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ABSTRACT 

QUASI-SUPERVISED STRATEGIES FOR COMPOUND-PROTEIN 

INTERACTION PREDICTION 

In-silico prediction of compound-protein interaction using computational 

methods preserves its importance in various pharmacology applications because the wet-

lab experiments are time-consuming, laborious and costly. Most machine learning 

methods proposed to that end approach this problem with supervised learning strategies 

in which known interactions are labeled as positive and the rest are labeled as negative. 

However, treating all unknown interactions as negative instances may lead to inaccuracies 

in real practice since some of the unknown interactions are bound to be positive 

interactions waiting to be identified as such. In this study, we propose to address this 

problem using the Quasi-Supervised Learning algorithm. In this framework, potential 

interactions are predicted by estimating the overlap between two datasets: a true positive 

dataset which consists of compound-protein pairs with known interactions and an 

unknown dataset which consists of all the remaining compound-protein pairs. The 

potential interactions are then identified as those in the unknown dataset that overlap with 

the interacting pairs in the true positive dataset in terms of the associated similarity 

structure between interacting pairs. Experimental results on GPCR and Nuclear Receptor 

datasets show that the proposed method can identify actual interactions from all possible 

combinations.  
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ÖZET 

BİLEŞİK-PROTEİN ETKİLEŞİMİ TAHMİNİ İÇİN YARI-GÜDÜMLÜ 

YAKLAŞIMLAR 

Laboratuvar ortamında gerçekleştirilen bileşik-protein etkileşimi belirleme 

deneylerinin zaman alıcı, zahmetli ve maliyetli olması nedeniyle, hesaplamalı yöntemler 

kullanarak dijital ortamda bileşik-protein etkileşimi tahmini önemini korumaktadır. Bu 

amaçla geliştirilen pek çok yapay öğrenme yöntemi bu probleme bilinen etkileşimlerin 

pozitif, eldeki geri kalan bütün etkileşimlerin ise negatif olarak etiketlendiği güdümlü 

öğrenme stratejileri ile yaklaşmıştır. Fakat bilinmeyen etkileşimler açığa çıkarılmayı 

bekleyen pozitif etkileşimleri de barındıracağından, bilinmeyen bütün etkileşimleri 

negatif örnek olarak ele almak gerçek uygulamalarda hatalı sonuçlara yol açacaktır. Bu 

çalışmada, bu problemin Yarı-Güdümlü Öğrenme Algoritması ile çözülmesi 

amaçlanmaktadır. Bu çerçevede olası etkileşimler iki veri kümesinin örtüşümü 

kestirilerek tahmin edilir: Etkileştikleri bilinen bileşik-protein çiftlerinden oluşan gerçek 

pozitif veri kümesi ve geri kalan diğer bütün bileşik-protein çiftlerinden oluşan 

bilinmeyen veri kümesi. Gerçek pozitif veri kümesindeki etkileşen çiftlerle ilgili yapısal 

benzerlik açısından örtüşen bilinmeyen veri kümesindeki bileşik-protein çiftleri 

potansiyel etkileşimler olarak tanımlanır.  GPCR ve Nuclear Receptor veri kümeleri 

üzerindeki deneysel sonuçlar, amaçlanan yöntemin bütün olası çiftlerden gerçek 

etkileşimleri saptayabildiğini göstermektedir.  
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CHAPTER 1 

INTRODUCTION 

Identification of compound-protein interactions (CPI) plays an essential role in a 

wide range of pharmacological applications. Most drugs are small chemical compounds 

that modulate the biological activities of their target proteins by interacting with them. In 

the initial phases of the drug discovery process, a druggable target protein of interest is 

identified and validated. Effective interactions between drug candidate compounds and 

the target protein that induce the desired biological effect are then detected. Thousands 

of compounds that exhibit sufficient pharmacological potential can move to the next 

phases of the drug discovery process, such as optimization, preclinical testing, and 

clinical development [1]. At the end of the drug discovery and development process that 

takes several years and costs approximately $2.6 billion, only a few of all candidate drugs 

achieve approval [2]. Between 2015-2019, 44 drugs per year on average were approved 

by the FDA, which corresponds to a 0.01% approval rate [3]. Since there are many 

diseases that remain to be solved, and many new diseases are emerging every day, the 

drug discovery process needs to be accelerated. There is also a strong incentive to screen 

drug candidate compounds against many target proteins instead of only one target protein. 

A number of studies have shown that complex diseases such as cancer and Alzheimer's 

Disease are associated with multiple targets necessitating the elucidation of the 

interaction profiles of candidate drugs with many target proteins [4]. Drugs may also 

inadvertently interact with other off-target proteins. Detection of such interactions allows 

prediction and analysis of undesired side-effects of drugs [5]. Finally, CPI pediction is a 

key part of drug repositioning, i.e., discovering new clinical usage of existing drugs. Since 

these drugs have already passed many time-consuming and costly processes, drug 

repositioning attracts researchers in the pharmaceutical industry with increasing interest. 

[6].   

Experimental validation of compound-protein interactions in laboratory 

environments remains time-consuming, laborious, and extremely costly, even when using 

high-throughput screening technologies. As a result, only a small number of 

experimentally validated interacting compound-protein pairs exist compared to the large 
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numbers of compounds and proteins: There are ~568 million protein sequences and ~96 

million compounds in the databases of NCBI Entrez system against only ~1.2 million 

recorded interactions [7]. In recent years, there has been growing interest in using 

computational tools for CPI prediction, fueled by studies with promising results [8]. In-

silico prediction of CPI aims to narrow the search space for future wet-lab experiments 

by suggesting the most likely interactions, thereby accelerating pharmacological research 

processes, decreasing costs, and increasing research productivity [8]. 

1.1. Computational Approaches for CPI prediction  

There are three main computational approaches in virtual screening for potential 

compound-protein interactions. Structure-based approaches aim to utilize the 3D 

structure of a target protein to determine whether or not a compound would interact with 

the target protein [9]. The disadvantage of this approach is that obtaining the 3D structure 

of a target protein may not always be possible, especially for membrane proteins such as 

Ion Channels and GPCRs [10]. In ligand-based approaches, potential interactions are 

identified by comparing the structure of compounds that are known to interact with a 

target protein against candidate compounds. [11]. Based on the universal expectation that 

shared structural elements may indicate shared functional characteristics, this approach 

becomes unfeasible if the target protein of interest has few or no known interactions. 

Finally, chemogenomics approaches address the issues associated with the earlier two 

approaches [10]. The idea behind this approach is again that the compounds that have 

similar structure would tend to interact with same or similar proteins, but unlike the 

ligand-based approaches, information that comes from both compounds and proteins are 

considered simultaneously. A chemogenomics approach seeks to reveal the correlations 

between the chemical space and the genomic space by relating the chemical structure 

information of compounds with amino acid sequence information of proteins. In this way, 

these approaches aim to compensate for the lack of known interactions of target proteins 

by considering the known interactions of similar proteins, and to develop a unifying 

prediction model for the whole compound-protein data at hand. It eliminates the 

bottleneck in the target protein identification by allowing large scale screening of 

compounds against the entire protein data of interest.  
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1.2. Problem Definition 

To date, various machine learning-based methods have been proposed for CPI 

prediction using a chemogenomics approach [12]–[14]. Although the learning rule of 

algorithms and the ways to represent pertinent information may differ, the general 

principle can be described briefly as follows. We have mainly three different types of 

data: the list of compounds to be screened 𝑋𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑛}, the list of proteins to be 

screened, 𝑋𝑝 = {𝑝1, 𝑝2, … , 𝑝𝑚},  and experimentally validated interaction information 

between some compound-protein pairs among all possible compound-protein pairs, 𝑋 =

{𝑐1𝑝1, 𝑐1 𝑝2, … , 𝑐𝑛𝑝𝑚−1, 𝑐𝑛𝑝𝑚}. A machine learning model is constructed to predict 

interaction profiles of a given compound-protein pair using a group of labeled pairs, 

chemical information obtained from compound data, and genomic information obtained 

from protein data. The inherent issue with current machine learning approaches is that a 

true negative dataset of known non-interacting compound-protein pairs does not exist, as 

positive interactions dominate the literature and the databases. Most machine learning 

methods that are developed so far address the CPI prediction problem within a Supervised 

Learning framework in which known interactions are labeled as positive, and everything 

else is labeled as negative. However, treating the compound-protein pairs that have no 

known interactions as negative leads to unrealistic recognition models as these pairs 

undoubtedly include some positive interactions that are as of yet unknown. Since 

supervised strategies require a true negative dataset to contrast with the true positive 

dataset of known interactions, the only option is to manufacture true negative datasets 

from pairings of existing compounds and proteins. This, however, entails several 

additional issues: Firstly, since many different true negative datasets can be manufactured 

based on different principles of non-interaction, classifier outputs incur a conditional bias 

on the selected true negative dataset and differ depending on the choice of the true 

negative dataset. Secondly, the presence of the unknown positive interactions in 

manufactured true-negative datasets of effectively untested interactions contaminates the 

inferred interaction recognition mechanism. There is a notable lack of studies to tackle 

this problem in a realistic manner [13].  

In the absence of a validated true negative dataset of non-interacting compound-

protein pairs, the only viable option for an unbiased and uncontaminated machine 

learning strategy is to contrast the set of previously untested interactions containing all 
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possible pairings between the compounds and proteins at hand with the true positive 

dataset of interacting pairs and seek those pairs in the unknown and effectively untested 

dataset that differentiate from the rest towards the positive interactions. This thesis 

proposes to address this problem using the Quasi-Supervised Learning Algorithm (QSL) 

[15] that does not require a true-negative dataset to contrast with the true-positive dataset. 

The proposed framework in this study contrasts the true positive dataset with known 

compound-protein interactions against the untested dataset of all possible pairings while 

recognizing that it contains a mixture of interacting and non-interacting compound-

protein pairs. For machine learning purposes, we define a similarity between compound-

protein pairs from protein-protein similarity and compound-compound similarity 

measures and apply the quasi-supervised learning algorithm on the combined similarity 

measure to calculate estimates for the posterior probability of a given compound-protein 

pair to belong to the true positive dataset, for all pairs in both datasets. Finally, we 

determine the optimal threshold for predicted positive interactions in the untested dataset 

using Kolmogorov-Smirnov statistics applied on posterior probability estimates. 

1.3. Thesis Roadmap 

This thesis is organized as follows. Chapter 2 provides background information 

on CPI prediction, a comparison of feature vector-based and similarity-based machine 

learning methods for CPI prediction, and a review of related studies on similarity-based 

machine learning methods. Chapter 3 introduces CPI datasets used in this study. We then 

provide descriptions for each operational block of the schematic diagram of the proposed 

method shown in Figure 1. We describe the details of the proposed method for CPI 

prediction using the quasi-supervised learning algorithm in the next section along with 

the various techniques with which we characterize the similarity between compound and 

protein pairs. Chapter 4 presents the results of a comparative analysis of the proposed 

method across different configurations of alternative similarity measures. Chapter 5 

concludes the thesis with a discussion on a general evaluation of the proposed method 

and several potential extensions for future work. 
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Figure 1. Schematic diagram of the proposed method 
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CHAPTER 2 

BACKGROUND 

In compound-protein interaction (CPI) prediction tasks, the domain of interest 

consists of two different types of data: the compound data, 𝑋𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑛} which 

construct chemical space and the protein data, 𝑋𝑝 = {𝑝1, 𝑝2, … , 𝑝𝑚} which construct 

genomic space.  

 

2.1. Chemical Space 

In the literature, a chemical compound is represented in various ways such as 

Trivial Name, chemical formula, IUPAC name, 1D line notations, and 2D chemical 

structure diagram [16]. Trivial Name is an arbitrary or semi-arbitrary name that identifies 

some of the most used compounds. IUPAC (The International Union of Pure and Applied 

Chemistry) names standardize to assign names to the compound names under pre-defined 

rules. Chemical Formula (Molecular formula) describes the type and the number of atoms 

in a compound by character and numbers, but it does not include the structural 

information. 2D chemical structure diagrams are the 2D graphical representations of the 

structure of compounds that explains how atoms are connected to each other by which 

bond type without the 3D spatial position. Although 3D structure diagrams also exist, 2D 

chemical structure diagrams are still the most common way to represent a compound. It 

is often referred to as the “natural language of the chemist” [16]. 1D line notations such 

as SMILES encodes the structural information of compounds as a linear sequence of 

string characters under a specific rule. Table 2 shows the different representations of 

Isotretinoin.  

