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Başar ÖZENBOY1, Selma TEKİR∗ 2
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Abstract: It’s vital for commercial enterprises to accurately predict demand by utilizing 

the existing sales data. Such predictive analytics is a crucial part of their decision support 

systems to increase the profitability of the company.In predictive data analytics, the branch 

of regression modeling is used to predict a numerical response variable like sale amount. In 

this category, linear models are simple and easy to interpret yet they permit generalization 

to very powerful and flexible families of models which are called Generalized linear 

models (GLM). The generalization potential over simple linear regression can be explained 

twofold: First, GLM relax the assumption of normally distributed error terms. Moreover, 

the relationship of the set of predictor variables and the response variable could be 

represented by a set of link functions rather than the sole choice of the identity function. 

This work models the sales amount prediction problem through the use of GLM. Unique 

company sales data are explored and the response variable, sale amount is fitted to the 

Gamma distribution. Then, inverse link function, which is the canonical one in the case 

of gamma-distributed response variable is used. The experimental results are compared 

with the other regression models and the classification algorithms. The model selection is 

performed via the use of MSE and AIC metrics respectively. The results show that GLM 

is better than the linear regression. As for the classification algorithms, Random Forest 

and GLM are the top performers. Moreover, categorization on the predictor variables 

improves model fitting results significantly. 

 
 

 

Genelleştirilmiş Doğrusal Modeller Kullanılarak Satış Geçmişine Dayalı Talep Tahminlemesi 
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Özet: Ticari is ļetmeler için mevcut satıs  ̧verilerini kullanarak talebi net olarak tahmin 

etmek önemlidir. Ş irketlerin karlılığı artırmak için karar destek sistemlerinin bir parçası 

olarak tahmin analitiği yapabiliyor olması gerekir.Tahmine yönelik veri analitiğinde, re- 

gresyon modelleri satış miktarı gibi sayısal bir bağımlı değişkenin tahmin edilmesinde kul- 

lanılır. Bu kategoride doğrusal modeller basittir, yorumlanması kolaydır ve aynı zamanda 

genelleştirilmiş doğrusal modeller (GLM) olarak adlandırılan çok güçlü ve esnek model 

ailelerine genelleştirme yapılmasını sağlar. Basit doğrusal regresyona göre genelleştirme 

potansiyeli iki katlı olarak açıklanabilir: İlk olarak GLM normal dağılımlı hata terimleri 

varsayımını yumuşatır. Ayrıca, tahmin değişkenleri kümesi ile bağımlı değişken arasındaki 

bağlantı fonksiyonunu özdeşlik fonksiyonu ile sınırlandırmaz. Bu çalışmada satış miktarı 

tahmin problemi GLM ile modellenmis ţir. Model uyarlamasını eniyiles ţirmek için bir s i̧r- 

kete ait satış verilerinin keşifsel analizi yapılmış ve bağımlı değişken olan satış miktarının 

dağılımı gama dağılımı olarak bulunmuştur. Sonrasında, gama dağılımlı bağımlı değişken 

için standart bağlantı fonksiyonu olan ters bağlantı fonksiyonu kullanılmıştır. Deneysel 

sonuçlar diğer regresyon modelleri ve sınıflandırma algoritmalarıyla karşılaştırılmıştır. 

Model seçiminde MSE ve AIC ölçütleri kullanılmıştır. Sonuçlar GLM’nin doğrusal re- 

gresyondan daha iyi olduğunu göstermektedir. Sınıflandırma algoritmaları açısından ise, 

rastgele orman ve GLM en üst performansı göstermiştir. Ayrıca, tahmin değişkenlerinin 

kategorizasyonunun model uyumunu iyileştirdiği görülmüştür. 
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1. Introduction

Demand prediction is a vital activity for commercial
companies. Companies should better manage current
resources and plan for future needs in order not to
lose their competitive advantage and reduce costs. The
uncertainty in future makes the prediction hard. There are
various methods for demand prediction yet the research
community is still in search of more effective prediction
techniques.

Sales demand prediction can vary due to
short/intermediate/long range prediction, the char-
acteristic of good such as durable or not, the type of
response variable (binary, categorical, or numerical),
and the model choice in the form of parametric vs.
nonparametric.

