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Quasi-Supervised Strategies for Compound-Protein
Interaction Prediction
Onur Çakı[a] and Bilge Karaçalı*[a]

Abstract: In-silico compound-protein interaction prediction
addresses prioritization of drug candidates for experimental
biochemical validation because the wet-lab experiments are
time-consuming, laborious and costly. Most machine learn-
ing methods proposed to that end approach this problem
with supervised learning strategies in which known inter-
actions are labeled as positive and the rest are labeled as
negative. However, treating all unknown interactions as
negative instances may lead to inaccuracies in real practice
since some of the unknown interactions are bound to be
positive interactions waiting to be identified as such. In this
study, we propose to address this problem using the Quasi-
Supervised Learning (QSL) algorithm. In this framework,

potential interactions are predicted by estimating the
overlap between a true positive dataset of compound-
protein pairs with known interactions and an unknown
dataset of all the remaining compound-protein pairs. The
potential interactions are then identified as those in the
unknown dataset that overlap with the interacting pairs in
the true positive dataset in terms of the associated similarity
structure. We also address the class-imbalance problem by
modifying the conventional cost function of the QSL
algorithm. Experimental results on GPCR and Nuclear
Receptor datasets show that the proposed method can
identify actual interactions from all possible combinations.
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1 Introduction

Identification of compound-protein interactions (CPI) plays
an essential role in a wide range of pharmacological
applications. The initial step of drug discovery is to detect
effective interactions between drug candidate compounds
and a target protein.[1] A number of studies have shown
that complex diseases such as cancer and Alzheimer’s
Disease are associated with multiple targets necessitating
the elucidation of the interaction profiles of candidate
drugs with more target proteins.[2] Identification of such
interactions also allows predicting undesired side-effects of
drugs by detecting off-target interactions.[3] Furthermore, it
is a key part of drug repositioning, i. e. discovering new
clinical usage of existing drugs.[4]

The experimental validation of compound-protein inter-
actions in laboratory environments remains time-consum-
ing, laborious and extremely costly even when using high-
throughput screening technologies. As a result, only a small
number of experimentally validated interacting compound-
protein pairs exist compared to the large numbers of
compounds and proteins: There are ~1.5 million human
protein sequences out of which ~20000 are reviewed and
~96 million compounds in the databases of NCBI Entrez
system against only ~1.2 million recorded interactions.[5] In
recent years, there has been growing interest in using
computational tools for CPI prediction. In-silico prediction
of CPI aims to narrow the search space for future wet-lab
experiments by suggesting the most likely interactions,

thereby accelerating pharmacological research processes,
decreasing costs, and increasing research productivity.[6]

There are three main computational approaches in
virtual screening for potential compound-protein interac-
tions. Structure-Based Virtual Screening (SBVS) aims to
utilize the 3D structure of a target protein to determine
whether or not a compound would interact with the target
protein.[7] The disadvantage of this approach is that
obtaining the 3D structure of a target protein may not
always be possible, especially for membrane proteins such
as Ion Channels and GPCRs.[8] In Ligand-Based Virtual
Screening (LBVS) that relies on Chemical Similarity Principle
stating that shared structural elements may indicate similar
bioactivity, potential interactions are identified by compar-
ing the structure of compounds that are known to interact
with a target protein against candidate compounds.[9]

However, this approach becomes unfeasible if the target
protein of interest has few or no known interactions.
Although there are some studies on integrating LBVS and
SBVS in which LBVS methods are mostly used as prefiltering
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for more time-consuming SBVS methods, they do not
compensate for the mentioned drawbacks of each
approach.[10] Finally, Chemogenomics-Based Virtual Screen-
ing (CGBVS) aims to address the issues associated with the
earlier two approaches.[8] The idea behind this approach is
again that the compounds that have similar structure would
tend to interact with same or similar proteins, but unlike
the LBVS, information that comes from both compounds
and proteins are considered simultaneously. In this way,
CGBVS aims to compensate for the lack of known
interactions of target proteins by considering the known
interactions of similar proteins, and to develop a unifying
prediction model for the whole compound-protein data at
hand.

To date, various machine learning-based methods have
been proposed for CPI prediction based on CGBVS.[11–13]

These methods can be categorized further into feature-
vector based approaches and similarity-based approaches.
In feature-vector based approaches, compound-protein
pairs are represented by fixed-length feature vectors that
are used as input to a machine learning algorithm. For
example, Radkar et al. (2020) construct the feature vector
for a compound-protein pair by combining the two feature
vectors, one from the protein, and the other from the
compound. They selected the features that may be
important for CPI using Wrapper Feature Selection to
overcome high dimensionality of the pair space.[14] How-
ever, feature extraction is a challenging process especially
when it comes to CPI prediction due to complex relation-
ships between the chemical and the genomic spaces. Since
many factors may affect the establishment of interaction in
a given compound-protein pair, fixed-length vectors may
not adequately reflect the critical pharmacological proper-
ties. In similarity-based approaches, machine learning
algorithms can be constructed to evaluate compound-
compound similarities and protein-protein similarities to
predict interactions of compound-protein pairs. In the
literature, machine learning algorithms based on similarity
offer promising results when the problem has unstructured
data.[15] It is also important to note that this strategy is
inherently suitable for a CGBVS method as structural
similarities that are key for molecular interaction may not
necessarily be represented adequately through numeric
features.[11]