The interaction between a drug candidate compound and a protein occurs when 

the compound binds to the protein via specific locations on the compound and the protein 

[17]. Since the common substructures may correspond to common bioactivity, the 

chemogenomics approaches focus on exploring the structure information of compounds 

such as shared substructures, ring systems, and topology to evaluate their bioactivities 

[10].  
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Table 1. Different representations of Isotretinoin 

(Source: https://www.kegg.jp/dbget-bin/www_bget?dr:D00348) 

Trivial Name Isotretinoin 

Chemical Formula C20H28O2 

IUPAC name 
(2Z,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-

1-yl)nona-2,4,6,8-tetraenoic acid 

2D chemical 

structure diagram 

 

SMILES C\C(\C=C\C1=C(C)CCCC1(C)C)=C/C=C/C(/C)=C\C(O)=O 

The structural information of a compound can be represented using various 

techniques in computer-readable form for storing and processing. The content of 

represented information may differ depending on the representation technique. The 

analogy between 2D chemical structure diagrams and topological graphs provides us the 

2D representation of structural information in a computer-readable form using graph 

theory: The structural information is represented by undirected graphs in which atoms are 

mapped into vertices and bonds are mapped into edges. In this way, the structural 

information of compounds can be stored and processed in a computer environment via 

connection tables. Furthermore, many useful algorithms derived from graph theory can 

be applied to find common patterns between the compounds that exhibit similar 

bioactivity.  Despite information losses due to the 3D nature of compounds, the most 

common way to process chemical information in pharmacological applications is to 

utilize 2D representation for two reasons [18]: First, it is sufficient for expert chemists 

whenever manual interpretation is required. Second, many studies have shown that 2D 

approaches often achieve better results in bioactivity prediction tasks than 3D approaches 

despite their simplicity. In that spirit, the Molfile format [19] (developed by MDL 

information systems, now BIOVIA, https://www.3ds.com/productsservices/biovia/) has 

become a standard file format for storing and transferring connection tables in 

chemoinformatic applications [16]. Figure 2 provides the Molfile format description of 

Isotretinoin. The counts line indicates how many atoms and bonds construct the molecule. 

The atom block contains the lists of atoms indexed by the Morgan Algorithm [20] that is 

used to achieve canonicalization. Moreover, this block conveys 2D spatial coordinates   
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Figure 2.  Molfile of Isotretinoin 

(Source: https://www.kegg.jp/dbget-bin/www_bget?-f+m+drug+D00348) 
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and additional information such as nonstandard isotope and valance for each atom. The 

bond block specifies bond types and describes how atoms are connected to each other. 

This block also includes additional stereochemistry information. In this way, we can 

distinguish between molecules whose atoms are bonded in the same way but have 

different 3D spatial positions. Such molecules are referred to as stereoisomers. Note that 

hydrogens are omitted in these representations. Since hydrogen can have only a single 

bond, it can be inferred from the remaining part of the graph. In this study, we retrieved 

the structural information of compounds in MOL file format. 

 The structural information can also be converted to computer-readable form 

through 1D line notations. This study used the Simplified Molecular Input Line Entry 

System (SMILES) for encoding the structural information of compounds using string 

characters via conversion from the Molfile format [21]. Table 2 presents the most 

frequently used string characters in SMILES representations. These characters encode the 

same information with connection tables. This representation allows us to use text mining 

algorithms for screening chemical space with time and memory storage advantages over 

the graph-based algorithms. We used the molconverter console program of JCHEM 

(developed by ChemAxon, https://www.chemaxon.com/) to convert Molfiles into 

canonical SMILES. The program defines SMILES by following Daylight's SMILES 

specification rules [22]: Each non-hydrogen atom in the organic subset (C, N, S, O, P, Cl, 

F, B, Br, and I) are denoted independently by their standard symbols while the other ones 

are denoted by their standard symbols in square brackets (e.g. [Ag], [Cu]). Square 

brackets are also used to specify the atoms that have charges other than normal, and 

isotopic specifications of the atoms (e.g. [Br-], [12C]). Hydrogen atoms are omitted 

except in special cases. Single, double, triple, and aromatic bonds between atoms are 

indicated by ‘-‘, ‘=’, ‘#’ and ‘:’ symbols, respectively. Note that single and aromatic bonds 

between consecutive atom characters are omitted. Branches are represented by 

surrounding the characters in branches with parentheses. The branch specified by 

parentheses is always on the left. Ring structures are constructed by breaking one bond 

in the ring and assigning an integer to adjacent atoms connected by the broken bond. The 

atoms in aromatic rings are indicated by lower-case characters. Disconnected 

substructures in a compound are separated from the main part with the “.” symbol. Since 

the stereoisomers may have different bioactivity characteristics due to the 3D nature of 

the compounds [24], it is important to represent stereoisomerism in which atoms in 

compounds are bonded to each other in the same way, but they have different spatial  
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Table 2. Most frequently used string characters in SMILES [23] 

no symbol definition 

1 C nonaromatic carbon atoms 

2 c aromatic carbon atoms 

3 N nonaromatic nitrogen atoms 

4 n aromatic nitrogen atoms 

5 O nonaromatic oxygen atoms 

6 o aromatic oxygen atoms 

7 S nonaromatic sulfur atoms 

8 s aromatic sulfur atoms 

9 F fluorine atoms 

10 Cl chlorine atoms 

11 Br bromine atoms 

12 I iodine atoms 

13 P nonaromatic phosphorus atoms 

14 p aromatic phosphorus atoms 

15 B boron atoms 

16 “X” any other atoms 

17 - single bonds 

18 = double bonds 

19 # triple bonds 

20 [ Nonorganic elements, charges, 

isotopes 

21 - negative charges  

22 + positive charges 

23 H explicit hydrogen atoms 

24 ( acyclic branching points 

25 1 nonfused ring system 

26 2 bicyclic systems 

27 3 tricyclic systems 

28 4 tetracyclic systems 

29 5 pentacyclic systems 

30 6 hexacyclic systems 

31 7 heptacyclic systems 

32 8 octacyclic systems 

33 9 nonacyclic systems 

34 % higher order ring systems 
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positions in space. SMILES can also encode for the stereoisomerism information depicted 

in 2D diagrams. The characters “/” and “\” are used to represent the arrangement around 

the double bonds. Chirality of a molecule can be expressed in SMILES by specifying the 

stereocenter with “@” or “@@” characters depending on clockwise or anti-clockwise 

ordering neighbor atoms of the stereocenter, respectively. The SMILES representation is 

illustrated in Figure 3 for Atropine sulfate.  

 

“Cl.OS(O)(=O)=O.CN1[C@H]2CC[C@@H]1C[C@@H](C2)OC(=O)C(CO)c1ccccc1.

CCOC(=O)C1(CCN(CCC(C#N)(c2ccccc2)c2ccccc2)CC1)c1ccccc1.” 

Figure 3. SMILES code of Atropine sulfate with its 2D graph representation 

(Source: https://www.kegg.jp/dbget-bin/www_bget?dr:D00301) 

Lastly, the structural information of a compound can be represented by molecular 

fingerprints that encode the structure of compounds into fixed-length bit-vectors 

depending on whether a substructure occurs in a compound or not. These substructures 

are defined to evaluate molecules in a manner of a purpose. A study by Sawada et al. 

(2014) [25] investigated the performance of different types of fingerprints in compound-

protein interaction prediction problems. Chapter 4 will provide a more detailed 

explanation of the molecular fingerprints used in this study.  

2.2. Genomic Space 

 Proteins are the macromolecules that carry out the most vital tasks in organisms, 

such as activate or inhibit biochemical reactions, forming structures in cells and 

organisms, transmission of molecules, and signaling [26]. A series of small organic 

compounds called amino acids form proteins as a stretched polymer chain by joining with 
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each other in a sequence. The amino acid chain folds to form the unique 3D structure of 

the protein, which is the main element that determines the functions of the protein [26]. 

Previous studies have confirmed that the amino acid sequence of the protein is the primary 

determinant of its 3D structure, and by extension its function and biochemical properties 

[26]. Table 3 presents 20 different amino acids with their 3-letter name and 1-letter 

symbol representations. The amino acid sequence of a protein is usually represented as a 

1D linear sequence of the 1-letter symbols of amino acids. In this way, the proteins can 

easily be converted into computer-readable forms for storing, delivering, and processing 

in FASTA file format.   

Table 3. The list of 20 amino acids 

no Amino Acid 3-Letter Name Symbol 

1 Alanine Ala A 

2 Arginine Arg R 

3 Asparagine Asn N 

4 Aspartic Acid Asp D 

5 Cysteine Cys C 

6 Glutamine Gln Q 

7 Glutamic Acid Glu E 

8 Glycine Gly G 

9 Histidine His H 

10 Isoleucine Ile I 

11 Leucine Leu L 

12 Lysine Lys K 

13 Methionine Met M 

14 Phenylalanine Phe F 

15 Proline Pro P 

16 Serine Ser S 

17 Threonine Thr T 

18 Tryptophan Trp W 

19 Tyrosine Tyr Y 

20 Valine Val V 

 As mentioned before, compound-protein interactions highly depend on the 

binding sites on compounds and proteins determined largely by their structure. Based on 

the strong correlation between the amino acid sequence and the structure of a protein [26], 

chemogenomics approaches often utilize the amino acid sequences of proteins to build 

machine learning algorithms for CPI prediction [10]. In this way, chemogenomics 

approaches aim to predict the possible interactions of the proteins for which the 3D 

structures are not available. Note that amino acid sequences of proteins are readily 

accessible but their 3D structures are not: There are ~568 million amino acid sequences 
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of proteins in the databases of NCBI Entrez system, while only 147.217 proteins have 

published 3D structures [7]. Furthermore, amino acid sequences allow us to perform 

large-scale screening of genomic space by leveraging various fast and efficient text-

mining algorithms. In this study, our protein data consists of amino acid sequences of the 

proteins as is the case in most chemogenomics studies. 

2.3. Feature-based vs Similarity-based Methods 

The machine learning methods have been developed for CPI prediction can be 

categorized further into feature vector-based approaches and similarity-based approaches. 

In feature-vector based approaches, compound-protein pairs are represented by fixed-

length feature vectors that are used as input to a machine learning algorithm. The feature 

vector for a compound-protein pair is calculated by combining the two feature vectors, 

one from the genomic space, and the other from the chemical space. A machine learning 

algorithm is then constructed with a fixed number of parameters in order to predict an 

interaction label from the combined feature vector of a given compound-protein pair. 

However, feature extraction is a challenging process especially when it comes to CPI 

prediction due to the complex relationships between the chemical and the genomic 

spaces. Since many factors may affect the establishment of interaction between a given 

compound-protein pair, fixed-length vectors may not adequately reflect the critical 

pharmacological properties.  In similarity-based approaches, machine learning algorithms 

can be constructed to evaluate compound-compound similarities and protein-protein 

similarities to predict interactions of compound-protein pairs. A well-defined similarity 

function that calculates the similarity between samples and a number of labeled data are 

sufficient to perform training and prediction [27]. It is also important to note that this 

strategy is inherently suitable for a chemogenomics approach as structural similarities 

that are key for molecular interaction may not necessarily be represented adequately 

through numeric features [12]. 

2.4. Literature Review of Similarity-Based Methods 

 In recent years, there has been an increasing amount of literature on CPI prediction 

using a similarity-based chemogenomic approach [12]–[14]. The greater part of the 
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literature approaches this problem with supervised strategies in which the compound-

protein pairs that have known interaction are labeled as positive “1”, and the rest are 

labeled as negative “0”. Although the similarity calculation methods and the machine 

learning rules may differ, the general principle of the supervised learning framework in 

the similarity-based scheme for CPI prediction is as shown in Figure 4. The machine 

learning model contrasts true positive training samples against true negative training 

samples by leveraging compound-compound similarities and protein-protein similarities 

to predict the label of a given compound-protein pair. The trained model is then evaluated 

on the compound-protein pair samples that are not used in the training process for three 

different problems of CPI prediction [28]: new drug prediction in which the model tries 

to predict the interaction profile of a compound that has no known interaction, the new 

target prediction in which the model tries to predict the interaction profile of a protein 

that has no known interaction, and interacting pair prediction in which the model tries to 

predict additional interactions of a compound or a protein that already has at least one 

known interaction in the dataset. Train and test set splitting for each case is shown in 

Figure 5 where ‘?’ indicates the test samples. 

Yamanashi et al (2008) approached the CPI prediction problem as link prediction 

in a bipartite graph. They used compound-compound similarities and protein-protein 

similarities to embed them into a pharmacological vector space in which the Euclidean 

distances between linked vectors are minimized [28]. Jacob and Vert (2008) developed a 

pairwise kernel method to obtain a similarity matrix for compound-protein pairs from 

similarities between compounds and similarities between proteins [29]. They then trained 

a Support Vector Machines (SVM) classifier using this similarity matrix as a kernel 

matrix. Laarhoven et al. (2011) treated interaction profiles of each protein and each 

compound as binary feature vectors. They constructed similarity matrices from these 

vectors using a Gaussian kernel and integrated them with a compound similarity matrix 

and a protein similarity matrix. A predicted interaction score matrix was calculated from 

these combined similarities using Regularized Least Squares (RLS) [30].  Laarhoven and 

Marchiori (2013) later expanded Gaussian Interaction Profile kernels with a Weighted 

Nearest Neighbor approach to predict interactions for new proteins and compounds for 

which no interactions exist [31]. Gönen (2012) combined non-linear dimensionality 

reduction and matrix factorization to project compounds and proteins into a unified low-

dimensional space through their similarity matrices and to estimate an interaction matrix 

in this space [32]. Zheng et al. (2013) used Collaborative Matrix Factorization to estimate 
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Figure 4. Supervised learning framework of CPI prediction 

 

Figure 5. Train and test splitting scheme to evaluate three different cases 
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a binary interaction matrix between compounds and proteins such that the latent features 

of the matrix approximate protein and compound similarity matrices [33]. 

