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ABSTRACT 

 
COULOMB IMPURITIES IN GRAPHENE QUANTUM DOTS  

IN A MAGNETIC FIELD 

 
In this thesis, we investigate the atomic collapse of Graphene Quantum Dots 

(GQDs) in a magnetic field with the tight-binding (TB) model and mean-field Hubbard 

(MFH) approximation. We placed a charged impurity at the center of GQDs, and we 

systematically investigated the atomic collapse effect in the magnetic field by adjusting 

the charge of the impurity, size of the quantum dots, and magnitude of the magnetic 

field. It is shown that the electronic state with the lowest energy of Graphene resembled 

the same effect of the lowest bound state (TLBS) of atomic collapse. We confirmed the 

earlier findings, and we showed that the required critical charges of TLBS of the GQDs 

to collapse below the Fermi level are almost equal. Additionally, we investigate the 

formation of resonance states of GQDs, and among these resonance states, we study the 

evolution of the first-formed resonance state (R1). Applying a perpendicular magnetic 

field to GQD, decreased the critical charge of each structure, and we found that the 

decrease is dependent on the dot size. Moreover, we also found that TLBS of GQDs of 

varying sizes are crossed each other at a particular impurity charge and energy. We used 

the relation between the magnetic field and magnetic length (lB), and we compared B 

with the radius of the GQD (RGQD) in varying sizes. We found that TLBS of a  GQD 

still converges to a particular crossing point (in terms of impurity charge and energy)  as 

in no magnetic field when lB > RGQD. However, TLBS of a GQD diverges from the 

crossing point when lB < RGQD. It is studied that the continuum form of the R1 state 

became a chain of separated Landau levels in a magnetic field. Here we show that 

Landau level formation is more noticeable, and the inter-level separation of the Landau 

levels becomes more prominent when the lB < RGQD. Lastly, we investigated the atomic 

collapse of the Hofstadter's butterflies in GQDs. We found that increasing the impurity 

charge collapsed the energy levels. Also, increasing the impurity charge decreased 

(increased) the local density of states of the impurity center at the top (bottom) part of 

the spectrum of the Hofstadter's butterflies.  
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ÖZET 

 
MANYETİK ALAN ALTINDAKİ GRAFEN KUANTUM 

NOKTALARDA COULOMB SAFSIZLIKLARI 

 
Bu tezde, tight-binding (TB) modeli ve mean-field Hubbard (MFH) yaklaşımı 

ile Grafen kuantum noktalarının (GQD'ler) atomik çöküşünü manyetik alan içerisinde 

araştırdık. GQD'lerin merkezine yüklü bir safsızlık yerleştirdik ve safsızlığın yükünü, 

kuantum noktalarının boyutunu ve manyetik alanın büyüklüğünü ayarlayarak manyetik 

alandaki atomik çökme etkisini sistematik olarak araştırdık. Önceki çalışmalarda 

Grafenin en düşük enerjiye sahip elektronik durumu ile atomik çökme etkisinin en 

düşük bağlı durumu (TLBS) ile benzerliği gösterilmiştir. Daha önceki verileri 

doğrulayarak ve GQD'lerin TLBS’lerinin Fermi seviyesinin altına çökmesi için gereken 

kritik yüklerin neredeyse birbirlerine eşit olduğunu gösterdik. Ek olarak, GQD'lerin 

rezonans durumlarının inceledik ve bu rezonans durumları arasında ilk oluşan rezonans 

durumunun (R1) oluşumunu araştırdık. GQD'ye dikey bir manyetik alan uygulamak 

yapıların kritik yükünü azalttı ve azalmanın nokta boyutuna bağlı olduğunu bulduk. 

Ayrıca, farklı boyutlardaki GQD'lerin TLBS'lerinin belirli bir safsızlık yükü ve enerjide 

birbiriyle keşiştiğini bulduk. Manyetik alan ve manyetik uzunluk (lB) arasındaki ilişkiyi 

kullanarak lB'yi değişen boyutlarda ki GQD'nin yarıçapı (RGQD) ile karşılaştırdık. lB > 

RGQD olduğunda GQD'nin TLBS'sinin manyetik alan olmadığı durumda ki gibi hala 

belirli bir geçiş noktasına (safsızlık yükü ve enerji açısından) yakınsadığını bulduk. 

Ancak, lB < RGQD olduğunda GQD'nin TLBS'si geçiş noktasından uzaklaştığını bulduk. 