Among existing models, linear models are simple and
easy to interpret yet permit ready generalization to very
powerful and flexible families of models. Generalized
linear models (GLM) ([1]) represent such a powerful
and flexible families of models. In this work, we predict
demand by making a novel adaptation of GLM for unique
company data.

To clarify the idea, it’s useful to explain simple linear
regression in conjunction with GLM:

Simple linear regression is commonly used to predict
a numerical response variable like sales amount. It has
some assumptions to simplify the theory of analysis.
One of the assumptions is regarding error terms. Linear
regression models assume that the error terms are normally
distributed. The second assumption is such that response
variables are independent normal random variables.

In some real world applications, error terms and response
variables may not have normal distribution. In that case
GLM can be used instead of linear regression models.
GLM relax the assumption of normally distributed error
terms. Moreover, GLM can be used for predicting
the expected value of a response variable which has a
distribution from the exponential family. Whenever the
response variable is no more normally distributed, a
constant change in a predictor variable does not lead to
a constant change in the response variable. Thus, the
relationship between the set of predictor variables and the
response variable could be represented by a set of link
functions rather than the identity function.

GLM can provide a solution for different types of response
variable distributions. For a binary response variable, the
two popular link functions are logit and probit. In demand
prediction; besides estimating the amount of demand
estimating the presence of demand can be crucial as well.
Linear models which use logit link function to predict the
probability of demand thus have common usage.

[2] compares and contrasts the probit ang logit link
functions through the use of an example case.

[3] performs an empirical study on the cigarette demand
problem. Cigarette demand problem traditionally is mod-
eled as a mixed distribution: a logit specification to predict
the decision to smoke and OLS for estimating the intensity
of smoke. He tried to model the intensity of smoke in a
population. The problem was modeled with both ordinary
least squares (OLS) method and GLM. Results were
compared to understand the importance of prediction bias
due to omitting error terms while data transformation. The
results show that OLS method overestimates the effect of
price on the cigarette demand when compared to GLM.
Because in the case of OLS, a logarithmic transformation
is performed on the response variable whereas GLM
performs logarithmic transformation on the expected value
of the dependent variable. In other words, OLS with
logarithmic transformation has a constant variance as-
sumption which does not represent the truth. GLM, which
has non-constant variance assumption thus performs better.

[4] conducts a study to predict voting behavior to Obama
or Romney in 2012 American National Election. The
study is based on logit model to evaluate the dichotomous
dependent variable. The method performs well when the
data set is sufficiently big.

We have five years’ (2010, 2011, 2012, 2013, 2014) sales
data for a cooling company. The data set includes sales
data that consists of the variables of sale amount, the date
of sale, item price, and air temperature.

In our sales demand prediction problem; the response
variable, sale amount is found as gamma distributed. Thus,
GLM with gamma distributed dependent variable is used.
The canonical link function in this case is the inverse link
function and it is also found to be best performing by the
experimental evidence.

In our solution scheme, the combinations of three different
predictor variables, "Days", "Temperature" and "Price" are
analyzed. Then, the predictor variables are transformed
into categorical variables for investigating the effect
of categorization. When categorical predictor variable
fitting results are compared with that of non-categorical,
the former one gives better results than the latter. Thus,
categorization provides more accurate prediction mostly
due to variance reduction on predictor variables.

When the GLM result is compared with the other
predictive data analysis techniques, our findings are
as follows: Within the scope of regression techniques,
GLM gives better fitting results than the linear model.
Within the scope of classification techniques; in single
predictor variable cases Random Forest is the best, but
when "price" predictor variable is used in conjunction with
other variable(s), GLM outperforms the others. The model
fitting results are evaluated with respect to MSE and AIC
metrics.

Our contribution comes in two different ways: Although
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GLM is an old technique in modeling, its use in data
mining is relatively not widespread almost restricted to
the use of logistic regression. In fact, GLM is composed
of a set of models that can be configured with respect
to inherent characteristics of data. The generalization
property is due to this. In our work, we used unique
company data for sales demand prediction and adapted
the GLM using data distribution (GLM with gamma
distributed dependent variable). Moreover, we performed
a comparative analysis with the linear model and other
data mining algorithms considering the effect of feature
selection and categorization.

2. Material and Method

In this section; first we explain GLM along with its adapta-
tion to unique company sale demand prediction problem.
Then, we go through the description of the classification
and regression algorithms in our comparison base. Fi-
nally, we briefly describe model evaluation with respect
to the sampling techniques (cross-validation and hold-out
sampling) and evaluation metrics that are MSE and AIC
respectively.

