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Received: 15 April 2020 / Accepted: 30 December 2020 / Published online: 5 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
This paper studies the evolution of intergranular localization and stress concentration in three dimensional micron sized
specimens through the Gurtin grain boundary model (J Mech Phys Solids 56:640–662, 2008) incorporated into a three
dimensional higher-order strain gradient crystal plasticity framework (Yalçinkaya et al. in Int J Solids Struct 49:2625–2636,
2012). The study addresses continuum scale dislocation-grain boundary interactions where the effect of crystal orientation
mismatch and grain boundary orientation are taken into account through the grain boundary model in polycrystalline metallic
specimens. Due to the higher-order nature of the model, a mixed finite element formulation is used to discretize the problem in
which both displacements and plastic slips are considered as primary variables. For the treatment of grain boundaries within
the solution algorithm, an interface element is formulated and implemented together with the bulk plasticity model. The
capabilities of the framework is demonstrated through 3D polycrystalline examples considering grain boundary conditions,
grain boundary strength, the orientation distribution and the specimen size. A detailed grain boundary condition and stress
concentration analysis is presented. The advantages and the disadvantages of themodel is discussed in detail through numerical
examples.

Keywords Strain gradient plasticity · Microforming · Size effect · Grain boundary · Crystal plasticity

1 Introduction

The recent developments in the production of miniaturized
devices increase the demand for micro-components where
the thickness ranges from tens to hundreds of microns (see
e.g. [1,2]). At this length scale, many challenges exist such as
size effect and stress concentrations at the grain boundaries,
due to plasticity activity at the grain boundaries and the ori-
entation mismatch (see e.g. [3–10]). Various metallic alloys,
e.g. aluminum, exhibit substantial localization and stress con-
centration at the grain boundaries during microforming (see
e.g. [11–15]). Therefore, inter-granular damage evolution is
a prominent failure mechanism at this length scale, yet it is
not straightforward to include physical localization mech-
anisms of grain boundaries into (crystal) plasticity finite
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element simulations. Crystal plasticity approach captures the
intrinsic evolution of deformation heterogeneity in metal-
lic materials developing due to crystal orientation mismatch.
Theoretically, it is expected that crystal plasticity simulations
would give good match for the plastic deformation evolution
in each grain and at the grain boundaries with the experi-
mental findings due its ability to describe the link between
the crystallographic slip and plastic deformation. However,
except for a couple of recent works (e.g. [16] obtained up to
80% agreement for Ti–6Al–4V), [17] show good correlation
for Tantalum oligocrystal), the studies generally could not
present quantitative agreements of crystal plasticity simula-
tions with experimental observations on the spatial evolution
of deformation even for the samples with restricted num-
ber of grains (see e.g. [18–24]). They could mostly mention
a well agreement on the statistical response of a polycrys-
talline aggregates through comparison with EBSD and DIC
measurements. While in many cases the differences were
attributed to the constant friction condition in the simula-
tions, some authors explicitly stated the importance of the
grain boundaries and their orientation on the spatial evolution
of stress and strain (see e.g. [25]). However, the compli-
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cated hardening behavior of the grain boundaries is ignored
in crystal plasticity simulations. Our recent experience for
the comparison of classical (local) crystal plasticity finite
element simulations with experimental micro-DIC results
did not give promising results either for aluminum alloys.
Especially for the cases with a moderate number of grains,
the local behavior is quite different between numerical and
experimental results (see e.g. [11]). Some other studies focus
on the effect of other microstructural features for such differ-
ences. For instance, Luccarelli et al. [26] address the effect of
carbides on the evolution of strain fields, and it was illustrated
that without the addition of carbides, it was not possible to
obtain matching results from the polycrystal plasticity finite
element simulations. There are many other studies that show
the restricted capability of crystal plasticity modeling of the
spatial strain evolution. Therefore the investigations should
concentratemore on the reason for such discrepancies.Away
to increase the capabilities of the polycrystal plasticity simu-
lations is to take into account the hardening behavior of grain
boundaries considering the orientation of the grain boundary
and the crystallographic misorientation of the neighboring
grains, which is addressed in detail in the current study.

Grain boundary modeling in crystal plasticity withdrew
substantial interest after the theoretical contribution by
Gurtin [27], where the energetic behavior of the grain bound-
ary is governed by a grain boundary tensor, which describes
the effect of orientation mismatch and the orientation of the
grain boundary. Özdemir and Yalçinkaya [28] were the first
to incorporate this formulation into a strain gradient crys-
tal plasticity model developed in [29,30] as a 2D coupled
framework in terms of plastic slips and displacements and
tested its performance on bi-crystal specimens. Then a more
detailed analysis is presented by Özdemir and Yalçinkaya
[31] in three dimensional setting for bi-crystals. In the mean-
while, there have been other studies addressing this issue
in crystal plasticity using both Gurtin formulation and other
similar approaches. van Beers et al. [32] developed a model
addressing both dissipative and energetic character of the
grain boundary and illustrated the effect of mis-orientation
in bi-crystals in plane strain setting. Later on, van Beers et al.
[33] obtained the grain boundary energy fromatomistic simu-
lations. Gottschalk et al. [34] performed a detailed theoretical
and numerical investigation of Gurtin [27] in a cubic poly-
crystal composed of cubic grains. Bayerschen et al. [35] pre-
sented a comprehensive overview on the geometric criteria
used in both experiments and computational models, focus-
ing on continuum approaches. In addition to geometric GB
models based on the misorientation of the grains and the ori-
entation of the grain boundary, there have beenmodels devel-
oped for the grain boundary hardening based on interface
yield condition and surface considerations (see e.g. [36,37]).

