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Abstract

The linearity of the distribution of city sizes is often

assumed in the existing literature. Although different func-

tional forms were tried, almost all of them impose a certain

functional shape. In this study, we investigate the urban

hierarchy and Zipf’s law using data for 973 Turkish sub-

provincial cities in 2019. We contribute to the literature in

several ways. We force no definite functional form to

observe the natural shape and employ nonparametric and

quadratic regressions. We incorporate formal procedures of

spatial dependence in regression models. We demonstrate

that the linear model overestimates the Pareto exponent

for small cities and underestimates it for bigger cities. We

show that city sizes are unevenly distributed in Turkey. The

rank–size rule is not valid in Turkey, either above or below a

certain city-size truncation level. Thus, the Pareto exponent

estimated from the linear model is not a reliable indicator as

quadratic regressions perform much better.
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1 | INTRODUCTION

The city size distribution and Zipf’s law have long been a subject of interest in theoretical and empirical studies

(Eaton & Eckstein, 1997; Gabaix, 1999; Giesen & Suedekum, 2011; Giesen, Zimmermann, & Suedekum, 2010;

Ioannides & Overman, 2003; Luckstead & Devadoss, 2014; Moura & Ribeiro, 2006; Rosen & Resnick, 1980;

Soo, 2007; Veneri, 2016; Zipf, 1949). Disproportional city sizes might lead to distortions in urban systems, such as

segregation, congestion, crime, unemployment, economic efficiency losses, etc. (Arshad, Hu, & Ashraf, 2018; Lu &

Wan, 2014). In recent decades, Turkey has experienced massive regional migrations and socioeconomic imbalances

(Duran, 2015, 2019a, 2019b). Its population has increased from about 13 million in 1920s to about 83 million in

2019.1 The rapid population growth has been accompanied by the increased urbanization rate. The share of popula-

tion living in urban areas was about 25% during 1920s and 92% in 2019.2 The internal migration from less to more

developed cities accelerated urbanization processes after 1980, a year in which Turkey experienced a significant

transition towards a liberal and more open economy (Coban, 2013; Deliktas, Onder, & Karadag, 2013; Evcil,

Dokmeci, & Kıroglu, 2006; Gedik, 1997, 2003; Kundak & Dokmeci, 2018). During this period, industrialization

around Istanbul and Izmir attracted many workers especially from eastern and northern parts of the country. A lack

of jobs in less-developed areas contributed to this process. The inefficiency of the agricultural sector, which is the

main economic activity in out-migrating regions, was one of the major reasons behind this migration process.

The main goal of this study is to investigate the city size distribution, the validity of Zipf’s law, and the rank–size

rule using the dataset that covers 973 Turkish subprovinces for the year 2019. It is well known that validity of Zipf’s
law is strictly related to scaling issue. It is crucial that the scale being too small or too big will affect the results of

Zipf’s law. Our spatial units, districts (subprovinces), are at the medium scale, not as big as provinces and not as small

as neighborhoods.

Zipf’s law can be seen as an important initial step in understanding the urban structure and required policies in

Turkey. It is an essential analysis in estimating the validity of the rank–size rule as it theoretically predicts the Pareto

optimal distribution. The invalidity of linearity and empirical innovations brought by nonparametric analyses are also

crucial aspects that are pursued in current empirical analyses. Therefore, in our study, we adopt a nonlinear frame-

work that has not been extensively used in the literature. Although the Pareto optimality of urban systems is usually

studied in the log-linear form, we relax this assumption to provide a more general analysis (Arshad, Hu, &

Ashraf, 2018; Cordoba, 2008a, 2008b; Duranton, 2007; Gabaix, 1999; Gabaix & Ibragimov, 2007; Lee & Li, 2013;

Soo, 2005). By incorporating nonlinearities, the Pareto exponent is allowed to differ across different groups of cities,

which enables more relevant and region/city-specific policy implications.

The paper is structured as follows. In section 2, a related literature is surveyed. In section 3, empirical methodol-

ogies and dataset properties are explained. In section 4, empirical and econometric results are documented. Then,

finally, section 5 summarizes and concludes with directions for further studies and policy recommendations.

2 | LITERATURE REVIEW

The reasons why Zipf’s law may or may not hold have been hotly debated in the literature. There are two opposing

views. The first view supports the general validity of the law. There are two main hypotheses on the reasons for its

validity. The first and the major reason is related to random growth of city sizes. The city sizes are argued to grow

randomly when shocks to urban populations (e.g., migration, productivity, etc.) occur randomly. Hence, the distribu-

tion of city sizes is supposed to be in the Pareto state (Arshad, Hu, & Ashraf, 2018; Cordoba, 2008a, 2008b;

Duranton, 2007; Gabaix, 1999; Gibrat, 1931; Lee & Li, 2013; Rossi-Hansberg & Wright, 2007). Similarly, it is stated

that Pareto distribution is the result of an evolution that occurs naturally in a steady state, without an underlying

theory (Arshad, Hu, & Ashraf, 2018; Batty, 2006; Corominas-Murtra & Solé, 2010; Gan, Li, & Song, 2006; Mansury &

Gulyás, 2007; Semboloni, 2001). An alternative but a less popular hypothesis is related to the evolution of human
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capital that leads to a proportional distribution of city sizes (Arshad, Hu, & Ashraf, 2018; Behrens, Duranton, &

Robert-Nicoud, 2014; Christaller, 1933; Hsu, 2012).

