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Abstract We consider two scalar fields interacting through a χ∗χφ∗φ term in the presence
of a Reissner–Nordstrøm black hole. Initially, only χ particles are present. We find that the
produced φ particles are localized in a region around the black hole and have a tendency
toward condensation provided that φ particles are much heavier than the χ particles. We also
find that such a configuration is phenomenologically viable only if the scalars and the black
hole have dark electric charges.

1 Introduction

One of the most popular models of dark matter and dark energy are scalar field models where
dark matter and dark energy are identified by scalar fields. Because of the homogeneity and
the isotropy of the universe, these fields at cosmological scales are taken to depend only
on time. The situation becomes fathomable if the corresponding scalar fields form Bose–
Einstein condensates at cosmological scales. Therefore, there are many studies that study
Bose–Einstein condensation of such scalar fields and their collapse at different cosmological
and astronomical backgrounds. Along the same lines, we had studied a model where initially
only a scalar field χ is present and then it is converted to another scalar field φ through a φ2χ

interaction term in the background of a Robertson-Walker metric [1]. We had shown that the
evolution of φ is toward condensation provided φ particles are heavier than χ particles. In
this study, we consider a similar setting in the background of a Reissner–Nordstrøm black
hole and investigate the effect of geometry and the field content on the tendency of the system
toward formation of a condensate. To be more specific, we assume that initially there is a
homogeneous distribution of a diluted χ field in the presence of a Reissner–Nordstrøm black
hole [2], and it transforms to a φ field, by time, through a χ∗χφ∗φ interaction term. We
consider sufficiently early times of the process (so that the energy density of χ reaches a
considerable value through superradiance [3], while the energy densities of the scalar fields
do not reach sufficiently high values that change the geometry appreciably). First, we study
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the motion of the scalar particles in the radial direction at the level of test particles. To this
end, we mainly study the problem in the corresponding 1+1-dimensional subspace of the
3+1-dimensional space because we are mainly interested in the behaviors of the fields in
the radial direction. Then, we find an approximate solution of the scalar field equations in
3+1 dimensions in closed form. We find that this solution has a soliton-like wave profile as
expected from the analysis at the level of test particles.

In the next section, first, we review some basic well-known facts about the Reissner–
Nordstrøm metric that are essential for the derivation of our results and provide the basic
equations to be used in the next section. In Sect. 3 we introduce a wave-like particular solution
for the wave profile of charged scalar fields around a Reissner–Nordstrøm black hole, and
we discuss the phenomenological viability of this solution. Finally, in Sect. 4 we conclude,
and some technical details are derived in appendices.

2 Framework

The Reissner–Nordstrøm metric is

ds2 = − f dt2 + f −1dr2 + r2 (
dθ2 + sin2 θ dϕ2) , (1)

where

f =
(

1 − 2M

r
+ Q2

r2

)
. (2)

Here M , Q are the mass and the charge of the black hole, respectively. It describes a static
black hole of mass M and charge Q. One may either take the charge Q to be a local U (1)

charge other than electric charge, or one may take it to be a residual electric charge Q � M
(that may be due to much longer mean free path of an electron compared to nucleon in a
hot baryonic plasma in a star, so the gravitational capture of some of the electrons by nearby
astronomical objects before its collapse to form a black hole).

2.1 Motion in radial direction

Consider the following 1+1-dimensional subspace of (1)

ds2 = − f dt2 + f −1dr2. (3)

The Lagrangian for a test particle of mass m in the space given by (3) is

L = m
ds

dτ
= m

√
− f ṫ2 + f −1ṙ2, (4)

where ṫ = dt
dτ

, ṙ = dr
dτ

with dτ = √−ds2. The Lagrange equation for the coordinate t results
in conservation of h, i.e., the total energy (including the potential energy) per unit mass of a
test particle, namely

h = f ṫ = 1

m

∂ L

∂ ṫ
= C = constant, (5)

where we have used (− f ṫ2 + f −1ṙ2) = −1 (6)

for massive particles. Equation (6) in combination with (5) results in

ṙ2 = C2 −
(

1 − 2M

r
+ Q2

r2

)
. (7)
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As r → ∞, (7) becomes
ṙ2∞ = C2 − 1. (8)

It is well known that charged particles of charge q (of the same charge as the black hole)
with low enough energies ω with 0 < ω < q Q

r+ (where r+ = M + √
M2 − Q2 is the

radius of the event horizon) can be scattered by Reissner–Nordstrøm black holes. Moreover
the scalar fields obeying the condition m < ω < q Q

r+ experience superradiance after being
scattered [4]. Therefore one may consider scalar fields χ with mass mχ and total energy
mχ Cχ that fall to the black hole from large distance that may be approximated by infinity.
Further one may consider another field φ with mφ > mχ and a quartic interaction term
χ∗χφ∗φ that results in χχ → φφ processes. Then, by conservation of energy (in the center
of mass frame) we have mχ Cχ = mφ Cφ , i.e., Cφ = Cχ

mχ

mφ
. On the other hand, Eq. (8)

implies that when the particle can barely reach infinity, i.e., when ṙ2∞ = 0, C2 = 1, and
in general for a particle that can reach infinity C2 ≥ 1, and for a particle that cannot reach
infinity for C2 < 1 (if the particle is reflected by the black hole). These two results together
imply that φ particles that are scattered by the black hole can reach only a finite distance
from the black hole (which is the greater root of (1 − C2)r2

0 − 2Mr0 + Q2 = 0 for C < 1,
Q < M , that may be found by equating ṙ in (7) to zero, the other root being inside the
event horizon ) if mχ < mφ . In other words there will be belt of φ particles with zero or
almost zero momenta around the black hole. This provides a suitable condition for formation
of Bose–Einstein condensation. (In fact this explains why we do not consider the simpler
case of a Schwarzschild black hole instead of a Reissner–Nordstrøm black hole. In the case
of a Schwarzschild black hole there will be no scattering from the horizon, so there will be
no χχ → φφ processes that are essential for the formation a belt of zero momenta scalar
particles around the black hole that promotes formation of condensation.). The conclusions
that are derived above at the level of test particles above will be studied at the level of field
theory in the following paragraphs.

