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Abstract
Recently, great progress has been made in the automatic detection and segmentation of planar regions frommonocular images
of indoor scenes. This has been achieved thanks to the development of convolutional neural network architectures for the task
and the availability of large amounts of training data usually obtained with the help of active depth sensors. Unfortunately,
it is much harder to obtain large image sets outdoors partly due to limited range of active sensors. Therefore, there is a need
to develop techniques that transfer features learned from the indoor dataset to segmentation of outdoor images. We propose
such an approach that does not require manual annotations on the outdoor datasets. Instead, we exploit a network trained on
indoor images and an automatically reconstructed point cloud to estimate the training ground truth on the outdoor images in
an energy minimization framework. We show that the resulting ground truth estimate is good enough to improve the network
weights. Moreover, the process can be repeated multiple times to further improve plane detection and segmentation accuracy
on monocular images of outdoor scenes.

Keywords Deep learning · Outdoor plane estimation · Transfer learning · Weakly supervised learning

1 Introduction

Most scenes include planar regions that provide informa-
tion about the geometric structure of the scene and their
automatic segmentation is a long standing goal of Computer
Vision. Early methods for this task required images of mul-
tiple views ( [7,8,16]). Generally, they first reconstruct 3D
point clouds from the images and generate plane candidates
with 3Dsegmentationmethods such as robust planefittingvia
RANSAC [5]. They do not always give an accurate segmen-
tation since the plane boundary in the 3D point cloud carries
high uncertainty. Moreover, they require textured surfaces so
that matching can successfully perform the reconstruction.

In recent years, Convolutional Neural Network (CNN)-
based approaches ( [11,12,17,18]) allowed piece-wise planar
segmentation without explicit reconstruction of a 3D point
cloud. These approaches outperform traditional methods in
terms of indoor reconstruction accuracy. However, most of
them do not perform well for outdoor scenes.
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Technology, İzmir, Turkey

Indoor scenes have the advantage of easy depth sens-
ing with the aid of active sensors. Since such sensors have
limited operating range, manual annotation of images of out-
door scenes is a time-consuming task. Lack of large training
sets can be dealt with transfer learning in which features
learned from the indoor datasets are transferred to the out-
door domain.However, this too requiresmanually annotating
outdoor images one by one to provide the best possible trans-
fer performance. Therefore, it is desirable to transfer features
from the existing networks to a suitably collected set of out-
door images without requiring manual annotation.

In this paper, we propose such an approach that requires
a training set of outdoor images that can be processed by
a structure from motion system to produce a dense 3D
point cloud. Instead of directly extracting plane segmentation
maps, we exploit the point cloud as a weak supervision sig-
nal much like approaches that exploit a small amount of user
input [6] to improve segmentation quality. Unlike these, the
point cloud reconstruction is fully automated. Our approach
is based on the premise that combining such a point cloud
and the output from a state-of-the-art plane segmentation
network trained on indoor images such as PlaneRCNN [11],
we can obtain an approximate but high-quality estimate of
the ground truth annotations on the outdoor images. This esti-
mate can then be used as training data to improve the network
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weights, achieving transfer without manual labor. Moreover,
we show that this process can be repeated multiple times to
further improve plane segmentation accuracy. Once the train-
ing and the feature transfer is completed, during test time, our
approach can detect and segment planar regions on a given
monocular outdoor image with a much greater accuracy than
a network trained on indoor images.

Our main contributions can be summarized as follows:

– We combine the traditional and recent approaches for
the task of piece-wise plane reconstruction by achieving
feature transfer under the guidance of 3D dense point
cloud at training time with the initialization provided by
a network trained on indoor images.

– We formulate an approximate and iterative transfer
scheme that alternates between estimating ground truth
labels and improving network weights in the target
domain.

– We demonstrate that PlaneRCNN can be adapted to
outdoor scenes for the task of piece-wise planar recon-
struction without requiring manual annotations.