In a similarity-based scheme, Yamanashi et al. (2008)
approached the CPI prediction problem as link prediction in
a bipartite graph. They used compound-compound similar-
ities and protein-protein similarities to embed them into a
pharmacological vector space in which the Euclidean
distances between linked vectors are minimized.[16] Jacob
and Vert (2008) developed a pairwise kernel method to
obtain a similarity matrix for compound-protein pairs from
similarities between compounds and similarities between
proteins. They then trained a Support Vector Machine (SVM)
classifier using this similarity matrix as a kernel matrix.[17]

Laarhoven et al. (2011) treated interaction profiles of each

protein and each compound as binary feature vectors. They
constructed similarity matrices from these vectors using a
Gaussian kernel and integrated them with a compound
similarity matrix and a protein similarity matrix. A predicted
interaction score matrix was calculated from these com-
bined similarities using Regularized Least Squares (RLS).[18]

Laarhoven and Marchiori (2013) later expanded Gaussian
Interaction Profile kernels with a Weighted Nearest Neigh-
bor approach to predict interactions for new proteins and
compounds for which no known interactions exist.[19] Gönen
(2012) combined non-linear dimension reduction and
matrix factorization to project compounds and proteins
into a unified low-dimensional space through their similar-
ity matrices and estimate an interaction matrix.[20] Zheng
et al. (2013) used Collaborative Matrix Factorization to
estimate a binary interaction matrix between compounds
and proteins in such a way that the latent features of the
matrix approximate protein and compound similarity
matrices.[21] Several recent studies proposed new machine
learning techniques for CPI prediction problem. Reker et al.
(2017) construct a model from machine-picked informative
samples using active learning method instead of fitting the
model to whole data.[22] Tsubaki et al. (2019) used a unified
deep learning model in which a graph neural network
screens the chemical space and a convolutional neural
network screens the genomic space in order to predict the
interaction profile of a given pair.[23] In all these studies, the
CPI prediction problem is addressed within a Supervised
Learning framework in which known interactions are
labelled as positive, and everything else is labelled as
negative. However, treating the compound-protein pairs
that have no known interactions as negative leads to
unrealistic recognition models as these pairs undoubtedly
include some positive interactions that are as of yet
unknown. To address this issue, Liu et al. (2015) construct a
dataset with highly credible negative samples that are
selected from unlabeled compound-protein pairs based on
the assumption that “the proteins dissimilar to every
known/predicted target of a compound are not much likely
to be targeted by the compound and vice versa”.[24]

However, there is a notable lack of studies to tackle this
problem in a realistic manner.[12]

The inherent issue with current machine learning
approaches is that the true negative samples of non-
interacting compound-protein pairs are rarely found in
experimental literature. Even the most notable datasets,
such as DUD and DUD-E[25] that are designed as benchmark
datasets for molecular docking programs suffer from this
problem. On the other hand, Tox21, which is constructed to
provide a comparison of toxicity prediction models, is a
dataset where all compounds were tested versus all
proteins.[26,27] However, such datasets are rare and usually
missing for general CPI instances. Since conventional
classification-based strategies require a true negative data-
set to contrast with the true positive dataset of known
interactions, the only option is to manufacture true
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negative datasets from pairings of existing compounds and
proteins. This, however, entails several additional issues:
Firstly, since many different true negative datasets can be
manufactured based on different principles of non-inter-
action, classifier outputs incur a conditional bias on the
selected true negative dataset and differ depending on the
choice of the true negative dataset. Secondly, the presence
of the unknown positive interactions in manufactured true-
negative datasets of effectively untested interactions con-
taminates the inferred interaction recognition mechanism.
In the absence of a validated true negative dataset of non-
interacting compound-protein pairs, the only viable option
for an unbiased and uncontaminated machine learning
strategy is to contrast the set of previously untested
interactions containing all possible pairings between the
compounds and proteins at hand with the true positive
dataset of interacting pairs and seek those pairs in the
unknown and effectively untested dataset that differentiate
from the rest towards the positive interactions.

In this paper, we use the quasi-supervised learning
algorithm[28] to contrast the true positive dataset with
known compound-protein interactions against the untested
dataset of all possible pairings. For machine learning
purposes, we define a similarity between compound-
protein pairs from protein-protein similarity and com-
pound-compound similarity measures and apply the quasi-
supervised learning algorithm on the combined similarity

measure to calculate estimates for the posterior probability
of a given compound-protein pair to belong to the true
positive dataset, for all pairs in both datasets. Finally, we
determine the optimal threshold for predicted positive
interactions in the untested dataset using Kolmogorov-
Smirnov statistics applied on the posterior probability
estimates.

This paper is organized as follows. We describe the
details of the proposed method for protein-compound
interaction prediction using the quasi-supervised learning
algorithm in the next section along with the various
techniques with which we characterize the similarity
between compound and protein pairs, and the protein-
compound interaction datasets used in this study. We
provide descriptions for each operational block shown in
the schematic diagram of the proposed method in Figure 1.
We present the results of a comparative analysis of the
proposed method across different configurations involving
alternative similarity measures and alternative approaches
from the literature in the Results Section. We conclude the
paper with a discussion on a general evaluation of the
proposed method and several potential extensions for
future work.