2.2 The field equations for the scalars

We consider the following action for χ and φ particles

S =
∫

d4x
√−g

{
− gμν

[
Dμφ (Dνφ)∗ + Dμχ (Dνχ)∗

] − m2
φ |φ|2

−m2
χ |χ |2 − λφ∗φχ∗χ

}
, (9)

where Dμ = ∂μ + iq Aμ with q being the electric charge of the scalar field and Aμ =(
Q
r , 0, 0, 0

)
denoting the electric field of the black hole. We let both χ and φ have the same

charge q. In (9) we have neglected the effect of electromagnetic interactions between the
scalar particles since the coupling constant of electromagnetic interactions is small, and the
density of the scalar particles is taken to be small.

If the coupling term in (9) is negligible with respect to the others, then the field equation
for φ is

Dμ Dμ φ − m2
φ φ = 0. (10)

The corresponding equation for χ may be obtained by replacing φ in (10) by χ . Equation (10)
and the corresponding equation for χ are supplemented by the following equation obtained
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in Sect. 2.1.
Cφ = Cχ

mχ

mφ

. (11)

In other words, although the coupling constant λ is taken to be very small so that the inter-
action term may be neglected with respect to the other terms in the field equations to obtain
approximate solutions, the effect of the interaction is still imposed by imposing Eq. (11).
Note that, by (11), Cφ � Cχ if mχ � mφ which implies that one expects φ to be much
more localized than χ as discussed in Sect. 2.1.

Using the ansatz [4]

φω (t, r, θ, ϕ) =
∑

l,m

e−iω t Y m
l (θ, ϕ)

ψω (r)

r
(12)

(10) reduces to

f 2 d2

dr2 ψω + f f ′ d
dr

ψω +
[(

ω − qQ

r

)2

− V

]

ψω = 0, (13)

where ′ denotes derivative with respect to r, and

V = f

(
l(l + 1)

r2 + f ′

r
+ m2

φ

)
. (14)

We seek an approximate solution of (13) for

f ′

r
= 2

r2

(
M

r
− Q2

r2

)
� m2

χ . (15)

In the next section we will show that (15) is satisfied for a wide range of m2
χ provided that

r is not close to r+. Note that (15) implies a similar relation for m2
φ since mχ < mφ . For

(15) (where m2
χ is replaced by m2

φ) and l = 0 (i.e., for the motion that depends on r), (13)
reduces to

d2ψω

dr2∗
+

[(
ω − qQ

r

)2

− m̃2
φ

]

ψω = 0, (16)

where dr∗ = f −1dr , m̃2
φ = f m2

φ . In fact, (16) is similar to the corresponding exact
1+1-dimensional field equation (see “Appendix” A). Equation (16) may be also expressed as

d2ψω

dr2∗
+

[

ω2 − m2
φ − 2(qQω − m2

φM)

r
+ q2Q2 − m2

φQ
2

r2

]

ψω = 0. (17)

3 A special solution

3.1 Derivation

In the hope of obtaining a wave-like solution for (17) we consider a following type of solution

ψω = eisr∗g(r∗), (18)

where s2 = ω2 − m2. Equation (16), after using (18), becomes

g′′

g
+ 2is

g′

g
− 2(qQω − m2M)

r
+ (q2 − m2)Q2

r2 = 0, (19)
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where ′ denotes the derivative with respect to r∗.
We try the following choice

g′

g
= α1

r
+ β1

r2 + γ1

r3 , (20)

g′′

g
= α2

r
+ β2

r2 + γ2

r3 , (21)

where α1, β1, γ1, α2, β2, γ2 are some functions whose explicit forms will be derived below.
Hence, if such a solution exists, then (18) becomes

ψω = eisr∗ exp

[∫
α1 r

r2 − 2Mr + Q2 dr +
∫

β1

r2 − 2Mr + Q2 dr +
∫

γ1

r3 − 2Mr2 + Q2r
dr

]
.

(22)

We note this equation for reference later in the next subsection.
(20) and (21) solve (19) if (see Appendix B)

α1 = 9

5
− 9

20

(
M

Q

)2

, β1 = −9

2
M , γ1 = 3Q2 , (23)

α2 = 0 , β2 =
[

9

5
− 9

20

(
M

Q

)2][
4

5
− 9

20

(
M

Q

)2]
, γ2 = 2

[−18

5
+ 63

40

(
M

Q

)2]
M.

