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Abstract
In this short note, we count the points on algebraic sets which lie in a subset of a domain.
It is proved that the set of points on algebraic sets coming from certain subsets of a domain
has the full asymptotic. This generalizes the first theorem of [E. Alkan and E.S. Yörük,
Statistics and characterization of matrices by determinant and trace, Ramanujan J., 2019]
and also anwers some questions from the same article.
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1. Introduction
Our goal in this short note is to generalize the first theorem of [1]. We also shed light on

some questions asked in the same article. More precisely, it is proved in [1, Theorem 1] that
asymptotically, almost all n × n square matrices with prime number entries are invertible.
Using elementary methods, we extend this result by counting points on algebraic sets
which come from certain subsets of a domain.

Let
f(X) = ad(X − α1) · · · (X − αd)

be a non-zero polynomial in C[X]. The Mahler measure of f(X) is defined by

m(f) = |ad|
∏

|αj |≥1
|αj |.

We define the Mahler measure of zero to be 1. Lehmer’s conjecture states that there exists
an absolute constant c > 1 such that for any f(X) ∈ Z[X], if m(f) > 1, then m(f) ≥ c.
Lehmer [3] asked this question around 1933 and it is still open. In fact, Lehmer also
conjectured that the polynomial

X10 + X9 − X7 − X6 − X5 − X4 − X3 + X + 1
has the smallest Mahler measure among polynomials in Z[X] whose Mahler measures are
not 1, and this is also open.
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Let Q be the field of algebraic numbers and α be in Q with irreducible polynomial
f(X) ∈ Z[X]. We define the height of α as

H(α) = m(f)1/d

where d = deg f. For a non-zero rational number a/b where a and b are coprime integers,
observe that

H(a/b) = max{|a|, |b|}
and H(0) = 1. Northcott’s theorem (see [2, Theorem 1.6.8]) states that there are only
finitely many algebraic numbers of bounded degree and bounded height. In other words,
for any real numbers x and y, the set

{α ∈ Q : deg(α) ≤ x, H(α) ≤ y}

is finite. A subset B of Q has the Northcott property if for every real number x, the set

{α ∈ B : H(α) ≤ x}

is finite. For example, any number field K has the Northcott property. Another example
is that for any m ≥ 2, the field Lm = Q( m

√
1, m

√
2, m

√
3, ...) has the Northcott property, see

[2, Corollary 4.5.6].
Before stating our main result, we need one more definition. Let D be an integral

domain and γ : D −→ [0, ∞) be any function. We say that a subset B of D has the
γ-Northcott property if

Bγ(x) = |{b ∈ B : γ(b) ≤ x}|
is finite for every real number x. In this note, we prove the following result:

Theorem 1.1. Let D be an integral domain and γ : D −→ [0, ∞) be a function. Let B be
a subset of D which has the γ-Northcott property and let x be a positive real number. Let
f(X1, ..., Xk) ∈ D[X1, , ..., Xk] be a non-zero polynomial with total degree deg(f). Then,

|{(b1, ..., bk) ∈ Bk : γ(bi) ≤ x for all i = 1, ..., k and f(b1, ..., bk) = 0}|

≤ deg(f) · Bγ(x)k−1. (1.1)
Hence,

|{(b1, ..., bk) ∈ Bk : γ(bi) ≤ x for all i = 1, ..., k and f(b1, ..., bk) ̸= 0}|

= Bγ(x)k + Of (Bγ(x)k−1). (1.2)
If moreover, lim

x→∞
Bγ(x) = ∞, then

|{(b1, ..., bk) ∈ Bk : γ(bi) ≤ x for all i = 1, ..., k and f(b1, ..., bk) ̸= 0}| ∼ Bγ(x)k (1.3)

as x tends to infinity.

Some remarks are in order. In [1, Theorem 1], it is shown that asymptotically, almost
all square matrices of size n with prime number entries are non-singular. This means that
if Mn(x) is the number of non-singular square matrices of size n with prime number entries
which are in [0, x] and π(x) denotes the number of prime numbers in [0, x], then

lim
x→∞

Mn(x)
π(x)n2 = 1.