R1 durumunun süreklilik formunun, manyetik alan etkisinde ayrışık Landau 

seviyelerinin zincirlenmiş haline geldiği incelenmiştir. lB < RGQD olduğu durumda 

Landau seviyesi oluşumunun daha belirgin olduğunu ve Landau seviyelerinin seviyeler 

arası ayrımının daha belirginleştiğini gösterdik. Son olarak, GQD'lerdeki Hofstadter'in 

kelebeklerinin atomik çöküşünü araştırdık. Safsızlık yükünün artmasının enerji 

seviyelerini çökerttiğini bulduk. Ayrıca, kirlilik yükünün arttırılması, Hofstadter 

kelebeklerinin spektrumunun üst (alt) kısmındaki kirlilik merkezinin durumlarının yerel 

yoğunluğunu azalttı (arttırdı).   
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

Carbon is one of the most abundant elements on Earth in varying forms and 

sizes. From organic chemistry to the tools that we use every day, carbon exists widely 

with a broad range of allotropes. An allotrope of carbon is the Diamond, which has 

unique hardness and thermal conductivity, and is also used in semiconductors. On the 

other hand, another type of carbon allotrope is Graphite. Also, Graphite is frequently 

used in materials like; pencils, brushes to polymers and electrodes (Chung, D. D. L. 

(2002), Sengupta et al. (2011)). If we take a closer look at the nanostructure of graphite, 

it is seen that carbon atoms form honeycomb lattices layer by layer.  On the other hand, 

layers of the graphite are bonded together by weak van der Waals forces. Even though 

the dynamic characteristics of the layers of graphite are subjected to to investigation of 

intercalation in between these layers (Solin, S. A. (1982)), there are unique electronic, 

magnetic and optical properties in individual layers. 

 

 

 
 

Figure 1.1. Illustration of 2D Graphene layers in a Graphite structure. 

 

Since the first synthesis of Graphene, alternative experimental techniques, such 

as chemical vapor deposition and molecular beam epitaxy methods are used for growth. 

At the same period, the use of Graphene in applications increased exponentially. It was 
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shown that Graphene nanosheets are prospective anode materials for Lithium-ion 

Batteries (LIBs) (Yoo et al. (2008)). Also, Wang et al. studied that the Graphene 

nanosheets achieved unique electrochemical performance for LIBs in terms of Lithium 

storage and charging-discharging periods (Wang et al. (2009)). It is also noted that the 

potential of Graphene can be expanded with a combination of varying materials. It was 

proven by Su et al. that the Graphene supplemented LiFePO4 cathode shown superior 

performance that its bare form in energy applications (Su et al. (2010)). Additionally, 

Graphene is proven to be a suitable two-dimensional choice for tuning defects (Chen et 

el. (2017)). Another example usage of Graphene is the coating, where Graphene is 

shown to enhance the stability of structural integrity and functionality (Dong et al. 

(2018)). Also, It was studied that coating with Graphene protected against corrosion 

(Choi et al. (2018)).   

In addition to the synthesis of Graphene, the study of carbon-based 

nanomaterials are subject to investigation in spintronics, flexible electronics, and all 

other carbon-based nanocircuits. The one-dimensional variations of carbon allotropes 

such as carbon nanotubes (De Volder et al. (2013)) and carbon nanoribbons (Çakmak et 

al. (2018)) were studied. The zero-dimensional forms of carbons are studied (Altıntaş et 

al., (2018); Güçlü et al. (2013); Shen et al. (2012) ). 

One of the major investigated subjects on Graphene quantum dots (GQDs) is 

their optical properties. Ranging from photovoltaic applications to biosensors, the 

photoluminescent properties of GQDs are potential materials with low toxicity (Shen et 

al. (2012); Zheng et al. (2015)). Unique optical properties of GQDS are beneficial to 

photovoltaic applications and also GQDs are studied in cancer therapy investigations 

(Ge et al. (2014)). Similar to bulk form, GQDs took a part in the Ion battery studies. 

Chao et al. investigated that layering GQD on top of VO2 nanoarrays resulted in 

enhanced performance in Lithium-ion and Sodium-ion batteries (Chao et al. (2015)) . 

It is shown that the pz electrons near K and K' points of Graphene have a 

relativistic speed. The band structure of Graphene was found to be dispersed linearly, 

and electrons travel almost 300 slower than the speed of light in a vacuum. These 

properties led to Graphene obtaining massless Dirac fermions also and relativistic 

quantum effects have been measured (Neto et al. (2009)).  

It has been assumed that an orbital of an electron on a nucleus has a stable 

trajectory. For a point nucleus, an electron in an orbital to fall into its nucleus can be 

considered as a singularity where 𝑟 → 0 in a Coulomb potential. In this case, the 
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potential has infinite energy, and the kinetic energy should be in the same order as the 

potential. However, It is shown that if the nucleus is relativistic, and the charge of the 

nucleus becomes more than the inverse fine structure (~137), the lowest bound state 

(TLBS) falls into the atomic center. If the nucleus charge becomes more than the critical 

charge resulted in non-normalizable wavefunctions with imaginary eigenvalues. 

 

 

 
 

Figure 1.2. A plot of the bound energy of an atom with respect to the nucleus charge 

(Reprinted from the source: Moldovan et al. (2016)). 

 

The problem can be fixed by the consideration of the finite radius of the nucleus. 