In the following, we briefly overview state-of-the-art
in plane estimation and segmentation. We formalize our
approach in Sect. 3 and provide experimental results on
both structure-from-motion and simultaneous localization
and mapping data sets. We provide an ablation study to
highlight the contribution of different energy terms to the
improved segmentation quality and briefly summarize our
results and current limitations of the proposed approach.

2 Related work

Traditional piece-wise planar reconstruction methods ( [7,8,
16]) for outdoor scenes require images of multiple views. [7]
reconstructs 3D-oriented points with the aid of a multiview
stereo approach and then generates plane candidates with
heuristics and withMarkov Random Fields (MRF) optimiza-
tion. [8] generates plane hypotheses with RANSAC from a
set of depth maps. These are refined with the MRF frame-
work to obtain the final result. [16] generates a 3D sparse
point cloud with a Structure-from-Motion (SfM) approach
and extracts 3D line segments which are used in a graph
cut formulation. [3] proposes a piece-wise planar model and
obtains a 3D sparse point cloud from a set of images and
solves the reconstruction problem with graph cuts by assign-
ing plane labels to superpixels under the guidance of the point
cloud. However, they do not use machine learning to regu-
larize the estimation in textureless regions and initialization
with planes fitted to superpixels is not robust.

Recently, deep neural architectures are trained for piece-
wise planar reconstruction from a single image. PlaneNet

([12]) is designed for and trained with the images of indoor
scenes. PlaneRecover( [17]) presents an unsupervised learn-
ing approach instead of having manual annotations for 3D
plane parameters. It is trained with a synthetic outdoor
dataset. Both PlaneNet and PlaneRecover limit the max-
imum possible number of planar regions which degrades
applicability in general scenarios. To overcome this, [18] pro-
poses an approachbasedon associative embedding.Recently,
PlaneRCNN ( [11]) improves upon PlaneNet. Although,
PlaneRCNN is designed for and trained with the images of
indoor scenes like PlaneNet, piece-wise planar segmentation
accuracy for outdoor images is slightly better. However, as
we will demonstrate its performance is still constrained by
the features learned on indoor images.

We combine ideas from both traditional approaches and
neural network architectures. An automatically reconstruc-
tured point cloud is exploited only during training to estimate
ground truth segmentations on the outdoor datasets. Once
training is completed, we do not require multiple images and
our approach reconstructs planes even in less textured areas.
Moreover, since it adapts to the image features on outdoor
datasets, its plane segmentation performance surpasses the
existing networks that were trained on indoor data.

Finally, [19] showed that integrating geometric cues such
as vanishing points and lines to constrain the plane seg-
mentation results improves both segmentation quality and
estimated plane parameters. Our approach relies on similar
reasoning to exploit geometry of the scene to ease domain
transfer from indoor to outdoor imagery. It might be possi-
ble to fuse our approach with that of [19], either to improve
the output of our method using perspective cues or to pro-
vide stronger training for the approach of [19] by integrating
larger amounts of unlabelled outdoor training data.

3 Transfer learning without manual
supervision

The conventional approach to train a neural network for plane
estimation on outdoor images requires collecting a set of
training outdoor images Dout with annotated ground truth
training targets Tout. For plane estimation, the training tar-
gets are given by a tuple of segmentation masks Sout and
plane equations 5out, Tout = (

Sout,5out
)
. Then the neu-

ral network can be trained by searching for a set of weights
w that minimizes a loss function L (w) tying together the
network output to the ground truth values as

w∗ = argminw L
(
f (Dout |w), Tout

)
,

where L (w) measures the discrepancy between Tout and
the network output f (Dout |w) on the training images.
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Fig. 1 Proposed iterative
transfer learning approach. We
preprocess the outdoor images
to extract a point cloud PMVS and
a set of SLIC superpixels S .
Using these data, we initialize
segmentation maps based on the
current network output with
weights w̃i . An energy-based
minimization problem is solved
to refine this crude initialization
into an estimated set of training
targets T̃out

i+1 . The network is
then trained to minimize a loss
function on these training
targets, yielding improved
network weights w̃i+1. These
new weights provide a better
initialization, so we can repeat
the process multiple times. Note
that the whole process is
automated and the point cloud is
only used in the training phase

We assume that the ground truth training targets Tout

are not available, but we have access to network weights
wPlaneRCNN trained on indoor images. Moreover, we assume
that it is possible to obtain a point cloud PMVS by using a
state-of-the-art Structure from Motion (SfM) and Multiview
Stereo (MVS) system such as COLMAP ( [14,15]) on the
collected outdoor image set.