2.1. GLM

Linear regression models have some assumptions to
simplify the theory of analysis. One of the assumptions is
regarding error terms. Linear regression models assume
that the error terms are normally distributed. The second
assumption is such that response variables are independent
normal random variables. [5].

Figure 1 visualizes the linear regression model with
the stated assumptions. E{Y} = aX + b implies linear
regression model with parameters a, b, and predictor
variable X . E{Yi} implies the expected value of Yi on
the regression line, εi implies the error term with normal
distribution. Yi represents the real-valued response
variable.

The right-hand side aX +b component is a functional form.
The transformation linking the functional form to the ex-
pected value of the response variable is called a link func-
tion which is identity in the case of linear regression.

Figure 1. Linear regression model (Source: [5] ).

In some real world applications, error terms and response
variables may not have normal distribution. In that case

generalized linear models (GLM) can be used instead of
linear regression models. GLM relax the assumption of
normally distributed error terms. Moreover, GLM can
be used for predicting the expected value of response
variable which has a distribution from the exponential
family and the individual values of the response variable
are independent from each other. Link function is one of
the GLM property which connects the parameters of the
response variable distribution with the linear model [1].
So, if there exists an appropriate link function for fitting
GLM then, the goodness of fit of GLM may produce better
result than linear regression models. In other words, the
issue is to find out the functional form-link function pair
that is in accordance with the left-hand side variable’s
expected value distribution.

The gamma distribution, which is a member of the expo-
nential family is widely used to model physical quantities
that take positive values. Sale amount is such a quan-
tity and can be modeled as a random variable denoted as
Y∼Gamma(α,β ) where α is the shape parameter and β is
the scale parameter. Our model fitting results confirm that
sale amount distribution is best fit to a gamma distribution.
The probability density function of a gamma distribution
is as follows:

f (yi) =
1

β α Γ(α)
y(α−1)

i e−(
yi
β
) yi ≥ 0;α,β > 0 (1)

The expected value and variance equations are provided
below:

E{yi}= µi = αβ (2)

Var{yi}= αβ
2 (3)

As seen from the formulations, when the parameter β

(scale parameter) is not varying so much, the expected
value of the response variable is just dependent on
the shape parameter α . Then, the task becomes to
find an appropriate link function connecting α to the
right-hand side linear model. In accordance with
this, the canonical parameter for the gamma distribu-
tion is − 1

µ
. If the link function is chosen to be the

function expressing the canonical parameter for the
distribution being used as the linear sum, the fit becomes
better. So the canonical link function is the inverse link [6].

The two common link functions for GLM are inverse link
(canonical link) and log link functions where the former
takes the inverse of the expected value of the response vari-
able while the latter takes its logarithm. We used inverse
link (the canonical) function for GLM fitting, it gave better
performance (4).

E{Y}= 1
a+bX1 + cX2

(4)
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In the given equation, a + bX1 + cX2 is our functional
form, X1 and X2 are our predictor variables "Day" and
"Temperature", we take the inverse of the functional form
to connect with the expected value of the response variable
Y (Sale amount) distribution.

In [6], GLM with a Gamma-distributed dependent vari-
able is analyzed through different combinations of link
functions and functional forms.

• Identity function-Inverse on the functional form

• Inverse link function-Inverse on the functional form
(log link equivalent)

are proposed as alternative ways of GLM fitting. Identity
function-Inverse on the functional form can be represented
by the following formula,

E{Y}= a+b
1

X1
+ c

1
X2

(5)

whereas Inverse link function-Inverse on the functional
form (log link equivalent) can be stated as follows:

1
E{Y}

= a+b
1

X1
+ c

1
X2

(6)

We applied all these variations. As stated before, inverse
link function along with the standard functional form per-
formed better (Equation 4).

2.2. Comparison base

2.2.1. GLMNet

GLMNet is a regularized version of GLM. The regular-
ization overcomes overfitting by adding terms to the cost
function of the learning model. The addition of these terms
in general push the parameters of the learning model to-
wards a prior value. In the case of GLMNet there are two
such terms namely `1 (the lasso) and `2 (ridge regression).
The target regression problems in context are linear, two
class logistic and multinomial regression model problems.
To acquire a sparse solution for regression models, `1 (the
lasso) penalty term is used. Ridge regression (`2) shrinks
the estimated coefficients with shrinking method which
adds a penalty on coefficients. The mixture of `1 and `2
penalties is named as the elastic net regularized regression
method which is GLMNet [7].

