Subcase 1. 2e ≤ n < 3 · 2e−1. If we write hK (n) as above, for the last block we obtain that
(
e + 1

2e
+ · · · + an

n

)

such that e + 1 is divisible by 2. Thus, let us write

hK (n) =
(

e

2e−1 + e + 1

2 · 2e−1 + q

)
=

(
3e+1

2

2e−1 + q

)

for some rational number q with ν2(q) > −e + 1. Now, if 3e + 1 is divisible by 2 only
once, then hK (n) is not an integer as ν2(hK (n)) = −e+1 < 0. That is, if e ≡ 3 (mod 4),
then hK (n) is not an integer.

Subcase 2. 3 · 2e−1 ≤ n < 2e+1. In this case, the last block of hK (n) can be written as
(
e + 1

2e
+ · · · + 2 · e

3 · 2e−1 + · · · + an
n

)
.

Similar to the previous case, the 2-adic valuation of hK (n) is determined by the terms
having multiples of 2e−1 in their denominators. Moreover, we can omit the term 2·e

3·2e−1 and
write hK (n) as follows:

hK (n) =
(

e

2e−1 + e + 1

2 · 2e−1 + q

)
=

(
3e+1

2

2e−1 + q

)

for some rational number q with ν2(q) > −e + 1. Thus, again if 3e + 1 is divisible by 2
only once, then hK (n) is not an integer, namely when e ≡ 3 (mod 4).
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Now, we continue our observation with the 3-adic valuation of hK (n). For any n ≥ 3,
we can write 3y ≤ n < 3y+1 for some positive integer y. Then

hK (n) =
(

1 + 1 + 2

3

)

plus blocks of the form (or some part of it possibly for the last block)
(
m + 1

3m
+ · · · + 2(m + 1)

2 · 3m
+ · · · + a3m+1−1

3m+1 − 1

)
.

We have 2 cases as follows and since we look for any increase in the 3-adic valuation of
hK (n), we only consider the last block.

Subcase 1. 3y ≤ n < 2 · 3y . We have

hK (n) =
(

1 + 1 + 2

3

)
+ · · · +

(
y + 1

3y
+ · · · + an

n

)
.

Hence, if y �≡ 2 (mod 3), then ν3(hK (n)) = −y < 0 so that hK (n) is not an integer.
However, if y ≡ 2 (mod 3), then the 3-adic valuation of hK (n) might increase.

Subcase 2. 2 · 3y ≤ n < 3y+1. In this case, the last block of hK (n) will be
(
y + 1

3y
+ · · · + 2(y + 1)

2 · 3y
+ · · · + an

n

)
.

Considering the highest exponents of 3 in the denominators, the last block can be rewritten
as

2(y + 1)

3y
+ q,

where ν3(q) > −y. Similarly, if y �≡ 2 (mod 3), then hK (n) is not an integer but if y ≡ 2
(mod 3), then the 3-adic valuation of hK (n) may be non-negative. Hence, we proved the
second part of the theorem.

To prove the last part of the theorem, suppose that d ≡ 17 (mod 24). In this case, we
have χ(2) = 1 and χ(3) = −1. Therefore,

a2m = m + 1, a32m = 1, a32m+1 = 0 and a2·3m = 2 · a3m .

First of all, we investigate the 2-adic valuation of hK (n). For any n ≥ 4, we have 2e ≤
n < 2e+1 for some positive integer e. Then, we can write

hK (n) =
(

1 + 2

2
+ 0

)

plus blocks of the form (or some part of it possibly for the last block)
(
a2m

2m
+ · · · + a2m+1−1

2m+1 − 1

)
.

If e is even, then a2e = e + 1 such that the last block has 2-adic valuation −e < 0. Thus,
hK (n) is not an integer for any n ≥ 4 satisfying 2e ≤ n < 2e+1 for some positive even
integer e.