Using a grain boundary model based on the geometrical
description of orientationmismatch is a simplewayof reflect-

ing coarse grained response of dislocation-grain boundary
interactions at the grain boundaries. In this way, instead of
using classical boundary conditions for plastic deformation
in strain gradient crystal plasticity theory, which do not even
exist in local crystal plasticity models, one can capture the
behavior between limiting cases of micro-free and micro-
hard boundary conditions (see Fig. 1 for the illustration).
In higher order non-local crystal plasticity models, a field
related to plastic deformation (e.g. dislocation density in [38],
plastic slip in [39] or plastic slip gradients in [40]) enters the
finite element formulation as a degree of freedom in addition
to displacements. Even though such variables on each slip
system increases the number of unknowns and the size of the
tangent matrix substantially, it gives the possibility of direct
calculation of the gradients through shape function deriva-
tives, which makes the model non-local and more efficient
in terms of mesh dependence and convergence. Moreover,
we are able to define boundary conditions, e.g. for plastic
slips, as in the current work (see e.g. also [41,42] for some
discussions on the issue). Defining a zero slip conditions at
the (grain) boundaries would block the transmission of dis-
locations from one grain to the other one, or a traction free
condition would make the grain boundaries ‘disconnected’
as far as slip is concerned and the slips (dislocations) reach-
ing to the grain boundary do not ‘feel’ any resistance, please
see Fig. 1 for the illustration in terms of plastic slip. How-
ever, in reality, the dislocation-grain boundary interaction is
quite complicated with many physical mechanisms occur-
ring at the same time, and these boundary conditions do
not reflect the plasticity mechanisms at the grain boundaries
properly. From continuum perspective having a geometric
grain boundary model with a strength variable allows to tune
the inter-granular microstructure evolution that would give
responses in between the limiting cases as shown in Fig. 1.
Such an approach would offer the opportunity for crystal
plasticity community to do more flexible simulations and to
obtain better match with experimental results. In this con-
text, the purpose of the current study is to illustrate this
phenomenon in polycrystalline materials in 3D micron sized
specimens prepared with Voronoi tessellation, which has not
been addressed previously in the open literature. Even though
we do not conduct experimental comparison analysis in the
current state, the model offers a great potential for users to do
more realistic simulations for the the evolution of localization
and stress concentration, which has been a great challenge
as discussed previously.

The paper is organized as follows. First, in Sect. 2, the
formulations of both strain gradient crystal plasticity and the
grain boundary model are addressed in a thermodynamical
setting. Then the finite element implementation of both mod-
els as user finite element subroutines is studied. In Sect. 4,
the numerical examples are presentedwhere different aspects
of the model are illustrated in polycrystalline specimens.
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Fig. 1 Stress versus strain
representation together with slip
contours within a
crystallographically misaligned
bi-crystal under uni-axial
loading through limiting GB
conditions: soft (micro-free) and
hard (micro clamped)
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Finally, the work is summarized and concluding remarks are
given in Sect. 5.

2 Strain gradient crystal plasticity
framework and grain boundary model

In this section, the polycrystalline plasticity framework is
addressed within the continuum thermodynamics context,
covering both bulk and interface behavior separately. The
balance relations are obtained through the principle of virtual
power, followed by the consideration of second law of ther-
modynamics and constitutive assumptions for consistency.
The strain gradient crystal plasticity framework is a higher-
order model where crystallographic slip is considered to be
a degree of freedom in addition to displacement field. There-
fore both bulk and interface plasticity behavior is built on
plastic slip field, in terms of which the additional bound-
ary conditions can be defined. Such a framework requires
two balance relations in the bulk part, i.e. a classical macro-
scopic force balance for the solution of displacements and a
microscopic balance relation for the solution of plastic slip
field, and further relations at the interface in terms of plastic
slip at both sides of the grain boundary.

2.1 Macroscopic andmicroscopic force balance
relations

Since the main focus of the study is the orientation mismatch
based localization at the grain boundaries, the bulk plastic-
ity behavior is kept rather simple for a clear illustration of
the interface plasticity effects. Therefore the crystal plastic-
ity framework is developed in the small strain setting, where
the time dependent displacement field of a body with a grain
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Fig. 2 The grain boundary representation in a two-grain body

boundary, as shown in Fig. 2, is denoted by u = u(x, t),
where x indicates the position of a material point. Note that
in this study the displacement field is continuous across the
grain boundary. The separation of the interfaces is not consid-
ered, and the focus is concentrated on the plastic localization
and stress concentrations at the grain boundaries. However,
some recent studies have addressed the mechanical open-
ing phenomenon at the grain boundaries through cohesive
zone elements (see e.g. [8,10,43]). Furthermore, although
the upcoming discussions are based on a two grain body
as depicted in Fig. 2, the derivations are valid for bodies
composed of multiple grains. The strain tensor ε is defined
as ε = 1/2(∇u + (∇u)T ), and the velocity vector is rep-
resented as v = u̇. The strain is decomposed additively
as ε = εe + ε p into an elastic part εe and a plastic part
ε p. The plastic component of the strain tensor is calculated
through the summation of plastic slip rates on each slip sys-
tems, ε̇ p = ∑

α γ̇ α Pα with Pα = 1
2 (s

α ⊗ mα + mα ⊗ sα)
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representing the symmetrized Schmid tensor, where sα and
mα are the unit slip direction vector and unit normal vector on
slip system α, respectively. A set, composed of elastic strain
tensor εe, plastic slips γ α and gradient of plastic slips ∇γ α

on system α is chosen to be the set of state variables. Then the
arguments of Gurtin (e.g. [44,45]) is followed for the deriva-
tion of force balances through principle of virtual power.
In a classical macroscopic system, the traction t(n̄) expends
power over the velocity u̇ and stressσ expends power over the
elastic strain-rate ε̇e. In the microscopic system considered
in this study a scalar microscopic stress πα expends power
over the slip rate on each slip system γ̇ α , a vector of micro-
scopic stress ξα expends power over the slip-rate gradient
∇γ̇ α , a scalar microscopic traction χα(n̄) expends power
over γ̇ α and finally a scalar interfacial microscopic grain
boundary stress λα expends power over the grain boundary
slip rates γ̇ α