2.2.2. Gradient boosting method (GBM)

Boosting is a method of machine learning which produces
a combined strong classifier out of weak learners. The
weak learner algorithm is run on the dataset and according
to a loss function, an updated version of the weak learner
is introduced. The data distribution is updated so that the
misclassified points in the dataset get higher weights. Then,
the updated weak learner algorithms are run repetitively in
this manner. The result is a combination of weak classifiers

weighted with respect to the loss function outcome per it-
eration. The basic assumption in a boosting scheme is that
the selected weak learner algorithm is at least better than
a random classifier. There are mainly two varying com-
ponents namely the cost function and the weak learner in
different boosting methods. In the case of Gradient Boost-
ing Method, the weak learner is selected in the direction
of the negative gradient of the loss function [8].

2.2.3. Principal component regression (PCR)

Principal component analysis (PCA) was invented by Karl
Pearson [9]. With principal component analysis (PCA)
method, independent variables are projected onto new vari-
ables such that the sample variance is maximized and the
resultant linear combination is uncorrelated with the orig-
inal one. The resultant variables are named as principle
components. Principal component regression (PCR) pre-
dicts the dependent variable using linear regression on the
principal components [10].

2.2.4. Support vector machine (SVM)

[11] introduced support vector machine learning method.
The method is based on support vectors which represent
decision boundaries on the training set. One desired char-
acteristic of these decision boundaries is having a large
margin as small margin causes model overfitting. Every
such decision boundary can be associated with two hy-
perplanes and the task is to find out the maximal margin
classifier that separates those two hyperplanes. The de-
fault classifier works with linear decision boundaries on
the binary classification problem. Support vector machines
generalize this to more complex surfaces by transforma-
tions from a linear decision surface into a nonlinear one.

2.2.5. Random forest (RF)

Random forest was introduced by [12]. It is a combination
of multiple decision trees. In classifying a new instance,
majority voting is applied on component decision trees. In
order to construct every individual decision tree, a random
training set using sampling with replacement is generated
out of the original one. The performance of random forest
is mainly dependent on the correlation between component
trees and the strength of each individual tree.

2.2.6. Conditional inference trees (Ctree)

Another predictive method which is similar to MARS
method is Conditional Inference Tree (CTree) method
which also systematically tries all the combinations of
the variables to select the right predictor variables. It is
a tree structured regression model. CTree creates a deci-
sion tree. It generates splits iteratively. These splits are
generated for most significantly related variable with the
response variable. That response variable is evaluated by p
values. Iterations finish when there is no more significant
p value available for the remaining variables [13].
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2.2.7. Ensemble learning

In ensemble learning, a set of classifiers is combined to
make a better prediction. The component classifiers can
be identical or diverse. In general, the aggregate opinion
of diverse classifiers is better in reducing variance. The
aggregate opinion is formed using the weighted average of
individual votes [14].

2.3. Model evaluation

2.3.1. Cross-validation

It’s a sub-sampling technique in which the existing data are
split into training and test sets. The model is trained using
the training part and validated on the test part. In k-fold
cross-validation, data are divided into k equal parts of size
n. In every iteration, the ith set of n items are used as the
test and the remaining as the training. After k iterations,
the average performance from the k sets is recorded as the
resultant performance.

2.3.2. Hold-out sampling

In hold-out sampling, a separate validation set is utilized
in order to assess the predictive performance of the model
on unseen data.

2.3.3. Akaike information criterion (AIC)

Akaike Information Criterion (AIC) is a metric that is used
to evaluate the goodness of fit of a model. Different models
of different complexity can be compared using this metric.
AIC is formulated as follows:

AIC =−2l +2p (7)

In the formulation, l is the log-likelihood term that de-
scribes how well the data are described given the model.
p represents the model complexity in terms of the number
of parameters. Lower AIC values are preferred and AIC
favors simpler models that explain the data well.

2.3.4. Mean squared error (MSE)

It is a measure of the deviations of real data points from the
model predicted ones. The sum of squares of individual er-
rors is taken and normalized with respect to the number of
data points. The sum of squared errors (SSE) is calculated
using the following formula;

SSSE =
n

∑
i
(y(i)− ŷ(i))2 (8)

where the first term inside the summation represents a real
data point while the second is a model estimated data point.