In all these studies, the CPI prediction problem is addressed within a Supervised 

Learning framework that requires a true negative dataset of known non-interacting 

compound-protein pairs. Since there are only a few experimentally validated and 

documented non-interacting compound-protein pairs in the literature, the methods 

mentioned above resort to manufactures true negative datasets by treating all unknown 

interactions as negative samples. As mentioned in Chapter 1.3., constructing a true 

negative dataset with the pairs that do not have any validated interaction profiles causes 

inaccurate predictive results since these negative samples unquestionably include many 

hidden true positives waiting to be detected.  

We propose to address this problem using the Quasi-Supervised Learning 

Algorithm in which the learning algorithm contrasts a true positive dataset with all 

unlabeled compound-protein pairs with no known interaction [15]. In this framework, we 

collect the compound-protein pairs at hand into two different datasets: a true positive 

dataset which consists of compound-protein pairs with known interactions, and an 

unknown dataset which consists of all the remaining compound-protein pairs. The Quasi-

Supervised Learning Algorithm then calculates the posterior probability of the true 

positive dataset at each compound-protein pair using the asymptotic properties of nearest 

neighbor classification rule, compound-compound similarity measures, and protein-

protein similarity measures. We then identify the potential interactions as those in the 

unknown dataset that are beyond the threshold posterior value that is determined by 

Kolmogorov-Smirnov method. In other words, we estimate the overlap between the true 

positive dataset and the unknown dataset in terms of the associated similarity structure.  
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Dataset 

In this study, we used the publicly available dataset published by Yamanishi et al. 

[28]. In this widely referenced paper, the authors point out that screening all compound-

protein pairs is computationally infeasible, and construct a modular dataset to build 

machine learning models separately for four major protein classes (i.e. enzymes, ion 

channels, GPCRs, and nuclear receptors) which are commonly considered as drug targets. 

This dataset has since become a benchmark in CPI prediction studies [13]. The interaction 

information between compound-protein pairs were retrieved from DrugBank [34], KEGG 

[35], BRENDA [36], and SuperTarget [37] databases by Yamanishi. Table 4 shows the 

number of proteins and compounds and known interactions between all possible 

compound-protein pairs for each protein class dataset in the collection. We applied our 

proposed framework on Nuclear Receptor and GPCR dataset separately. We could not 

use Enzyme and Ion Channels dataset due to limitations of the processing power at hand. 

Table 4. Datasets of Yamanishi [28] 

Protein Class Dataset Compounds Proteins Interactions 

Enzyme 445 664 2926 

Ion Channels 210 204 1476 

GPCR 223 95 635 

Nuclear Receptor 54 26 90 
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3.2. Similarity Measurements 

In this chapter, we introduce the methods with which we evaluated compound-

compound and protein-protein similarities. We used thirteen different methods to 

quantify the similarity between compounds and one method to quantify the similarity 

between proteins. Thus, we obtain thirteen different similarity matrices, 𝑺𝒄  ∈ 𝑅
𝑛×𝑛, from 

compound data, 𝑋𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑛}, for chemical space and one similarity matrix, 𝑺𝒑  ∈

𝑅𝑚×𝑚, from protein data, 𝑋𝑝 = {𝑝1, 𝑝2, … , 𝑝𝑚}, for genomic space through the methods 

described below. 

3.2.1. Compound-Compound Similarity Measurements 

 We retrieved the chemical structural information of compounds in Molfile format 

from KEGG DRUG database [35]. Similarity matrices for chemical space, denoted by a 

matrix 𝑺𝒄 of compound-compound similarity, are constructed using a variety of methods 

to evaluate the similarity between different compounds. The methods used in this study 

can be classified into three main categories: Graph based methods, SMILES based 

methods and Molecular Fingerprints based methods. 

3.2.1.1. Graph-Based Methods 

 SIMCOMP [38] algorithm was used to calculate the chemical structural similarity 

between compounds. This algorithm treats the 2D structure of compounds as graphs in 

which atoms are mapped to vertices and bonds are mapped to edges. The vertices are 

labelled with 68 KEGG atom types instead of the usual atomic species. Table 5 provides 

the list of 68 KEGG atom types. The KEGG atom types consist of three letters: The first 

letter corresponds to the element symbol of atom, while the second and third letters 

indicate its hierarchical classification depending on its hybrid orbital and atomic 

environments. For example, C denotes the element symbol of carbon, 1 represents sp3 

hybridization and a indicates a methyl Carbon in C1a. These microenvironments are 

defined in order to distinguish molecules in a biochemical manner in addition to their 

structures [38].  
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The algorithm finds the maximum common subgraph between two compound 

graphs and then calculates a similarity score using the Jaccard coefficient, defined by 

𝑆𝑐(𝐺1, 𝐺2) =
|𝐺1 ∩ 𝐺2|

|𝐺1 ∪ 𝐺2|
=

𝑀𝐶𝑆(𝐺1, 𝐺2)

|𝐺1| + |𝐺2| − 𝑀𝐶𝑆(𝐺1, 𝐺2)
 (3.1) 

where the intersection and the union operations between graphs 𝐺1 and 𝐺2 are defined as 

maximum common subgraph and the nonredundant subgraph, respectively. In addition, 

the |. | operator calculates the cardinality of its argument graph. 

 The challenge here is to find the maximum common subgraph. The graph 

theoretical explanation for this task is as follows: The complete graph is a graph in which 

each vertex is connected to all other vertices in the graph through edges. A clique is a 

complete subgraph. The maximal clique is a clique that cannot be enlarged by adding 

vertices. The Figure 6 illustrates these terms.  

 

Figure 6. Fundamental terms in the graph theory 

Given two graphs 𝐺1(𝑉1, 𝐸1),  𝑣1𝑖 ∈ 𝑉,  e1ij ∈ 𝐸1 and 𝐺2(𝑉2, 𝐸2), 𝑣2𝑘 ∈ 𝑉2,  e2kl ∈

𝐸2, the algorithm firstly finds the association graph 𝐺(𝑉,𝐸) between them that includes 

all possible matching between vertices in 𝐺1 and 𝐺2. The vertex set of the association 

graph is obtained by the cartesian product of two vertex sets 𝑉 = 𝑉1⊗𝑉2, with elements 

𝑣𝑖𝑘 ∈ 𝑉. The edge set is defined by setting edges between vertices 𝑣𝑖𝑘 and 𝑣𝑗𝑙  by 

following adjacency conditions: 

• 𝑣1𝑖 ∈ 𝑉1 is adjacent to 𝑣1𝑗 ∈ 𝑉1 in 𝐺1, and 𝑣2𝑘 ∈ 𝑉2 is adjacent to 𝑣2𝑙 ∈ 𝑉2 in 

𝐺2 or 

• 𝑣1𝑖 ∈ 𝑉1 is not adjacent to 𝑣1𝑗 ∈ 𝑉1 in 𝐺1, and 𝑣2𝑘 ∈ 𝑉2 is not adjacent to 𝑣2𝑙 ∈

𝑉2 in 𝐺2  
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Figure 7 illustrates the calculation of an association graph from two graphs with 

their adjacency matrices where dashed lines in the association graph denote the matching 

of the non-adjacent vertices. The index 𝑣𝑖𝑘 can be regarded as indicating the row of the 

adjacency matrix of the association graph in which blue color denotes the nodes coming 

from the first graph 𝑣𝑖 and the green color denotes the nodes coming from the second 

graph 𝑣𝑘, whereas 𝑣𝑗𝑙  indicates the column of the adjacency matrix. Maximal cliques in 

the association graph, which corresponds to common subgraphs between two graphs, are 

detected by the Bron-Kerbosch algorithm from the adjacency matrix of the association 

graph. Each vertex in maximal cliques is assigned a weight based on the labels of the 

matching vertices using the function, defined by  

𝑤(𝑣𝑖𝑘) = {
1
0.5 
0
  

𝑝(𝑣1𝑖) = 𝑝(v2k)

𝑝(𝑣1𝑖) ≠ 𝑝(v2k) 𝑎𝑛𝑑 𝑎(𝑣1𝑖) = 𝑎(v2k)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.2) 

where the function 𝑝 returns the KEGG atom type and the function 𝑎 returns the atom 

species of its argument vertex. The maximal clique for which the summation of the 

weights of the vertices is highest is identified as the Maximum Common Subgraph.   

 

Figure 7. Calculation of the association graph 
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Table 5. The list of 68 KEGG atom types 

(Source: https://www.genome.jp/kegg/reaction/KCF.html) 

Atom Functional group Atom type Description 

C 

Alkane 

C1a R-CH3 

C1b R-CH2-R 

C1c R-CH(-R)-R 

C1d R-C(-R)2-R 

Cyclic alkane 

C1x ring-CH2-ring 

C1y ring-CH(-R)-ring 

C1z ring-C(-R)2-ring 

Alkene 

C2a R=CH2 

C2b R=CH-R 

C2c R=C(-R)2 

Cyclic alkene 
C2x ring-CH=ring 

C2y ring-C(-R)=ring or ring-C(=R)-ring 

Alkyne 
C3a R≡CH 

C3b R≡C-R 

Aldehyde C4a R-CH=O 

Ketone C5a R-C(=O)-R 

Cyclic ketone C5x ring-C(=O)-ring 

Carboxylic acid C6a R-C(=O)-OH 

Carboxylic ester 
C7a R-C(=O)-O-R 

C7x ring-C(=O)-O-ring 

Aromatic ring 
C8x ring-CH=ring 

C8y ring-C(-R)=ring 

Undefined C C0   

N 

Amine 

N1a R-NH2 

N1b R-NH-R 

N1c R-N(-R)2 

N1d R-N(-R)3+ 

Cyclic amine 
N1x ring-NH-ring 

N1y ring-N(-R)-ring 

Imine 
N2a R=N-H 

N2b R=N-R 

Cyclic imine 
N2x ring-N=ring 

N2y ring-N(-R)+=ring 

Cyan N3a R≡N 

Aromatic ring 

N4x ring-NH-ring 

N4y ring-N(-R)-ring 

N5x ring-N=ring 

N5y ring-N(-R)+=ring 

   (cont. on next page) 
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Table 5. (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N Undefined N N0   

O 

Hydroxy 

O1a R-OH 

O1b N-OH 

O1c P-OH 

O1d S-OH 

Ether 

O2a R-O-R 

O2b P-O-R 

O2c P-O-P 

O2x ring-O-ring 

Oxo 

O3a N=O 

O3b P=O 

O3c S=O 

Aldehyde O4a R-CH=O 

Ketone 
O5a R-C(=O)-R 

O5x ring-C(=O)-ring 

Carboxylic acid O6a R-C(=0)-OH 

Ester 
O7a R-C(=O)-O-R 

O7x ring-C(=O)-O-ring 

Undefined O O0   

S 

Thiol S1a R-SH 

Thioether 
S2a R-S-R 

S2x ring-S-ring 

Disulfide 
S3a R-S-S-R 

S3x ring-S-S-ring 

Sulfate S4a R-SO3 

Undefined S S0   

P 
Attatched to other elements P1a P-R 

Attatched to oxygen P1b P-O 

Other 
Halogens X F, Cl, Br, I 

Others Z   
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In our implementation of the algorithm, the maximum common subgraph was 

determined using RDKit open-source chemoinformatics python library [39] where 

vertices are labelled by atomic species instead of 68 KEGG atoms. In addition to their 

types, vertices are also distinguished by their valance information and bonds are 

distinguished by their aromaticity and ring information.  

3.2.1.2. SMILES-Based Methods 

 Simplified Molecular Input Line Entry System (SMILES) is a 1D string 

representation that encodes the structural information of compounds [21]. A Study by 

Öztürk et al. (2016) suggested that text similarity between two SMILES strings can be 

considered as a measure of structural similarity between two compounds for CPI 

prediction tasks [40]. They showed that similarity measures using various SMILES 

kernels performed as well as graph-based methods with an additional computational time 

advantage. We generated SMILES strings for each compound from their 2D structural 

information in Molfile format using JCHEM (developed by ChemAxon, 

https://www.chemaxon.com/). The program defines SMILES by following Daylight's 

SMILES specification rules [22], as summarized earlies in Chapter 2.1. We then 

constructed various SMILES kernels to calculate a similarity score between two SMILES 

strings. To this end, we used Normalized Longest Common Subsequence (NLCS), 

Combination of Longest Common Subsequence Models (CLCS), LINGO-q Similarity, 

LINGO Based Term Frequency (TF) Cosine Similarity, and LINGO Based Term 

Frequency-Inverse Document Frequency (TF-IDF) Cosine Similarity which are proposed 

by Öztürk et al. to calculate similarity between two compounds. For illustration purposes 

in the description below, we apply these kernels over the SMILES strings of Epinephrine 

and Levodopa shown in Table 6 along with their 2D structures. 

In NLCS, the kernel finds the longest common subsequence between two 

SMILES. A similarity score between two SMILES strings is then calculated by cosine 

normalization as 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑁𝐿𝐶𝑆(𝑆1, 𝑆2) =
𝑙𝑒𝑛(𝐿𝐶𝑆(𝑆1, 𝑆2))

2

𝑙𝑒𝑛(𝑆1) × 𝑙𝑒𝑛(𝑆2)
 (3.3) 
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where 𝐿𝐶𝑆(𝑆1, 𝑆2) denotes the longest common subsequence, and len(.) operator 

calculates the number of strings in its argument SMILES. For Epinephrine and Levodopa, 

the kernel function calculates a similarity score of 0.588 given the longest common 

subsequence “N[C@H](c1ccc(O)c(O)c1”. 