(24)

Inserting (23) and (24) into (19) and using s2 = ω2 − m2, we get three equations for three
unknown quantities ω, q , m for a given M and Q:

(m2 − ω2) − M2

9Q4

(
18

5
− 63

40

M2

Q2

)2

= 0, (25)

− 3M2

Q2

(
18

5
− 63

40

M2

Q2

)
+

(
9

5
− 9

20

M2

Q2

)(
4

5
− 9

20

M2

Q2

)
+ (q2 − m2)Q2 = 0, (26)

2M

3Q2

(
18

5
− 63

40

M2

Q2

)(
9

5
− 9

20

M2

Q2

)
− 2(qQω − m2M) = 0, (27)

where (11) is also imposed. The apparent independence of (25) of the charges and the masses
of χ and φ may seem to imply independence of the form of the wave profile of the charges
and the masses of χ and φ which may be misleading because the M and Q values in
(25) are indirectly related to m and q through (26) and (27). Equation (25) implies that
ω =mχ Cχ =mφ Cφ ≤ mχ � mφ (i.e., s is imaginary or zero). In other words, the
particles χ and φ are either gravitationally bound or they have barely sufficient energy to
come from infinity, which is in agreement with our assumptions about the χ and φ particles.
Localization of the wave profile of φ will be discussed in the following paragraphs. Although
we neglect the effect of the interaction term in the field equations to get an approximate
solution, we, in fact, impose the effect of interaction by imposing condition (11). Note that
we have ωχ ≤ mχ and mχ � mφ by assumption, while we need (11), i.e., ωφ = ωχ to
obtain ωφ ≤ mχ � mφ to make (25) self-consistent. In other words, requirement of reality
of ω and (11) guarantees consistency of (25) and vice versa. In fact, one may simply assume
the condition ω � mφ for localization of the wave profile of φ instead of introducing the
interaction between χ and φ (with ω =mχ Cχ =mφ Cφ ≤ mχ � mφ), while such an
approach would be wholly ad hoc.
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Equation (22), after using (25) and (23), becomes

ψω = exp

{ (
± 3M

(
7M2 − 16Q2

)

40Q4
√
Q2 − M2

)

(
(

2M2 − Q2
)

tan−1

(
r − M

√
Q2 − M2

)

+
(
Q2 − 2M2

)
tan−1

(
r0 − M

√
Q2 − M2

)

+
√
Q2 − M2

(
M log

(
−2Mr + Q2 + r2

)
− M log

(
−2Mr0 + Q2 + r2

0

)
+ r − r0

)
}

× [ exp{
(

− 9
(
M2 − 4Q2

)

40Q2
√
Q2 − M2

)

(2M tan−1

(
r − M

√
Q2 − M2

)

− 2M tan−1

(
r0 − M

√
Q2 − M2

)

+
√
Q2 − M2

(
log

(
−2Mr + Q2 + r2

)
− log

(
−2Mr0 + Q2 + r2

0

))
)}

− 9M

2
√
Q2 − M2

(

tan−1

(
r − M

√
Q2 − M2

)

− tan−1

(
r0 − M

√
Q2 − M2

))

+ 6M

2
√
Q2 − M2

(

− tan−1

(
M − r

√
Q2 − M2

)

+ tan−1

(
M − r0√
Q2 − M2

))

+3
√
Q2 − M2(− log

(
−2Mr + Q2 + r2

)
+ log

(
−2Mr0 + Q2 + r2

0

)

+2 log(r) − 2 log(r0))]. (28)

Depending on the relative values of M and Q, the exponential function in (28) is either
an increasing or decreasing real exponential in r . We discard the case of increasing real
exponential functions because that case would correspond to an unphysical situation. We
will discuss the implications of (28) in the next subsection.

Equations (25), (26), (27) may be solved for m, ω, and q . The solutions (that are obtained
by Mathematica) are given below.

m2
1,2 = 9

[
(3200 Q16

(
Q2 − M2

)]
{

133 M6Q10 + 124 M4Q12 − 1104 M2Q14 + 256 Q16

± Q10 [182329 M12 − 1244936 M10Q2 + 3281072 M8Q4 − 4249216 M6Q6

+2552064 M4Q8 − 237568 M2Q10 + 65536 Q12] 1
2

}
, (29)

ω1,2 = ∓ 3

40
√

2 Q8
(
Q2 − M2

) 1
2

{
98M8Q8 − 413M6Q10 + 1084M4Q12 − 1616M2Q14

+256 Q16 + Q10[182329M12 − 1244936M10Q2 + 3281072M8Q4

−4249216M6Q6 + 2552064M4Q8 − 237568M2Q10 + 65536Q12] 1
2

} 1
2

, (30)

w3,4 = ∓ 3

40
√

2 Q8
√(

Q2 − M2
)

{
− 98M8Q8 + 413M6Q10 − 1084M4Q12

+1616M2Q14 − 256 Q16 + Q10[182329M12 − 1244936M10Q2

+3281072M8Q4 − 4249216M6Q6 + 2552064M4Q8 − 237568M2Q10

+65536Q12] 1
2

} 1
2

, (31)
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q1,2 = ∓
⎡

⎣ 3

80
√

2Q17
√(

Q2 − M2
) (

49M7 − 182M5Q2 − 8M3Q4 + 384MQ6
)

⎤

⎦

×
{
[49M6Q10 − 1100M4Q12 + 2384M2Q14 − 256Q16 + Q10[182329M12

−1244936M10Q2 + 3281072M8Q4 − 4249216M6Q6 + 2552064M4Q8

−237568M2Q10 + 65536Q12] 1
2 ] × [98M8Q8 − 413M6Q10 + 1084M4Q12

−1616M2Q14 + +256Q16 + Q10[182329M12 − 1244936M10Q2

+3281072M8Q4 − 4249216M6Q6 + 2552064M4Q8 − 237568M2Q10

+65536Q12] 1
2 ] 1

2

}
, (32)

q3,4 = ±
⎡

⎣ 3

80
√

2 Q17
(
49M7 − 182M5Q2 − 8M3Q4 + 384MQ6

) √(
M2 − Q2

)