With regard to theoretical studies supporting the counter argument, it is often emphasized that city sizes might

significantly deviate from the Pareto distribution owing to many reasons. As an explanation of labor migrations

towards urban giants, job incentives, higher wages, industrialization, education, and other facilities are often referred

to as important drivers (Coban, 2013; Deliktas, Onder, & Karadag, 2013; Evcil, Dokmeci, & Kıroglu, 2006;

Gedik, 1997, 2003). The migration from rural to urban areas due to a decline of the agricultural sector as well as

economic and natural shocks may also be responsible for deviations from the Pareto distribution (Coban, 2013;

Deliktas, Onder, & Karadag, 2013; Evcil, Dokmeci, & Kıroglu, 2006).The empirical studies are also far from reaching a

consensus. These studies focus on estimated Pareto exponents that show the degree of closeness of a population

distribution to the Pareto optimality. The exponent equal to unity represents the Pareto optimal distribution,

whereas deviations from unity in any direction imply disproportionality. The empirical studies that support Zipf’s law
and validate the rank–size distribution include Gabaix (1999) for US Metropolitan Areas, Giesen and

Suedekum (2011) for German cities/urban areas, and Luckstead and Devadoss (2014) for Indian cities. In addition,

Nota and Song (2012) analyze the largest cities in the United States in 2000 and find modest deviations of Pareto

exponent (0.89) from 1. Similarly, they study also China in the same context for the year 1999 and again find low

level of deviations of Pareto exponent (1.09) from 1.

At the same time, there are many other studies that reject the Pareto distribution. Some important examples

include Rosen and Resnick (1980), who find that, in 31 (of 44) countries, the Pareto exponent is above 1.00, and for

all the countries, it ranged between 0.81 and 1.96; Guerin-Pace (1995), who detects deviations from the Pareto opti-

mality for some of French cities; and Soo (2005), who finds that, in 39 (of 73) countries, the Pareto exponent is

above 1.00, whereas in 14 countries, it is below 1.00, and ranging between 0.72 and 1.70 overall. Moreover, Bee,

Ricabboni, and Schiavo (2013) and Lalanne (2014) are among the other studies that provide evidence against the

applicability of Zipf’s law for the United States and Canada, respectively. In a subsequent study, Modica, Reggiani,

and Nijkamp (2015) analyze Botswana, Germany, Hungary, and Luxembourg. As a result, in all of these cases, Zipf’s
law and the Pareto distribution are not supported empirically. In the case of Botswana, the years 2001 and 2011 are

analyzed and the Pareto coefficient is found to exceed unity; 1.13 and 1.17. Similarly, in the case of Germany, the

years between 1993 and 2007 are analyzed. The Pareto exponent is found to be quite high (1.4) and stable over

the years. In the case of Hungary, the parameter is estimated between 1.13 and 1.26 for some years between 1980

and 2011. In the case of Luxembourg, the Pareto exponent is found far lower, ranging between 0.5 and 0.91 for the

selected years between 1821 and 2011. Finally, a very recent study by Bajracharya and Sultana (2020) finds that

Zipf’s law tends to fail in the case of Bangladesh as the related coefficient decreases from 1.015 in 1991 to 0.85

in 2011.

However, the existing studies are criticized for many reasons. First, it is argued that, due to improper sample

selection, estimation results may be biased. When the entire sample of cities is studied, Zipf’s law generally fails

(Arshad, Hu, & Ashraf, 2018; Fazio & Modica, 2015). It is often claimed that the upper (higher) tail of an urban hierar-

chical distribution fits Zipf’s law better (Eeckhout, 2004; Fazio & Modica, 2015; Ioannides & Skouras, 2013). There-

fore, it is suggested to choose a correct truncation level of a population or to take into account only a certain

fraction of cities (Arshad, Hu, & Ashraf, 2018; Li & Sui, 2013; Rosen & Resnick, 1980; Wheaton & Shishido, 1981).

Another argument relates to the improper definition of cities. When administrative boundaries are used, it is found

that Zipf’s law fits the data poorly. However, when functional urban areas are employed, the goodness of fit

improves greatly (Arshad, Hu, & Ashraf, 2018; Berry & Okulicz-Kozaryn, 2012). As another concern, small sample

sizes may constitute a problem that creates a bias. In particular, Gabaix and Ioannides (2004) find that the Pareto

exponent is biased in small samples. Therefore, robust estimators are proposed to deal with small samples (Arshad,

Hu, & Ashraf, 2018; Deliktas, Onder, & Karadag, 2013; Dobkins & Ioannides, 2001; Gabaix & Ibragimov, 2007;

Hill, 1975). Finally, also the assumption of linearity has been criticized. Soo (2005) adopts a quadratic version of the

law and tests the nonlinearity for 73 countries. In his study, convexity is evident for 30 countries, and concavities are
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found for 20 others. Moreover, alternative functional forms/types are present (Ausloss & Cerquetti, 2016;

Chen, 2016).