Now, assume that n ≥ 4 and 2e ≤ n < 2e+1 for some positive odd integer e. We have
2e ≤ n < 3 · 2e−1 or 3 · 2e−1 ≤ n < 2e+1. Then, writing hK (n) as above, the last block
will be (a2e

2e
+ · · · + an

n

)
or

(a2e

2e
+ · · · + a3·2e−1

3 · 2e−1 + · · · + an
n

)
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which is (
e + 1

2e
+ · · · + an

n

)

as a3·2e−1 = a3 ·a2e−1 = 0. Since e+1 is divisible by 2, the 2-adic valuation of hK (n) will
be determined by the terms having 2e−1 in their denominators. Therefore, we can write

hK (n) =
(

e

2e−1 + e + 1

2 · 2e−1 + q

)
=

(
3e+1

2

2e−1 + q

)

for some rational number q with ν2(q) > −e + 1. Thus, if 3e + 1 is divisible by 2 only
once, then hK (n) is not an integer. That is, if e ≡ 3 (mod 4), then hK (n) is not an integer.

Now, let us continue our investigation with the 3-adic valuation of hK (n). For a given
n ≥ 3, if 3y ≤ n < 3y+1 for some positive integer y, note that

hK (n) =
(

1 + 2

2

)

plus blocks of the form (or some part of it possibly for the last block)
(
a3m

3m
+ · · · + a2·3m

2 · 3m
+ · · · + a3m+1−1

3m+1 − 1

)
.

The block has 3-adic valuation −m if m is even. Therefore, if 3y ≤ n < 3y+1 holds for
some even integer y then hK (n) is not an integer and nK can be chosen 9 in this case as
first block with negative 3-adic valuation starts when n = 9. This completes the last part
of the proof. �

Remark 3.1.

(i) In the second part of the previous proof, note that if y ≡ 2 (mod 3), then the highest
exponent of 3 that occurs in the denominators of hK (n) will be 3y−1. However,

3y ≤ n < 3y+1

implies that

3 · 3y−1 ≤ n < 9 · 3y−1.

Consequently, the fractions

a5·3y−1

5 · 3y−1 and
a7·3y−1

7 · 3y−1

may appear inside hK (n). Unfortunately, χ(5) and χ(7) must be known to find the values
of

a5·3y−1 and a7·3y−1 .

Considering the possible values of χ(5) and χ(7) brings another set of subcases, which
we will not elaborate further in this note.
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(ii) In the last part of the previous proof, note that for a given n, if 2e ≤ n < 2e+1 is
satisfied for some positive integer e ≡ 1 (mod 4), then the 2-adic valuation of hK (n) will
be determined by the terms ak

k for k a multiple of 2e−1. Even though a3·2k−1 = 0 holds,
if 3e + 1 is divisible by 2k for some k ≥ 2 then the terms ak

k with k = c · 2e−2 correlate
with each other where c is a positive integer. As a result, the 2-adic valuation of hK (n)

may increase and one has to consider the possible values χ(5), χ(7), . . . and so on.
Moreover, if 3y ≤ n < 3y+1 holds for some positive odd integer y, then for the last

block in the proof, we may have

(a3y

3y
+ · · · + a2·3y

2 · 3y
+ · · · + an

n

)
.

Since y is odd, a3y = 0 and a2·3y = a2 · a3y = 0. Consequently, to investigate the 3-adic
valuation of hK (n), one has to consider the terms ak

k for k a multiple of 3y−1. However,
this will lead to some other subcases such that the possible values for χ(5) need to be
considered to begin with. Therefore, by considering only the values of χ(2), χ(3) the
bound nK may not be given explicitly.

Next, we continue with the following remark which may shed some more light on the
cases d ≡ 1 (mod 24) and d ≡ 17 (mod 24) in Theorem B.

Remark 3.2. For the case d ≡ 1 (mod 24), we see that by [7]:

• For K = Q(
√

73), the 5-adic valuation ν5(hK (514 + j)) = 2 for j ∈ {0, 1, 2, 3, 4}.
• For K = Q(

√
73), the 7-adic valuation ν7(hK (311 + j)) = 2 for j ∈ {0, 1, 2, 3, 4}.

• For K = Q(
√

97), the 3-adic valuation ν3(hK (681)) = 4.
• For K = Q(

√
145), the 2-adic valuation ν2(hK (960)) = 1.

• For K = Q(
√

217), the 2-adic valuations ν2(hK (807 + j)) = 6 for j ∈
{0, 1, 2, 3, 4, 5}.

• For K = Q(
√

265), the 2-adic valuationν2(hK (9264+ j)) = 1 for j ∈ {0, 1, 2, 3, 4, 5}
and ν2(hK (9270)) = 3.