⎤

⎦

×
{
[−98M8Q8 + 413M6Q10 − 1084M4Q12 + 1616M2Q14 − 256Q16

+Q10 [182329M12 − 1244936M10Q2 + 3281072M8Q4 − 4249216M6Q6

+2552064M4Q8 − 237568M2Q10 + 65536Q12] 1
2 ] 1

2 [−49M6Q10

+1100M4Q12 − 2384M2Q14 + 256Q16 + Q10[182329M12 − 1244936M10Q2

+3281072M8Q4 − 4249216M6Q6 + 2552064M4Q8 − 237568M2Q10

+65536Q12] 1
2 ]

}
. (33)

3.2 Viability of the solution

To check the viability of the solution, it is more suitable to express r∗ in (16) or (17) in terms
of multiples of M or the mass of the sun (M◦). Then, for example, (16) may be expressed as
(see Appendix C)

d2ψω

dr2∗
+

[(
ω − qQ

r

)2 − m2
φ

(

1 − 2M

r
+ Q

2

r2

) ]
ψω = 0. (34)

Here

r∗ = c2

GM◦
r∗, r = c2

GM◦
r, (35)

ω = ω
GM◦
c3 =

(
ω

s−1

)
5 × 10−6, (36)

m = m
GM◦
h̄c

=
(
m

kg

)
4.5 × 1045, (37)

M = M

M◦
=

(
M

kg

)
2 × 10−30, (38)

Q = Q
√
k

M◦
√
G

=
(
Q

C

)
5, 7 × 10−21, (39)
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q = q
M◦

√
Gk

h̄c
=

(
q

C

)
4, 8 × 1055, (40)

where k is the Coulomb’s constant and we have explicitly written G, c, h̄, k (that we had set
to 1) to see the phenomenological contents of these quantities.

m̄2
1 and m̄2

2 should be positive real numbers. This condition restricts possible values of Q̄
for a given value of M̄ . To this end, first we determine the roots of m̄2

1,2 = 0 in the equation
obtained from (29) by replacing the quantities in (29) by their barred forms. We find the

real roots of (29) as Q̄1,2 = ±
√

7M̄
4 . Then, we plot m̄2

1,2 versus Q̄ graphs for various values

of M̄ . We find that m̄2
1 is real and positive in the intervals Q̄ < −

√
7M̄
4 and Q̄ >

√
7M̄
4 .

On the other hand, m̄2
2 is real and positive in the intervals − M̄

2

√
1
2

(√
697 − 23

)
< Q̄ <

M̄
2

√
1
2

(√
697 − 23

)
and

√
7M̄
4 < Q̄ < M̄ , −M̄ < Q̄ < −

√
7M̄
4 .

We have also checked the consistency of the formulation by solving Eqs. (25), (26),
(27) (where all quantities are replaced by their barred forms) for m̄2, ω̄, Q̄ for q̄ = 0. We

have found that the corresponding Q̄ and M̄ satisfy Q̄ = ± M̄
4

√
1

10

(
299 + √

52681
)

) (which

corresponds to the case m̄ = m̄2). As expected from the discussion in the preceding paragraph
we find that it gives q̄ = 0 for m̄2

2 < 0. Therefore, we conclude that there are no physical
solutions for q = 0. In other words, the solution described in the paper is realized only for
q �= 0.

Next, we discuss the order of the values of m̄2 and q̄ for the phenomenologically viable

intervals of Q̄ discussed above. There are four relevant sets of parameters, namely,

{
|Q̄| >

√
7M̄
4 , m̄2

1, ω̄1, q̄1

}
,

{
|Q̄| >

√
7M̄
4 , m̄2

1, −ω̄1, −q̄1

}
,

{
|Q̄| < M̄

2

√
1
2

(√
697 − 23

)
or

√
7M̄
4 < |Q̄| < M̄ , m̄2

2, ω̄3, q̄3

}
,

{
|Q̄| < M̄

2

√
1
2

(√
697 − 23

)
or

√
7M̄
4 < |Q̄| < M̄ , m̄2

2,

−ω̄3, −q̄3

}
where the subindices are the ones in (29)–(33). We have used a Mathematica

code to try values of M̄ (as multiples of the mass of the Sun) and different values of Q̄
to find the corresponding values of q̄i , m̄i . We observe that (the positive) m̄2

1 values go to
their maximum values (that decrease with increasing M̄ and which are about 1 for M̄ = 1)

as Q̄ → ±M̄ and go to zero as Q̄ → ±
√

7M̄
4 , and take intermediate values in between.