The number of empirical studies on the city size distribution in Turkey is still very limited. Nevertheless, there

are a few notable exceptions. Deliktas, Onder, and Karadag (2013) focus on 81 Turkish provinces during the period

1980–1997 to find that the Pareto exponent ranges between 0.87 and 0.97. However, Duran and Ozkan (2015) find

that Zipf’s law fails in more recent years. Hence, findings for Turkey are far from clear cut, and there is a need for

additional studies. Our study targets several methodological improvements with respect to existing studies. We relax

the linearity assumption to allow for potential nonlinearities to avoid the possible estimation bias. Moreover,

although different functional forms were proposed in the literature, the majority of them tend to ignore spatial

dependence, and almost all impose a certain functional shape. In contrast to previous studies, we incorporate

spatial autocorrelation in our estimated models. Furthermore, in our study, we force no definite functional form in

order to be able to observe the natural shape and, thus, apply a nonparametric estimation. Having done this, we

observe a clear strong concavity and, therefore, apply quadratic regressions. Although linear forms are widely criti-

cized, there exists no study showing explicitly the magnitude of the bias created by an incorrect functional form. We

attempt to investigate this issue in our study by calculating the deviations from the optimal Pareto distribution of city

sizes and computing the mean absolute error (MAE) and mean absolute percentage error (MAPE) driven by different

functional forms (de Myttenaere, Golden, Le Grand, & Rossi, 2016; Wilmott & Matsuura, 2005).

3 | METHODOLOGY AND DATASET

In the literature, Zipf’s law is used to evaluate the optimality of city-size distributions through the following equation,

also called the rank–size rule (Auerbach, 1913; Gabaix, 1999; Rosen & Resnick, 1980; Singer, 1936; Soo, 2005;

Zipf, 1949):

Ri ¼AP�β
i , ð1Þ

where: Ri represents the i-th city rank, Pi represents its population, and A is the expected population of the most

populated city.

The estimated parameter β, known as the Pareto exponent, is claimed to indicate the proportionality of the dis-

tribution (Arshad, Hu, & Ashraf, 2018; Deliktas, Onder, & Karadag, 2013; Gabaix & Ioannides, 2004; Nitsch, 2005).

When β = 1,the cities are supposed to follow the Pareto distribution. In such a case, city sizes follow the exact pro-

portionality: the second-biggest city has half of the population of the biggest city, the third city has one-third the

population of the biggest city, etc. (Arshad, Hu, & Ashraf, 2018). However, when β < 1, the distribution of the city

sizes is uneven, as they deviate from the Pareto distribution (Soo, 2005; Deliktaş, Onder and Karadag, 2013; Arshad,

Hu, & Ashraf, 2018). Similarly, when β > 1, the population is more evenly distributed than when compared with the

Pareto state (Soo, 2005; Deliktas, Onder and Karadag, 2013; Arshad, Hu, & Ashraf, 2018).

Our empirical methodology includes some aspects of the traditional stream in the literature (i.e., the linear form

of Zipf’s law) but has also some new features (i.e., nonlinear methods). In short, we follow three main steps: (i) a lin-

ear test of Zipf’s law, (ii) nonlinear modeling, (iii) testing robustness of estimations against spatial dependence, and

(iv) calculation of the bias implied by either model.

3.1 | Linear methods

In terms of the research methodology, following many previous studies, we start with the log-linearized form of the

rank–size rule (Gabaix & Ioannides, 2004; Nitsch, 2005; Deliktaş, Onder and Karadag, 2013):
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ln Rið Þ¼ α�βln Pið Þþui ð2Þ

where i represents 973 Turkish cities.

However, the ordinary least squares (OLS) estimation of Equation 2 is known to be biased for small samples

(Hill, 1975; Gabaix & Ioannides, 2004; Deliktaş, Onder and Karadag, 2013). Thus, the following rank-minus-half form

as proposed by Gabaix and Ibragimov (2007) is suggested in the literature (Deliktas, Onder and Karadag, 2013):

ln Ri�1=2ð Þ¼ α�β ln Pið Þþvi ð3Þ

In our study, Equations 2 and 3 are run using simple OLS regressions together with several diagnostic tests.

3.2 | Nonlinear methods

The nonlinearity in Zipf’s law is studied in three possible ways. First, we fit a nonparametric Kernel regression by

assuming a normal distribution and polynomial function of order 2 (Cleveland & Devlin, 1988; Fan & Gijbels, 1996;

Fan, Heckman, & Wand, 1995; Fan & Marron, 1994; Härdle, 1991; Henderson & Parmeter, 2015; Simonoff, 1996). It

estimates the polynomial regression for many small subsamples and combines them afterwards. The advantage of

nonparametric regression is that, in contrast to parametric estimations, it does not force any certain functional shape

of Zipf’s law. The second method is the estimation of models for above and below a threshold level of populations

detected by applying Bai and Perron (1998)’s multiple breakpoint test to Equations 2 and 3 (Bai, 1997; Bai &

Perron, 1998, 2003a, 2003b).