Our approach is based on the idea that the aboveminimiza-
tion problem can be approximately solved by first estimating
the training targets based onwPlaneRCNN and PMVS, and then
improving the weightsw by using this estimated T̃out which
provides weak-supervision:

T̃out=argminTout E
(
Tout |PMVS, f (Dout |wPlaneRCNN)

)

w̃∗ = argminw L
(
f (Dout |w), T̃out

)
,

where E
(
Tout

)
measures the mismatch between the esti-

mated training targets and the information provided by the
3D point cloud PMVS and the network output using pretrained
weights f (Dout |wPlaneRCNN). It also ensures that the seg-
mentation masks are smooth. The exact formulation of the
energy function is given in more detail in Sect. 3.2.

By solving the two minimization problems above, we
expect to get better weights and consequently a better set of
segmentationmasks and plane parameters on outdoor images
than what is initially possible with wPlaneRCNN. As a result,
we may attempt to re-estimate the training targets, taking
advantage of the newly estimated weights. This leads to the
following iterative approach that alternates between the esti-
mation of training targets and the optimization of the network

weights based on the last estimate:

w̃0 = wPlaneRCNN

T̃outi+1 = argminTout E
(
Tout |PMVS, f (Dout | w̃i )

)

w̃i+1 = argminw L
(
f (Dout |w), T̃outi+1

)
,

Finally, it is easy to estimate the plane parameters based on
the information provided by the 3D point cloud and the seg-
mentation masks. We just assign each 3D point to one of the
planes based on its projection into the segmentation masks
with the camera rotation matrices and translations estimated
during the SfM stage. Once a set of 3D points are determined
for each plane, we employ robust least square fitting to esti-
mate a better set of plane equations. Therefore, the energy
minimization stage in the iterative scheme can be replaced
by a minimization involving only the segmentation masks
and subsequent geometric fitting for the plane equations as
follows:

w̃0 = wPlaneRCNN

S̃outi+1 = argminSout E
(
Sout |PMVS, f (Dout | w̃i )

)

5̃outi+1 = LSQ
(
PMVS, S̃outi+1 |RSFM,tSFM)

T̃outi+1 = (
S̃outi+1 , 5̃outi+1

)

w̃i+1 = argminw L
(
f (Dout |w), T̃outi+1

)
,

As illustrated by Fig. 1, we propose to iteratively train
a network for outdoor plane estimation and segmentation
without requiring annotated ground truth. We assume the
availability of trained network weights for the same task but
obtained from a training set of indoor images. The itera-
tive scheme that we propose is a form of transfer learning
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that relies on auxiliary weak supervision instead of manu-
ally annotated ground truth to refine the network weights
for outdoor images. The advantage of this approach is that
the auxiliary supervision signal (the point cloud PMVS) can be
computed automatically under somemild assumptions about
the training set, such as overlap of viewpoints and presence
of textured regions. In the experiments section, we show that
this approximate scheme successfully improves the quality
of estimated plane segmentation masks. In the following, we
present the details of each stage in the proposed approach.

3.1 Estimation of the initial segmentationmasks

Instead of requiring ground truth annotations, we process the
training images by an MVS pipeline to obtain a point cloud
PMVS that will provide the necessary information to refine the
network weights. Given PMVS, it is possible to estimate the
planar surfaces in the scene by robust geometric fitting using
standard least squares estimation and RANSAC.