This implies that the value of m̄2
1 cannot exceed 1 that corresponds to a mass of order of

10−45 kg, i.e., of the order of 10−9 eV/c2. On the other hand (the positive) m̄2
2 values go to

plus infinity as Q̄ → 0 or as Q̄ → −M̄ or as Q̄ → −+M̄ , while they tend to zero as

Q̄ → ± M̄
2

√
1
2

(√
697 − 23

)
and take all intermediate values in between. Note that positive

real values of m̄2
2 are only possible for |Q̄| < M̄ , i.e., for black holes. Once the values m̄i are

determined, the values of ω̄i may be determined by (25). In agreement with the range of Q̄

for positive values m̄2
1, q̄1,2 have nontrivial values for |Q̄| >

√
7M̄
4 , and they go to ± infinity

as Q̄ → ±
√

7M̄
4 and go to zero as Q̄ → ±∞ and Q̄ → ± M̄

4

√
1

10

(
299 − √

52681
)

, and

take intermediate values (smaller than of order of 1) in between. Hence, the relevant set of

parameters are {|Q̄| >
√

7M̄
4 , m̄2

1, ±ω̄1, ±q̄1} and {M̄ > |Q̄| >
√

7M̄
4 , m̄2

3, ±ω̄3, ±q̄3}. To

123
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Fig. 1 |ψω| versus r̄ graph for M̄ = 10, Q̄ = 17, r̄0 = 20

summarize, this analysis gives two main results. The first result is that the allowed values of
m̄2 are smaller than 10−9 eV/c2. The second result is that Q and q in this study cannot be

the usual electric charge in the light of the condition |Q̄| >
√

7M̄
4 derived above and in the

light of absence of observation of astronomical compact object with a significant value of
an electric charge. This scenario is possible if we take q and Q as electric charges of a dark

U(1) force [5]. Another result of the above analysis is that the solutions with |Q̄| <
√

7M̄
4

are unphysical.
Now we check if one may find the wave profiles that are expected from a test particle

treatment, i.e., if there exist wave profiles that peak about some values of r as discussed in the
first part of the preceding section. Given the complicated form of (28) it is difficult to deduce
simple general rules for the behavior of ψω. We have plotted ψω plots for various values of
its parameters by using a Mathematica code. We have found mainly two types of behaviors
for |ψω|, namely, exponentially increasing with increasing r , exponentially decreasing with
increasing r with a local peak. We discard the exponentially increasing ones since they are
unphysical. Some examples of the physically relevant cases for the physically relevant set

(that is discussed above) |Q̄| >
√

7M̄
4 are shown in Figs. 1, 2. We find that the corresponding

M̄ = 10 and Q̄ = 7, Q̄ = 17 result in −ω̄1 = 0.0219237, −ω̄1 = 0.0550123, and it seems
that all ±ω̄1 for |Q̄| >

√
7M̄
4 are real, while all ±ω̄1 for |Q̄| <

√
7M̄
4 are imaginary (so,

the corresponding solutions are unstable). Moreover, we find that
ω̄2

1
m̄2

1
< 1 for M̄ = 10 and

Q̄ = 7, 17, while
ω̄2

1
m̄2

1
> 1 for M̄ = 10 and Q̄ = 6, and it seems that

ω̄2
1

m̄2
1

< 1 for all

|Q̄| >
√

7M̄
4 , while

ω̄2
1

m̄2
1

> 1 for all |Q̄| <
√

7M̄
4 . Both Figs. 1 and 2 are examples of scalar

field profiles with ω
m < 1 (as for φ particles). The existence of the wave profiles of the

form of Figs. 1, 2 is consistent with the accumulation of the scalar particles at some distance
from the black hole that is suggested by the test particle behavior predicted in the first part
of the preceding section. We observe that ω

m > 1 always correspond to imaginary ω’s, so
the corresponding solutions are unstable. It is also observed that for some M , Q pairs the
absolute value of ψω peaks at some values of Q, for example, as in Fig. 3.
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Fig. 2 |ψω| versus r̄ graph for M̄ = 10, Q̄ = 7, r̄0 = 20

Fig. 3 |ψω| versus Q̄ graph for M̄ = 10, r̄ = 20, r̄0 = 30

We notice that the f ′
r term is negligible with respect to m2

χ for phenomenologically viable
values of the parameters as can be seen below

f ′

r̄
= 2

r̄2

(
M̄

r̄
− Q̄2

r̄2

)
, (41)

where we have replaced r , M , Q by their barred forms and using (35)–(40). We find that
for values of r greater than r+, r̄ is at least at the order of M

M◦ , M̄ is M
M◦ , Q̄ for black hole

solutions is at most in the order of M
M◦ . Therefore, f ′

r is at most in the order of 1 and for most

values of r it is much smaller than 1. It is evident from (37) that m̄ > 1 for mc2 > 10−9eV .
This, in turn, implies that one may get good information about ψω in the 3+1-dimensional
case for l = 0 (i.e., for radial motion) by studying ψω given in this study provided that
either mc2  10−9eV or r̄  1. There may be also situations where mc2 > 10−9eV
and r̄ > 2 and ψω for l = 0 is a good approximation to (13). On the other hand, we have
found above that the phenomenologically viable values of particle masses in this setup satisfy
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mc2 < 10−9eV . However, the phenomenologically relevant interval

{
|Q̄| >

√
7M̄
4 , m̄2

1,

±ω̄1, ±q̄1

}
obtained above includes the case where |Q̄| ∼ M̄ . Note that for small values of

r̄ outside the horizon r+, we have M̄
r̄ � 1. The case |Q̄| ∼ M̄ may make f ′

r negligible with

respect to m2
χ even for mc2 < 10−9eV for most of the values of r̄ since the

(
M̄
r̄ − Q̄2

r̄2

)
term

ensures f ′
r̄ ∼ 0 for small values of r̄ that are in the order of 1, while the 2

r̄2 term ensures
f ′
r̄ ∼ 0 for large values of r̄ .