2.4. GLM adaptation to data

2.4.1. Data set

We have five years’ (2010, 2011, 2012, 2013, 2014) sales
data for a cooling company. There are more than twelve
types of products that are sold in almost all cities of Turkey.
The total number of sales in the product database is 185986.
The most popular product is A with 134247 total number
of sales. For our demand prediction problem, we referred
to product A sales in the city of Istanbul. The total num-
ber of sales meeting this criterion is 12788. We queried
the product database in order to filter it with respect to
this criterion. As a result, our sales records include date,
sale amount, product item price, city name, and product
code. Using the date and city information, we added air
temperature as an additional feature to the data set.

2.4.2. Goodness of fit tests

As part of exploratory data analysis, we calculated some
summary statistics. One such statistic is the total product
sales amount for every product sorted with respect to
city. Then, we based our demand prediction on the most
popular product sold in Istanbul, which had the highest
number of product sales.

We performed goodness of fit tests on the collected data
to determine its distribution (Table 1). The results are
acquired according to the Chi-Squared fit test.

The null hypothesis in the case of 2010 sales amount data
can be stated as follows:

H0 =There is no difference between Sales2010 data
distribution and the theoretical Log-logistic distribution.

The alternative one is:

H1 =There is difference between Sales2010 data distribu-
tion and the theoretical Log-logistic distribution.

According to the p value obtained (0.21991), if we reject
the H0, we are 21% wrong. Thus, we cannot reject that
the Sales2010 data fit to Log-logistic distribution.

In a similar way; as all p values for the other years’ sales
data are greater than 0.05, we can conclude that Sales2011,
Sales2012, Sales2013, Sales2014 data fit to Gamma
Distribution, Gamma (3P) Distribution, Lognormal
Distribution, and Gamma Distribution respectively.

Please be reminded that in goodness of fit tests, Type 2
error (failing to reject a false null hypothesis) rather than
Type 1 (p-value: the probability of incorrectly rejecting the
null hypothesis) is common.

2.4.3. Discretization

In order not to disregard the effect of discretization on
the performance of GLM model fitting, we prepared the
discretized versions of our predictor variables.
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Table 1. Goodness of fit test results for sales amount data between 2010 and 2014.
2010 2011 2012 2013 2014

Goodness of fit Log-logistic Gamma Gamma (3P) Lognormal Gamma
Significance level 0.05 0.05 0.05 0.05 0.05

P value 0.21991 0.24049 0.52422 0.66265 0.22956
Reject? no no no no no

α = 1.6499 α = 0.70528 α = 0.71381 α = 1.2341 α = 0.79408
Parameters β = 3.5296 β = 12.935 β = 24.254 µ = 2.1291 β = 19.553

γ = 1.0

We calculated the quantiles for the temperature and price
predictor variables. Then, we converted the raw values into
categories with respect to first, second, third, and fourth
quartiles (Table 2 and 3).

Table 2. Categorization of the temperature predictor
variable.

Category Min Max

Temperature 1 1◦ 17◦

Temperature 2 17◦ 23◦

Temperature 3 23◦ 28.5◦

Temperature 4 28.5◦ 36◦

Table 3. Categorization of the price predictor variable.

Category Min Max

Price 1 500.6380TRY* 729.1154TRY
Price 2 729.1154TRY 763.9032TRY
Price 3 763.9032TRY 787.0951TRY
Price 4 787.0951TRY 826.8073TRY

∗ Turkish Lira

Finally, the date predictor variable is categorized with
respect to quarters (Table 4):

Table 4. Categorization of the date predictor variable.

Category Months

First Quarter January, February, March
Second Quarter April, May, June
Third Quarter July, August, September
Fourth Quarter October, November, December

3. Results

In our modeling, we investigated the response variable
with respect to three predictor variables, "Date", "Tempera-
ture" and "Price". We considered all combinations of these
three variables in our experiments. Additionally, we trans-
formed them into categorical variables to test the effect
of categorization. In the following part, we first give the
empirical results for non-categorical predictor variables
then for their categorical counterparts.

3.1. Incremental addition of non-categorical predictor
variables

Day, temperature, and price are considered as predictor
variables while constructing the fitted model to sales data

for the year 2014. Predictor variables are added to the
model incrementally for testing their effects on model
fitting in a controlled way.