Although the reconstructed point cloud PMVS is infor-
mative, it has two problems that prevents computation of
the segmentation masks and plane equations directly by fit-
ting planes to the 3D points. Firstly, the estimated planes
have infinite extent and direct computation of the segmenta-
tion boundaries solely based on 3D points is a challenging
problem. Secondly, this point cloud is only partial since
MVS pipelines produce data only for textured image regions.
Regions of uniform intensity in the image do not contain
enough texture. Consequently, we avoid directly computing
the segmentation masks from PMVS by casting the estimation
of segmentation masks as an energy minimization problem.
Once a good segmentation mask is estimated, it is easy to
refine the plane equations using the 3D points. Hence, the
information provided by PMVS is exploited in the formula-
tion of the energy terms for segmentation mask estimation
and the subsequent plane parameter estimation.

The estimation of segmentation masks is most commonly
formulated as a min-cut problem to be solved by graph cuts
and we also make use of this formulation ( [4]). Instead of
estimating a segmentation label for each pixel, we extract
superpixels ( [1,2,13]) and solve for the superpixel labels. As
a result, the segmentation mask Sout is given as a set of label
assignments {ls : ∀s ∈ S }, where S is the set of extracted
superpixels and the labels ls ∈ {−1, 0, 1, . . . , K − 1} are
selected from a set of K+1 possibilities. The labelswith non-
negative indices j, j = 0, . . . , K − 1 represent assignment
to one of the possible planes π j in the network output and the
label−1 represents non-planar regions that we denote asπ−1

for notational convenience. The formulation using superpix-
els allows us to adjust the granularity of the estimated ground
truth to the density of the reconstructed point cloud and the
resolution of the training images.

Before we estimate the segmentation labels by energy
minimization, we calculate an initial set of labels as follows.
We first project each 3D point p ∈ PMVS into the image and
assign it to the superpixel it falls into based on superpixel
boundaries. Similarly, we assign each projected point to a
plane using the per-pixel segmentation masks estimated by
the current networkweights f (Dout | w̃i ).Within each super-
pixel s, each projected point votes for its assigned plane. Each
superpixel is assigned an initial label l̂s corresponding to the

plane π l̂s that received the majority of the votes. The energy
formulation described below ensures that the initial assign-
ments {l̂s} are also taken into account.

3.2 Updating the segmentationmasks by energy
minimization

Given the point cloud PMVS and the network weights w̃i

obtained in the last iteration, the energy of a superpixel seg-
mentation mask Sout = {ls} is defined as follows

E
(
Sout

) =
∑

s∈S
Ed

(
ls |PMVS, f (Dout | w̃i )

)

+ λs
∑

(s,t)∈NS

Es(ls, lt |PMVS, f (Dout | w̃i )),

where NS is the set of neighboring superpixels.
The energy data term Ed

(
ls |PMVS, f (Dout | w̃i )

)
mea-

sures the discrepancy between a given superpixel label ls
and the point cloud PMVS. It depends on two components
Esupport(ls |PMVS) and Edistance(ls |PMVS). These components
are combined in a weighted fashion as follows:

Ed(ls) =
(
α1 + δ(ls − l̂s)

)
Esupport(ls |PMVS)

+
(
α2 + δ(ls − l̂s))

)
Edistance(ls |PMVS),

whereα1 andα2 are scalar constants. δ(ls−l̂s) is equal to zero
whenever the new label is the same as the initial assignment,
it is equal to one otherwise. The delta terms increase the cost
of assignments that change the initial labels. This ensures
that after minimization, the labels will change only when the
3D points of PMVS consistently get assigned to a plane other
than the one indicated by the initial label.

Esupport(ls |PMVS) measures the ratio of projected 3D
points assigned to the same plane as the label ls . It is com-
puted as

Esupport(ls |PMVS) = nt − ns
nt

,

where ns is the number of projected points in the superpixel
assigned to plane π ls and nt is the total number of projected
points in the superpixel.
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Edistance(ls |PMVS) measures the average distance of pro-
jected 3D points to the plane corresponding to the label ls . It
is computed as

Edistance(ls |PMVS) = 1

nt

∑

p∈s
d(π ls , p),

where d(π ls , p) is the 3D Euclidean distance between the
3D point p and plane π ls .