As a third method of nonlinear modeling, a squared term of an independent variable is added to Equations 2 and

3 to capture the nonlinearity.

ln RiorRi�1=2ð Þ¼ αþβ ln Pið Þþ γ ln Pið Þ½ �2þφi ð4Þ

Although there is no strong theoretical basis for this polynomial equation, it is pursued only to complement/

reconfirm the result of nonlinearity/concavity obtained from threshold and nonparametric Kernel regressions. Higher

polynomial orders could be tried such as third or fourth, but this would not improve the fit as, in the current form, R2

is already high, at about 0.96–0.97. So, it is preferred to adopt the second-order polynomial function.

All estimation results obtained from nonlinear regressions are reported in four categories: (i) for total

subprovincial populations, (ii) for urban populations of subprovinces, and by using both (iii) rank–size and

(iv) rank-minus-half forms.

3.3 | Spatial models

A crucial concern on the technical feasibility is the spatial dependence in regional/city level studies. Ignorance of spa-

tiality may provide misleading or biased results. Therefore, we find it essential. Hence, we estimate spatial models in

order to check the robustness of the previous results with respect to this fact.

Hence, we employ Lagrange multiplier lag and error tests to Equations 2, 3, and 4 (Anselin, 1988, 2001; Anselin &

Bera, 1998; Anselin, Bera, Florax, & Yoon, 1996; Anselin & Moreno, 2003; Anselin & Rey, 1991; Bera, Do�gan,

Taşpınar, & Leiluo, 2019; Le Sage, 2008). We use a 973 � 973 raw standardized inverse distance matrix constructed

in ARCGIS/ARCMAP program, and tests are performed in R 3.53 by using SP, SPDATA SPDEP packages.3

Then, we estimate two types of spatial regressions. First, spatial dependence is assumed in the dependent vari-

able. This model, named spatial autoregressive model (SAR) is expressed as follows (Anselin, 1988, 2001; Anselin &
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Bera, 1998; Anselin, Bera, Florax, & Yoon, 1996; Anselin & Moreno, 2003; Anselin & Rey, 1991; Bera, Do�gan,

Taşpınar, & Leiluo, 2019; Le Sage, 2008):

Linear case : ln Ri or Ri�1=2ð Þ¼α�β ln Pið ÞþρWln Rið Þþei ð5Þ

Quadratic case : ln Ri or Ri�1=2ð Þ¼α�β ln Pið Þþγln Pið Þ2þρWln Rið Þþei ð6Þ

where ρ captures the spatial spillovers in the dependent variable. W is the spatial weight matrix defined as

973 � 973 inverse distance matrix.

The second spatial regression is the spatial error model (SEM) that allows spatial interactions between the error

terms of neighboring cities (Anselin, 1988, 2001; Anselin & Bera, 1998; Anselin, Bera, Florax, & Yoon, 1996;

Anselin & Moreno, 2003; Anselin & Rey, 1991; Bera, Do�gan, Taşpınar, & Leiluo, 2019; Le Sage, 2008):

Linear case : ln Ri orRi�1=2ð Þ¼ α�β ln Pið Þþei zi ¼ θWzj ð7Þ

Quadratic case : ln Ri orRi�1=2ð Þ¼ α�β ln Pið Þþ γln Pið Þ2þei zi ¼ θWzj ð8Þ

where θ captures the spatial spillovers of residuals between neighboring cities.

We estimate Equations 5–8 in both linear and nonlinear settings.

3.4 | Bias calculation driven by linearity

We argue that a wrong functional form may result in serious biases in the estimation of the distribution of city sizes.

In particular, it may over- or underestimate the deviations from optimality. Hence, one needs to investigate in detail

the extent of the resulting biases. To do so, we calculate the deviations from the Pareto distribution of the city sizes

and explore the size of the biases brought by different functional forms. In particular, we first let optimal ranks of

provinces be denoted by rpareto,i. According to rpareto,i, the biggest city was in the first place (i = 1) and the others

followed in the sequential order as i = 2, 3, …, n.