We have found that the φ and χ fields and the black hole must have dark electric charges.
In this study we have considered small energy densities of the φ and χ fields so that they do
not change the geometry of the space. Therefore, it is quite difficult to detect these dark matter
candidates. On the other hand, we do not expect a radical change in the form of the geometry
even when the energy density of the fields is increased provided we are at a sufficiently large
distance from the black hole so that (15) is satisfied and the spherical shape of the wave
profile is preserved, i.e., l = 0. In that case the geometry of the compact object will be still
described by the Reissner–Nordstrøm metric. In such a situation, the presence of the scalar
fields charged with a dark electric charge around a Reissner–Nordstrøm black hole (charged
with the same dark electric charge) can be detected by the gravitational effect of these field(s),
e.g., through their effect on the rotation curve(s) of their galax(ies) (while such an analysis
will have additional, nontrivial points to be addressed). All these points need a separate and
detailed analysis. To reach a definite and rigorous conclusion for the effect of non-negligible
energy densities of the scalar fields, all these points must be considered in rigorous, separate
detailed future studies. In fact, the question of galaxy rotation curves in the context of Bose–
Einstein condensate dark matter that consists of a self-gravitating scalar dark matter gas cloud
is discussed in the literature [6,7]. There are also studies in the literature that consider the
source of gravitational as a point source [8], while they do not discuss the predictions for
galaxy rotations curves. Most of these studies are nonrelativistic, while there are also studies
in the context of general relativity [6,9]. [6] studies the problem through postulation of a
mass density for the scalar field. On the other hand, [9] studies problem in the context of
charged black holes including Reissner–Nordstrøm black hole, while scalar field is taken to
be neutral. This paper also finds a localized solution of the scalar field, while the explicit
form of the solution is derived only at the limits r∗ → ±∞. In other words, there are studies
in literature that have similar research interest as the present paper. The present study still
has some novel aspects such as being a model of two interacting scalars that result in Eq.
(11) (which may be considered as the mechanism behind the Bose–Einstein condensation in
this context), and the solution given in Sect. 3 being a new analytical solution.

φ and/or χ particles discussed here may be taken as the only source or as one of the sources
of dark matter in the universe. Given the mysterious nature of the source and the nature of
dark matter, the possibility of this mechanism being the only source of dark matter cannot
be wholly excluded. For example, a scenario where χ particles (that are nonrelativistic at
very large distances away from the black hole) may serve as the component of dark matter at
cosmological scales, while φ particles may be considered as the component of dark matter
at galactic scales. The viability of such a scenario may be studied in future. Another related
nontrivial point is that a fixed pair of M , Q results in a fixed pair of m, q by (29–33). In other
words, for fixed values ofmφ , qφ the number of M , Q pairs is finite. At first glance, this seems
to suggest that the solitonic-like scalar dark matter behavior discussed in this paper may exist
only in very specific cases, so this mechanism cannot be considered as a significant source of
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dark matter in the universe. Such a reasoning may be misleading in the light of the following
observations. Real black holes are expected to evolve in mass and charge by accretion, so they
take different values through their evolution. As the black hole evolves by swallowing χ and
φ particles, the change in the charge of the black hole evolves in proportional to the number
of the swallowed particles (since charge is an additive quantum number), while the change in
the mass of the black hole in general is smaller than the number of particles times their masses
because of the gravitational potential between them. At the initial times of the accretion the
effect of the gravitational potential between the particles may be neglected since the number
density of the scalar particles is small at that time. Hence, one expects � Q

� M � q
m at initial

times, while � Q
� M >

q
m at later times. Therefore, Q

M may start from a smaller value and evolve
into a pair of Q and M that corresponds to formation of the solitonic solution discussed in
this paper. To illustrate the argument, for example, we consider a black hole that initially
has M̄ = 10, Q̄ = 5, and assume that it accredits by swallowing φ and χ particles. Let m

satisfy the bound obtained above, i.e., mc2 < 10−9 eV . At later times � Q̄
� M̄

� q̄
m̄ > 1018

for q = e being the charge of a proton, and � Q̄
� M̄

� q̄
m̄ > 1 for a millicharged particle

[10] with q = 10−18e, respectively. � M̄ starts from zero and grows by time. When � M̄

reaches �M̄ = 2 × 10−18 for q = e, then Q̄+�Q̄
M̄+�M̄

> 5+2
10 = 0.7 which is in the physically

relevant range obtained above, while Q̄
M̄

= 0.5 is outside the physically relevant interval. In a

similar way, when � M̄ reaches �M̄ = 6 for q = 10−18e , then Q̄+�Q̄
M̄+�M̄

> 5+6
16 = 0.6875

which is in the physically relevant range obtained above, while Q̄
M̄

= 0.5 is outside physically
relevant interval. At even later times, accretion may change the M and Q values further so
that the new values do not correspond to the solitonic solution, so the localized wave profile
may begin to decay. However, at that time the energy density of the φ particles around the
black hole may become non-negligible so that at different distances from the black hole, the
effective mass and charge of the black hole take different values. This implies that, at late
times, always there will be a radial distance where the black hole’s mass and charge will
satisfy the condition necessary for formation of the solitonic solution. This together with the
gravitational force between the φ particles tends to counteract dispersion of the wave profile.
However, to reach a definite conclusion on this point, separate detailed technical studies on
this issue are needed. Moreover, one may let Cχ take values in an interval about Cχ = 1,
i.e., one may take ω be in an interval about ω = mχ instead of taking a sharp value. Hence,
there will be more chance that a value of (m2

φ − ω2) in the interval satisfies (25) for a given
set of M , Q. In the light of these considerations, given the novelties of the solution and the
mechanism discussed here, in our opinion, this new mechanism and the solution deserve
detailed further studies that explore their all aspects and potential through future studies.