A and γ̇ α
B , where approaching the grain boundary

from different grains are designated by subscripts A and B.
All the virtual rates are collected in the generalized virtual
velocity field V = (δu̇, δε̇e, δγ̇ α, δγ̇ α

A , δγ̇ α
B ) which satisfy

∇δu̇ = δε̇e + δω̇e + ∑
α δγ̇ αsα ⊗ mα , where ω̇ represents

the rate of rotation. By setting δγ̇ α = 0 and enforcing the vir-
tual power balance, the classical linear momentum balance

∇ · σ = 0. (1)

and the traction condition

t(n̄) = σ n̄ (2)

are obtained. A similar approach is followed for the deriva-
tion of the microscopic counterparts of the relations. Setting
this time δu̇ = 0 and enforcing virtual power balance leads
to the microscopic force balance inside the bulk material on
each slip system α,

τα − πα + ∇ · ξα = 0 (3)

the micro scale traction condition on the outer boundary of
the bulk material

χα(n̄) = ξα · n̄ (4)

andmicroscopic grain boundary interface conditions on both
sides of the grain boundary

ξα
A · N A = λα

A

ξα
B · N B = λα

B or − ξα
B · N A = λα

B (5)

where the equality N A = −N B is used to write the
last expression for λα

B . The strong forms of the fun-
damental balance laws are converted to weak forms and

used in the finite element implementation together with the
boundary/interface conditions derived above. However, no
constitutive assumption or relation has been presented yet,
which will be covered in the next section following the argu-
ments of continuum thermodynamics.

2.2 Free energy imbalance for bulk and interface

For the description of the material behavior of the higher-
order strain gradient crystal plasticity model, the 2nd law of
thermodynamics is considered here for a thermodynamically
consistent framework. Note that this is not the only way to
develop advanced crystal plasticity models. There are a num-
ber of examples which do not follow the thermodynamics but
base their formulation on the physics of the plasticity phe-
nomenon at micron scale focusing on the relations for the
internal stress fields due to individual dislocations and the
evolution of dislocation densities (see e.g. [38,46–49]). In
here the model is developed in terms of plastic slips on each
slip system and the complicated physical relations for the
internal stresses andGNDevolution are not included directly,
nevertheless the dislocation density evolution could be post-
processed upon need. For the purpose of clarity the relations
are kept as simple as possible. The starting point is the dis-
sipation inequality, which should be satisfied and could be
written in terms of internal power Pi and the free energy ψ

as,

D = Pi −ψ̇ = σ : ε̇e+
∑

α

(παγ̇ α +ξα ·∇γ̇ α)−ψ̇ ≥ 0. (6)

The free energy of the material is assumed to depend only on
the elastic strain and the gradient of the plastic slip, which
is directly related to the geometrically necessary dislocation
density,

ψ(εe,∇γ α) = ψe(ε
e) + ψ∇γ (∇γ α). (7)

In thiswayGNDevolution is considered to be fully energetic.

Through the establishment of the stress tensor σ = dψe

dεe
, and

the microstress vectors ξα = ∂ψ∇γ

∂∇γ α
, the simpler form of the

reduced dissipation inequality is obtained where πα has the
only dissipative contribution,

D =
∑

α

(πα)γ̇ α ≥ 0 or D =
∑

α

σα
dis γ̇

α ≥ 0 (8)

and the stress terms multiplying the plastic slip rates are
recognized as the set of dissipative stresses σα

dis defined as
σα
dis = πα . In order to satisfy the inequality at the slip system

level, the following relations are suggested,

σα
dis = ϕαsign(γ̇ α) and ϕα = sα(|γ̇ α|/γ̇ α

0 )
m (9)
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by which the thermodynamical consistency is obtained in a
simple way. In order to focus solely on the influence of the
grain boundary effects, the actual slip resistance, sα , is con-
sidered to be constant here. The self and latent hardening
phenomena could be incorporated using classical relations.
m and γ̇ α

0 are the strain rate sensitivity exponent and the refer-
ence slip rate, respectively. Restating the microforce balance
in an alternative form, i.e.πα = τα +∇ ·ξα and using Eq. (9)
leads to

sign(γ̇ α)
sα

(γ̇ α
0 )m

|γ̇ α|m = τα + ∇ · ξα (10)

which can also be put into the following form,

γ̇ α = γ̇ α
0

( |τα + ∇ · ξ |
sα

)1/m

sign(τα + ∇ · ξ) (11)

Quadratic relations are used for the elastic free energy ψe

and the plastic slip gradients free energy contribution ψ∇γ ,
i.e.

ψe = 1

2
εe : 4C : εe

ψ∇γ =
∑

α

1

2
A∇γ α · ∇γ α (12)

with 4C representing the 4th order elasticity tensor and A is
the scalar quantity, which includes an internal length scale
parameter, governing the non-locality of the model. In here
it is expressed as A = ER2/(16(1−ν2)), where R describes
the radius of the dislocation domain contributing to the inter-
nal stress field, ν is Poisson’s ratio and E is Young’smodulus.
Note that the free energy functions enter the slip evolution