We estimate Equations 5–8 (SAR and SEM models) and obtain the fitted values of the city populations.

rlinear,i and rquadratic,i represent the fitted-rank values obtained from linear and quadratic models. Then, we

calculate the mean absolute errors (MAE) and mean absolute percentage Error (MAPE) in terms of the devia-

tions from the Pareto distribution (de Myttenaere, Golden, Le Grand, & Rossi, 2016; Wilmott &

Matsuura, 2005), such that:

MAErank_linear ¼
Xn

i¼1
j rpareto,i� rlinear,i j =n

MAErank_quadratic ¼
Xn

i¼1
j rpareto,i� rquadratic,i j =n

MAPErank_linear ¼
Xn

i¼1
j ðrpareto,i� rlinear,iÞ=rparetoi j =n

MAPErank_quadratic ¼
Xn

i¼1
j rpareto,i� rquadratic,i
� �

=rparetoi j =n

ð9Þ
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Hence, the aforementioned MAE and MAPE specifications help demonstrate the extent of the bias driven by

the linearity. In addition, the Kolmogorov–Smirnov test is used to examine whether two distributions of populations

(or ranks) (i.e., the estimated one and Pareto optimal distribution) have identical or significantly different characteris-

tics (Kolmogorov, 1933; Smirnov, 1948).

3.5 | Dataset

Our dataset covers 973 subprovincial Turkish cities for the most recent 2019 year. In terms of spatial units, we adopt

two different types: (i) administrative units (subprovinces) and (ii) urban-only populations of subprovinces as a proxy

of functional urban areas. The main reason why we use only post-2013 data is because a new ‘Metropolitan Law’
was initiated after 2012 that changed borders of many sub-provinces.

It is informative to illustrate the map of Turkish districts (subprovinces), which is presented in Figure 1. The larger districts

are observed within metropolitan areas, particularly in Western and Southern urban giants such as Istanbul, Ankara, _Izmir,

Adana, Bursa, Antalya, etc. In contrast, smaller districts are rather observed in rural areas such as North and Eastern parts.

The dataset of this study is downloaded from the internet website of the Turkish Statistical Institute (TURKSTAT).

The estimations and tests are performed in Eviews 4, Eviews 10, and R 3.53 program (SP, SPDATA, SPDEP packages).

4 | EMPIRICAL RESULTS

4.1 | Linear baseline results

The linear estimation of Zipf’s law is done for Equations 2 and 3. The results are reported in Table 1. The beta coeffi-

cient is the main focus of our analysis. In the first two columns results from estimations in which ‘rank’ variable used

as a dependent variable (i.e., Equation 2), and in the remaining columns, estimation results in which ‘rank minus half’
variable used as a dependent variable (i.e., Equation 3) are shown. The White–Hinkley (Hinkley, 1977; White, 1980)

diagonal robust variance–covariance matrix is used.

The Pareto exponent (β) is significantly bigger than 0 at the 1% level in all cases regardless of whether the rank

or the rank minus half is used. It is found to be about 0.68 for subprovinces and 0.56 for their urban populations.

The Pareto exponent is found to be lower for urban population than total populations, indicating a greater uneven-

ness across urban parts. The estimated exponents are always above 0.00 but also always significantly below 1.00, as

F IGURE 1 Turkish subprovinces (districts); source: https://www.harita.gov.tr/urun/turkiye-mulki-idare-sinirlari/

232. The map is produced in ARCGIS, ARCMAP program
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the Wald test statistic (F-value) is statistically significant at 1% in all the cases (Gourieroux, Holly, & Monfort, 1982).

The detected breaks in Zipf’s law are presented in lower rows. These break levels of populations range between

150.488 and 163.773.

We observe that the results do not change much when ‘rank minus half’ is used instead of ‘rank’ as the depen-

dent variable. Therefore, from this point onwards, we do not report in the main text the results for which ‘rank minus

half’ is used as the dependent variable (except Figure 2). Instead, we include them only in Appendix 1a–e. They seem

mostly consistent with the estimations presented in the paper.

4.2 | Nonlinear model results

We report the results of nonparametric regressions in Figure 2 insipired from Nadaraya (1964) and Watson (1964).

The scatterplots in Figure 2 are shown together with the Kernel fit curve. The population (in natural logs) is placed

on the x-axis, whereas the rank variable (in natural logs) is placed on the y-axis. In all cases, regardless of whether the

entire subprovince or only the urban population is analyzed, the results consistently display a strong and clear con-

cavity, such that, on the one hand, the negative relationship between the population and the rank of cities is very

strong for cities greater than a certain threshold. On the other hand, the relationship is milder when a subsample

below a population threshold is considered.

As a second nonlinear modeling, the results of the threshold regressions are summarized in Table 2. The Zipf

coefficient is estimated for below and above threshold levels.

For small cities (below threshold level), the estimated Pareto exponent ranges between 0.38 and 0.48, while for

large cities, it ranges between 1.84 and 1.95 The results are consistent across urban and total populations and across

different dependent variable specifications. The errors are found to follow a normal distribution. So, it appears that

there is a remarkable difference in the estimated Pareto exponents between two groups of cities. This result indi-

cates that there is no unique measure of heterogeneity in urban size distribution. Moreover, the upper and lower

tails of the city distribution indicate very different outcomes. Both tails are far from the Pareto optimality, but the

distribution among small cities is further from the Pareto optimality. In other words, in the lower tail, small cities are

more heterogeneously distributed. The linear model seriously overestimates the Pareto exponent for small cities and

TABLE 1 OLS baseline linear regressions, source: Own estimation

Dependent variable: Ln(R) Ln(R-1/2)

Parameters Total population Urban population Total population Urban population

α 12.98338*** 11.53447*** 13.03328*** 11.5715***

�(β) �0.680534*** �0.560304*** �0.685713*** �0.564385***

γ – – – –

Wald test (beta = �1)

(χ2 test stat)

343*** 869*** 296*** 771***

White–Hinkley heteroskedasticity

Consistent covariance and S.E.