4 Conclusion

In this study we have considered the problem of evolution of a heavier scalar field φ that
is produced from a lighter homogeneously distributed scalar field χ through a χ∗χφ∗φ
interaction term in the background of a Reissner–Nordstrøm black hole. To see the situation
better, first, we have studied the problem at a wholly classical setting at the level of test
particles. We have observed that φ particles tend to accumulate at some distance from the
black hole which provides a suitable condition for condensation. Then, we have considered the
problem at the framework of field theory. We have found approximate solitonic-like solutions
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for the scalar fields where the heavier φ particles seem to be more localized compared to the
lighter χ particles. This wave profile seems to suggest suitable conditions for condensation as
in the case of the wholly classical treatment. We have also discussed the phenomenological
viability of this model. The requirement of phenomenological viability of the model suggests
that the black hole and the scalar particles should have a dark U(1) charge rather than the
usual electromagnetic charge to sustain the soliton-like configuration studied in this study in a
realistic framework. Note that we have argued that the φ field is produced from χ field through
χ∗χφ∗φ interactions, while we have neglected interactions between the φ and χ as we have
obtained the wave profiles of the solutions. Although this approach may be considered as
a sufficiently good approximation for small coupling constant λ, a separate study in future
where this interaction is not neglected in the derivation of the wave profile would be useful
to understand all aspects of the problem.

The prospect of studying the extensions of this model along the lines mentioned above
seems promising. It is a well-known fact that, in view of rotation curves of spiral galaxies
and other astronomical data, there should be a localized distribution of dark matter around
the centers of these galaxies. Moreover, almost all large galaxies contain supermassive black
holes at their centers. Therefore, the model discussed in this study has the potential to describe
such localized distributions of dark matter after the model is extended to the case of non-
negligible energy density for the φ fields provided that (at least some of) the supermassive
black holes may be identified by the type of black holes discussed in this study. It will be
interesting to study these points in detail in future.

Acknowledgements This paper is financially supported by The Scientific and Technical Research Council
of Turkey (TÜBITAK) under the project 117F296 in the context of the COST action CA 16104 “GWverse.”

Appendix A: the scalar field equation in 1 + 1 dimensions

In this appendix we show that the approximate scalar field equation corresponding to f ′
r̄ � 0,

namely, Eq. (16), is the scalar field equation in 1 + 1 dimensions.
We consider the following action for χ and φ particles

S =
∫

dt dr

{
− gμν

[
Dμφ (Dνφ)∗ + Dμχ (Dνχ)∗

] − m2
φ |φ|2

−m2
χ |χ |2 − λφ∗φχ∗χ

}
, (A1)

where Dμ = ∂μ + iq Aμ with q being the electric charge of the scalar field and Aμ =(
Q
r , 0, 0, 0

)
denoting the electric field of the black hole. We let both χ and φ have the same

charge q. After the change of variables dr∗ = f −1 dr , (A1) becomes

S =
∫

dt dr∗
{ ∣∣∣∣

∂φ

∂ t
+ i

qQ

r

∣∣∣∣

2

−
∣∣∣∣
∂φ

∂ r∗

∣∣∣∣

2

− m̃2
φφ2

+
∣∣∣∣
∂χ

∂ t
+ i

qQ

r

∣∣∣∣

2

−
∣∣∣∣
∂χ

∂ r∗

∣∣∣∣

2

− m̃2
χχ2 − λ̃φ∗φχ∗χ

}
, (A2)

where
m̃2

i = f m2
i , λ̃ = f λ i = χ, φ. (A3)
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Transforming (A1) to (A2) corresponds to changing the metric ds2 into ds̃2 where ds2 and
ds̃2 are related by

ds2 = f
(− dt2 + f −2dr2) = f ds̃2, (A4)

where
ds̃2 = − dt2 + dr2∗ . (A5)

In other words we have passed to an effective Minkowski space given by (A5) at the expense
of making the masses and the coupling constant r-dependent (hence, r∗-dependent).

In the following we obtain the approximate profile of the distribution of the scalar particles
χ and φ. In (A1) and (A2) we have neglected the effect of electromagnetic interactions
between the scalar particles since the coupling constant of electromagnetic interactions is
small, and the density of the scalar particles is taken to be small. In a similar way we take the
coupling constant λ to be small. Then the approximate field equation corresponding to (A2)
for φ is

D̃μ D̃μ φ − m̃2
φ φ = ∂2φ

∂ t2 − ∂2φ

∂ r2∗
+ 2iqQ

r

∂φ

∂ t
+

(
m̃2

φ − q2Q2

r2

)
φ = 0, (A6)

where D̃μ = ∂̃μ + iq Aμ=
(

∂
∂ t + i qQr , ∂

∂ r∗

)
. The corresponding equation for χ may be

obtained by replacing φ in (A6) by χ .
The total mechanical energy for metric (3) (i.e., for the local effective Minkowski space)

Ẽ is equal to the total energy of the particle. In other words Ẽ2
i = p̃2

i + m̃2
i = m2

i C
2
i .

Hence the oscillatory solutions may be taken as

φ = Rφ(r∗) e−iωφ t , (A7)

where ωφ is identified by Ẽ = h̄ωφ = h̄ mφ Cφ . Thus, (A6) reduces to

d2R

dr2∗
+

[(
ω − qQ

r

)2

− m̃2
φ

]

R = 0, (A8)

which is the same as (16).