equation through τα = dψe

dεe
: Pα and ξα = ∂ψ∇γ

∂∇γ α
. The

gradient part of the energy is the surface energy term, increas-
ing with the large value of the internal length scale parameter
R, which would induce a large internal stress and therefore
penalize high plastic slip gradients, spreading the geomet-
rically necessary dislocation densities. Without a specific
grain boundary model, which is addressed next, the inter-
nal length scale parameter, therefore the internal stresses
are the main driving force of the localization occurring at
the grain boundaries. In such a framework only the limiting
boundary conditions (see Fig. 1), hard (zero-slip) and soft
(traction free), for the plastic slips could be described and
R governs microstructure evolution at the grain boundaries.
However in the current model, a specific grain boundary
model is employed whose constitutive behavior is charac-
terized by a grain boundary free energy term that includes a
grain boundary strength parameter which is amplified with
the orientation mismatch of neighboring grains and the ori-
entation of the grain boundary. Therefore grain boundary

localization is not only affected by the boundary conditions
and the internal length scale parameter, but alsowith the grain
boundary strength, mis-orientation and grain boundary ori-
entation. The details are presented in the following. Similar
to the bulk behavior, the discussion of the grain boundary
model starts with the thermodynamics, where the dissipation
related with the GB can bewritten in terms of grain boundary
power PGB and the associated free energy ψGB as,

DGB = PGB − ψ̇GB

=
∑

α

∫

SGB

(λα
Aγ̇ α

A + λα
B γ̇ α

B ) dS − ψ̇GB ≥ 0 (13)

A free energy functionψGB is required that would depict the
coarse grained representation of complex grain boundary-
dislocation slip interaction mechanism such as disloca-
tion transmission, emission and dissociation of dislocations
within the grain boundary. Several experimental and compu-
tational studies have revealed that the constitutive behavior of
grain boundaries governed by the local features such as grain
misorientation and GB orientation. Motivated by the under-
lying physics of non-coherent slip systems of neighboring
grains, a GB model that accounts for essential geometrical
features presented in [27] is adopted in thiswork. The authors
previously studied the model on bi-crystals (see [28,31]) and
presented the preliminary results for polycrystals in proceed-
ings (see [8,50]) but a detailed study in 3D polycrystaline
metallic materials have not been presented before, which
is the purpose of current work. This step requires tremen-
dous effort to pre-process the finite element model where the
microstructure is prepared and the grain boundary elements
are inserted between the grains and to post-process where
the Abaqus results are converted into proper odb files for the
detailed analysis. Such technical implementation details are
not discussed here. In [27], the slip incompatibility of the
neighboring grains is described in terms of the grain bound-
ary Burgers tensor defined as,

G =
∑

α

[γ α
B s

α
B ⊗ nα

B − γ α
A s

α
A ⊗ nα

A](N×) (14)

where for any vector N , N× is the tensor with components
(N×)i j = εik j Nk . The Burgers tensor given in Eq. (14),
describes both the relative misorientation of the grains and
the orientation of the grain boundary. Furthermore, the mag-
nitude of grain boundary Burgers tensor is expressed in terms
of slip interaction moduli (Cαβ

AA, C
αβ
AB and Cαβ

BB) as follows,

|G|2 =
∑

α

∑

β

(Cαβ
AAγ α

Aγ
β
A + Cαβ

BBγ α
B γ

β
B + −2Cαβ

ABγ α
Aγ

β
B )

(15)
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In this formulation Cαβ
AA and Cαβ

BB represent the interactions
between slip systemswithin grainA and grainB respectively,
and therefore they are called intra-grain interaction moduli,
whereas Cαβ

AB represent the interaction between slip systems
of the two grains and called inter-grain interaction moduli.
For their explicit forms and for a detailed discussion on the
physical meaning of the interaction-moduli, the reader may
consult to Özdemir and Yalçinkaya [28,31] that focus on
simple 2D and bi-crystal examples in an illustrative way. A
simple free energy function of the following form is adapted
here, ignoring the dissipative effects,

ψGB = 1

2
κ|G|2 (16)

where κ is a positive constant modulus, which represents the
strength of the grain boundary itself. If there ismisorientation
between the neighbouring grains, there will be a contribution
to the grain boundary free energy which will be amplified
with the multiplier κ . The microstructure evolution around
the grain boundary is therefore directly affected by the grain
boundary free energy, as well as with the internal length scale
parameter. This gives the freedom to tune the microstructure
evolution and the localization around the grain boundaries
with a fixed value of internal length scale parameter. Inserting
ψ̇GB into the dissipation inequality leads to the following
relations for the microscopic grain boundary stress terms,

λα
A = κ

∑

β

(
γ

β
AC

αβ
AA − γ

β
BC

αβ
AB

)

λα
B = κ

∑

β

(
γ

β
BC

αβ
BB − γ

β
AC

αβ
BA

)
. (17)

where the difference between the slips are being penalized
by the grain boundary strength κ . Grain boundary may act
as a soft (κ = 0) or hard (κ = ∞) boundary as long as
there is a mismatch between the grain orientations. In this
way the behavior of the grain boundary is not restricted to
the limiting cases and the response between soft and hard
boundaries can be obtained. In the next section, the finite
element implementation of the framework for both bulk and
interface part is discussed in short.

3 Finite element implementation

The initial boundary value problem in hand consists of two
coupled balance equations for which a mixed finite element
formulation is opted. Linear momentum and the microscopic
force balance equations are solved in a monolithic manner
resulting in the two primary fields, namely, the displacements
u and the plastic slips γ α . Note that internal variable formal-
ism is exploited in local plasticity (see e.g. [51,52]) and the

lower order strain gradient frameworks (see e.g. [20,53–56])
where the balance equations are solved for only the nodal dis-
placements and plastic variables evolve locally and are stored
as history variables at every material point, i.e. Gauss point
in a finite element context. On the other hand, higher order
models, as utilized here, treat plasticity specific variables,
such as dislocation densities (see e.g. [38,47,48]) and plas-
tic slips (see e.g. [29,30,57,58]) as nodal degree freedoms,
which allow straight forward calculation of the gradients of
the plastic field. Mixed finite element formulation developed
here starts with the strong form of the balance equations,