Figure 1. Schematic diagram of the proposed method.
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2 Material and Methods

2.1 Dataset

In this study, we used the publicly available dataset
published by Yamanishi et al.[16] In this widely referenced
paper, the authors point out that screening all compound-
protein pairs is computationally infeasible, and construct a
modular dataset to build machine learning models sepa-
rately for four major protein classes (i. e. enzymes, ion
channels, GPCRs, and nuclear receptors) which are com-
monly considered as drug targets. This dataset has since
become a benchmark in CPI prediction studies.[12] The
interaction information between compound-protein pairs
were retrieved from DrugBank,[29] KEGG,[30] BRENDA,[31] and
SuperTarget[32] databases by Yamanishi. Table 1 shows the

number of proteins and compounds and known interac-
tions between all possible compound-protein pairs for each
protein class dataset in the collection.

2.2 Chemical Data

We retrieved the chemical structures of compounds in mol
format from KEGG DRUG database.[30] Similarity matrices for
chemical space that evaluate the similarity between differ-
ent compounds, denoted by a matrix Sc of compound-
compound similarity, are constructed using a variety of
methods. The methods used in this study can be classified
into three main categories: Graph-based methods, SMILES-
based methods and Molecular Fingerprints-based methods.

2.2.1 Graph-Based Methods

SIMCOMP[33] algorithm is used to calculate the chemical
structural similarity between compounds. This algorithm
treats the 2D structure of compounds as graphs in which
atoms are mapped to vertices and bonds are mapped to
edges. The vertices are labelled with 68 KEGG atom types
instead of the usual atomic species. The KEGG atom types
consist of three letters: The first letter corresponds to the
element symbol of the atom, while the second and third

letters indicate its hierarchical classification depending on
its hybrid orbital and atomic environments. These micro-
environments are introduced in order to distinguish mole-
cules in a biochemical manner in addition to their
structures. The algorithm finds the maximum common
subgraph between two compound graphs and then
calculates a similarity score using the Jaccard coefficient,
defined by

Sc G;G
0� �
¼

G\G
0

j j
G[G0j j
¼

MCS G;G
0

ð Þ
GjþjG0j j� MCS G;G0ð Þ

(1)

where the intersection and the union operations between
graphs G and G0 are defined as the maximum common
subgraph and the nonredundant subgraph, respectively. In
addition, the j:j operator calculates the cardinality of its
argument graph.

In our implementation of the algorithm, the maximum
common subgraph was found using RDKit chemoinfor-
matics library[34] where vertices are labelled by atomic
species instead of 68 KEGG atoms. In addition to their types,
vertices are also distinguished by their valance and bonds
are distinguished by their aromaticity and ring information.

2.2.2 SMILES-Based Methods

Simplified Molecular Input Line Entry System (SMILES) is a
1D string representation that encodes the structural
information of compounds.[35] A Study by Öztürk et al.
(2016) suggested that text similarity between two SMILES
strings can be considered as a measure of structural
similarity between two compounds for compound-protein
interaction prediction tasks.[36] They showed that similarity
measures using various SMILES kernels performed as well as
graph-based methods with an additional computational
time advantage. We used molconverter console program of
JCHEM (developed by ChemAxon, https://www.chemaxon.-
com/) to convert MOL files into canonical SMILES as in the
original paper.[36] The program defines SMILES by following
Daylight’s SMILES specification rules.[37]

We used Normalized Longest Common Subsequence
(NLCS), Combination of Longest Common Subsequence
Models (CLCS), LINGO-q Similarity, LINGO Based Term
Frequency (TF) Cosine Similarity, and LINGO Based Term
Frequency-Inverse Document Frequency (TF-IDF) Cosine
Similarity which are proposed by Öztürk et al. to calculate
similarity between two compounds.[36] In NLCS, they find
the longest common subsequence between two SMILES
strings and calculate a similarity score by cosine normal-
ization. Note that the longest common subsequence is not
required to be consecutive. In order to achieve a more
meaningful semantic similarity between two strings, they
also find Maximal Consecutive Longest Common Subse-
quence (MCLCS) starting from the first and the n’th

Table 1. Datasets of Yamanishi.[14]

Protein Class
Dataset

Enzyme Ion
Channel

GPCR Nuclear
Receptor

Compound 445 210 223 54
Protein 664 204 95 26
Interaction 2926 1476 635 90
Fraction of
Annotated
Interaction

%0.99 %3.45 %2.10 %6.41
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characters. CLCS is then defined as the equal weighted
average of their cosine normalizations and NLCS.

LINGO-q stands for consecutive q-character substrings
that can be created from a SMILES string.[38] For instance,
LINGOs(q ¼ 4) that can be extracted from the SMILES string
of Gabapentin “NCC1(CC(O)=O)CCCCC1” are {’NCC0’, ’CC0
(’, ’C0(C’, …, ’CCC0’}. Note that all ring numbers must be
replaced with 0 s before the LINGO extraction process. A
similarity function, LINGOsim,[36] then calculates a similarity
score between the two SMILES strings using the unique
LINGOs that are extracted from them. We used q ¼ 3; 4; 5
as in the original study.[36] In order to calculate a similarity
score between two SMILES strings, the strings are also
mapped into vectors whose length equals the total number
of unique LINGOs in the two strings. In Lingo-based Term
Frequency (TF) cosine similarity, the TF of each unique
LINGO reflects the occurrence frequency of the LINGO in
SMILES and are collected into feature vectors. In LINGO
based TF-IDF similarity, the TF values of LINGOs are multi-
plied with their Inverse Document Frequency that reflects
the occurrence frequency of the LINGOs in the whole
SMILES dataset and then collected into reference vectors.
TF assigns higher values to more frequently occurring
LINGOs in a SMILES, while IDF assigns lower values to more
frequently occurring LINGOs in the dataset. Cosine similarity
between two vectors then provides a similarity score
between the two SMILES strings. These processes are
applied to all possible SMILES pairs in the dataset to
construct a similarity matrix, Sc, between all compounds.