• For K = Q(
√

313), the 2-adic valuation ν2(hK (8624+ j)) ≥ 1 for j ∈ {0, 1, . . . , 24}
with ν2(hK (8627 + j)) = 4 for j ∈ {0, 1, 2, 3, 4}.

• For K = Q(
√

385), the 2-adic valuation ν2(hK (817)) = 4.
• For K = Q(

√
505), the 2-adic valuation ν2(hK (852 + j)) = 5 for j ∈ {0, 1, 2}.

• For K = Q(
√−623), the 2-adic valuation ν2(hK (968 + j)) = 4 for j ∈ {0, 1, 2, 3}.

• For K = Q(
√−695), the 2-adic valuation ν2(hK (864 + j)) = 4 for j ∈ {0, 1, 2} and

the 3-adic valuation ν3(hK (375 + j)) = 1 for j ∈ {0, 1, 2, 3, 4, 5, 6}.
• For K = Q(

√
1153), the 71-adic valuation ν71(hK (928 + j)) = 2 for j ∈

{0, 1, 2, 3, 4, 5, 6, 7}.
For the case d ≡ 17 (mod 24), we see via [7] that:

• For K = Q(
√−223), the 2-adic valuation ν2(hK (36 + i)) ≥ 1 for i ∈ {0, 1, . . . , 10}

and ν2(hK (47 + i)) = 6 for i ∈ {0, 1}.
• For K = Q(

√−199), the 3-adic valuation ν3(hK (424 + i)) = 1 for i ∈ {0, 1, 2},
ν3(hK (430)) = 3 and ν3(hK (433)) = 5.

• For K = Q(
√

209), the 3-adic valuation ν3(hK (423 + i)) = 2 for i ∈ {0, 1, 2, 3, 4}
and ν3(hK (428 + i)) = 1 for i ∈ {0, 1, 2}.
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• For K = Q(
√

689), the 2-adic valuation ν2(hK (51 + i)) = 7 for i ∈ {0, 1} and the
3-adic valuation ν3(hK (51 + i)) ≥ 1 for i ∈ {0, 1}.

The remark above shows some results obtained with the computer algebra system Sage-
Math [7]. We check the p-adic valuation of Dedekind harmonic numbers for their non-
integrality naturally, and it seems that there may not be a uniform bound in d for nK via
a specific p-adic valuation (for instance, p = 2) when K = Q(

√
d) and d ≡ 1 (mod 24)

or d ≡ 17 (mod 24) is a square-free integer.
Moreover, again by [7], we constructed a suitable list of square-free integers d ≡ 1

(mod 24), where the χ values for the primes 5, 7, 11, 13, 17 for these d values are either
0 or 1. For each choice of χ(5), χ(7), . . . , χ(17), we chose positive and negative d’s. In
total, we obtained 57585 such d. Then, we checked the first 1000 Dedekind harmonic
numbers for each number field Q(

√
d) whether they have non-negative 2-adic and 3-adic

valuations or not. However, the program could not find any example which has both non-
negative 2-adic and 3-adic valuations among all these numbers. On the other hand, when
d ≡ 17 (mod 17) (for instance, d = 689) the remark above indicates such an example.

Before proving our next result, we finish this part of our note by exhibiting the first ten
values of hK (n) for various quadratic number fields as below:

nK Q(i) Q(
√

2) Q(
√

3) Q(
√

5) Q(
√

17) Q(
√−23) Q(

√
73) Q(

√
97)

1 1 1 1 1 1 1 1 1

2 3
2

3
2

3
2 1 2 2 2 2

3 3
2

3
2

11
6 1 2 8

3
8
3

8
3

4 7
4

7
4

25
12

5
4

11
4

41
12

41
12

41
12

5 43
20

7
4

25
12

29
20

11
4

41
12

41
12

41
12

6 43
20

7
4

9
4

29
20

11
4

49
12

49
12

49
12

7 43
20

57
28

9
4

29
20

11
4

49
12

49
12

49
12

8 91
40

121
56

19
8

29
20

13
4

55
12

55
12

55
12

9 859
360

1145
504

179
72

281
180

121
36

59
12

59
12

59
12

10 931
360

1145
504

179
72

281
180

121
36

59
12

59
12

59
12

4. Proof of Theorem C

We first recall the following fact from [3, Theorem 2].