∇ · σ = 0

sign(γ̇ α)
sα

(γ̇ α
0 )m

|γ̇ α|m − τα − ∇ · ξα = 0 (18)

complemented by the boundary conditions (2), (4) on the
associated outer boundaries and the interface conditions (5)
on the grain boundary, respectively. In order to obtain the
weak forms, balance equations are multiplied by weighting
functions δu and δα

γ and integrated over the domainΩ , result-
ing in,

Gu =
∫

Ω

∇δu : σdΩ −
∫

S
δu · tdS

Gα
γ =

∫

Ω

sign(γ̇ α)δγ α |γ̇ α|m dΩ

−
∫

Ω

(γ̇ α
0 )m

sα
δγ α τα dΩ

+
∫

Ω

(γ̇ α
0 )m

sα
∇δγ α · A∇γ αdΩ

−
∫

S

(γ̇ α
0 )m

sα
δγ α χα dS

−
∫

SGB

(γ̇ α
0 )m

sα
δγ α

Aλα
A dS

−
∫

SGB

(γ̇ α
0 )m

sα
δγ α

Bλα
B dS (19)

The external traction vector t on the external boundary S is
the forcing term for the first equationwhereas grain boundary
tractions (λA&λB) andχα = A∇γ α ·n̄ are driving the evolu-
tion of slip within the domain. Following a standard Galerkin
approach (Bubnov-Galerkin), the same interpolations are
used for unknown fields and their associated weighting func-
tions.Aquadratic interpolation for displacements and a linear
one for slips are embedded within a 10-noded tetrahedral
element primarily due to its potential advantage in meshing
of complicated 3D poly-crystalline geometries. For a typi-
cal 10-noded tetrahedra shown in Fig. 3, the slip dofs are
defined only at the corner nodes whereas a quadratic dis-
placement interpolation requires displacement dofs at every
node of the element. This element type is utilized to model
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Fig. 3 Finite element
representation for both interface
and bulk parts

Corner nodes (disp. & slip dofs)

Edge nodes (disp. dofs only)

Bulk element

Interface element

Internal surface of Grain 1

Internal surface of Grain 2

the elasto-plastic behaviour of grains for which 5 slip sys-
tems (all of them are octahedral slip systems, please see
Table 1), of a face centered cubic (fcc) crystal are used.
All fcc slip systems could be considered as well in the
numerical examples, but that would increase the computa-
tional cost (with 15 dofs at the corner nodes and 78 dofs in
total for an element) without affecting the qualitative con-
clusions drawn here. Zero thickness interface elements with
12 nodes are inserted along the grain boundaries (please see
Fig. 3)which essentially facilitates the integration of the grain
boundary contributions appearing in the weak form. These
elements enable one to access the slip values along the grain
boundary either approached from grain A or grain B. How-
ever it is worth mentioning that the interface elements are
mechanically fully intact and does not cause any discontinu-
ity in the displacement field. During the solution phase, same
nodal displacements at the corresponding nodes of an inter-
face element are enforced by means of equality constraints
(rigid ties). Furthermore, 12-noded interface element suits
well to potential extensions of the framework, in particu-
lar, injection of mechanical decohesion of grain boundaries
described by traction-separation relations, see e.g. [10]. For
the temporal discretization of γ̇ α , backward Euler integra-
tion scheme is employed which simply approximates γ̇ α by
γ̇ α ≈ [γ α

n+1 − γ α
n ]/Δt with Δt = tn+1 − tn . Intermedi-

ate steps and the explicit forms of the discretized bulk and
interface integrals are available in [31]. Newton–Raphson
solution procedure is used to solve the discretized balance
equations which require consistent linearization. After lin-
earization, the following set of linear equations are obtained,

Table 1 Slip systems used in the bulk elements

Slip system n s

1 1√
2
[1̄ 1 0] 1√

3
(1 1 1)

2 1√
2
[1 0 1̄] 1√

3
(1 1 1)

3 1√
2
[0 1̄ 1] 1√

3
(1 1 1)

4 1√
2
[1 1̄ 0] 1√

3
(1̄ 1̄ 1)

5 1√
2
[0 1 1] 1√

3
(1̄ 1̄ 1)

[
Kuu Kuγ

K γ u K γ γ + K γ γ

GB

] [
Δu
Δγ α

]

=
[ −Ru + Rext

u
−Rγ + Rext

γ

]

(20)

which are solved for the corrective unknowns Δu and Δγ α .
Kuu, Kuγ , K γ u and K γ γ are the global tangent matrices
of the bulk whereas K γ γ

GB represents the contribution of the
interface elements to the system tangent stiffness matrix.
The difference between the global internal force columns Ru

& Rγ and the external force columns Rext
u & Rext

γ tend to
zero through this iterative procedure. For relatively small m
values and polycrystals with large number of grains, a diffi-
culty in convergence especially at the early stages of loading
is observed. To circumvent this problem, after some tests,
sign(γ̇ α) function is approximated by tanh(k γ̇ α) where k
is a large positive constant, typically chosen in the order of
modulus of elasticity.
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4 Numerical examples

In this section the numerical performance of the model is
illustrated through different microstructural parameters on
micron size specimens with different number of grains. The
simulations are conducted for a cylindrical specimen with
length of 100 µm and diameter of 25 µm under uniaxial
tension as well as with diameter and length of 25 µm under
uniaxial tension and shear loading. The examples with 5,
10, 100, 250, 500 and 600 grains are considered where the
material parameters presented in Table 2 are employed. The
specimens are loaded with displacement at one end while
they are fully constrained (encastre) at the other end. Since
the imposed restriction results in stress concentration at the
boundary, an additional case with symmetry conditions is
presented to address the influence of boundary conditions.
Moreover, while at the ends of the specimen hard boundary
is assumed for plastic slip the remaining surfaces considered
to be soft, and the conditions at the grain boundaries are
discussed in detail.