2.2.3 Molecular Fingerprints-Based Methods

Fingerprints encode the structure of compounds into fixed-
length bit vectors depending on whether a substructure
occurs in a compound or not. A study by Sawada et al.
(2014) investigated the performance of different types of
fingerprints and similarity functions in compound-protein
interaction prediction problems.[39] In our study, we used
Extended-Connectivity Fingerprints (ECFP),[40] Functional-
Class Fingerprints (FCFP),[40] Molecular ACCess System
(MACCS) fingerprints,[41] KEGG Chemical Function and
Substructures (KCF� S) descriptors[42] that have previously
been identified as useful in CPI prediction.[39]

ECFP describes the structure of a molecule by encoding
substructures formed by a circular neighborhood of each
atom within an atom radius into 1024-length binary vectors,
an approach that is also known as a circular fingerprint, or
Morgan Fingerprints.[34] We set the radius as 2 providing a
maximum range between fingerprint atoms of 4 (ECFP4).
FCFP is an extension of ECFP in which pharmacophore roles
of atoms are also added to fingerprints to encode for
functional substructural features instead of just atom
environments. The MACCS fingerprints describe the struc-
ture of a molecule with a 166-length bit vector whose
elements correspond to a substructure key. These publicly

Figure 2. Posterior probability distributions of compound-protein
pairs in the Nuclear Receptor dataset to belong to the true positive
dataset and their Kolmogorov-Smirnov Analysis for (a) KCF� S
Fingerprints, (b) Maximum Common Substructure (RDkit), and (c)
LINGO based TF-IDF Cosine Similarity.
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available sub-structure keys are developed by a private
company (previously MDL Information Systems, now BIO-
VIA, at the URL address https://www.3ds.com/products-
services/biovia/) in order to calculate a molecular similarity.
We used the RDKit python library to construct these
fingerprints and calculated similarity scores between each
fingerprint pair using cosine similarity.

One known drawback of fingerprints is that they encode
for only the presence or absence of substructures and
disregard the copy number for multiply present substruc-
tures. KCF� S addresses this problem using integer-valued
vectors of counts instead of binary vectors: It treats the 2D
chemical structure of a compound as a graph and
characterizes the structure by an integer-valued vector in
which each element of the vector corresponds to the
number of distinct copies of a substructure that the
compound possesses. Moreover, instead of atomic species
such as C, H, O, N, P, and so on, it uses the 68 KEGG atoms.
Substructures are constructed from the graph of a com-
pound using seven chemical structural attributes: atom,
bond, triplet, vicinity, ring, skeleton and inorganic. The
dimension of these vectors equals the number of unique
substructures listed in a database of substructures that can
be extracted from the compounds. We used KCF-Convoy
python package[43] to construct fingerprint vectors and
calculated the similarity between these vectors using a
weighted Tanimoto similarity.[43]

2.3 Genomic Data

We retrieved the amino acid sequence information of all
proteins in the dataset in FASTA format from KEGG GENES
database.[30] Similarity Matrix for genomic space, denoted
by a matrix Sp of protein-protein similarity, was constructed
by calculating the similarity between each protein pair in
the dataset using Normalized Smith-Waterman Algorithm.
Smith-Waterman is a sequence alignment algorithm which
returns an alignment score for the conserved regions
between the two sequences.[44] Since these conserved
regions can be responsible for common bioactivity and
functional similarity, the Normalized Smith-Waterman algo-
rithm offers a more biologically meaningful assessment
compared to other sequence alignment algorithms. The
alignment score is normalized as

Sp pi; pj

� �
¼

SW pi ;pjð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW pi ;pið Þ�SW pj ;pjð Þ

p (2)

to obtain a similarity score between 0 and 1 where
SWðpi; pjÞ denotes the alignment score of the Smith-Water-
man algorithm between the amino acid sequences of
proteins pi and pj. In this study, we used the default values
for the parameters of the algorithm as in Pairwise Sequence
Alignment Tool of EMBOSS (https://www.ebi.ac.uk/Tools/
psa/emboss_water/).

Figure 3. Posterior probability distributions of compound-protein
pairs in the GPCR dataset to belong to the true positive dataset and
their Kolmogorov-Smirnov Analysis for (a) LINGO based TF-IDF
Cosine Similarity, (b) LINGOsim (q ¼ 3), and (c) LINGOsim (q ¼ 4).
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2.4 Pairwise Kernel Method

A similarity matrix must satisfy Mercer’s Theorem to be
used in a machine learning algorithm as a kernel matrix,
which means that it has to be symmetric and positive semi-
definite, i. e. all eigen values must be non-negative.[15] In
order to ensure that compound-compound and protein-
protein similarity matrices satisfy these criteria, we firstly
calculated symmetric and regularized compound and
protein similarity matrices Kc and Kp by