To assess the performance of model fit, p values are
calculated with respect to the goodness of fit null
hypothesis. The null hypothesis can be stated as follows:

H0 =There is no difference between observed and fitted
values.

When we analyze the results given in Table 5, p values
and AIC metric verify that the model which is based on
"Day" and "Temperature" predictor variables gives the
best result. The calculated p value, 0.6185 means that we
cannot reject the null hypothesis, that is, the model fitting
is valid statistically.

3.2. Incremental addition of categorical predictor
variables

This time, GLM fitting results are interpreted with
categorical sales data for the year 2014. The results are
presented in Table 6.

The model which is constructed with "Quarter", "Tempera-
ture", and "Price" gives the best result when we consider
MSE, AIC and p values. So, "Quarter", "Temperature",
and "Price" are added to the model as predictor variables.

3.3. GLM with non-categorical vs. categorical predic-
tors

Table 7 represents the comparison of GLM results with
non-categorical and categorical predictors. The model
which is constructed with the categorical independent
variables gives better results. The difference between two
models can be explained by the effect of the "Quarter"
predictor variable. It gives seasonal information and is
more relevant when the sale of cooling goods is considered.

Table 7. Comparison of GLM with non-categorical and
categorical predictors.

Metrics Non-categorical Categorical

MSE 249.1760 195.1147
AIC 1506.7180 1482.727

Residual deviance 197.1618 164.2224
P value 0.6023 0.9572
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Table 5. GLM fitting results for sales 2014 data.
Sales2014(GLM)

4*Coefficients Day -0.0003 0 0 -0.0003 0 -0.0002 -0.0003
Temperature 0 0.0039 0 -0.0041 -0.0041 0 -0.0041

Price 0 0 -0.0004 0 -0.0004 0.0000 -0.0001
Intercept 0.0957 0.1642 0.3874 0.2082 0.4974 0.1188 0.2698

MSE 288.6811 267.5052 287.1445 250.5749 259.6151 288.4999 249.1760
AIC 1539.5130 1515.8720 1545.0860 1504.9030 1512.0000 1541.4870 1506.7180

Null deviance 240.9493 240.9500 240.9500 240.9500 240.9500 240.9500 240.9500
Degrees of freedom 206 206 206 206 206 206 206

P value 0.0479 0.0479 0.0479 0.0479 0.0479 0.0479 0.0479
Residual deviance 229.8613 208.3468 235.2086 197.3156 203.2985 229.8365 197.1618

Degrees of freedom 205 205 205 204 204 204 203
P value 0.1124 0.4218 0.0726 0.6185 0.5007 0.1036 0.6023

Table 6. GLM fitting results for categorical sales 2014 data.
Sales2014(GLM)

11*Coefficients Quarter1 0 0 0 0 0 0 0
Quarter2 -0.0844 0 0 -0.0655 0 -0.0766 -0.0624
Quarter3 -0.1358 0 0 -0.1216 0 -0.1226 -0.1171
Quarter4 -0.0752 0 0 -0.0596 0 -0.0674 -0.0598

Temperature1 0 -0.07702 0 -0.03195 -0.06598 0 -0.029915
Temperature2 0 -0.09405 0 -0.0234 -0.07895 0 -0.0192
Temperature3 0 -0.09385 0 -0.0117 -0.07875 0 -0.0065
Temperature4 0 0 0 0 0 0 0

Price1 0 0 -0.0697 0 -0.04985 -0.03679 -0.036082
Price2 0 0 -0.07196 0 -0.04867 -0.0301 0.0238
Price3 0 0 0.03676 0 0.04621 0.0606 0.0660
Price4 0 0 0 0 0 0 0

Intercept 0.1726 0.1429 0.1260 0.1771 0.1728 0.1897 0.1941

MSE 229.5703 271.2096 280.8429 209.3177 259.6477 221.4104 195.1147
AIC 1489.3760 1523.7140 1535.0460 1488.8610 1514.3070 1484.2230 1482.7270

Null deviance 241.0813 241.0813 241.0813 241.0813 241.0813 241.0813 241.0813
Degrees of freedom 206 206 206 206 206 206 206

P value 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473
Residual deviance 177.8493 205.5993 215.5636 172.9775 192.7054 169.5828 164.2224

Degrees of freedom 203 203 203 200 200 200 197
P value 0.8980 0.4358 0.2598 0.9168 0.6315 0.9420 0.9572
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3.4. Ordinary least squares estimator (OLS) versus
GLM

For all the combinations of predictor variables GLM out-
performs OLS. In order to give an idea of how they differ-
entiate from each other, the OLS and GLM fitted models
which are constructed with "Day" and "Temperature" are
visualized in Figure 2 and compared in Table 8.