Note that the determinant in the ring of n × n matrices is a polynomial of degree n with
n2 variables. As mentioned in the introduction, for any prime number p, we have that
H(p) = p and so the set of prime numbers P has the γ-Northcott property when γ = H
and D = Q. Therefore, our main result generalizes the corresponding theorem of [1]. The
proof in [1] is using the prime number theorem for arithmetic progressions. However, our
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proof is on the elementary side, it is effective as we have an error term, and more general.
For instance, our result implies that

Mn(x) = π(x)n2 + Rn(x)
where

|Rn(x)| ≤ n · π(x)n2−1.

We also answer a question from [1], as our theorem indicates that one can take any infinite
subset of positive integers in [1, Theorem 1] instead of subsets of primes or thin subsets
of positive integers. In fact, one can choose any subset of D = Q which has the Northcott
property.

2. Proof of Theorem 1.1
To prove that Inequality (1.1) holds, we will proceed by induction on the number of

variables k of the non-zero polynomial f .
For k = 1, since D is an integral domain, the polynomial f(X1) ∈ D[X1] has at most

deg(f) many roots in D. So,
|{b ∈ B : γ(b) ≤ x, f(b) = 0}| ≤ deg(f)

as desired.
For the inductive step, assume that Inequality (1.1) holds for all polynomials whose

number of variables is less than k and consider the non-zero polynomial f(X1, ..., Xk)
with k variables. Set

B = {(b1, ..., bk) ∈ Bk : γ(bi) ≤ x for all i = 1, ..., k and f(b1, ..., bk) = 0}
and let (b1, ..., bk) ∈ B.

If none of the distinct monomials of f contains X1 as a factor, then f(X1, ..., Xk) =
g(X2, ..., Xk) for some non-zero polynomial g(X2, ..., Xk) ∈ D[X2, ..., Xk]. So,

f(b1, ..., bk) = g(b2, ..., bk) = 0.

By induction hypothesis,
|{(b2, ..., bk) ∈ Bk−1 : γ(bi) ≤ x for all i = 2, ..., k and g(b2, ..., bk) = 0}|

≤ deg(g) · Bγ(x)k−2 = deg(f) · Bγ(x)k−2.

So, (b2, ..., bk) can take at most deg(f) ·Bγ(x)k−2 many distinct values. Then, since b1 can
take exactly Bγ(x) many distinct values, we get

|B| ≤ deg(f) · Bγ(x)k−1

and we are done.
If at least one of the distinct monomials of f contains X1 as a factor, then we can

uniquely write f(X1, ..., Xk) as

f(X1, ..., Xk) =
d∑

i=0
(X1)ifi(X2, ..., Xk)

for some positive integer d and some polynomials f0, ..., fd ∈ D[X2, ..., Xk] with fd ̸= 0.
Then,

f(b1, ..., bk) =
d∑

i=0
(b1)ifi(b2, ..., bk) = 0.

So, if fi(b2, ..., bk) ̸= 0 for some i = 0, ..., d, then b1 is a root of the non-zero polynomial
d∑

i=0
fi(b2, ..., bk)(X1)i ∈ D[X1]
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whose degree is at most d. Thus, b1 can take at most d many distinct values in D. Hence,
|{(b1, ..., bk) ∈ B : fi(b2, ..., bk) ̸= 0 for some i = 0, ..., d}| ≤ d · Bγ(x)k−1. (2.1)

On the other hand, if fi(b2, ..., bk) = 0 for all i = 0, ..., d, then in particular we have
fd(b2, ..., bk) = 0. However, since fd ̸= 0, by the induction assumption,

|{(b2, ..., bk) ∈ Bk−1 : γ(bi) ≤ x for all i = 2, ..., k and fd(b2, ..., bk) = 0}|
≤ deg(fd) · Bγ(x)k−2.

Then, since b1 can take Bγ(x) many distinct values,
|{(b1, ..., bk) ∈ B : fi(b2, ..., bk) = 0 for all i = 0, ..., d}|

≤ |{(b1, ..., bk) ∈ B : fd(b2, ..., bk) = 0}|
≤ deg(fd) · Bγ(x)k−1. (2.2)

Thus, combining (2.1) and (2.2), we get
|B| ≤ (d + deg(fd)) · Bγ(x)k−1 ≤ deg(f) · Bγ(x)k−1

as desired.
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