Kp ¼
SpþSpT

2 þ lmin Sp
� ��

�
�
�I (3)

and

Kc ¼
ScþSc

T

2 þ lmin Scð Þj jI (4)

where the diagonal entries of the symmetric similarity
matrices are augmented by the minimum eigenvalue of the
corresponding compound or protein similarity matrices. We
then used the pairwise kernel method[17] to calculate joint
similarity between compound-protein pairs ðc; pÞ and
ðc0; p0Þ as

K c; pð Þ ; ðc
0

; p
0

Þ
� �

¼ Kc c; c
0� �
�Kp p; p

0� �
(5)

which is tantamount to constructing a similarity matrix K
between compound-protein pairs by the Kronecker product
of Kc and Kp as (Jacob et al., 2008)

K ¼ Kc � Kp : (6)

Note that several other similarity pair kernels could be
used in order to determine the similarity structure between
compound-protein pairs.[45] However, the current manu-
script aims to introduce a new machine learning paradigm
that can make interaction predictions in the absence of
validated true negative interaction instances as well as
based on various compound and protein similarity meas-
ures. Thus, while alternative similarity kernels can be
incorporated into the proposed framework in future studies,
an exhaustive evaluation of all possible kernels falls outside
the scope of the manuscript.

2.5 The Quasi-Supervised Learning Algorithm

The Quasi-Supervised Learning Algorithm (QSL) was devel-
oped by Karacali (2010) to address one of the major
problems of biomedical data analysis, the possible lack of
ground-truth labeled data for a class of interest.[28] In this
learning strategy, given a two-class recognition scenario
with labeled samples of only one of the classes, the data at
hand are divided into two datasets (C0 and C1): One dataset,
say C1, consists of the labelled samples of the known class,
while the other one, C0, consists of all samples without any

label. A numerical machine learning algorithm then allows
nonparametric estimation of posterior probability of each
sample belonging to C0 and C1 using the asymptotic
properties of nearest neighbor classification rule. Using the
estimated posterior probabilities, we can estimate the
overlap between C0 and C1 for automatic labelling of the
samples in the unlabeled dataset C0 that appear among C1

samples.
The QSL algorithm can be described briefly as follows:

Given M reference sets fR1; R2; :::; RMg for nearest neighbor
classification constructed with n numbers of samples from
each of C0 and C1, the average rate of assigning a sample x
to C0 and C1using nearest neighborhood classification with
reference to R1; R2; :::; RM will approximate the posterior
probabilities. Mathematically, this can be expressed as

P C1jxð Þ ’ f 1 xð Þ

¼
1
M

XM

m¼1

1 x is assigned to C1 with reference to Rmð Þ
(7)

and

P C0jxð Þ ’ f 0 xð Þ

¼
1
M

XM

m¼1

1 x is assigned to C0 with reference to Rmð Þ
(8)

where the assignment of a sample x to C0 and C1 is made
using a nearest neighbor classifier using the indicated
reference set. Since carrying out great numbers of nearest
neighbor classification is not feasible due to the associated
computational expense, the Quasi-Supervised Learning
Algorithm provides a fast and efficient numerical calculation
of the rates f 1 xð Þ and f 0 xð Þ for each sample xi in the

Table 2. Performance Comparison of Compound Similarity Meas-
ure Methods.

Compound Similarity
Measure Methods

Dmax Dmax

Nuclear
Receptors

GPCR

ECFP4 0.587 0.604 Fingerprint
FCFP4 0.512 0.601 Fingerprint
KCF-S 0.651 0.642 Fingerprint
MACCS 0.475 0.518 Fingerprint
SIMCOMP 0.622 0.584 Graph
MCS – RDkit 0.647 0.635 Graph
NLCS 0.543 0.582 SMILES
CLCS 0.592 0.584 SMILES

LINGOsim (q ¼ 3) 0.624 0.660 SMILES

LINGOsim (q ¼ 4) 0.630 0.652 SMILES

LINGOsim (q ¼ 5) 0.607 0.629 SMILES

LINGO based TF 0.604 0.646 SMILES
LINGO based TF-IDF 0.645 0.669 SMILES

Research Article www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2100118 (7 of 14) 2100118

Wiley VCH Freitag, 26.11.2021

2199 / 226484 [S. 7/14] 1

www.molinf.com


collection. Finally, the optimal value for the parameter n is
found by minimizing the cost function

E nð Þ ¼ 4
P

i f 1 xið Þf 0 xið Þ þ 2n (9)

where the first term penalizes large overlaps between
C0 and C1, and the second term penalizes large n for better
generalization. Mathematical foundations and a more de-
tailed explanation of numerical algorithm and cost function
can be found in the paper of Karacali (2010).[28]

We applied the QSL strategy to predict potential
interactions between the compound-protein pairs that do
not have any known interaction. To this end, we con-
structed two datasets: The unknown dataset C0 which
includes the untested compound-protein pairs that do not
have a documented interaction, and the true positive
dataset C1 which includes the compound-protein pairs
whose interactions are experimentally validated. The sam-
ples in C0 are assigned with a label of 0 ðy ¼ 0Þ and the
samples in C1 are assigned with a label of 1 ðy ¼ 1Þ. Then,
the QSL algorithm calculates the posterior probability of the
true positive dataset P C1jxð Þ at each compound-protein pair

x ¼ ðc; pÞ using the similarity matrix, K of all compound-
protein pairs.