Yes Yes Yes Yes

R2 0.86 0.83 0.86 0.82

Detected threshold of population

(Bai & Perron, 1998)

163,773 150,488 163,773 156,787

N 973 973 973 973

Note:

*Statistical significance at 10%,

**at 5%,

***at 1%, valid also in the remaining parts of the paper. Note: S.E., standard error.
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underestimated it for bigger cities. Consequently, Zipf’s law does not hold for Turkey either above or below a certain

threshold.

Finally, we estimate the quadratic regression model. Table 3 presents the empirical results for Equation 4. In all

the estimated regressions, we observe positive and significant β and negative and significant γ. Statistical significance

is always observed at the 1% level. Hence, previously observed concave evolution (in Figure 1) is evident since the

parameters estimated in quadratic regressions confirm this shape.

F IGURE 2 Nonparametric estimation of Zipf’s law (kernel fit, polynomial order = 2, normal distribution
assumed); source: own estimation

TABLE 2 Threshold regressions; source: own estimation

Dependent variable: Total population Urban population

Parameters Above threshold Below threshold Above threshold Below threshold

c 28.755*** 11.02387*** 27.35586*** 9.879821***

�(β) �1.951*** �0.479143*** �1.845344*** �0.380271***

White–Hinkley heteroskedasticity

Consistent covariance and S.E.

Yes Yes Yes Yes

R2 0.91 0.95 0.9 0.94

N 146 827 151 822

Note:

*Statistical significance at 10%,

**at 5%,

***at 1%, valid also in the remaining parts of the paper.
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4.3 | Spatial modeling

The results of spatial autocorrelation tests are reported in Table 4. The results are shown separately for urban and

total populations.

In all the cases, strong spatial autocorrelations are observed. Almost all test statistics are positive and statistically

significant. Thus, we decide to incorporate such strong spatial correlations by running the SAR and SEM models in

both linear and nonlinear contexts.

In the upper panel (Table 5), the linear results are shown for urban and total populations, whereas the quadratic

form is estimated in the bottom part. In all the cases, the estimated parameters of Zipf’s law are consistent with the

previous findings. The estimated parameters have the same signs and significance levels. The concavity is shown to

be clearly present. Spatial components lambda or rho are positive and significant in almost all estimated specifica-

tions. As a result, it is clearly seen that previously estimated parameters are similar to the parameter estimated by

spatial panel models. Therefore, we argue that estimations are robust with respect to presence of spatial interaction

components.

4.4 | Calculation of bias and deviations from Pareto optimality

A final analysis is implemented to show the magnitude of the bias created by linear estimations of Zipf’s law. The

results of MAE and MAPE calculations, referring to Equations (9), are summarized in Table 6.

TABLE 3 Quadratic regressions; source: own estimation

Parameters Total population Urban population

α �4.525348*** �1.30404**

β 2.661379*** 2.015199***

γ �0.156858*** �0.12596***

Wald test (beta = �1) (χ2 test stat) – –

White–Hinkley heteroskedasticity

Consistent covariance and S.E.

Yes Yes

R2 0.97 0.96

N 973 973

Note:

*Statistical significance at 10%,

**at 5%,

***at 1%, valid also in the remaining parts of the paper.

TABLE 4 Spatial autocorrelation tests; source: own estimation

Ln(R)-linear Ln(R)-quadratic

Dependent variable Total population Urban population Total population Urban population

LMerr 491.93*** 632.95*** 2.8956* 14.979***

Lmlag 97.629*** 121.96*** 3.2846* 7.1551***

RLMerr 434.36*** 554.18*** 2.5241 13.598***

RLMlag 40.057*** 43.187*** 2.9131* 5.7743**
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According to the linear model, the deviation from optimal ranks is large, such that MAE ranges between 0.22

and 0.25 whereas MAPE ranges between 0.04 and 0.05. This error is far greater than the one implied by the

quadratic case in which deviation from optimality ranges between 0.09 and 0.11 (MAE) and 0.02% and 0.025%

(MAPE). To compare the distributions, Kolmogorov–Smirnov test is conducted, and results are reported in Table 6

(Kolmogorov, 1933; Smirnov, 1948). The test statistics shows that these two distributions are statistically different

from the Pareto ranks as the test (D) statistics are always significant at the 1% level. In other words, ranks implied by

linear and quadratic functions are statistically different than Pareto ranks. However, differences are much more pro-

nounced for the linear case as test statistics (D) are higher. Therefore, we argue that the linear model overestimates

deviations from optimality. According to the nonlinear model, cities are actually closer to the Pareto optimality in

Turkey. Hence, we can conclude that the linear model provides misleading results.