Initially a uniaxial specimen with 10 randomly oriented
grains is considered. The engineering stress versus strain
responses for different rate sensitivity parameters, m, are
plotted in Fig. 4 considering different κ values together with
the classical limiting boundary conditions to have a com-
parison with the approaches without the grain boundary
model and to evaluate the capability of the current frame-
work. Note that in qualitative strain gradient polycrystalline
plasticity models, it is common to assume a viscous form of
the slip equation with m = 1 (see e.g. [28,59]) for numeri-
cal efficiency. In this study different values of the exponent is
considered and studied in detail. The rate exponent influences
clearly the onset of plastic deformation which is deferred
with increasing value. Large values ofm induce lowermacro-
scopic yield strength, yet it does not influence the discussions
on the effect of grain boundary strength κ as shown in Fig. 4.
In the current as well as in the upcoming examples form = 1
cases reference slip rate is considered to be γ̇0 = 0.115.
The case with κ = 0 is identified to be the soft boundary
condition, which is different than the micro-free boundary
conditions in the strain gradient crystal plasticity literature
(see e.g. [60–62]), which is illustrated in the same plot as
well. In those frameworks since there is no interface element,
the traction free boundary condition cannot be imposed. In
case of so-called micro-free boundary conditions of these
aforementioned studies, the resulting slip distribution is con-
tinuous between the grains which in turn implies a non-zero
(slip associated) traction on the grain boundaries. This actu-
ally introduces a harder condition than the real soft boundary
condition that is captured here with a zero stiffness grain
boundary element, which is shown in the same plots where
the classical soft boundary (micro-free) condition results in
more hardening than the case with κ = 0. Another lim-

iting case in the literature is the hard boundary condition,
which is referred to as micro-clamped boundary condition
where the plastic slips are set to zero. It is clearly observed in
Fig. 4 that with the increasing value of the interface strength
the behavior of the material approaches to hard boundary
condition. However the situations in between the two limit-
ing cases are obtained as well, which is not possible in the
models without a grain boundary model. In reality no com-
plete soft or hard boundary condition would exist at the grain
boundaries of deforming polycrystals. There would be com-
plicated grain boundary-dislocation interaction mechanisms
which are obtained with the current grain boundary model
through the interface strength κ at an upper scale. In the same
figure the unloading response of the model is presented for
the case of soft boundary conditions where an elastic unload-
ing response is observed.

Next, the spatial stress evolution is discussed for the same
example. Initially the influence of grain boundary strength is
presented in Fig. 5 for different κ values, i.e. κ = 0, 5 and
20. Due to the mismatch in the grain orientations, which are
taken completely random, there is certain stress concentra-
tion at the grain boundaries even for the soft case with κ = 0.
These concentrations increase substantially with increasing
κ . At the inner parts of the specimen at certain locations there
are considerable differences in terms of stress concentration
between the soft (κ = 0) and the high κ cases. In the fre-
quently used local crystal plasticity frameworks, which do
not incorporate a grain boundary model, there would be only
one response for the stress distributionwhichwould be closer
to the soft case, leading to various problems in the experi-
mental comparison studies. However, the current framework
presents a great potential in capturingmore realistic response
at both micro and macro scales due to the freedom sup-
plied by the grain boundary strength for tuning the response
with respect to experimental observations. Therefore, in the
future validation studies, this parameter will play a key role.
Furthermore, In Fig. 6 the responses for the soft (κ = 0),
micro-free and hard boundary conditions are presented for
different rate sensitivity exponent values, i.e. m = 1 and
m = 0.1. There is a huge difference between soft and hard
grain boundary cases which correspond to free dislocation
movement from one grain to the other and complete block-
age of the dislocation transfer through the grain boundary.
The stress levels reach to very high values especially at the
grain boundaries for the hard cases. Note there is a substan-
tial influence ofm on the stress distribution for soft case with
κ = 0, while the differences are observed to be much less
for the other cases . Serious stress concentrations occur at
the end of the specimens where encastre boundary condition
is applied. This is completely due to the restriction coming
from the boundary conditions affecting mostly the outer part
of the specimen. This issue will be discussed in the next
examples in the context of symmetry boundary conditions.
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Table 2 Material properties of the strain gradient crystal plasticity model

Young modulus E (MPa) Poisson ratio ν (–) Reference slip rate γ̇0 (s−1) Slip resistance s (MPa) Orientations (◦) Material length scale R (µm)

70000.0 0.33 0.001 25.0 Random 0.4
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Fig. 4 Engineering stress versus strain response for a 10 grain specimen through different grain boundary strength κ values in comparison to
classical grain boundary conditions for m = 1 (left) and m = 0.1 (right)
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Fig. 5 Stress distribution for κ = 0 (top-left), κ = 5 (top-right), κ = 20 (bottom) values of the grain boundary strength in specimens with 10 randomly
oriented grains for m = 0.1 under 2% tensile strain
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Fig. 6 Stress distribution for soft (κ = 0) (top), soft (micro-free) (middle), hard (bottom) grain boundary conditions in specimens with 10 randomly
oriented grains under 2% tensile strain. Effect of strain rate sensitivity exponent m is compared: m = 1 (left) and m = 0.1 (right)

In Fig. 7 the stress and strain distribution upon unloading is
presented for κ = 0 and m = 0.1 in the same specimen.
Even though the average stress value is zero, there are cer-
tain spots with stress concentrations in the specimen when
macroscopic force returns to zero. Moreover, due to elastic
unloading, pronounced strain values are observed throughout
the specimen.