The smoothness data term Es(ls, lt |PMVS, f (Dout | w̃i ))

ensures that the estimated labels respect image color and
depth information which regularizes the problem by con-
straining the labels of superpixels with a small number of
projected 3D points. It is calculated as

Es(ls, lt ) = Ecolor
(
ls, lt |PMVS, f (Dout | w̃i )

)

+ α3Edepth
(
ls, lt |PMVS, f (Dout | w̃i )

)
,

where Ecolor(ls, lt ) penalizes label changes over smooth
intensity regions and Edepth(ls, lt ) penalizes label changes
over regions of similar depth. They are calculated as

Ecolor(ls, lt ) = exp(−�c), and Edepth(ls, lt ) = exp(−�d),

where �c is the difference between mean intensity values
(average of color channels) over superpixels s and t , and �d

is the difference between mean depth values of 3D points
projected into superpixels s and t .

Byfinding a set of superpixel labelsSout = {ls : ∀s ∈ S }
that minimize the energy, we recover a new segmentation
mask Souti+1 for planar regions and the non-planar areas. For
each planar region, a set of updated parameters 5̃outi+1 are cal-
culated by robust planefitting to 3Dpoints projecting onto the
corresponding segment. The combined set of estimated seg-
mentation mask and plane parameters T̃outi+1 can now be used
in training. In the next section, we show that by repeating
this process, we can improve the outdoor plane estimation
performance of the network trained on indoor images to a
large extent. We also provide a detailed analysis of the con-
tribution from each energy term described in this section to
the aforementioned performance increase.

4 Experiments

We have performed a set of experiments to verify that our
approximate training approach is effective in improving the
outdoor plane estimation performance of a state-of-the-art
network trained on indoor data. Since our approach requires
an outdoor dataset that is suitable for the geometric estima-
tion, we have used popular structure from motion (SfM) and
simultaneous localization and mapping (SLAM) benchmark

Fig. 2 Dubrovnik dataset splits. a–c Three parts of the dataset where
each consists of images that belong to a different part of the city. We
form the training, validation, and the test sets with different parts to
ensure spatial separation of the images in the splits. d The COLMAP
output point cloud extracted from images in Part I

datasets in our experiments. Both SfM and SLAM bench-
marks provide suitable imagery of structured urban scenes
that contain the necessary textured surfaces and viewpoint
overlap that our approach relies upon. They also contain
many planar surfaces and typical scenes for which outdoor
plane estimation applications are likely to operate on.

We perform quantitative experiments that demonstrate a
single iteration of our approach improves overall plane esti-
mation quality over the baseline. Furthermore, we show that
as proposed in Sect. 3, repeated iterations further improve
performance. We also present qualitative results that demon-
strate the improved segmentation performance as the transfer
learning iterations progress. Finally, we present results of an
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Fig. 3 Our training approach estimates a plane segmentation map for
each image based on the reconstructed point cloud and the current net-
work output. Since the point cloud is not dense enough to cover each
pixel, we compute SLIC superpixels and estimate segmentation labels
per superpixel. This ensures that the energy data terms for most of the
superpixels depend on several projected 3D points that fall into the
corresponding superpixel boundary

ablation study that measures the contribution from each of
the energy terms detailed in Sect. 3.2.

4.1 Experiments on a structure-from-motion dataset

Wehave used theDubrovnik dataset( [10]) as a primary set
of images to test our approach. It includes 6844 city images
taken by different cameras and from varying viewpoints. In
order to have different training, validation and test splits, the
Dubrovnik dataset is grouped into three parts each consisting
of images that depict different city regions. This split ensures
that our approach does not overfit to the textures of particular
buildings in the same region. Example images corresponding
to each part are shown in Fig. 2.