TABLE 6 MAE, MAPE, and Kolmogorov–Smirnov tests: deviations from Pareto optimal distribution in terms of
rank, mean absolute error, and Kolmogorov–Smirnov test; source: own estimation

SAR
Linear/
quadratic

Total/urban
populations MAE MAPE

Kolmogorov–Smirnov
(D-stat) p-Value

Linear Total 0.223473 0.042224 0.14183*** 6.32 � 10�9

Linear Urban 0.253316 0.047449 0.148*** 1.11 � 10�9

Quadratic Total 0.09302 0.020508 0.10586*** 3.68 � 10�5

Quadratic Urban 0.106587 0.022794 0.10791*** 2.40 � 10�5

SEM Linear Total 0.219997 0.041558 0.13258*** 7.47 � 10�8

Linear Urban 0.248789 0.046557 0.14286*** 4.76 � 10�9

Quadratic Total 0.092841 0.020481 0.10586*** 3.68 � 10�5

Quadratic Urban 0.105437 0.022622 0.111*** 1.24 � 10�5

TABLE 5 Spatial autoregressive and spatial error models; source: own estimation

Linear SAR SEM

Parameters Total population Urban population Total population Urban population

α 9.928205*** 8.033571*** 13.26099*** 11.91035***

�(β) �0.64253*** �0.52051*** �0.66283*** �0.54255***

γ

Rho 0.45*** 0.53***

Lambda 0.97*** 0.98***

N 973 973 973 973

Quadratic SAR SEM

Parameters Total population Urban population Total population Urban population

α �4.69879*** �1.63987*** �4.427*** �1.14235***

�(β) 2.638482*** 1.988121*** 2.641794*** 1.98301***

γ �0.1556*** �0.12436*** �0.15588*** �0.12428***

Rho 0.05* 0.075***

Lambda 0.56 0.81***

N 973 973 973 973
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5 | CONCLUSIONS

Our study provided new findings regarding the urban system in Turkey. In particular, we found the linearity

assumption to be too strong. Our estimations indicate that, in Turkey, cities follow a far different path than the

Pareto optimal one. For small cities, the Pareto exponent is smaller than 1, whereas for the big cities it is much

bigger than 1. On the one hand, this means that sizes of small cities (below a threshold) are very heterogeneously

(unevenly) distributed, causing many social and economic problems for developed (unemployment, crime, pollu-

tion) or lagging-behind cities (underdevelopment, lack of investments). One the other hand, the sizes of big cities

are evenly distributed among themselves, which is also not Pareto optimal. Therefore, the linearity assumption

needs to be relaxed in future studies on city-size distributions. One may allow nonlinearity by adding either

higher powers to regressions (i.e., a quadratic approach) or employing nonparametric regressions as they do not

impose a definite functional form. Moreover, there is a need for deeper analysis of further stages, such as

analyses on the determinants and causes of non-Pareto distributions, that were beyond the purpose of the

current study.

With regard to urban policies, the uneven distribution of city sizes constitutes a very important economic and

social policy problem. Our study shows that there is no unique degree of urban concentration and the Pareto

exponent.

On the one hand, it implies that smaller cities in Turkey exhibit a greater deviation from optimality and more

uneven distribution compared with bigger cities. Hence, policy recommendations to small and big cities should be

separately considered. First, less-developed cities should be economically stimulated. Subsidies and investments

should be increased in these places, and productive activities that create jobs should be promoted (i.e., local entre-

preneurship, adaptation to the digital economy, and innovation). This is consistent with the new regionalism stream

that suggests the determination of place-specific necessities and potentials by local actors (i.e., entrepreneurs,

universities, etc.) (Hettne & Söderbaum, 1998). Related projects should be supported by the central government.

Export orientation and smart specialization should be also encouraged. In this way, increased investments in

less-developed cities could reverse existing migration patterns and mitigate uneven distributions of cities. Moreover,

education facilities, transportation, and job incentives should be stimulated in remote places to reverse the existing

migration patterns. Well-connected cities, educated workforce, infrastructure, and accessibility can enhance eco-

nomic efficiency and help less-developed regions to evolve faster (Elburz, Nijkamp, & Pels, 2017; Lucas, 1988).

Another relevant policy action could be to support industrialization in out-migrating cities. Since land and labor are

less costly in these places, industrial investments can stimulate output and employment. Land reforms should be

implemented to increase efficiency of the agricultural sector. Finally, reforms related to restructuring institutions, the

promotion of urban services, and the diversity of consumer goods and services sector are also among policies that

should be designed for less-developed areas.

On the other hand, several policy actions can be formulated for big cities. Our study implies that their size is

more evenly distributed compared with small cities. Uniformity in large cities brings various socioeconomic and envi-

ronmental problems. One of the most important problems is the high unemployment driven by massive net in migra-

tion to these cities and a rapid increase in the labor supply. Due to this problem, a high number of skilled workers

become inutile. To mitigate this, job-creating industries should be promoted rather than sectors that create jobless

growth. Technical skills of workers should be promoted via formal and informal education programs to reduce the

frictional unemployment and the mismatch between employees and employers. Another important problem is nega-

tive environmental externalities induced by the agglomeration of economic activities in/around these large cities.