Table 6. SMILES representations and 2D structure diagrams of Epinephrine and 

Levodopa 

Epinephrine Levodopa 

  

CNC[C@H](O)c1ccc(O)c(O)c1 N[C@@H](Cc1ccc(O)c(O)c1)C(O)=O 

Note that the longest common subsequence is not required to be consecutive. In 

order to achieve a more meaningful semantic similarity between two strings, Maximal 

Consecutive Longest Common Subsequence (MCLCS) starting from the first character 

and character 𝑛 are calculated. CLCS is then defined as the equal-weighted average of 

their cosine normalizations and NLCS as  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐶𝐿𝐶𝑆(𝑆1, 𝑆2) =
1

3
(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆𝑛 + 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆1 + 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑁𝐿𝐶𝑆) (3.4)

 

where 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆𝑛 and 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆1 are calculated as 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆𝑛(𝑆1, 𝑆2) =
𝑙𝑒𝑛(𝑀𝐶𝐿𝐶𝑆𝑛(𝑆1, 𝑆2))

2

𝑙𝑒𝑛(𝑆1) × 𝑙𝑒𝑛(𝑆2)
 (3.5) 

and 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑀𝐶𝐿𝐶𝑆1(𝑆1, 𝑆2) =
𝑙𝑒𝑛(𝑀𝐶𝐿𝐶𝑆1(𝑆1, 𝑆2))

2

𝑙𝑒𝑛(𝑆1) × 𝑙𝑒𝑛(𝑆2)
 (3.6) 
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respectively. In the case of Epinephrine and Levodopa, Maximal Consecutive Longest 

Common Subsequence (MCLCS) becomes ““c1ccc(O)c(O)c1” providing a similarity 

score of 0.283. 

LINGO-𝑞 stands for consecutive 𝑞-character substrings that can be created from 

a SMILES string [41]. For instance, Table 7 presents LINGOs(𝑞 = 4) that can be 

extracted from the SMILES strings of Epinephrine and Levodopa with their occurrence 

frequencies in SMILES. Note that all ring numbers must be replaced with 0s before the 

LINGO extraction process [41].  

Table 7. LINGOs with their corresponding frequencies in the SMILES strings of 

Epinephrine and Levodopa 

Epinephrine Levodopa 

LINGO Frequency LINGO Frequency 

CNC[  1 N[C@ 1 

NC[C 1 [C@@ 1 

C[C@  1 C@@H 1 

[C@H  1 @@H] 1 

C@H]  1 @H]( 1 

@H](  1 H](C 1 

H](O  1 ](Cc 1 

](O)  1 (Cc0 1 

(O)c  3 Cc0c 1 

O)c0  2 c0cc 1 

)c0c 1 0ccc 1 

c0cc 1 ccc( 1 

0ccc 1 cc(O 1 

ccc( 1 c(O) 2 

cc(O  1 (O)c 2 

c(O)  2 O)c( 1 

O)c(  1 )c(O 1 

)c(O 1 O)c0 1 

 )c0) 1 

c0)C 1 

0)C( 1 

)C(O 1 

C(O) 1 

(O)= 1 

O)=O 1 
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A similarity function based on Tanimoto Coefficient, LINGOsim, then calculates 

a similarity score between the two SMILES strings using the unique LINGOs that are 

extracted from them as  

𝐿𝐼𝑁𝐺𝑂𝑠𝑖𝑚(𝑆1, 𝑆2) =
1

𝑚
∑1−

|𝑁𝑆1,𝑖 − 𝑁𝑆2,𝑖|

|𝑁𝑆1,𝑖 + 𝑁𝑆2,𝑖|

𝑚

𝑖=1

 (3.7) 

where 𝑚, 𝑁𝑆1,𝑖  , and 𝑁𝑆2,𝑖 indicate the total number of unique LINGOs in both SMILES 

along with the frequencies of the 𝑖𝑡ℎ LINGO in the first and the second SMILES strings, 

respectively. Therefore, the kernel function measures the similarity between Epinephrine 

and Levodopa as 0.287. We used 𝑞 = 3, 4, 5 as in the original study [40].  

In order to calculate a similarity score between two SMILES strings, the SMILES 

strings can also be mapped into vectors whose common length equals the total number of 

unique LINGOs in the two strings. In Lingo-based Term Frequency (TF) cosine 

similarity, the TF of each unique LINGO reflects the occurrence frequency of the LINGO 

in SMILES and are collected into feature vectors. 𝑇𝐹𝑤𝑒𝑖𝑔ℎ𝑡 of the 𝑖𝑡ℎ unique LINGO for 

a SMILES is then calculated as 

𝑇𝐹𝑤𝑒𝑖𝑔ℎ𝑡,𝑖 = {
1 + log10 𝑇𝐹𝑖

0
    
𝑖𝑓 𝑇𝐹𝑖 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.8) 

where 𝑇𝐹𝑖 denotes the frequency of the 𝑖𝑡ℎ LINGO in the corresponding SMILES string. 

The feature vectors in which each element corresponds to 𝑇𝐹𝑤𝑒𝑖𝑔ℎ𝑡 of one of the unique 

LINGOs in the SMILES representation of Epinephrine and Levodopa, {0ccc, [C@H, 

0)C(, O)c0, C@H, )c(O, c0)C, @@H], C@@H, O)c(, (O)=, H](C, C[C@, c(O), (Cc0, 

)c0), CNC[, )c0c, N[C@, ccc(, cc(O, NC[C, (O)c, [C@@, ](Cc, )C(O, Cc0c, O)=O, c0cc, 

C(O), ](O), H](O, @H](}, are calculated as 
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1
0

 1.301
1
1
1
1
1
1
1
0
0
1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

respectively. The similarity score between two compound smiles is finally calculated by 

cosine similarity as 

𝑇𝐹𝑠𝑖𝑚(𝑆1, 𝑆2) =
𝑉𝑠1 . 𝑉𝑠2

||𝑉𝑠1|| × ||𝑉𝑠2||
 (3.9) 

Consequently, the kernel function measures the similarity between Epinephrine and 

Levodopa as 0.511. 

In LINGO based TF-IDF similarity, the TF values of LINGOs are multiplied with 

their Inverse Document Frequency that reflects the occurrence frequency of the LINGOs 
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in the whole SMILES dataset and then collected into reference vectors. TF assigns higher 

values to more frequently occurring LINGOs in a SMILES, while IDF assigns lower 

values to more frequently occurred LINGOs in the dataset. 𝐼𝐷𝐹𝑤𝑒𝑖𝑔ℎ𝑡 the 𝑖𝑡ℎ unique 

LINGO for a SMILES string is calculated as 

𝐼𝐷𝐹𝑤𝑒𝑖𝑔ℎ𝑡,𝑖 = log10(
𝑁

𝐼𝐷𝐹𝑖
) (3.10) 

where 𝑁 corresponds to total SMILES in the dataset and 𝐼𝐷𝐹𝑖 corresponds to the number 

of SMILES that contains the 𝑖𝑡ℎ unique LINGO in the dataset. In this setting, the feature 

vectors for Epinephrine and Levodopa are calculated as 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.118
0.563
0

0.723
0.563
 1.07
0
0
0

 1.118
0
0

0.616
1.214
0
0

1.649
0.424
0

 0.375
 0.78
1.57
1.309
0
0
0
0
0

0.093
0

0.917
0.871
0.6 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   and    

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.118
0
0.83
0.556
 0
 1.07
 0.871
0.624
 0.624
 1.118
0.705
0.95
0

1.214
1.144
1.746
0
0

1.348
0.375
0.78
0

1.153
0.624
1.394
 0.901
 0.456
0.563
0.093
0.491
0
0
0.6 ]
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respectively. Cosine similarity between the two vectors provides a similarity score 

between the two SMILES strings as 0.393.  

These processes are applied to all possible SMILES pairs in the dataset to 

construct a similarity matrix, 𝑺𝒄, between all compounds. 

3.2.1.3. Molecular Fingerprints based methods 

Fingerprints encode the structure of compounds into fixed-length bit vectors 

depending on whether a substructure occurs in a compound or not. As opposed to LINGO 

where substructures are constructed from SMILES strings through 𝑛 consecutive string 

characters, pre-defined substructures are designed for specific purposes or extracted from 

2D structures directly. A study by Sawada et al. (2014) investigated the performance of 

different types of fingerprints and similarity functions in compound-protein interaction 

prediction problems [25]. In our study, we used Extended-Connectivity Fingerprints 

(ECFP) [42], Functional-Class Fingerprints (FCFP) [42], Molecular ACCess System 

(MACCS) fingerprints [43], KEGG Chemical Function and Substructures (KCF-S) 

descriptors [44] that have previously been identified as useful in CPI prediction [25]. 

ECFP describes the structure of a molecule by encoding substructures formed by 

a circular neighborhood of each atom within an atom radius into 1024-length binary 

vectors, an approach that is also known as a circular fingerprint, or Morgan Fingerprints 

[39]. In this study, we set the radius as 2 providing a maximum range between fingerprint 

atoms of 4 (ECFP4). The common substructure of Epinephrine and Levodopa, encoded 

into the 451𝑡ℎ feature of their ECFP4 fingerprints, is shown in Figure 8. The blue circle 

denotes the center atom of the substructure, while the yellow ones indicate the aromatic 

atoms in the circular neighborhood. The non-aromatic neighbor atom of the center atom 

is represented without any specific color. FCFP is an extension of ECFP in which 

pharmacophore roles of atoms are also added to fingerprints to encode for functional 

substructural features instead of just atom environments. The cosine similarity then 

provides similarity scores between ECFP4 and FCFP4 fingerprints of Epinephrine and 

Levodopa as 0.453 and 0.535, respectively.  
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Figure 8. 451. bit of the ECFP4 fingerprints of Epinephrine and Levodopa 

The MACCS fingerprints describe the structure of a molecule with a 166 length 

bit vector whose elements correspond to a substructure key. These publicly available sub-

structure keys are developed by a private company (previously MDL Information 

Systems, now BIOVIA, https://www.3ds.com/products-services/biovia/) in order to 

calculate a molecular similarity. The cosine similarity between MACCS fingerprints of 

Epinephrine and Levodopa is measured as 0.742. We used the RDKit python library [39] 

to construct these fingerprints and calculated similarity scores between each fingerprint 

pair using cosine similarity. 

One known drawback of fingerprints is that they encode for only the presence or 

absence of substructures and disregard the copy number for multiply present 

substructures. KCF-S addresses this problem using integer-valued vectors of counts 

instead of binary vectors: It treats the 2D chemical structure of a compound as a graph 

and characterizes the structure by an integer-valued vector in which each element of the 

vector corresponds to the number of distinct copies of a substructure that the compound 

possesses. Moreover, instead of atomic species such as C, H, O, N, P, and so on, it uses 

the 68 KEGG atoms. As mentioned in Chapter 3.2.1., these labels are designed to reflect 

physiochemical environmental information of the atom in order to distinguish molecules 

from a biochemical viewpoint. Substructures are constructed from the graph of a 

compound using seven chemical structural attributes: atom, bond, triplet, vicinity, ring, 

skeleton, and inorganic. Some substructures that can be created from Epinephrine using 

these attributes are summarized in Table 8. Two substructures extracted from Epinephrine 

and Levodopa are illustrated in Figure 9 and Figure 10, respectively. The substructures 

of Epinephrine shown in Figure 9 are also marked with bold characters in Table 8. The 

attributes of atom correspond to the number of each different labeled node that the 

compound graph possesses. The node pairs that are connected to each other through a 

chemical bound are collected into bond attributes. The triplet attributes are extracted from  
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Table 8. A reduced list of substructures that can be extracted from Epinephrine 

using KCF-S fingerprint attributes 

String Attribute Type Level Count 

C atom Atom species 9 

C8 atom Atom class 6 

O atom Atom species 3 

C1 atom Atom class 3 

O1 atom Atom class 3 

C8y atom KEGG atom 3 

C8x atom KEGG atom 3 

O1a atom KEGG atom 3 

C-C bond Atom species 8 

C8-C8 bond Atom class 6 

C8x-C8y bond KEGG atom 4 

C-O bond Atom species 3 

C-N bond Atom species 2 

C8-O1 bond Atom class 2 

C8y-C8y bond KEGG atom 1 

C1b-N1b bond KEGG atom 1 

C1a-N1b bond KEGG atom 1 

C-C-C triplet Atom species 34 

C8-C8-C8 triplet Atom class 24 

C-C-O triplet Atom species 12 

C8-C8-O1 triplet Atom class 8 

C8y-C8x-C8y triplet KEGG atom 6 

C8x-C8y-C8x triplet KEGG atom 6 

C-N-C triplet Atom species 4 

C1-C8-C8 triplet Atom class 4 

C1-N1-C1 triplet Atom class 4 

C8x-C8x-C8y triplet KEGG atom 4 

C8x-C8y-C8y triplet KEGG atom 4 

C-C-C,2-O vicinity Atom species 3 

C8-C8-C8,2-O1 vicinity Atom class 2 

C8x-C8y-C8y,2-O1a vicinity KEGG atom 2 

C-C-C,2-C vicinity Atom species 1 

C1-C8-C8,2-C8 vicinity Atom class 1 

C1-C1-C8,2-O1 vicinity Atom class 1 

C1c-C8y-C8x,2-C8x vicinity KEGG atom 1 

C1b-C1c-C8y,2-O1a vicinity KEGG atom 1 

C-C-C-C-C-C,1-6 ring Atom species 1 

C8-C8-C8-C8-C8-C8,1-6 ring Atom class 1 

C8x-C8x-C8y-C8x-C8y-

C8y,1-6 

ring KEGG atom 1 

C-C-C-C-C-C,2-C-C skeleton Atom species 1 

C1-C1-C8-C8-C8-C8,3-C8-

C8-6 

skeleton Atom class 1 

C1b-C1c-C8y-C8x-C8x-

C8y,3-C8x-C8y-6 

skeleton KEGG atom 1 
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three sequential nodes that are connected through a center atom. An attribute of vicinity       

represents a central node and all nodes that attach to the center node. This attribute 

includes many important functional groups. The cyclic substructures are encoded into the 

ring attributes. The carbon skeleton of the molecule, such as alkyl and aryl groups, is 

represented through the skeleton attribute. An inorganic attribute corresponds to a 

connected atom group without any carbon atom. Each substructure is constructed for 

three different levels separately: using the first letters of KEGG atom labels which denotes 

atomic species, the first two letters of KEGG atom labels which are referred to as atomic 

class, and KEGG atom labels.  