We adapted the numerical algorithm developed by
Karacali (2010) to CPI prediction task in such a way that
similarities between pairs are used instead of distances
between feature vectors, where the most similar pair to a
query pair corresponds to its nearest neighbor. This allows
formulating the nearest neighbor classification and by
extension the quasi-supervised learning algorithm in terms
of a similarity measure between pairs, which eliminates the
need to construct feature vectors for the unstructured
chemical and genomics data on which a distance metric is
otherwise to be defined and calculated for compound-
protein pairs. The labels of compound-protein pairs in the
unknown dataset C0 are then predicted based on a set of
known interactions between a relatively small number of
established compound-protein pairs in C1 in terms of
pairwise similarities between compound-protein pairs. By
virtue of the QSL paradigm, only positive interaction
information and well-defined similarity measures between
chemical and protein data are enough to carry out our
proposed method. Nevertheless, all compound-protein
pairs can still be embedded into a Euclidean space via

Table 3. The list of top 30 predicted positive interactions in the unknown dataset C0 for the Nuclear Receptor Dataset. The identified
positive interactions are indicated by the letter Y and potential interactions are indicated by the letter P, respectively.

Compound Protein Posterior
Probability

SuperTarget DrugBank KEGG ChEMBL

Nandrolone phenpropionate estrogen receptor 1 0,92284
Fluoxymesterone progesterone receptor 0,92249
Testosterone progesterone receptor 0,92149 Y Y Y
Hydrocortisone progesterone receptor 0,91974 P
Norethindrone estrogen receptor 1 0,91877
Spironolactone progesterone receptor 0,91811 Y Y
Nandrolone phenpropionate progesterone receptor 0,91511 P
Eplerenone progesterone receptor 0,91061 Y Y
Testosterone estrogen receptor 1 0,90441 Y Y Y
Oxandrolone progesterone receptor 0,90432 P
Budesonide progesterone receptor 0,90063 P
Mifepristone estrogen receptor 1 0,9002 Y
Loteprednol etabonate progesterone receptor 0,89722
Amcinonide progesterone receptor 0,88766
Isotretinoin retinoic acid receptor beta 0,88641 Y Y
Pregnenolone progesterone receptor 0,88571 P
Isotretinoin retinoic acid receptor gamma 0,87976 Y Y Y Y
Oxandrolone estrogen receptor 1 0,87834
Hydrocortisone estrogen receptor 1 0,87657
Dydrogesterone estrogen receptor 1 0,86944
Spironolactone estrogen receptor 1 0,8678 Y
Ethinyl estradiol progesterone receptor 0,86463 P
Isotretinoin retinoid X receptor gamma 0,86261 Y
Chenodiol progesterone receptor 0,86051
Tazarotene estrogen receptor 1 0,85617
Cholesterol progesterone receptor 0,85454 P
Eplerenone estrogen receptor 1 0,85175 Y Y
Isotretinoin retinoid X receptor alpha 0,846
Etretinate estrogen receptor 1 0,84411
Chenodiol estrogen receptor 1 0,8422
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dedicated feature vectors, and distances between vectors
can be used instead: Sorting distances between a query
pair and all pairs in an ascending order will be equivalent to
sorting similarities in a descending order.

Another problem with compound-protein interaction
data is class imbalance: Since only a small portion of
samples are marked as true positive, the number of samples
in C0 is much greater than C1. Therefore, we modified the
cost function in the QSL algorithm to find the optimum
n parameter as

E nð Þ

¼ 4 C1j j
C0j j

P
xi 2 C0 f 1 xið Þf 0 xið Þ þ 4

P
xi 2 C1 f 1 xið Þf 0 xið Þ þ 2n

(10)

where jC0 j and jC1 j denotes the number of compound-
protein pairs in C0 and C1, respectively. Note that this
correction simply balances the contributions of the two
datasets to the overall cost function as opposed to multi-
ply-sampling the smaller dataset as proposed by the SMOTE
approach.[14]

2.6 Kolmogorov-Smirnov Method

Once estimates of the posterior probability of the true
positive dataset P C1jxið Þ for samples xi in C0 and C1 are
obtained, the samples in C0 that would have been labeled
as positives had they been tested are expected to exhibit
greater posterior probability of belonging to C1 compared
to the actual negatives in C0. Such hidden positive samples
in C0 can then be identified as xi 2 C0 for which
P C1jxið Þ � T using a suitable threshold T . Note that in this
formulation, the threshold T draws the boundary of the
overlap between the true positive dataset C1 and the
unknown dataset C0. We used the Kolmogorov-Smirnov
method to determine the optimal posterior probability
threshold, T . To this end, observed posterior probability
values fP C1jx1ð Þ; P C1jx2ð Þ; P C1jx3ð Þ; :::; PðC1jx C1j jþ C0j j Þg of
samples from C1 and C0 are combined in a list and sorted in
an ascending order. Empirical distribution functions of the
true positive dataset FC1 tð Þ and the unknown dataset FC0 tð Þ
are calculated separately as

Table 4. The list of top 30 predicted positive interactions in the unknown dataset C0 for the GPCR Dataset The identified positive
interactions are indicated by the letter Y and potential interactions are indicated by the letter P, respectively.