Appendix B: derivation of equations (23)–(27)

Consider (19), namely,

g′′

g
+ 2is

g′

g
− 2(qQω − m2M)

r
+ (q2 − m2)Q2

r2 = 0, (B1)

where ′ denotes the derivative with respect to r∗.
We let

g′

g
= α1

r
+ β1

r2 + γ1

r3 , (B2)

g′′

g
= α2

r
+ β2

r2 + γ2

r3 . (B3)
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Next, we use (B2), (B3) and ′ = d
dr∗ = dr

dr∗
d
dr and the following identity to relate α1, β1, γ1

and α2, β2, γ2

d

dr∗

(
g′

g

)
=

(
g′

g

)′
= g′′

g
−

(
g′

g

)2

. (B4)

Hence, we obtain

g′′

g
= 1

r2 α1(α1 − 1) + 1

r3 2(Mα1 − β1 + α1β1) + 1

r4 (4β1M − Q2α1 − 3γ1 + 2α1γ1 + β2
1 )

+ 1

r5
2(3Mγ1 − Q2β1 + β1γ1) + γ1(γ1 − 3Q2)

1

r6 = α2

r
+ β2

r2 + γ2

r3 . (B5)

(B5) implies

α2 = 0 , β2 = α1(α1 − 1) , γ2 = 2(Mα1 − β1 + α1β1) ,

4Mβ1 − Q2α1 − 3γ1 + β2
1 + 2γ1α1 = 0 , 3Mγ1 − Q2β1 + β1γ1 = 0 , γ1 − 3Q2 = 0.

(B6)

(B6) results in

α1 = 9

5
− 9

20

(
M

Q

)2

, β1 = −9

2
M, γ1 = 3Q2, (B7)

α2 = 0 , β2 =
[

9

5
− 9

20

(
M

Q

)2][
4

5
− 9

20

(
M

Q

)2]
, γ2 = 2

[−18

5
+ 63

40

(
M

Q

)2]
M.

(B8)

Inserting solutions (B7) and (B8) into (19) and using s2 = ω2 − m2, we get three equations
for three unknown quantities w, q , m for a given M and Q:

(m2 − ω2) − M2

9Q4

(
18

5
− 63

40

M2

Q2

)2

= 0, (B9)

−3M2

Q2

(
18

5
− 63

40

M2

Q2

)
+

(
9

5
− 9

20

M2

Q2

)(
4

5
− 9

20

M2

Q2

)
+ (q2 − m2)Q2 = 0, (B10)

2M

3Q2

(
18

5
− 63

40

M2

Q2

)(
9

5
− 9

20

M2

Q2

)
− 2(qQω − m2M) = 0. (B11)

These three equations solve m, ω and q as given in (29)–(33).

Appendix C: derivation of (34)

After inserting the Newton’s constant G, the speed of light c, the Planck’s constant h̄ into
explicitly, the action for a charged free scalar field φ becomes

S =
∫

h̄2h̄2h̄2
[

− gμν(Dμφ)(Dμφ)∗ − m2c2m2c2m2c2

h̄2h̄2h̄2
φφ∗

]
d2x . (C1)

Note that we are neglecting possible interaction terms other than electromagnetic interactions
because we take other possible interactions negligible with respect to the other terms in the
Lagrangian. The corresponding equation is

∂2φ

c2c2c2∂ t2
− ∂2φ

∂ r2∗
+ 2ikkk

h̄̄h̄hc2c2c2

qQqQqQ

r

∂φ

∂ t
+

(
c2c2c2

h̄2h̄2h̄2
m̃mm2

φ − k2k2k2

h̄2h̄2h̄2c2c2c2

qqq2QQQ2

r2

)

φ = 0, (C2)
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where k = 1
4πε0

k = 1
4πε0

k = 1
4πε0

.
After inserting (12) into (C2) and using (15), we get

d2ψω

dr2∗
+

[(
ωωω

ccc
− kqQkqQkqQ

h̄ch̄ch̄cr

)2

− c2c2c2

h̄2h̄2h̄2
mmm2

φ

(

1 − 2GMGMGM

c2c2c2r
+ kGQ2kGQ2kGQ2

r2c4c4c4

)]

ψω = 0. (C3)

To express r∗ in terms of the Schwarzschild radius of the sun we multiply both sides of

(C3) by
(
GM◦
c2

)2
. Then (C3) becomes

d2ψω

dr2∗
+

[(
ωGM◦
c3 − kqQ

h̄cr

)2

− m2
φ

(
GM◦
h̄c

)2 (
1 − 2M

M◦r
+ Q2k

M2◦Gr2

) ]
ψω = 0, (C4)

where

r∗ = c2

GM◦
r∗, r = c2

GM◦
r. (C5)

We may define

ω = ω
GM◦
c3 =

(
ω

s−1

)
5 × 10−6, (C6)

m = m
GM◦
h̄c

=
(
m

kg

)
4.5 × 1045, (C7)

M = M

M◦
=

(
M

kg

)
2 × 10−30, (C8)

Q = Q
√
k

M◦
√
G

=
(
Q

C

)
5, 7 × 10−21, (C9)

kqQ

h̄c
= qQ = qQM◦

√
Gk

h̄c
⇒ q = q

M◦
√
Gk

h̄c
=

(
q

C

)
4, 8 × 1055, (C10)

where we have used the numerical values of M◦, G, c, h̄ in SI unit system.
Then, (C3) becomes

d2ψω

dr2∗
+

[(
ω − qQ

r

)2 − m2
φ

(

1 − 2M

r
+ Q

2

r2

) ]
ψω = 0. (C11)
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