The dimension of KCF-S fingerprint vectors equals the number of unique 

substructures listed in a database of substructures that can be extracted from the 

compounds. For example, we have 148680 total substructures for 223 compounds in 

GPCR dataset. We used KCF-Convoy python package [45] to construct fingerprint 

vectors and calculated the similarity between two m-dimension KCF-S fingerprint vectors 

using a weighted Tanimoto similarity as  

𝐾𝐶𝐹 − 𝑆𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑉1, 𝑉2) =
𝑁12

𝑁1 + 𝑁2 + 𝑁12
(3.11) 

𝑁1 = ∑max (0, 𝑣1,𝑖 − 𝑣2,𝑖)

𝑚

𝑖=1

 (3.12) 

𝑁2 = ∑max (0, 𝑣2,𝑖 − 𝑣1,𝑖)

𝑚

𝑖=1

 (3.13) 

𝑁12 = ∑min (𝑣1,𝑖, 𝑣2,𝑖)

𝑚

𝑖=1

 (3.14) 

where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 operators return the maximum and the minimum value of their 

inputs, respectively. Therefore, the similarity score between Epinephrine and Levodopa 

is calculated as 0.420. 
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Figure 9. The highlighted substructures that correspond to the ring attribute C8x-C8x-

C8y-C8x-C8y-C8y,1-6 (A) and the vicinity attribute C1b-C1c-C8y,2-O1a (B) in 

KCF-S fingerprints of Epinephrine 

 

 

 

Figure 10.  The highlighted substructures that correspond to the ring attribute C8x-

C8x-C8y-C8x-C8y-C8y,1-6 (A) and the vicinity attribute C1b-C1c-C6a,2-N1a (B) in 

KCF-S fingerprints of Levodopa 
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3.2.2. Protein-Protein Similarity Measurements 

 We retrieved the amino acid sequences of all proteins in the datasets in FASTA 

format from KEGG GENES database [35]. The similarity between two amino acid 

sequences can be evaluated using various sequence alignment algorithms in which 

sequences are slid with respect to each other under a variety of preset rules until as many 

as possible amino acids are matched [46]. The fact that amino acid sequences are subject 

to mutations necessitates padding the sequences with gaps in suitable places, in order to 

obtain the most likely alignment. In addition, since some mutations are more likely than 

others, we must take account into the mutation propensity of different amino acids. These 

problems can be solved using dynamic programming in which an algorithm penalizes 

unmatched pairs and gaps, and rewards matching pairs with predetermined scores that 

also consider the probability of substitutions. The optimal alignment is obtained where 

the algorithm returns the maximum alignment score. Note that the best alignment is 

subjective concept and highly depends on scoring choice.    

In this study, a similarity matrix for genomic space, denoted by a matrix 𝑺𝒑 of 

protein-protein similarity, was constructed by calculating the similarity between each 

protein pair in the dataset using Normalized Smith-Waterman Algorithm. Smith-

Waterman is a sequence alignment algorithm based on a local alignment scoring strategy 

that searches similarities among the local regions without necessarily aligning entire 

sequences [47]. As a result, the algorithm returns an alignment score for the conserved 

regions between the two sequences [47]. Since these conserved regions can be responsible 

for common bioactivity and functional similarity, the Normalized Smith-Waterman 

Algorithm offers a more biologically significant assessment compared to global 

alignment. Figure 11 illustrates the difference between global and local alignment. 

Furthermore, Sawada et al. (2014) experimentally showed that the protein-protein 

similarities based on local alignment outperformed the protein-protein similarities based 

on global alignment in CPI prediction problem as expected [25].  In the implementation, 

the local alignment score is normalized as  

𝑺𝒑(𝑝𝑖, 𝑝𝑗) =
𝑆𝑊(𝑝𝑖, 𝑝𝑗)

√𝑆𝑊(𝑝𝑖, 𝑝𝑖) × 𝑆𝑊(𝑝𝑗 , 𝑝𝑗)

 (3.15)
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in order to obtain a similarity score between 0 and 1, where 𝑆𝑊(𝑝𝑖, 𝑝𝑗) denotes the 

alignment score of the Smith-Waterman algorithm. In this study, we used the default 

values for the parameters of the algorithm as provided in Pairwise Sequence Alignment 

Tool of EMBOSS (https://www.ebi.ac.uk/Tools/psa/emboss_water/). BLOSUM62 

scoring matrix, which is constructed using observed substitutions in the great number of 

conserved regions referred as blocks, is used to reflect the mutation propensity of different 

amino acids [48]. 

 

Figure 11. The alignment of homeodomain region of homeobox genes from Mouse and 

Human using Needleman Wunsch (global alignment) (A) and Smith-Waterman (local 

alignment) (B) [46] 

3.2.3. Pairwise Kernel Method 

 A similarity matrix must satisfy Mercer’s Theorem to be used in a machine 

learning algorithm as a kernel matrix, which means that it has to be symmetric and 

positive semi-definite, i.e. all eigenvalues must be non-negative [27]. In order to ensure 

that compound-compound and protein-protein similarity matrices satisfy these criteria, 

we firstly calculated symmetric and regularized compound and protein similarity matrices 

𝑲𝒄  and 𝑲𝒑 by 

𝑲𝒑 =
𝑺𝒑 + 𝑺𝒑

𝑻

2
+ |𝜆𝑚𝑖𝑛(𝑺𝒑)|𝑰   𝑎𝑛𝑑   𝑲𝒄 =

𝑺𝒄 + 𝑺𝒄
𝑻

2
+ |𝜆𝑚𝑖𝑛(𝑺𝒄)|𝑰 (3.16) 

where the diagonal entries of the symmetric similarity matrices are augmented by the 

minimum eigenvalue of the corresponding compound or protein similarity matrices. We 

then used the pairwise kernel method [29] to calculate the joint similarity between 

compound-protein pairs (𝑐, 𝑝) and (𝑐′, 𝑝′). Jacob [29] considered compound-compound 

and protein-protein similarity as dot product of two vectors in an infinite Hilbert space. 

𝑲𝒄(𝑐, 𝑐
′) = 𝜑𝑐(𝑐)

𝑇𝜑𝑐(𝑐
′)   𝑎𝑛𝑑   𝑲𝒑(𝑝, 𝑝

′) =  𝜑𝑝(𝑝)
𝑇𝜑𝑝(𝑝′) (3.17) 

https://www.ebi.ac.uk/Tools/psa/emboss_water/
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Based on the assumption that a compound-protein pair can be represented in a Hilbert 

space through Kronecker product of the compound and the protein maps by 

 

𝜑(𝑐, 𝑝) = 𝜑𝑐(𝑐) ⊗ 𝜑𝑝(𝑝) (3.18) 

we can express the Pairwise Kernel Function as 

𝑲((𝑐, 𝑝) , (𝑐′, 𝑝′)) = 𝜑(𝑐, 𝑝)𝑇𝜑(𝑐′, 𝑝′) (3.19) 

= (𝜑𝑐(𝑐)⊗ 𝜑𝑝(𝑝))
𝑇 ((𝜑𝑐(𝑐

′) ⊗ 𝜑𝑝(𝑝
′)) (3.20) 

 = 𝜑𝑐(𝑐)
𝑇𝜑𝑐(𝑐

′) × 𝜑𝑝(𝑝)
𝑇𝜑𝑝(𝑝

′) (3.21) 

= 𝑲𝒄(𝑐, 𝑐
′) × 𝑲𝒑(𝑝, 𝑝

′) (3.22) 

which is tantamount to constructing a similarity matrix 𝑲 between compound-protein 

pairs by the Kronecker product of 𝑲𝒄 and 𝑲𝒑 as (Jacob et al., 2008) 

𝑲 = 𝑲𝒄⊗𝑲𝒑 . (3.23) 

3.3. Quasi-Supervised Learning Algorithm 

 The Quasi-Supervised Learning Algorithm (QSL) was developed by Karacali 

(2010) to address one of the major problems of biomedical data analysis, the possible lack 

of ground-truth labeled data for a class of interest [15]. In this learning strategy, given a 

two-class recognition scenario with labeled samples of only one of the classes, the data 

at hand are divided into two datasets: One dataset, say 𝐶1, consists of the labelled samples 

of the known class, while the other one, 𝐶0, consists of all samples without any label. A 

numerical algorithm then allows nonparametric estimation of posterior probability of 

each sample belonging to 𝐶0 and 𝐶1 using the asymptotic properties of the nearest 

neighbor classification rule. Using the estimated posterior probabilities, we can evaluate 
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the overlap between 𝐶0 and 𝐶1 for automatic labelling of the samples in the unlabeled 

dataset 𝐶0 that appear among 𝐶1 samples. 

 The QSL algorithm can be derived leveraging the asymptotic properties of nearest 

neighbor classification rule as follows: Given 𝑀 reference sets {𝑅1, 𝑅2, . . . , 𝑅𝑀} for 

nearest neighbor classification constructed with 𝑛 samples from 𝐶0 and 𝐶1 each, the 

average rate of assigning a sample 𝑥 to 𝐶0 and 𝐶1 using nearest neighborhood 

classification with reference to 𝑅1, 𝑅2, . . . , 𝑅𝑀,  

𝑓1(𝑥) =
1

𝑀
∑ 𝟏(𝑥 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶1 𝑤𝑖𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑅𝑚)

𝑀

𝑚=1

 (3.24) 

𝑓0(𝑥) =
1

𝑀
∑ 𝟏(𝑥 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶0 𝑤𝑖𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑅𝑚)

𝑀

𝑚=1

(3.25) 

where the assignment of a sample 𝑥 to 𝐶0 and 𝐶1 is made using a nearest neighbor 

classifier using the indicated reference set, can be expressed as the likelihood ratio  

𝑓1(𝑥)

𝑓0(𝑥)
≃
𝑃(𝑥|𝑥 ∈ 𝐶1)

𝑃(𝑥|𝑥 ∈ 𝐶0)
 (3.26) 

derived from 

𝑓1(𝑥) ≃
𝑃(𝑥|𝑥 ∈ 𝐶1)

𝑃(𝑥|𝑥 ∈ 𝐶1) + 𝑃(𝑥|𝑥 ∈ 𝐶0)
  𝑎𝑛𝑑  𝑓0(𝑥) ≃

𝑃(𝑥|𝑥 ∈ 𝐶0)

𝑃(𝑥|𝑥 ∈ 𝐶1) + 𝑃(𝑥|𝑥 ∈ 𝐶0)
 (3.27) 

as long as 𝑀 is sufficiently large. 

Since the reference set includes equal numbers of samples from 𝐶0 and 𝐶1, the 

prior probabilities of datasets will be equal (𝑃(𝐶0) = 𝑃(𝐶1)) in the reference set. 

Therefore, by the Bayes Rule, the probability of assigning a sample 𝑥 to 𝐶0 and 𝐶1 using 

nearest neighborhood classification with a randomly selected reference set among  

𝑅1, 𝑅2, . . . , 𝑅𝑀 will approximate the posterior probabilities under the assumption for equal 

priors. Mathematically, this can be expressed as 
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𝑃(𝐶1|𝑥) ≃ 𝑓1(𝑥) =
1

𝑀
∑ 𝟏(𝑥 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶1 𝑤𝑖𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑅𝑚)

𝑀

𝑚=1

 (3.28) 

𝑃(𝐶0|𝑥) ≃ 𝑓0(𝑥) =
1

𝑀
∑ 𝟏(𝑥 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐶0 𝑤𝑖𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑜 𝑅𝑚)

𝑀

𝑚=1

(3.29) 

Since carrying out great numbers of nearest neighbor classification is not feasible 

due to the associated computational expense, the Quasi-Supervised Learning Algorithm 

provides a fast and efficient numerical calculation of the rates 𝑓1(𝑥) and 𝑓0(𝑥) for each 

sample 𝑥𝑖 in the collection as described below. Finally, the optimal value for the 

parameter 𝑛 is found by minimizing the cost function  

𝐸(𝑛) = 4∑𝑓1(𝑥𝑖)𝑓0(𝑥𝑖) + 2𝑛

𝑖

 (3.30) 

where the first term penalizes large overlaps between 𝐶0 and 𝐶1, and the second term 

penalizes large 𝑛 for better generalization.  