Fact [3, Theorem 2]. Assume DRH for the number field K. There exist absolute constants
x0, c1, c2 > 0 such that for x ≥ x0 and c1(dK log x + log �K )

√
x ≤ h ≤ x, we have

πK (x + h) − πK (x) ≥ c2
h

log x
,

where dK is the degree of the number field K and �K is the absolute value of the discrim-
inant of K .
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Assume that we have the absolute constants x0, c1, c2 > 0 given by the previous fact.
Let h be a function satisfying

tc1(dK log x + log �K )
√
x ≤ h ≤ x,

where t = 2
√

2
c1c2

+ 1. Thus there exists x1 ≥ max{x0, dK } such that for all x ≥ x1, the
inequality tc1(dK log x + log �K )

√
x ≤ x is preserved. By Equation (4), one can obtain

that

πK (x) =
∑

p≤x

ap + R(x),

where

|R(x)| ≤ dK
2

x1/2 + dK
3

x1/3 + · · · + x1/dK .

We can also choose the above x1 such that for all x ≥ x1 the inequality

|R(x)| ≤ dK
√
x

holds. Therefore, by the previous fact again, we see that∑

x<p≤x+h

ap ≥ c2

log x
h − 2dK

√
x + h

≥ c2

log x
tc1(dK log x + log �K )

√
x − 2dK

√
x + h

> 2
√

2dK
√
x − 2dK

√
2x + tc1c2(log �K )

√
x

log x
> 0.

As a result, for any integer m ≥ x1, there is a prime p ∈ P with ap �= 0 between

m and n = m + h

whenever m ≥ h ≥ β(dK logm + log �K )
√
m for some absolute constant β. Thus, we

have
νp(hK (n) − hK (m)) < 0.

For the case when h > m, we can use the same argument as in Theorem A and the first
part follows.

Now, we prove the second part of the theorem. Assume DRH for all quadratic number
fields Kd = Q(

√
d), where d is a square-free integer. Let 0 < c < 1 be given. From the

fact, we have x0, c1, c2 > 0 such that for x ≥ x0 and c1(2 log x + log �K )
√
x ≤ h ≤ x ,

the inequality

πK (x + h) − πK (x) ≥ c2
h

log x

holds. By Theorem B, we may assume that d is congruent to 1 or 17 modulo 24, as we
have a uniform bound 4 for other cases, and in this case we have that �K = |d|. Note that
if |d| ≤ ec

√
x , then log |d| ≤ c

√
x . There exists xc ≥ x0 such that whenever x ≥ xc, the

inequalities
c1(2 log x + c

√
x)

√
x ≤ x

and
c2x

log x
− 4

√
2x > 0
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hold. Let us choose h = x . Hence, similar to the first part of the theorem, we get that
∑

x<p≤2x

ap > 0 (6)

for any quadratic field Kd = Q(
√
d) with |d| ≤ ec

√
x . Now choose a positive integer nc

which is greater than both 2xc and 4. Let n ≥ nc and |d| ≤ ec
√
n/2. By (6), choose a prime

pd ∈ ( n2 , n] with apd �= 0. As

hKd (n) = 1 + a2

2
+ · · · + apd

pd
+ · · · + an

n
,

we obtain that the pd -adic order of hKd (n) is −1. Hence, whenever n ≥ nc and |d| ≤
ec

√
n/2, the n-th Dedekind harmonic number hKd (n) is not an integer. This completes the

proof of the second part.
Finally, we prove the third part of Theorem C. We start by taking c = 1

2 in part (2)

of the theorem. Hence, there exists a constant m0 > 0 such that for any n ≥ m0 and

|d| ≤ e
1
2
√
n/2 the n-th Dedekind harmonic number hKd (n) is not an integer. Now, take a

sufficiently large positive real number x > m0. Then, d = e
1
2
√
n/2 and d = x intersect

when n = 8 log2 x (see Figure 1).

n

d

x

−x

8 log2 x xm0

|d| = e
1
2

√
n/2

Figure 1. The graph of |d| = e
1
2
√
n/2. The lattice points (d, n) where the correspond-

ing hKd (n) is not an integer in the shaded area.
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Now, set Q(x) = |{0 ≤ n ≤ x | n is square-free}|. Therefore, we have

S(x) − 2Q(x)x � 8 log2 x · 2Q(x),

so that S(x) = 2xQ(x) + O(x log2 x). Hence

S(x) ∼ 2xQ(x)

as Q(x) ∼ 6
π2 x and we obtain the result. �
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