This problem is particularly pronounced in highly industrialized cities. Uncontrolled industrialization is seen as quite

dangerous as it triggers pollution in air, soil, and water. Hence, it becomes a serious threat to sustainability. So, in

these cities, institutions, monitoring, and regulating mechanisms should function well to reduce such environmental

problems including pollution, congestion, etc. By following the most effective of these policies, city sizes might more

closely approach the Pareto optimum.
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ENDNOTES
1 Data Source: Turkish Statistical Institute (www.tuik.gov.tr)
2 Data Source: Turkish Statistical Institute (www.tuik.gov.tr)
3 Pebesma et al. (2021) for SP package, Bivand, Nowosad, Lovalace, Monmonier, and Snow, 2020 for spData package, and

Bivand et al., 2021 for SPDEP package. The related data and shape file were obtained from: https://www.harita.gov.tr/

urun/turkiye-mulki-idare-sinirlari/232
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APPENDIX A.

Zipf law modeling by using rank minus half as the dependent variable: ln(R � 1/2)

TABLE 1A Threshold regressions; source: own estimation

Dependent variable: Total population Urban population

Parameters Above threshold Below threshold Above threshold Below threshold

c 29.59276*** 11.02864*** 28.58516*** 9.909069***

�(β) �2.01925*** �0.47973*** �1.94328*** �0.38364***

White–Hinkley heteroskedasticity

Consistent covariance and S.E.

Yes Yes Yes Yes

R2 0.89 0.95 0.88 0.94

N 146 827 146 827

Note:

*Statistical significance at 10%,

**at 5%,

***at 1%, valid also in the remaining parts of the paper.
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TABLE 1b Quadratic regressions; source: own estimation

Parameters Total population Urban population

α �4.92437*** �1.55274**

β 2.741884*** 2.068436***

γ �0.16088*** �0.12876***

Wald test (beta = �1) (χ2 test stat) – –

White-Hinkley heteroskedasticity

Consistent covariance and S.E.

Yes Yes

R2 0.97 0.96

N 973 973

Note:

*Statistical significance at 10%,

**at 5%,

***at 1%, valid also in the remaining parts of the paper.

TABLE 1c Spatial autocorrelation tests, source: Own estimation

Linear Quadratic

Dependent variable Total population Total population Total population Urban population

LMerr 458.86*** 458.86*** 1.5484 10.729***

Lmlag 95.615*** 95.615*** 2.8945* 6.4013**

RLMerr 402.08*** 402.08*** 1.27 9.53***

RLMlag 38.838*** 38.838*** 2.6161 5.2024**

TABLE 1d Spatial autoregressive and spatial error models; source: own estimation

Linear
Parameters Total population-SAR Urban population-SAR Total population-SEM Urban population-SEM

α 9.919447*** 8,014942*** 13.297*** 11.93605***

�(β) �0.64662*** �0.5236*** �0.66753*** �0.54623***

Gamma

Rho 0.46*** 0.54***

Lambda 0.97*** 0.98***

N 973 973 973 973

Quadratic
Parameters Total population-SAR Urban population-SAR Total population-SEM Urban population-SEM

α �5.10195*** �1.89609*** �4.84322*** �1.39536***

�(β) 2.717823*** 2.04015*** 2.725677*** 2.036609***

Gamma �0.15956*** �0.12709*** �0.16008*** �0.1271***

Rho 0.05* 0.08**

Lambda 0.44 0.77***

N 973 973 973 973
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TABLE 1e MAE, MAPE, and Kolmogorov–Smirnov tests: deviations from Pareto optimal distribution in terms of
rank, mean absolute error and Kolmogorov–Smirnov test; source: own estimation

SAR
Linear/
quadratic

Dependent
variable

Total/urban
populations MAE MAPE

Kolmogorov–
Smirnov (D-stat) p-Value

Linear Ln(R � 1/2) Total 0.227983 0.043286 0.14286*** 4.76 � 10�9

Linear Ln(R � 1/2) Urban 0.257929 0.048509 0.14902*** 8.25 � 10�10

Quadratic Ln(R � 1/2) Total 0.098976 0.022058 0.10894*** 1.93 � 10�5

Quadratic Ln(R � 1/2) Urban 0.112493 0.0243 0.10997*** 1.55 � 10�5

SEM Linear Ln(R � 1/2) Total 0.224618 0.04263 0.13361*** 5.73 � 10�8

Linear Ln(R � 1/2) Urban 0.25331 0.04758 0.14286*** 4.76 � 10�9

Quadratic Ln(R � 1/2) Total 0.098969 0.022059 0.111*** 1.24 � 10�5

Quadratic Ln(R � 1/2) Urban 0.111361 0.024124 0.11305*** 7.95 � 10�6
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