In the next example the specimens with symmetry bound-
ary conditions are addressed in Figs. 8 and 9, where the
displacements are applied at both ends of the quarter speci-
men in+z and−z directions while the faces perpendicular to
x and y are constrained in the x and y directions respectively.
As shown previously in Figs. 5, 6 and 7 the applied bound-
ary conditions induce stress concentrations at the ends of

the specimens, which will disappear here upon applied sym-
metry conditions. In this context, the influence of κ value
for the stress concentrations and plastic slip evolution is dis-
cussed in specimens with 252 randomly oriented grains in
Figs. 8 and 9. A symmetric grain structure is not physical
indeed, however the results and discussions are identical for
the full specimens without any symmetry.Moreover, without
the boundary induced stress concentrations the illustration
becomes more clear. In Fig. 8 the effect of κ is shown for
m = 0.2. For the soft boundary case with κ = 0 low
level inter-granular stress concentrations occur throughout
the specimen due to the orientation mismatch. Only a couple
of grain boundaries at the middle section of the specimen
show substantial stress concentrations due to high degree of
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Fig. 7 Stress (left) and strain (right) distribution for κ = 0 value of the grain boundary strength in specimens with 10 randomly oriented grains for
m = 0.1, upon unloading when macroscopic force returns to zero
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Fig. 8 Stress (left) and strain (right) distribution for κ = 0 (upper), κ = 16 (lower) for m = 0.2 in specimens with 252 randomly oriented grains at
1% tensile strain in z-direction

orientation mismatch. The level of stress at all grain bound-
aries increases remarkably for κ = 16 which is reflected also
on the macroscopic yielding and hardening as discussed pre-
viously. There are significant differences in the evolution of
strain field as well which is illustrated in the same figure on
the right side. In Fig. 9 the plastic slip evolution is shown for
the same κ and m values. A completely different slip evolu-
tion is observed for different slip systems. In each case, while
the plastic slip γ evolves throughout the grain with notice-

able values at the grain boundaries for low κ , the evolution
is rather confined to the grain interiors with increasing grain
boundary strength.

Next, the effect of the misorientation is addressed, where
theEuler angles of the grain orientations are restricted to have
values between 40◦ and 45◦ in a specimenwith 100 grains. In
thisway, themisorientation between the grains is reduced and
the grain boundary strength, κ is expected to have less effect
than the previous case where it was multiplied with higher
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Fig. 9 Slip contours for κ = 0 (left) and κ = 16 (right) in 3 different slip systems for m = 0.2 in specimens with 252 randomly oriented grains at
1% tensile strain in z-direction. From top to bottom Slip-1, Slip-2, and Slip-4 evolution are shown in order

values in the free energy function due to the high misorien-
tation. Moreover, while in the previous examples the stress
concentration locations evolved randomly, a more regular
pattern is expected to occur in this case. In Fig. 10 the spatial
distribution of stress is illustrated for κ = 0, 8 and 20 and
m = 0.2 at 2% macroscopic strain. The stress concentration
and localization align according to the given crystallographic
orientation of the grains, which are magnified with increas-
ing values of grain boundary strength. However due to the
restricted misorientation values it requires higher κ values
to get comparable stress concentrations with respect to the
previous example. In Fig. 11 the stress-strain responses for
different κ values are illustrated for both the randomly ori-
ented case and the case where the orientations are restricted
between 40◦ and 45◦. The difference in themacroscopic con-

stitutive response between the κ = 0 and κ = 4.5 cases is
substantially higher for the randomly oriented grains than
the microstructure with restricted orientations. This result
shows that grain boundary strength has higher influence for
the specimen with higher misorientations as expected from
the formulation resulting in more pronounced localization
and stress concentrations at the grain boundary.

Figure 12 shows the influence of the κ for a higher range
of values from 0 to 1000 in comparison to classical boundary
conditions for the same example with orientations restricted
to the values between 40◦ and 45◦ and m = 0.2. A smooth
convergence to hard boundary condition is obtained with
increasing κ . However, in randomly distributed orientation
examples numerical problems might occur for high values
of κ depending on the orientation distribution and rate sensi-
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Fig. 10 Stress distribution for κ = 0 (upper left), κ = 8 (upper right) and κ = 20 (lower) in specimens with 100 randomly oriented grains with angles
restricted between 40◦ − 45◦ for m = 0.2 under 2% tensile strain in z-direction
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Fig. 11 Engineering stress versus strain curve for different κ values in
a randomly oriented specimen (dashed line) and in a specimen where
the orientation mismatch is restricted (continuous line) for m = 0.1

tivity exponent, where nonphysical results, i.e. exaggerated
localizationmight occur. Therefore one has to be careful with
selecting this parameter and it does not always approach to
hard boundary condition case smoothly. Note also that in
this example both soft boundary conditions, micro-free and
κ = 0, converge to each other due to the lack of misorien-
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Fig. 12 Engineering stress versus strain curve for different κ values in
a specimen where the orientations are restricted between 40◦ and 45◦
for m = 0.2

tation. In fact the soft boundary case with κ = 0 behaves
almost like a micro-free boundary condition.

The influence of the grain (crystal) orientation distribution
is discussed in a specimenwith 600 randomly oriented grains
for constant grain boundary strength κ = 3 and m = 1. The
distribution of stress and strain is illustrated in Fig. 13where a
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Fig. 13 Stress (upper) and strain (lower) distributions for κ = 3 andm = 1, for 8% strain in z-direction where the same orientation set is distributed
randomly: distribution 1 (left) and 2 (right)

random orientation set is distributed differently in each case.
Naturally, the microstructure evolution and the stress con-
centrations at the grain boundaries are completely different
in each case. In this way, the same grainmorphology with the
same pole figure results in differentmicrostructure evolution.
Due to the high number of grains a statistical size effect is not
obtained at macro scale even though there are considerable
differences at micron level. In other words, both specimen
has the same macroscopic stress versus strain response.