Compound Protein Posterior
Probability

SuperTarget DrugBank KEGG ChEMBL

Isoetharine adrenoceptor beta 2 0,96806 Y Y
Albuterol adrenoceptor beta 1 0,96794 Y Y
Clozapine dopamine receptor D3 0,96584 Y Y Y
Metoprolol adrenoceptor beta 2 0,9627 Y Y Y
Denopamine adrenoceptor beta 2 0,95763 P
Levodopa adrenoceptor beta 2 0,952
Ritodrine adrenoceptor beta 1 0,95129 Y P
Dipivefrin adrenoceptor beta 2 0,94935 Y Y
Epinephrine adrenoceptor beta 3 0,94265 Y Y
Methoxamine hydrochloride adrenoceptor beta 2 0,94259
Albuterol sulfate adrenoceptor beta 1 0,9424 Y Y P
Levodopa adrenoceptor beta 1 0,94178
Methoxamine hydrochloride adrenoceptor beta 1 0,94074
Dipivefrin adrenoceptor beta 1 0,93835 Y
Bisoprolol adrenoceptor beta 3 0,93605 Y
Atenolol adrenoceptor beta 3 0,93445 Y
Cicloprolol hydrochloride adrenoceptor beta 3 0,93416 Y
Betaxolol hydrochloride adrenoceptor beta 3 0,93132
Clozapine adrenoceptor alpha 2C 0,93129 Y Y
Chlorpromazine histamine receptor H1 0,93035 Y Y Y
Fenoldopam mesylate adrenoceptor beta 2 0,92823
Terbutaline sulfate adrenoceptor beta 1 0,9279 Y Y P
Methixene hydrochloride histamine receptor H1 0,92739
Clozapine cholinergic receptor muscarinic 3 0,9265 Y
Perphenazine histamine receptor H1 0,92473 P
Chlorpromazine phenolphthalinate histamine receptor H1 0,92187 Y Y
Chlorpromazine
hibenzate

dopamine receptor D2 0,92114 Y Y

Oxymetazoline hydrochloride adrenoceptor beta 2 0,9203
Albuterol adrenoceptor beta 3 0,91992 Y
Mesoridazine histamine receptor H1 0,91985
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FC1 tð Þ ¼ 1
C1j j

P
i 1 P C1jxið Þ < t for xi 2 C1ð Þ (11)

and

FC0 tð Þ ¼ 1
C0j j

P
i 1 P C1jxið Þ < t for xi 2 C0ð Þ (12)

for all t 2 0; 1½ �: Finally, the maximum difference between
the empirical cumulative distribution functions of the two
sample sets was identified as

Dmax ¼ max
t
jFC1 tð Þ � FC0 tð Þj (13)

by a line search.

Table 5. Structure graphs of top five compounds that have been predicted to interact with estrogen receptor 1 and adrenoceptor beta 2.
The drawings have been generated using MolView (https://molview.org/).

estrogen receptor 1 adrenoceptor beta 2
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Conventionally, the Dmax statistic is used to decide
whether samples in two different sets come from the same
distribution or not with respect to a statistical significance
level.[46] In this study, the posterior probability value at
which Dmax is observed is used as the optimal threshold
that separates the hidden positive samples in C0 from the
rest. We also used the value of Dmax as a measure pertaining
to the ability of the proposed approach and the associated
similarity metrics to separate the hidden positive and the
actual negative samples in C0 for performance comparison
purposes between different similarity measures.

3 Results

In this section, we first provide an analysis of the proposed
methodology regarding its ability to separate the hidden
positives from the actual negatives in the unknown dataset
using different combinations of compound and protein
similarity measures. Then, we present the most likely
interactions that are predicted by the proposed method
and the current records about these interactions in up-to-
date compound-protein interaction databases.

We calculated a total of thirteen compound similarity
matrix alternatives and one protein similarity matrix for the
compounds and proteins in the Nuclear Receptor dataset
and the GPCR dataset separately using the methods
described earlier. By applying the quasi-supervised learning
algorithm on the resulting thirteen combined compound-
protein similarity matrices, we calculated the posterior
probability of the true positive dataset for all compound-
protein pairs. The quality of the separation between the
hidden positives and the actual negatives in the unknown
dataset for the thirteen different similarity matrix choices
was calculated in terms of the Dmax values obtained by
Kolmogorov-Smirnov analysis. These values indicate the
ability of the proposed framework to contrast the true
positive dataset against the unknown dataset, and by
extension, how good the interacting and non-interacting
compound-protein pair classes are distinguished from each
other.

Table 2 presents the Dmax values of all techniques with
which we calculated the similarity between compounds, as
there is only one similarity measure for proteins, for the
Nuclear Receptor dataset and the GPCR dataset. The results
obtained from the Nuclear Receptor dataset indicate that
KCF� S Fingerprints achieves the greatest separation be-
tween the compound-protein pairs in the true positive
dataset C1 and the unknown dataset C0, followed by
Maximum Common Substructure (RDkit) and TF-IDF cosine
similarity. The top three techniques that achieved the
greatest separation in the GPCR dataset are TF-IDF cosine
similarity, LINGO similarity with q ¼ 3, and LINGO similarity
with q ¼ 4, respectively. The resulting separation between
the hidden positive compound-protein pairs and the actual
negatives in the unknown dataset is also apparent in the

histograms of the posterior probability of the true positive
dataset obtained using these compound similarity methods
as shown in Figure 2 and Figure 3. The compound-protein
pairs for which the posterior probability of the true positive
dataset was greater than the indicated threshold were
identified as hidden positives representing predicted inter-
actions.