Measuring the plane estimation quality requires ground-
truth data. Since the Dubrovnik dataset does not contain
plane segmentation ground-truth, wemanually annotated the
plane boundaries in 50 images in each part for validation and
test purposes. We emphasize that the manual annotations are
exclusively used in evaluating test results and they are not
used in the proposed training algorithm. The training set size
is 150 for each part and no ground truth data is required for
this set.

Eachpart is separately processedbyCOLMAP to compute
the 3D point clouds that act as the weak-supervision training
signal. We also compute SLIC( [1,2]) superpixels as shown
in Fig. 3. We extract 1500 superpixels from each training
image.

Since we have three splits, we perform six different exper-
iments, where each part forms the training set twice with the
other two alternating between validation and test splits. For
each experimental run, we initialize the PlaneRCNN net-
work with pretrained weights obtained by using the indoor
dataset and evaluate its initial plane segmentation quality
on the test set. We estimate a refined set of segmentation
masks and plane parameters as described in Section 3 to act
as the training targets on the outdoor dataset. We then retrain

Fig. 4 Average plane recall for the Dubrovnik dataset as the number
of training iterations is increased

the PlaneRCNN layers that belong to the mask head, box
head, classifier head and the depthmap decoder of the plane
detection network for 60 epochs using the estimated train-
ing targets. The set of weights that gives the best piece-wise
segmentation performance for the validation set of images
is kept as the training result. Similarly, the scalar weights in
the energy function, λs, α1 − α3 are set by a grid search that
maximize the validation set performance.

In order to evaluate piece-wise plane segmentation accu-
racy, we measure the Plane Recall which is defined as the
ratio of the number of estimated planes that have at least 0.5
Intersection over Union (IOU) score with one of the ground-
truth planes to the number of ground-truth planes. The IOU
score is measured with a varying depth error threshold from
0 to 1 meters with an increment of 0.05m for indoor images
of PlaneRCNN. We set the depth error threshold to vary
from 0 to 10 meters with an increment of 0.5m for outdoor
images.

Figure 4 shows the performance of our approach for
the Dubrovnik dataset experiments averaged over the six
experimental runs described above. As the figure shows,
our approach performs better than PlaneRCNN even with
a single training iteration especially at larger depth error
thresholds. As number of iterations increases, its perfor-
mance becomes significantly better than the PlaneRCNN
trained on indoor images for all depth thresholds. This
shows that the automatically estimated training targets, plane
segmentation boundaries and plane parameters are accu-
rate enough to improve the network weights. Moreover,
multiple iterations of our approach is able to improve the
network performance on outdoor images showing its ability
to transfer to this new domain without a strong supervision
signal.
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Fig. 5 Average plane recall for the KITTI dataset test sequences.
Even with a single iteration, our approach performs better than the
PlaneRCNN-trained indoors despite being trained on images from the
Dubrovnik dataset. Plane detection and segmentation performance
improved for each of the depth error intervals as the number of itera-
tions increase

4.2 Experiments on a SLAM dataset

To further test our approach and show its ability to improve
outdoor plane segmentation accuracy,we perform another set
of experiments on a SLAM dataset. For this purpose, we use
the images from the KITTI dataset ( [9]) that depict urban
scenes captured from a car travelling around city blocks for
test purposes. We use the images in the Dubrovnik dataset
to form the training and validation sets. Since the style of
buildings and the distribution of viewpoints is very different
between the datasets, this is a more stringent test setup than
the previous set of experiments on Dubrovnik dataset.

KITTI dataset contains eleven test sequences numbered
from11 to 21.We randomly select 50 test images from all test
sequences except those numbered 12, 14, 17, and 21 since
these are taken outside the urban areas and do not contain pla-
nar regions except the ground plane. We manually annotate
these test images, keep the experimental methodology the
same as before and measure the plane recall for the initial
network and after each iteration. Figure 5 shows the overall
results averaged over all test sequences of theKITTI dataset.
Despite the large visual differences between the images
from two datasets, our approach trained on the Dubrovnik
dataset significantly improves the outdoor plane estimation
performance on the images of the KITTI dataset. As itera-
tions progress this improvement slows down, so we stop the
iterations at iteration four.