Next, the size effect is discussed shortly. In Fig. 14 two
types of size effects are shown together. For the illustra-
tion of the extrinsic (statistical) size effect, specimens with
same size but with different number of grains are considered,
i.e. 5, 100 and 500. For each case different orientation sets
are assigned and a huge scatter is obtained in stress-strain
response for the specimen with 5 grains. The orientation of
individual grains affects the constitutive response substan-
tially, resulting in such a size effect. The observed scatter
decreases with increasing number of grains and approaches
to isotropic response eventually. In the meanwhile, when the
number of grains is increased in the same specimen, naturally
the grain size decreases. Therefore the intrinsic size effect
works at the same time (Hall–Petch effect) and the case with
smaller grain size shows stronger response. For the case with
500 grains, which has the smallest grain size, the dislocations
have more chance to meet a grain boundary than the other
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Fig. 14 Engineering stress versus strain responses for specimens with
different 5, 100 and 500 randomly oriented grains using a constant grain
boundary strength κ = 1

cases, resulting in more pronounced hardening behavior. In
one single plot various microstructural effects are illustrated
in a very simple way in Fig. 14. In Fig. 15 the spatial stress
evolution is shown for the casewith symmetry boundary con-
ditions with κ = 16 and m = 0.2, where the response of the
same specimen with 12.5 × 50µm (left) and 25 × 100µm
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grains under 1% tensile strain in z-direction

0 0.004 0.008 0.012 0.016 0.02

Strain- 
33

0

50

100

150

200

250

300

S
tr

es
s-

 
33

 [M
P

a]

Engineering Stress vs Strain, m=0.2

=0
=2
=4
=6

0 0.004 0.008 0.012 0.016 0.02

Strain- 
13

0

25

50

75

100

S
tr

es
s-

 
13

 [M
P

a]

Engineering Stress vs Strain, m=0.2

=0
=2
=4
=6

Fig. 16 Engineering stress versus strain response for a 100 grain 25 × 25µm specimen through different grain boundary strength κ values in
comparison to classical grain boundary conditions for m = 0.2 under axial loading (left) and shear loading (right)

(right) dimensions are compared. As expected the case with
small grain size shows higher stress concentrations at the
grain boundaries, which would start softening first and fails
with a smaller toughness value.

In the last example the response of a shorter specimenwith
25µm length and 25µm diameter, including 100 randomly
oriented grains is addressed under both uni-axial tensile and
shear loading considering different κ values of 0, 2 and 6
with m = 0.2. First, the stress versus strain responses are
shown in Fig. 16. As expected, the macroscopic stress levels
are lower in shear case compared to the axial loading one
and even though the same trend is obtained with increasing
κ the effect is more pronounced in the axial loading case. The
von Mises stress contour plots are presented in Fig. 17 for
κ = 0, 2, 6. The magnitude of stress concentration is much
lower in the shear case and the inter-granular stress evolution
is completely different between the two loading scenarios. In
both cases an increase in grain boundary stresses is clearly
observed due to the increase in κ .

The computations presented in this paper are conducted
using desktop computers. The simulations with the model

including 10 grains where m = 0.1 take 2–3 h to complete
depending on the κ value through 14,339 finite elements and
81,271 DOFs on a PC with Intel Xeon E5 1650 v4 3.60GHz
CPU and 72GB RAM using single thread. The sample with
100grains includes 85,251finite elements and423,101DOFs
and takes 40–50 h to complete depending on the κ value on
the same PC. On the other hand using m = 1 increases the
speed substantially reducing the 10 grain computation time
to 20–30min. For example the samplewith 600 grains having
486,014 finite elements and 2,309,043DOFs takes around 20
h to complete using m = 1.

5 Conclusions

This work presents a detailed evaluation of three dimen-
sional microstructure evolution and constitutive response
of micron-sized polycrystalline specimens through a strain
gradient crystal plasticity framework incorporating Gurtin’s
grain boundary model. The mis-orientation and grain bound-
ary orientation dependent intergranular localization is stud-
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Fig. 17 The von Mises stress
distribution for axial loading
(left) and shear loading (right) in
specimens with 100 randomly
oriented grains for m = 0.2
under 2% tensile and shear
strain. Grain boundary strength
values are: κ = 0 (top), κ = 2
(middle), κ = 6 (bottom)
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ied through the framework reflecting the coarse grained
representation of complex grain boundary-dislocation slip
interaction mechanisms. The illustrations from the current
model go beyond the capacity of classical strain gradient
crystal plasticity frameworks which could illustrate the plas-
ticity activity at the grain boundaries through solely limiting
soft (micro-free) and hard (micro-clamped) boundary condi-
tions. The real situations that would be in between these two
limiting cases are captured here through the developed frame-
work with the help of the grain boundary strength parameter
which magnifies the effect of misorientation between the
neighboring grains. The macroscopic constitutive response
approaches to the limiting cases for the low and high values
of the interface strength respectively. A detailed boundary
condition analysis is presented,which is crucial for the under-
standing of capacity of local and non-local crystal plasticity

frameworks. The results are in agreement with the theo-
retical expectations of the grain boundary model that has
been developed on geometrical arguments. The microstruc-
ture evolution and the macroscopic constitutive response
are addressed through different microstructural parameters
together with the intrinsic and extrinsic size effects in
polycrystalline materials. The effect of crystal orientation
distribution, which change the stress concentration evolu-
tion completely, is illustrated as well. The study presents a
great potential for capturing the experimental microstructure
evolution andmacroscopic response due to the degree of free-
dom introduced by the GBmodel, which is quite problematic
for the problems with large number of grains. Therefore, the
outlookwould be an experimental comparison and validation
study of microstructure evolution in polycrystalline metallic
alloys.
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