Figure 2. OLS vs. GLM.

The blue curved line shows the OLS fitting by adding two
predictor variables which are "Day" and "Temperature"
to the model. The red rectangular pointed line represents
the GLM fitting result by the identical predictor variables.
Real sales data are depicted as black rounded points. As
seen from the figure, the OLS fitted values and GLM fitted
values are similar.

In order to further analyze the difference between OLS
and GLM model fitting, we can focus on their variances
(Figure 3 and 4 respectively). The OLS method assumes
that the residuals have the same variance which is named
as homoscedasticity. Constant variance of the OLS
method can be observed in Figure 3. GLM fitted model
has non-constant variance across an entire range of values
which is called heteroscedasticity (Figure 4). Fitting sales
data by GLM provides less variance than the OLS method
and GLM assumes different variances for each estimated
response variable because of the error term.

Figure 3. OLS variance.

Table 8 represents the comparison of OLS and GLM

Figure 4. GLM variance.

fitted models. GLM fitted model gives better AIC and
MSE results. In addition to these, the residual to null
deviance fraction gives a better result in the case of GLM.
That means adding "Day" and "Temperature" predictor
variables to the GLM fitted model decreases null deviance
more than that of the OLS fitted model. As a result, if we
compare the two models based on AIC, MSE and, the
residual to null deviance fraction then, the GLM fitted
model represents observed data better than the OLS fitted
model.

Table 8. Comparison of OLS and GLM model fitting
results.

Metrics OLS GLM
Days and Temperature

MSE 253.3723 250.5749
AIC 1741.157 1504.9

Null deviance 60025.91 240.95
Residual deviance 52448.07 197.32

Residual to null deviance frac. 0.8738 0.8189

3.5. Comparing GLM with predictive data mining
methods

This section presents comparative results with selected
data mining methods. As a comparison basis; Generalized
Linear Models with Elastic Net Regularization (GLMNet)
[7] , Gradient Boosting Method (GBM) [8], Principal
Component Regression (PCR) [10], Support Vector Ma-
chine (SVM) [11], Random Forest (RF) [12], Conditional
inference trees (CTree) [13], and Ensemble Learning (EL)
[14] are used.

The validation of the selected model is one important step
of model building. In this section we do validation on the
fitted models which are constructed by non-categorical
predictor variables. Hold-out samples which are samples
of data that are not used in fitting a model are used to
validate the fitted models. Istanbul sales are used as the
training data and Izmir sales are used as the validation
set. Table 9 gives the comparison of the selected data
mining methods and GLM with non-categorical predictor
variables through the use of hold-out samples.
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Table 9. Comparison of the selected data mining methods and GLM with non-categorical predictor variables.

Non-categorical Sales2014

Factors MSE of Methods

Day x x x x
Temperature x x x x

Price x x x x

GLMNet 136.3917 136.6720 135.9715 136.6720 138.3373 135.9715 138.3373
GBM 169.6955 117.2606 121.9277 152.3425 114.9580 191.1965 147.7359
PCR 136.3344 155.5300 154.5678 136.4315 156.8812 135.8821 136.6662
SVM 188.3921 118.1168 141.2607 171.1725 106.7127 179.4780 165.0091

Random Forest 200.3054 188.3117 120.8555 201.0203 167.3700 180.3512 182.7320
Ctree 180.6332 150.7834 155.2848 151.0385 150.7834 180.6332 151.0385

Ensemble learning 177.8041 149.1145 134.1322 130.9450 154.6232 184.8372 128.5726
GLM 136.5303 214.8490 162.0401 122.3348 606.2935 136.3448 123.4321

Table 10. Comparison of the selected data mining methods and GLM with categorical predictor variables.