Figure 6 shows plane segmentation results for different
test images from both the Dubrovnik and KITTI datasets
for a qualitative comparison. The results from our approach
correspond to network output after four iterations. PlaneR-

Fig. 6 Comparison of piece-wise planar segmentation maps for differ-
ent test images from both Dubrovnik and KITTI datasets. Results of
our approach belong to estimations obtained after fourth training iter-
ation. PlaneRCNN-trained indoors misses most of the planar regions
and undersegments the detected ones. Despite this, the ground truth
estimates automatically obtained with our energy minimization formu-
lation are accurate enough to improve both plane detection rates and
segmentation accuracy

CNN trained for indoor images detects a few planar objects
in the outdoor scenes with inaccurate segmentation bound-
aries and fails to segment most of the planar regions. The
same architecture retrained on outdoor images by the pro-
posed approach is able to detect most of the planes in the
scene with more accurate boundaries. This improvement is
achieved without providing detailed segmentation maps on
the outdoor images of the training set.

4.3 Ablation study

In order to show the contribution of each individual data term
of the energy function described in Sect. 3.2, we perform an
additional experiment on the Dubrovnik dataset. We use
Part I as training and test the plane recall obtained on Part
II. As before, PlaneRCNN is retrained in four iterations for
varying terms in the segmentation data cost function Ed(ls).
The results of Table 1 show that the term measuring sup-
port from projected 3D points and the one measuring 3D
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Table 1 Plane recall values as the data term Ed (ls) varies. To better
understand the effect of different parts of the segmentation energy data
cost, we gradually addmore complex terms andmeasure the plane recall
for each variation. Adding terms for both Esupport and Edistance improve

results over using either term. Using the additive δ(ls − l̂s) factor also
boost results by increasing the label cost changes when there is less
evidence from the point cloud

Depth Error Threshold
Ed (ls) 0.0–2.5 2.5–5.0 5.0–7.5 7.5–10

α1Esupport 0.101 0.226 0.261 0.282

α2Edistance 0.063 0.141 0.172 0.207

α1Esupport + α2Edistance 0.124 0.276 0.313 0.357
(
α1 + δ(ls − l̂s)

)
Esupport 0.171 0.495 0.578 0.621

(
α2 + δ(ls − l̂s)

)
Edistance 0.227 0.499 0.551 0.593

(
α1 + δ(ls − l̂s)

)
Esupport 0.316 0.614 0.667 0.701

+
(
α2 + δ(ls − l̂s)

)
Edistance

Results in bold indicate the best plane recall values obtained in each column

plane distance both contribute to plane segmentation perfor-
mance. Moreover, the δ(ls − l̂s) terms that increase the cost
of label changes positively affect the network training. Best
results are obtained when the data term matches the final
form described in Sect. 3.2.

5 Conclusion

We have proposed an approach for increasing outdoor plane
detection and segmentation accuracy without requiring man-
ual annotations. Our approach is able to improve the weights
of a network trained on indoors images with the sole require-
ment that the training dataset can be processed by an
SfM/MVS pipeline. We have shown that the weak super-
vision supplied by the initial network and the point cloud
is enough to effectively estimate the ground truth labels on
the outdoor images. This enables improving both the weights
and consequently the estimate of the outdoor ground truth.
Repeated applications of this idea further improve the detec-
tion and segmentation accuracy on several images of outdoor
scenes. As a result, we have shown that a network trained on
indoor images can be tuned to operate on outdoor imagery
without requiring manual training annotations.

Currently, our approach is limited to training data that
can be processed by SfM pipelines and the point cloud data
are extracted only for textured surfaces. Some of these lim-
itations might be overcome by integrating lidar point cloud
data. Since the proposed iterative framework is quite generic,
it might be possible to integrate domain cues such as known
vanishing lines into the energy terms such as in [19].
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