We applied the QSL strategy to predict potential interactions between the 

compound-protein pairs that do not have any known interaction. To this end, we 

constructed two datasets: The unknown dataset 𝐶0 which includes the untested 

compound-protein pairs that do not have a documented interaction, and the true positive 

dataset 𝐶1 which includes the compound-protein pairs whose interactions are 

experimentally validated. The samples in 𝐶0 are assigned with a label of 0 (𝑦 = 0) and 

the samples in 𝐶1 are assigned with a label of 1 (𝑦 = 1). Then, the QSL algorithm 

calculates the posterior probability of the true positive dataset 𝑃(𝐶1|𝑥) at each compound-

protein pair 𝑥 =  (𝑐, 𝑝) using the similarity matrix, 𝑲 of all compound-protein pairs.  

3.3.1. Efficient Numerical Computation of the Posterior Probability 

Estimations  

Let us assume that we want to calculate the posterior probability of the true 

positive dataset at a compound-protein pair sample 𝑥. Let also a reference set 𝑅 be 
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constructed using 𝑛 samples from the unknown dataset 𝐶0 and 𝑛 samples from the true 

positive dataset 𝐶1. Firstly, we sort all other samples 𝑥𝑖 with their labels 𝑦𝑖  by their 

similarities to 𝑥 in a descending order using joint similarity matrix 𝑘𝑖 = 𝑲(𝑥, 𝑥𝑖) where 

𝑘𝑖 denotes the similarity between the sample 𝑥 and each other sample 𝑥𝑖 for 𝑖 = 1, 2, … , 𝑙. 

In this way, we obtain an ordered sequence of compound-protein pair similarities {𝑘𝑖} 

with 𝑘(1) ≥ 𝑘(2) ≥ ⋯ ≥ 𝑘(𝑙) providing 𝑥(1) and 𝑦(1) as the nearest neighbor and its label, 

respectively. For analytical computation, we then decompose the posterior probability of 

the true positive dataset 𝑃(𝐶1|𝑥) for a compound-protein sample 𝑥 respect to 𝑅 on 

whether or not the nearest neighbor 𝑥(1) is in 𝑅 and coming from  𝐶1 as 

𝑓1(𝑥) = 𝑃(𝑥(1) ∈ 𝑅)𝟏(𝑦(1) = 1) + 𝑃(𝑥(1) ∉ 𝑅)𝑃(𝑦 = 1|𝑥(1) ∉ 𝑅) (3.31) 

Furthermore, we carry out same decomposition over 𝑃(𝑦 = 1|𝑥1 ∉ 𝑅) on whether or not 

the second nearest neighbor 𝑥2 is in 𝑅 and belongs to 𝐶1 as 

𝑃(𝑦 = 1|𝑥(1) ∉ 𝑅) = 𝑃(𝑥(2) ∈ 𝑅|𝑥(1) ∉ 𝑅)𝟏(𝑦(2) = 1)

+𝑃(𝑥(2) ∉ 𝑅|𝐸1)𝑃(𝑦 = 1|𝐸2) (3.32)
 

where 𝐸2 denotes the joint event  𝑥(1), 𝑥(2), ∉ 𝑅. This decomposition is generalized as 

 

𝑃(𝑦 = 1|𝐸𝑘−1) =   𝑃(𝑥(𝑘) ∈ 𝑅|𝐸𝑘−1)𝟏(𝑦(𝑘) = 1)

+𝑃(𝑥(𝑘) ∉ 𝑅|𝐸𝑘−1)𝑃(𝑦 = 1|𝐸𝑘) (3.33)
 

where 𝐸𝑘 denotes the joint event  𝑥(1), 𝑥(2), … , 𝑥(𝑘) ∉ 𝑅.  We carry out this 

decomposition until to reach the point 𝑘∗ given by 

𝑘∗ = max {𝑘|∑ 𝟏(𝑦(𝑘′) = 0)
𝑙

𝑘′=𝑘
≥ 𝑛 𝑎𝑛𝑑 ∑ 𝟏(𝑦(𝑘′) = 1)

𝑙

𝑘′=𝑘
≥ 𝑛} (3.34) 

at which the probability of the reference set containing this point equals 1, 

Pr(𝑥(𝑘∗) ∈ 𝑅|𝐸𝑘∗−1) = 1 due to the obligation that the reference set must include 𝑛 points 
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from each dataset. The probability of the reference set containing 𝑥(𝑘) under the condition 

that the reference set does not contain any points before 𝑥(𝑘) can be calculated as 

𝑃(𝑥(𝑘) ∈ 𝑅|𝐸𝑘−1) =

{
 

 
𝑛

𝑙0
𝑘   𝑖𝑓 𝑦 = 0

𝑛

𝑙1
𝑘   𝑖𝑓 𝑦 = 1

(3.35) 

and 

𝑃(𝑥(𝑘) ∉ 𝑅|𝐸𝑘−1) = 1 − 𝑃(𝑥(𝑘) ∈ 𝑅|𝐸𝑘−1) (3.36) 

where 𝑙0
𝑘  and 𝑙1

𝑘 indicate the number of samples that belong to 𝐶0 and 𝐶1 beyond the 𝑘 

nearest points, respectively. Consequently, we used the following algorithm to compute 

the posterior probability of the true positive dataset 𝑃(𝐶1|𝑥) for a given compound-

protein pair 𝑥 based on dataset {𝑥𝑖 , 𝑦𝑖}, 𝑖 =  1,2, … , 𝑙 and a 𝑛. 

• Compute 𝑘𝑖 = 𝑲(𝑥, 𝑥𝑖) 

• Sort 𝑘𝑖 so that 𝑘(1) ≥ 𝑘(2) ≥ ⋯ ≥ 𝑘(𝑙) and determine corresponding 𝑥(𝑖) and 𝑦(𝑖) 

by sorted similarities 

• Identify 𝑘∗ and set P(𝑦 = 𝐿|𝐸𝑘∗−1) = 𝟏(𝑦(𝑘∗) = 𝐿) 

• for 𝑘 =  𝑘∗ − 1, 𝑘∗ − 2,… ,1,  

o compute P(𝑦 = 𝐿|𝐸𝑘) =  P(𝑥(𝑘+1) ∈ 𝑅|𝐸𝑘)1(𝑦(𝑘+1) = 𝐿) + P(𝑥(𝑘+1) ∉

𝑅|𝐸𝑘) P(𝑦 = 1|𝐸𝑘+1) 

• Finally calculate posterior probability 

o 𝑓0 =  𝑃(𝑥(1) ∈ 𝑅)𝟏(𝑦(1) = 1) + P(𝑥(1) ∉ 𝑅)P(𝑦 = 1|𝐸1) 

Another problem with compound-protein interaction data is class imbalance: 

Since only a small portion of samples are marked as true positive, the number of samples 

in 𝐶0 is much greater than 𝐶1. Therefore, we modified the cost function in the QSL 

algorithm (Eq. 5.7) to find the optimum 𝑛 parameter as 

𝐸(𝑛) = 4
|𝐶1|

|𝐶0|
∑ 𝑓1(𝑥𝑖)𝑓0(𝑥𝑖)

𝑥𝑖 ∈ 𝐶0

+ 4 ∑ 𝑓1(𝑥𝑖)𝑓0(𝑥𝑖) + 2𝑛

𝑥𝑖 ∈ 𝐶1

 (3.37) 
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where |𝐶0| and |𝐶1| denote the number of compound-protein pairs in 𝐶0 and 𝐶1, 

respectively. 

We adapted the numerical algorithm developed by Karacali (2010) to CPI 

prediction task in such a way that similarities between pairs are used instead of distances 

between feature vectors. Note that the most similar pair to a query pair corresponds to its 

nearest neighbor, in other words, the pair that has the minimum distance in a Euclidean 

space. This duality allows formulating the nearest neighbor classification and by 

extension the QSL algorithm in terms of a similarity measure between pairs, which 

eliminates the need to construct feature vectors for the unstructured chemical and 

genomics data on which a distance metric is to be defined and calculated for compounds 

and proteins. The labels of compound-protein pairs in the unknown dataset 𝐶0 are then 

predicted based on a set of known interactions between a small portion of all possible 

compound-protein pairs and pairwise similarities between compound-protein pairs. By 

virtue of the QSL paradigm, only positive interaction information and well-defined 

similarity measures between chemical and protein data are enough to carry out our 

proposed method. Nevertheless, one can still embed all compound-protein pairs into a 

Euclidean space as feature vectors, and distances between vectors can be used: Sorting 

distances between a query pair and all pairs in an ascending order will be equivalent to 

sorting similarities in a descending order. 

3.4. Kolmogorov-Smirnov method 

Once estimates of the posterior probability of the true positive dataset 𝑃(𝐶1|𝑥𝑖) 

for samples 𝑥𝑖 in 𝐶0 and 𝐶1 are obtained, the samples in 𝐶0 that would have been labeled 

as positives had they been tested are expected to exhibit greater posterior probability of 

belonging to 𝐶1 compared to the actual negatives in 𝐶0. Such hidden positive samples in 

𝐶0 can then be identified as 𝑥𝑖 ∈  𝐶0 for which 𝑃(𝐶1|𝑥𝑖) > 𝑇 using a suitable threshold 

𝑇. Note that in this formulation, the threshold 𝑇 draws the boundary of the overlap 

between the true positive dataset 𝐶1 and the unknown dataset 𝐶0. We used the 

Kolmogorov-Smirnov method to determine the optimal posterior probability threshold, 

𝑇. To this end, observed posterior probability values of samples from 𝐶1 and 𝐶0 

{𝑃(𝐶1|𝑥1), 𝑃(𝐶1|𝑥2), 𝑃(𝐶1|𝑥3)… , 𝑃(𝐶1|𝑥|𝐶1|+|𝐶0|)} are combined in a list and sorted in 
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an ascending order. Empirical distribution functions of the true positive dataset 𝐹𝐶1(𝑡) 

and the unknown dataset 𝐹𝐶0(𝑡) are calculated separately as 

𝐹𝐶1(𝑡) =
 1

|𝐶1|
∑𝟏(𝑃(𝐶1|𝑥𝑖) < 𝑡 𝑓𝑜𝑟 𝑥𝑖 ∈ 𝐶1)

𝑖

 (3.38) 

and

𝐹𝐶0(𝑡) =
 1

|𝐶0|
∑ 𝟏(𝑃(𝐶1|𝑥𝑖) < 𝑡 𝑓𝑜𝑟 𝑥𝑖 ∈ 𝐶0)𝑖  (3.39) 

for all 𝑡 ∈ [0,1]. Finally, the maximum difference between the empirical cumulative 

distribution functions of the two sample sets was identified as 

𝐷𝑚𝑎𝑥 = max
𝑡
| 𝐹𝐶1(𝑡) − 𝐹𝐶0(𝑡)| (3.40) 

by a line search.  

Conventionally, the 𝐷𝑚𝑎𝑥 statistic is used to decide whether samples in two 

different sets come from the same distribution or not with respect to a statistical 

significance level [49]. In this study, the posterior probability value at which 𝐷𝑚𝑎𝑥 is 

observed is used as the optimal threshold that separates the hidden positive samples in 𝐶0 

from the rest. We also used the value of 𝐷𝑚𝑎𝑥 as a measure pertaining to the ability of the 

proposed approach and the associated similarity metrics to separate the hidden positive 

and the actual negative samples in 𝐶0 for performance comparison purposes between 

different similarity measures. 
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CHAPTER 4 

RESULTS 

 In this chapter, we first provide an analysis of the proposed methodology 

regarding its ability to separate the hidden positives from the actual negatives in the 

unknown dataset using different combinations of compound and protein similarity 

measures. Then, we present the most likely interactions that are predicted by the proposed 

method and the current records about these interactions in up-to-date compound-protein 

interaction databases. 

 We calculated a total of thirteen compound similarity matrix alternatives and one 

protein similarity matrix for the compounds and proteins in the Nuclear Receptor dataset 

and the GPCR dataset separately using the methods described earlier. By applying the 

quasi-supervised learning algorithm on the resulting thirteen combined compound-

protein similarity matrices, we calculated the posterior probability of the true positive 

dataset for all compound-protein pairs. The quality of the separation between the hidden 

positives and the actual negatives in the unknown dataset for the thirteen different 

similarity matrix choices was calculated in terms of the 𝐷𝑚𝑎𝑥 values obtained by 

Kolmogorov-Smirnov analysis. These values indicate the ability of the proposed 

framework to contrast the true positive dataset against the unknown dataset, and by 

extension, how good the interacting and non-interacting compound-protein pair classes 

are distinguished from each other.   