Finally, we constructed two lists of predicted interac-
tions, one for the Nuclear Receptor dataset by taking the
intersection of the compound-protein pairs predicted
separately by KCF� S, SIMCOMP, MCS, LINGOsim (q ¼ 3),
LINGOsim (q ¼ 4), LINGOsim (q ¼ 5), LINGO based TF and
LINGO based TF-IDF, and another for the GPCR dataset by
taking the intersection of the compound-protein pairs
predicted separately by ECFP4, FCFP4, KCF� S, MCS, LINGO-
sim ðq ¼ 3Þ, LINGOsim ðq ¼ 4Þ, LINGOsim ðq ¼ 5Þ, TF LINGO
based TF and LINGO based TF-IDF for which Kolmogorov-
Smirnov Analysis resulted in Dmax values greater than 0:6.
For each predicted interaction, we calculated the geometric
mean of the posterior probabilities by each method to
obtain a unique posterior probability.

The top thirty predicted interactions in both lists are
provided in Table 3 and Table 4, respectively, in the
descending order of posterior probability of belonging to
the set of true interactions along with the current record on
them in DrugBank,[29] KEGG,[30] SuperTarget,[32] ChEMBL.[47]

Note that since the publication of the Yamanashi dataset in
2008, interactions of some unlabeled pairs in C0 have been
experimentally validated and incorporated in the interac-
tion databases listed above, providing a means for
independent evaluation for the predicted interactions. In
Table 3 and Table 4, the pairs that have interaction record
in least one dataset and the potential interactions sug-
gested by ChEMBL[47] were indicated by bold characters. In
the tables, identified positive interactions are indicated by
the letter Y and potential interactions are indicated by the
letter P, respectively. Note also that a considerable number
of predicted interactions are now categorized as positive
interactions indicating the success of the proposed ap-
proach in identifying unknown true interactions among all
possible compound-protein combinations.

Lastly, we collected the structures of top five com-
pounds that have been predicted to interact with estrogen
receptor 1 and adrenoceptor beta 2 in Tables 3 and 4,
respectively. The 2D structure graphs shown in Table 5
reveal striking similarities: The common feature of the top
five compounds that have been predicted to interact with
estrogen receptor 1 is the similarity of the chemical
structures with each other especially with testosterone.
Among the top five compounds that have been predicted
to interact with adrenoceptor beta 2, Isoetharine, Denop-
amine, Levodopa and Dipivefrin all contain a catechol
group while Metoprolol and Denopamine have a phenol
group as common substructures. Based on these observa-
tions, it is not surprising that these compounds have been
predicted to interact with their respective target proteins.
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4 Discussion

In this paper, we have proposed a quasi-supervised learning
approach for compound-protein interaction prediction that
addresses the issues associated with the lack of ground-
truth negative instances in compound-protein interaction
datasets. As mentioned in the literature review, there are
very few studies in the literature that address the absence
of reliable negatives as well as data imbalance between
true positives and unlabeled compound-protein pairs. The
present study offers an alternative strategy for an adequate
evaluation of unlabeled compound-protein pairs. The
results show that the quasi-supervised learning algorithm
can make accurate predictions on interaction status of
unlabeled compound-protein pairs without requiring an
experimentally validated set of true negatives; or com-
pound-protein pairs that have been established not to
interact.

The quasi-supervised learning algorithm is well-suited to
the compound-protein interaction prediction problem due
to two reasons. Firstly, it uses only ground-truth positive
compound-protein pairs without making any unrealistic
and potentially erroneous presumptions on the interaction
status of the unlabeled pairs. Instead, it successfully
contrasts the set of all unlabeled compound-protein pairs
with no known interaction with the true-positive dataset
and identifies the pairs most likely to interact with each
other automatically. Secondly, it can operate on the
similarity structure between protein and compound pairs
directly without requiring a feature vector representation
for either of them, a common requirement for most other
machine learning strategies. In this manner, it avoids the
issues and shortcomings associated with feature-extraction
processes that constitute major challenges especially for
unstructured compound and protein data. This also allows
incorporating alternative notions of similarity between
protein and compound pairs from a larger, non-numeric
class of similarity measures and enhances the breadth of
the analysis.

On a final note, the proposed methodology can be
extended in several ways. First, we applied quasi-supervised
learning algorithm on only Nuclear Receptor and GPCR
datasets due to computational limitations. These limitations
are associated with the quadratic complexity of the kernel
approach that entails calculating a similarity matrix for all
compound-protein pairs. This, in turn, imposes restrictions
on the dataset size to be evaluated unless the computa-
tional cost is alleviated using resource-friendly techniques.
The proposed methodology can also be applied on datasets
of other common target protein families such as Enzyme
and Ion Channels of the Yamanashi dataset using more
powerful computing resources. The Quasi-Supervised Learn-
ing algorithm appears particularly suitable for parallelization
allowing for wider-scale applications on parallel computa-
tion architectures. Apart from this, further research can
explore additional similarity measures that reflect the

correlation between chemical and genomic spaces for
potentially more efficient prediction. For instance, LINGO-
like similarity measures for proteins can be explored in
terms of protein motifs and domains that may incorporate
the established functional characteristics of the proteins
into the similarity structure more adequately.

Data Availability Statement

These data were derived from the following resources
available in the public domain:
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