Categorical Sales2014

Factors MSE of Methods

Quarter x x x x
Temperature x x x x

Price x x x x

GLMNet 235.9518 283.8525 287.758 235.6685 282.1223 236.6896 233.9616
GBM 1097.919 297.1452 500.7632 765.0678 445.0727 1232.807 725.4583
PCR 239.8311 289.2484 287.528 245.4711 280.0862 242.5003 240.7885
SVM 262.3833 323.2351 325.827 278.0332 321.076 275.4668 294.5758

Random Forest 215.8516 223.5914 239.4328 193.0158 279.3928 229.42 223.5908
Ctree 232.8376 275.8169 281.0322 220.7328 275.8169 232.8376 225.2724

Ensemble learning 237.558 285.4635 282.2418 218.3207 271.9933 230.829 241.1951
GLM 229.5703 271.2096 280.8429 209.3177 259.6477 221.4104 195.1147

As seen from Table 9, GLM gives the best result with
"Days" and "Temperature" predictor variables and "Days",
"Temperature", and "Price" predictor variables. GBM,
PCR, SVM, and Random Forest models give better re-
sults in some other variable combinations (marked in bold).

Table 10 gives the comparison of the selected data mining
methods and GLM with categorical predictor variables:

As a result, in some variable combinations the RF fitted
model is the best while in the remaining ones the GLM fit-
ted model outperforms the others. To further characterize
those variable combinations, in single predictor variable
cases RF is the best, but when "price" predictor variable is
used in conjunction with other variable(s), GLM is the top
performer. The best values in every column are marked in
bold.

Meanwhile, as an alternative we used cross-validation on
the model building based on Istanbul sales data. The ob-
tained results are in accordance with the results from the
hold-out sampling.

4. Discussion and Conclusion

To deal with demand prediction, various techniques
of regression analysis and data mining are used under
the predictive methods. The purpose of this work is to
make history-based demand prediction of sales by using
generalized linear models.

The data set which is used for analysis is real company
data. In our modeling, the response variable is the sale
amount and the date of sale, item price, and air temperature
are selected as the predictor variables. The distribution
of sale amount which is the response variable for real
customer data is discovered as the gamma distribution.
Because of the response variable distribution, GLM
method is used with the gamma distribution which is
a member of the exponential family and inverse link
function is used. Investigating the data, choosing the
GLM setting in accordance with the response variable
distribution along with an appropriate link function are
crucial steps for characterizing the data through the use of
GLM modeling.

In any modeling case, the target model is fitted to the
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whole set of data points. Thus, the variance of data points
and the bias of them from their real population should be
considered. In order to govern the total variance due to
the predictor variables, if there are a few variables like
our case, all the possible combinations of them should
be taken into consideration. If the original data types of
variables and their ranges cause a lot of variance, it can be
an option to apply categorization to the variables in order
to better identify their impact on the response variable.

We analyzed the combinations of three different predictor
variables, "Days", "Temperature", and "Price". Then, the
predictor variables are transformed into their categorical
counterparts for investigating the effect of categorization.
When categorical predictor variable fitting results are
compared with that of non-categorical, the former one
gives better results than the latter. Thus, categorization
provides more accurate prediction mostly due to variance
reduction on predictor variables.

When the GLM result is compared with the other
predictive data analysis techniques, our findings are as
follows: Within the scope of regression techniques, GLM
is compared with the linear model both for default and
inverse response variables. As a result of the comparison,
GLM gives better fitting results than the linear model in
both cases. Within the scope of classification techniques,
RF and GLM are the top performers. When single
predictor variables are used RF is the best while in the case
of the usage of "price" with any other predictor variable(s)
GLM is the best. The model fitting results are evaluated
with respect to MSE and AIC metrics.

Classifier performance depends greatly on the character-
istics of the data to be classified. Various classification
algorithms are compared in order to find out the character-
istics of data that explain their comparative performances.
However, it’s still an open problem.

Attribute error and concept size are good features
(characteristics of data) to explain the performance of
classification algorithms. Concept size is the proportion of
concept space covered by positive instances while attribute
error is the random substitution of attribute values [15].

In explaining the performance of RF, it can be said that RF
is robust to attribute error as it performs random selection
of a subset of features to grow each tree.

As for GLM, its performance can be attributed to our
model adaptation in which we took the dependent variable,
"sale demand" distribution (Gamma) into consideration.

Further research on this topic could have the following
directions:

• Different discretization methods for categorizing the
predictor variables can be used.

• Hybrid models [16] can be constructed such as the
formulation of the GLM model along with an additive

time series component.
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