 Table 9 presents the 𝐷𝑚𝑎𝑥 values of all techniques with which we calculated the 

similarity between compounds, as there is only one similarity measure for proteins, for 

the Nuclear Receptor dataset and the GPCR dataset. The results obtained from the 

Nuclear Receptor dataset indicate that KCF-S Fingerprints achieves the greatest 

separation between the compound-protein pairs in the true positive dataset 𝐶1 and the 

unknown dataset 𝐶0, followed by Maximum Common Substructure (RDkit) and TF-IDF 

cosine similarity. The top three techniques that achieved the greatest separation in the 

GPCR dataset are TF-IDF cosine similarity, LINGO similarity with 𝑞 = 3, and LINGO 

similarity with 𝑞 = 4, respectively. The resulting separation between the hidden positive 

compound-protein pairs and the actual negatives in the unknown dataset is also apparent 
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in the histograms of the posterior probability of the true positive dataset obtained using 

these compound similarity methods as shown in Figure 12 and Figure 14. Figure 13 and 

Figure 15 illustrate the cost functions with which we obtained optimum 𝑛 for these 

compound similarity methods. Figure 15 presents the grid search algorithm for faster 

convergence while Figure 13 show the one that scans all possible 𝑛 values in a 

predetermined range. The compound-protein pairs for which the posterior probability of 

the true positive dataset was greater than the indicated threshold were identified as hidden 

positives representing predicted interactions.  

Table 9. Performance comparison of compound similarity measure methods 

 Nuclear Receptors GPCR 
Strategy 

Compound Similarity Measure Methods 𝐷𝑚𝑎𝑥 𝐷𝑚𝑎𝑥                                                   

Extended-Connectivity Fingerprints-4 (ECFP4) 0.587 0.604 Fingerprint 

Functional-Class Fingerprints-4 (FCFP4) 0.512 0.601 Fingerprint 

KCF-S Fingerprints (KCF-S) 0.651 0.642 Fingerprint 

Molecular ACCess System fingerprints (MACCS) 0.475 0.518 Fingerprint 

SIMCOMP 0.622 0.584 Graph 

Maximum Common Substructure (MCS) – RDkit  0.647 0.635 Graph 

Normalized Longest Common Subsequence (NLCS) 0.543 0.582 SMILES 

Combination of LCS Models (CLCS) 0.592 0.584 SMILES 

LINGOsim (q=3) 0.624 0.660 SMILES 

LINGOsim (q=4) 0.630 0.652 SMILES 

LINGOsim (q=5) 0.607 0.629 SMILES 

LINGO based TF  0.604 0.646 SMILES 

LINGO based TF-IDF  0.645 0.669 SMILES 

Finally, we constructed two lists of predicted interactions, one for the Nuclear 

Receptor dataset by taking the intersection of the compound-protein pairs predicted 

separately by KCF-S, SIMCOMP, MCS, LINGOsim(𝑞 = 3), LINGOsim(𝑞 = 4), 

LINGOsim(𝑞 = 5), LINGO based TF and LINGO based TF-IDF, and another for the 

GPCR dataset by taking the intersection of the compound-protein pairs predicted 

separately by ECFP4, FCFP4, KCF-S, MCS, LINGOsim(𝑞 = 3), LINGOsim(𝑞 = 4), 

LINGOsim(𝑞 = 5), LINGO based TF and LINGO based TF-IDF for which 

Kolmogorov-Smirnov Analysis resulted in 𝐷𝑚𝑎𝑥 values greater than 0.6. For each 
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predicted interaction, we calculated the geometric mean of the posterior probabilities by 

each method to obtain a unique posterior probability. 

The top forty predicted interactions in both lists are provided in Table 10 and 

Table 11, respectively, in the descending order of posterior probability of belonging to 

the set of true interactions along with the current knowledge regarding the predicted 

interactions in DrugBank (DB) [34], KEGG (KG) [35], SuperTarget (ST) [37], ChEMBL 

(CH) [50]. Note that since the publication of the Yamanashi dataset in 2008, interactions 

of some unlabeled pairs in 𝐶0 have been experimentally validated and incorporated in the 

interaction databases listed above. In Table 10 and Table 11, the pairs that have 

interaction information in least one dataset were color-coded by green, while the potential 

interactions suggested by ChEMBL [50] were highlighted by yellow. In the tables, 

identified positive interactions are indicated by the letter Y and potential interactions are 

indicated by the letter P, respectively. Note also that a considerable number of predicted 

interactions are now categorized as positive interaction indicating the success of the 

proposed approach in identifying unknown true interactions among all possible 

compound-protein combinations. 
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a. 

 
b. 

 
c. 

Figure 12. Posterior probability distributions of compound-protein pairs in the Nuclear 

Receptor dataset to belong to the true positive dataset and their Kolmogorov-Smirnov 

Analysis for (a) KCF-S Fingerprints, (b) Maximum Common Substructure (RDkit), and 

(c) LINGO based TF-IDF Cosine Similarity 
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a. 

 
b. 

 
c. 

Figure 13. The plot of the cost functions, E(n) for (a) KCF-S Fingerprints, (b) 

Maximum Common Substructure (RDkit), and (c) LINGO based TF-IDF Cosine 

Similarity  
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a. 

 
b. 

 
c. 

Figure 14. Posterior probability distributions of compound-protein pairs in the GPCR 

dataset to belong to the true positive dataset and their Kolmogorov-Smirnov Analysis 

for (a) LINGO based TF-IDF Cosine Similarity, (b) LINGOsim (q=3), and (c) 

LINGOsim (q=4) 
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a. 

 
b. 

 
c. 

Figure 15. The plot of the cost functions, E(n) for (a) LINGO based TF-IDF Cosine 

Similarity, (b) LINGOsim (q=3), and (c) LINGOsim (q=4) 
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Table 10. The list of top 40 predicted positive interactions in the unknown 

dataset 𝐶0 for the Nuclear Receptor Dataset 

Compound Protein 
Posterior 

Probability 
ST DB KG CH 

Nandrolone 

phenpropionate estrogen receptor 1 0,92284  

 

  

Fluoxymesterone progesterone receptor 0,92249  
 

  

Testosterone progesterone receptor 0,92149 Y Y  Y 

Hydrocortisone progesterone receptor 0,91974  
 

 P 

Norethindrone estrogen receptor 1 0,91877  
 

  

Spironolactone progesterone receptor 0,91811  Y  Y 

Nandrolone 

phenpropionate progesterone receptor 0,91511  

 

 P 

Eplerenone progesterone receptor 0,91061 Y Y   

Testosterone estrogen receptor 1 0,90441 Y Y  Y 

Oxandrolone progesterone receptor 0,90432  
 

 P 

Budesonide progesterone receptor 0,90063  
 

 P 

Mifepristone estrogen receptor 1 0,9002 Y 
 

  

Loteprednol etabonate progesterone receptor 0,89722  
 

  

Amcinonide progesterone receptor 0,88766  
 

  

Isotretinoin retinoic acid receptor beta 0,88641  
 

Y Y 

Pregnenolone progesterone receptor 0,88571  
 

 P 

Isotretinoin retinoic acid receptor gamma 0,87976 Y Y Y Y 

Oxandrolone estrogen receptor 1 0,87834  
 

  

Hydrocortisone estrogen receptor 1 0,87657  
 

  

Dydrogesterone estrogen receptor 1 0,86944  
 

  

Spironolactone estrogen receptor 1 0,8678  
 

 Y 

Ethinyl estradiol progesterone receptor 0,86463  
 

 P 

Isotretinoin retinoid X receptor gamma 0,86261 Y 
 

  

Chenodiol progesterone receptor 0,86051  
 

  

Tazarotene estrogen receptor 1 0,85617  
 

  

Cholesterol progesterone receptor 0,85454  
 

 P 

Eplerenone estrogen receptor 1 0,85175 Y Y   

Isotretinoin retinoid X receptor alpha 0,846  
 

  

Etretinate estrogen receptor 1 0,84411  
 

  

Chenodiol estrogen receptor 1 0,8422  
 

  
Medroxyprogesterone 

acetate estrogen receptor 1 0,84218  
Y 

  

Pregnenolone estrogen receptor 1 0,84155  
 

  

Mometasone furoate estrogen receptor 1 0,83937  
 

  

Estrone estrogen receptor 2 0,83929 Y Y Y P 

Isotretinoin retinoid X receptor beta 0,83837 Y  
  

Estrone progesterone receptor 0,83666  
 

 P 

Loteprednol etabonate estrogen receptor 1 0,83524  
 

  

Tazarotene 

peroxisome proliferator  

activated receptor alpha 0,83361  

 

  

Tretinoin 

RAR related orphan receptor 

A 0,83319  

 

  

Etretinate 

peroxisome proliferator 

activated receptor alpha 0,83081  
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Table 11. The list of top 40 predicted positive interactions in the unknown 

dataset 𝐶0 for the GPCR Dataset 

Compound Protein 
Posterior 

Probability 
ST DB KG CH 

Isoetharine adrenoceptor beta 2 0,96806   Y Y   

Albuterol adrenoceptor beta 1 0,96794 Y Y     

Clozapine dopamine receptor D3 0,96584 Y Y   Y 

Metoprolol adrenoceptor beta 2 0,9627 Y Y Y   

Denopamine adrenoceptor beta 2 0,95763       P 

Levodopa adrenoceptor beta 2 0,952         

Ritodrine adrenoceptor beta 1 0,95129   Y   P 

Dipivefrin adrenoceptor beta 2 0,94935   Y Y   

Epinephrine adrenoceptor beta 3 0,94265     Y Y 

Methoxamine 

hydrochloride adrenoceptor beta 2 0,94259 
        

Albuterol sulfate adrenoceptor beta 1 0,9424 Y Y   P 

Levodopa adrenoceptor beta 1 0,94178         

Methoxamine 

hydrochloride adrenoceptor beta 1 0,94074 
        

Dipivefrin adrenoceptor beta 1 0,93835     Y   

Bisoprolol adrenoceptor beta 3 0,93605 Y       

Atenolol adrenoceptor beta 3 0,93445 Y       

Cicloprolol 

hydrochloride adrenoceptor beta 3 0,93416 
    Y   

Betaxolol hydrochloride adrenoceptor beta 3 0,93132         

Clozapine adrenoceptor alpha 2C 0,93129   Y   Y 

Chlorpromazine histamine receptor H1 0,93035   Y Y Y 

Fenoldopam mesylate adrenoceptor beta 2 0,92823         

Terbutaline sulfate adrenoceptor beta 1 0,9279 Y Y   P 

Methixene hydrochloride histamine receptor H1 0,92739         

Clozapine 

cholinergic receptor 

muscarinic 3 0,9265 
  Y     

Perphenazine histamine receptor H1 0,92473       P 

Chlorpromazine 

phenolphthalinate histamine receptor H1 0,92187 
  Y Y   

Chlorpromazine 

hibenzate dopamine receptor D2 0,92114 
  Y Y   

Oxymetazoline 

hydrochloride adrenoceptor beta 2 0,9203 
        

Albuterol adrenoceptor beta 3 0,91992 Y       

Mesoridazine histamine receptor H1 0,91985         

Olanzapine adrenoceptor alpha 2C 0,91954 Y Y   Y 

Olanzapine 

5-hydroxytryptamine 

receptor 1B 0,91739 
  Y     

Olanzapine 

5-hydroxytryptamine 

receptor 1D 0,91734 
  Y     

Clozapine 

cholinergic receptor 

muscarinic 4 0,91727 
  Y     

Thiethylperazine dopamine receptor D3 0,91711 Y     Y 

Chlorpromazine 

phenolphthalinate dopamine receptor D2 0,91527 
Y Y Y   

Promethazine 

hydrochloride 

cholinergic receptor 

muscarinic 1 0,91433 
Y Y     

Tamsulosin 

hydrochloride adrenoceptor beta 2 0,91393 
        

Methdilazine 

cholinergic receptor 

muscarinic 1 0,91377 
      P 

Metoclopramide adrenoceptor alpha 1A 0,91375 
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CHAPTER 5 

CONCLUSION 

In this study, we have proposed a quasi-supervised learning approach for 

compound-protein interaction prediction that addresses the issues associated with the lack 

of ground-truth negative instances in compound-protein interaction datasets. As 

mentioned in the literature review, there are very few studies in the literature that address 

the absence of reliable negatives as well as data imbalance between true positives and 

unlabeled compound-protein pairs. The present study offers an alternative strategy for an 

adequate evaluation of unlabeled compound-protein pairs. The results show that the 

quasi-supervised learning algorithm can make accurate predictions on interaction status 

of unlabeled compound-protein pairs without requiring an experimentally validated set 

of true negatives; or compound-protein pairs that have been established not to interact. 

The quasi-supervised learning algorithm is well-suited to the compound-protein 

interaction prediction problem due to two reasons. Firstly, it uses only ground-truth 

positive compound-protein pairs without making any unrealistic and potentially 

erroneous presumptions on the interaction status of the unlabeled pairs. Instead, it 

successfully contrasts the set of all unlabeled compound-protein pairs with no known 

interaction with the true-positive dataset, and identifies the pairs most likely to interact 

with each other automatically. Secondly, it can operate on the similarity structure between 

protein and compound pairs directly without requiring a feature vector representation for 

either of them, a common requirement for most other machine learning strategies. In this 

manner, it avoids the issues and shortcomings associated with feature-extraction 

processes that constitute major challenges especially for unstructured compound and 

protein data. This also allows incorporating alternative notions of similarity between 

protein and compound pairs from a larger, non-numeric class of similarity measures and 

enhances the breadth of the analysis. 

On a final note, the proposed methodology can be extended in several ways. First, 

we applied quasi-supervised learning algorithm on only Nuclear Receptor and GPCR 

datasets due to computational limitations. The proposed methodology can also be applied 

on datasets of other common target protein families such as Enzyme and Ion Channels of 
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the Yamanashi dataset using more powerful computing resources. The Quasi-Supervised 

Learning algorithm appears particularly suitable for parallelization allowing for wider-

scale applications on parallel computation architectures. Furthermore, the combination of 

different similarity measurement can be tried rather than treating them separately. Apart 

from this, further research can explore additional similarity measures that reflect the 

correlation between chemical and genomic spaces for potentially more efficient 

prediction. For instance, LINGO-like similarity measures for proteins can be explored in 

terms of protein motifs and domains that may incorporate the established functional 

characteristics of the proteins into the similarity structure more adequately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

54 

REFERENCES 

[1] T. 1. Engel and J. Gasteiger, “Drug Discovery: An Overview ,” in Applied 

Chemoinformatics: Achievements and Future Opportunities, Germany: Wiley-

VCH, 2018. 

[2] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, “Innovation in the 

pharmaceutical industry: New estimates of R&amp;D costs,” Journal of Health 

Economics, vol. 47, May 2016, doi: 10.1016/j.jhealeco.2016.01.012. 

[3] “Center for Drug Evaluation and Research. ‘Novel Drug Approvals for 2019.’ U.S. 

Food and Drug Administration. FDA. https://www.fda.gov/drugs/new-drugs-fda-

cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-

drug-approvals-2019 .” 

[4] J. L. Medina-Franco, M. A. Giulianotti, G. S. Welmaker, and R. A. Houghten, 

“Shifting from the single to the multitarget paradigm in drug discovery,” Drug 

Discovery Today, vol. 18, no. 9–10, May 2013, doi: 10.1016/j.drudis.2013.01.008. 

[5] E. Lounkine et al., “Large-scale prediction and testing of drug activity on side-

effect targets,” Nature, vol. 486, no. 7403, Jun. 2012, doi: 10.1038/nature11159. 

[6] N. Novac, “Challenges and opportunities of drug repositioning,” Trends in 

Pharmacological Sciences, vol. 34, no. 5, May 2013, doi: 

10.1016/j.tips.2013.03.004. 

[7] E. W. Sayers et al., “Database resources of the National Center for Biotechnology 

Information,” Nucleic Acids Research, vol. 47, no. D1, Jan. 2019, doi: 

10.1093/nar/gky1069. 

[8] A. L. Hopkins, “Predicting promiscuity,” 2009. [Online]. Available: 

http://pubchem.ncbi.nlm.nih.gov 

[9] A. C. Cheng et al., “Structure-based maximal affinity model predicts small-

molecule druggability,” Nature Biotechnology, vol. 25, no. 1, Jan. 2007, doi: 

10.1038/nbt1273. 

[10] Y. Yamanishi, “Chemogenomic Approaches to Infer Drug–Target Interaction 

Networks,” 2013. doi: 10.1007/978-1-62703-107-3_9. 



 

55 

[11] M. J. Keiser, B. L. Roth, B. N. Armbruster, P. Ernsberger, J. J. Irwin, and B. K. 

Shoichet, “Relating protein pharmacology by ligand chemistry,” Nature 

Biotechnology, vol. 25, no. 2, Feb. 2007, doi: 10.1038/nbt1284. 

[12] H. Ding, I. Takigawa, H. Mamitsuka, and S. Zhu, “Similarity-basedmachine 

learning methods for predicting drug-target interactions: A brief review,” Briefings 

in Bioinformatics, vol. 15, no. 5, pp. 734–747, May 2013, doi: 10.1093/bib/bbt056. 

[13] T. Cheng, M. Hao, T. Takeda, S. H. Bryant, and Y. Wang, “Large-Scale Prediction 

of Drug-Target Interaction: a Data-Centric Review,” AAPS Journal, vol. 19, no. 5, 

pp. 1264–1275, Sep. 2017, doi: 10.1208/s12248-017-0092-6. 

[14] A. Ezzat, M. Wu, X. L. Li, and C. K. Kwoh, “Computational prediction of drug-

target interactions using chemogenomic approaches: An empirical survey,” 

Briefings in Bioinformatics, vol. 20, no. 4, pp. 1337–1357, Mar. 2018, doi: 

10.1093/bib/bby002. 

[15] B. Karaçali, “Quasi-supervised learning for biomedical data analysis,” Pattern 

Recognition, vol. 43, no. 10, pp. 3674–3682, Oct. 2010, doi: 

10.1016/j.patcog.2010.04.024. 

[16] T. Engel, “Basic overview of chemoinformatics,” Journal of Chemical 

Information and Modeling, vol. 46, no. 6. pp. 2267–2277, Nov. 2006. doi: 

10.1021/ci600234z. 

[17] P. Imming, C. Sinning, and A. Meyer, “Drugs, their targets and the nature and 

number of drug targets,” Nature Reviews Drug Discovery, vol. 5, no. 10, Oct. 2006, 

doi: 10.1038/nrd2132. 

[18] G. Maggiora, M. Vogt, D. Stumpfe, and J. Bajorath, “Molecular Similarity in 

Medicinal Chemistry,” Journal of Medicinal Chemistry, vol. 57, no. 8, Apr. 2014, 

doi: 10.1021/jm401411z. 

[19] “Ctfile Formats, MDL Information Systems Inc.: 

http://www.mdli.com/downloads/literature/ctfile.pdf,” CA, 1998. 

[20] H. L. Morgan, “The Generation of a Unique Machine Description for Chemical 

Structures-A Technique Developed at Chemical Abstracts Service.,” Journal of 

Chemical Documentation, vol. 5, no. 2, May 1965, doi: 10.1021/c160017a018. 



 

56 

[21] D. Weininger, A. Weininger, and J. L. Weininger, “SMILES. 2. Algorithm for 

generation of unique SMILES notation,” Journal of Chemical Information and 

Modeling, vol. 29, no. 2, May 1989, doi: 10.1021/ci00062a008. 

[22] “Daylight.com. 2020. Daylight Theory: SMILES. .” 

[23] J. Schwartz, M. Awale, and J.-L. Reymond, “SMIfp (SMILES fingerprint) 

Chemical Space for Virtual Screening and Visualization of Large Databases of 

Organic Molecules,” Journal of Chemical Information and Modeling, vol. 53, no. 

8, Aug. 2013, doi: 10.1021/ci400206h. 

[24] W. H. Brooks, W. C. Guida, and K. G. Daniel, “The Significance of Chirality in 

Drug Design and Development,” Current Topics in Medicinal Chemistry, vol. 11, 

no. 7, Apr. 2011, doi: 10.2174/156802611795165098. 

[25] R. Sawada, M. Kotera, and Y. Yamanishi, “Benchmarking a wide range of 

chemical descriptors for drug-target interaction prediction using a chemogenomic 

approach,” Molecular Informatics, vol. 33, no. 11–12. Wiley-VCH Verlag, pp. 

719–731, Nov. 24, 2014. doi: 10.1002/minf.201400066. 

[26] B. Rost, “Protein Structure Prediction in 1D, 2D, and 3D,” in Encyclopedia of 

Computational Chemistry, Chichester, UK: John Wiley & Sons, Ltd, 2002. doi: 

10.1002/0470845015.cpa033m. 

[27] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti, “Similarity-Based 

Classification: Concepts and Algorithms,” J. Mach. Learn. Res., vol. 10, pp. 747–

776, Jun. 2009. 

[28] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, “Prediction 

of drug-target interaction networks from the integration of chemical and genomic 

spaces,” Bioinformatics, vol. 24, no. 13, Jul. 2008, doi: 

10.1093/bioinformatics/btn162. 

[29] L. Jacob and J. P. Vert, “Protein-ligand interaction prediction: An improved 

chemogenomics approach,” Bioinformatics, vol. 24, no. 19, pp. 2149–2156, Oct. 

2008, doi: 10.1093/bioinformatics/btn409. 



 

57 

[30] T. van Laarhoven, S. B. Nabuurs, and E. Marchiori, “Gaussian interaction profile 

kernels for predicting drug-target interaction,” Bioinformatics, vol. 27, no. 21, pp. 

3036–3043, Nov. 2011, doi: 10.1093/bioinformatics/btr500. 

[31] T. van Laarhoven and E. Marchiori, “Predicting Drug-Target Interactions for New 

Drug Compounds Using a Weighted Nearest Neighbor Profile,” PLoS ONE, vol. 

8, no. 6, Jun. 2013, doi: 10.1371/journal.pone.0066952. 

[32] M. Gönen, “Predicting drug-target interactions from chemical and genomic kernels 

using Bayesian matrix factorization,” Bioinformatics, vol. 28, no. 18, pp. 2304–

2310, Sep. 2012, doi: 10.1093/bioinformatics/bts360. 

[33] X. Zheng, H. Ding, H. Mamitsuka, and S. Zhu, “Collaborative matrix factorization 

with multiple similarities for predicting drug-target interactions,” Aug. 2013. doi: 

10.1145/2487575.2487670. 

[34] D. S. Wishart et al., “DrugBank: a knowledgebase for drugs, drug actions and drug 

targets,” Nucleic Acids Research, vol. 36, no. suppl_1, Jan. 2008, doi: 

10.1093/nar/gkm958. 

[35] M. Kanehisa, “From genomics to chemical genomics: new developments in 

KEGG,” Nucleic Acids Research, vol. 34, no. 90001, Jan. 2006, doi: 

10.1093/nar/gkj102. 

[36] I. Schomburg, “BRENDA, the enzyme database: updates and major new 

developments,” Nucleic Acids Research, vol. 32, no. 90001, Jan. 2004, doi: 

10.1093/nar/gkh081. 

[37] S. Gunther et al., “SuperTarget and Matador: resources for exploring drug-target 

relationships,” Nucleic Acids Research, vol. 36, no. Database, Dec. 2007, doi: 

10.1093/nar/gkm862. 

[38] M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa, “Development of a chemical 

structure comparison method for integrated analysis of chemical and genomic 

information in the metabolic pathways,” Journal of the American Chemical 

Society, vol. 125, no. 39, pp. 11853–11865, Oct. 2003, doi: 10.1021/ja036030u. 

[39] “RDKit: Open-source cheminformatics; http://www.rdkit.org.” 



 

58 

[40] H. Öztürk, E. Ozkirimli, and A. Özgür, “A comparative study of SMILES-based 

compound similarity functions for drug-target interaction prediction,” BMC 

Bioinformatics, vol. 17, no. 1, 2016, doi: 10.1186/s12859-016-0977-x. 

[41] D. Vidal, M. Thormann, and M. Pons, “LINGO, an efficient holographic text based 

method to calculate biophysical properties and intermolecular similarities,” 

Journal of Chemical Information and Modeling, vol. 45, no. 2, pp. 386–393, 2005, 

doi: 10.1021/ci0496797. 

[42] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of 

Chemical Information and Modeling, vol. 50, no. 5, pp. 742–754, May 2010, doi: 

10.1021/ci100050t. 

[43] J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse, “Reoptimization of 

MDL Keys for Use in Drug Discovery,” Journal of Chemical Information and 

Computer Sciences, vol. 42, no. 6, Nov. 2002, doi: 10.1021/ci010132r. 

[44] M. Kotera et al., “KCF-S: KEGG Chemical Function and Substructure for 

improved interpretability and prediction in chemical bioinformatics,” BMC 

Systems Biology, vol. 7, 2013, doi: 10.1186/1752-0509-7-S6-S2. 

[45] M. Sato, H. Suetake, and M. Kotera, “KCF-Convoy: Efficient Python package to 

convert KEGG Chemical Function and Substructure fingerprints,” bioRxiv. 

bioRxiv, Oct. 24, 2018. doi: 10.1101/452383. 

[46] Phillip Compeau and Pavel Pevzner, Bioinformatics Algorithms: An Active 

Learning Approach, Chapter 5: How Do We Compare DNA Sequences?, 2nd 

edition. La Jolla, CA: Active Learning Publishers, 2015. 

[47] T. F. Smith and M. S. Waterman, “Identification of common molecular 

subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981, 

doi: https://doi.org/10.1016/0022-2836(81)90087-5. 

[48] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from protein 

blocks,” Proceedings of the National Academy of Sciences of the United States of 

America, vol. 89, no. 22, 1992, doi: 10.1073/pnas.89.22.10915. 

[49] B. Bagwell, “A journey through flow cytometric immunofluorescence analyses—

Finding accurate and robust algorithms that estimate positive fraction 



 

59 

distributions,” Clinical Immunology Newsletter, vol. 16, no. 3, Mar. 1996, doi: 

10.1016/S0197-1859(00)80002-3. 

[50] A. Gaulton et al., “ChEMBL: a large-scale bioactivity database for drug 

discovery,” Nucleic Acids Research, vol. 40, no. D1, Jan. 2012, doi: 

10.1093/nar/gkr777. 

  