As seen in the Fig. 1.2., this adjustment increases the critical charge threshold of TLBS 

to ~ 172. After the critical point, the energy of the TLBS decreases further and interacts 

with the continuum spectrum of the positronic states. This interaction resulted in TLBS 

becoming a quasi-bound state and resonating for a finite lifetime. This physical 

phenomenon was called "atomic collapse" (Reinhardt et al. (1972)). However, the 

relativistic heavy atom requirement is a major challenge from the experimental 

perspective until the heavy-ion collision experiments were done (Cowan et al. (1985), 

Schweppe et al. (1983)). 

It is shown that the electronic state with the lowest energy of Graphene in a 

Coulomb potential is analogous to TLBS of the atomic collapse by having the fine 

structure constant of Graphene is close to the Sommerfeld fine structure constant, and 

relativistic nature of the charge carriers. Electronic energy states of Graphene act as 
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TLBS, and the electron-positron pairs become to the electron-hole pairs. Moreover, the 

transformation of TLBS into the resonance states of the atomic collapse was shown in 

Graphene as the electronic state with the lowest energy becomes quasi-bound and 

resonating states after a certain impurity charge. 

 

 

 
 

Figure 1.3. Evolution of atomic collapse in Graphene at increasing charged impurity 

(Reprinted from the source: Wang et al. (2013)). 

 

As you can see in Fig. 1.3. the atomic collapse effect in Graphene observed 

experimentally. Wang et al. observed an analogous effect by placing Ca dimers on 

Graphene where the increasing number of the Ca dimers resulted that the electronic 
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states shifting below the Fermi-level and resulting in almost bound states (Wang et al. 

(2013)). 

After the experimental realization of atomic collapse phenomena in Graphene, 

theoretical studies still continuing to investigate this subject (Kul et al. (2020)). 

Although Graphene modeled as an infinitely long two-dimensional material,  

considering it as a quantum flake at differing sizes is beneficial to revealing size effects. 

Polat et al. investigated the GQDs in hexagonal armchair form with varying sizes by 

placing a Coulomb impurity at the center of each dot as you can see in Fig. 1.4. They 

showed that the critical impurity charge for the lowest electronic state to cross over the 

Fermi level remained the same in GQDs (Polat et al. (2020)). 

 

 

 
 

Figure 1.4. The atomic collapse of GQDs with varying sizes (Reprinted from the 

source:  Polat et al. (2020)). 

 

In this thesis, we accepted the findings of Polat et al. as one of our reference 

points. As discussed earlier, TLBS forms into a resonance state at an increasing 
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impurity charge. We investigate the resonance state formation of hexagonal armchair 

GQDs with varying sizes. 

Moreover, Graphene is shown to be a unique work ground for magnetic 

interaction, such as the quantum Hall effect (Novoselov et al. (2007)) and Hofstadter's 

butterfly (Hofstadter (1976)). Similar to the atomic collapse effect, the motion of 

electrons can be affected by a magnetic field. Moldovan et al. studied that the magnetic 

field on the atomic collapse of Graphene. By adjusting the strength of the magnetic field 

and the charge of the impurity, they showed the influence of the magnetic field 

decreased the critical charge of TLBS  which the energy of TLBS lower than the Fermi 

level. (Moldovan et al. (2017)). As seen in Fig. 1.5. that continuum form of the 

resonance states are noticeable with no magnetic field. Moldovan et al. showed that 

Landau levels became distinguishable in the energy and impurity charge spectrum by 

applying a small magnetic field to the Graphene. Furthermore, increasing the strength of 

the magnetic field, reshaped the continuum form of the resonance states into the series 

of Landau Levels. 

 

 

 
 

Figure 1.5. Formation of resonance states (R1, R2, R3) in Graphene for B = 0, 2, 12 T 

(Reprinted from the source: Moldovan (2017)). 

 

 

In this thesis, we investigate the atomic collapse effect in hexagonal armchair 

GQDs with varying sizes under a magnetic field in Tight-binding and Mean-field 
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Hubbard methods. We consider the first formed resonance state (R1) in terms of 

impurity charge where R1 originated from TLBS. We study R1 and TLBS by adjusting 

the quantum dot size and magnetic field strength. We compared the radius of the 

quantum dots with the magnetic length of the applied external magnetic field. We 

provided the effect of the magnetic field on TLBS and R1 state by relating to the 

magnetic length and the quantum dot size. Moreover, we studied the atomic collapse of 

the Hofstadter's butterflies of the GQDs. 
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CHAPTER 2 

 

 

THEORY AND MODELS 

 

 

In this chapter, we focused on the theoretical models that were used in this 

thesis. In order to investigate energy levels and eigenstates of the relativistic pz electrons 

of the Graphene, we started with the tight-binding (TB) model (Wallace 1947). We 

introduced the external magnetic field perpendicular to the GQDs via the Peirels 

substitution (Peirels (1933), Hofstadter (1976)). To analyze the atomic collapse on 

GQDs, we included a Coulomb potential to an impurity. Lastly, we adopted the spin-

spin interaction of pz electron to onsite potential by the mean-field Hubbard (MFH) 

model (Hubbard (1963)). 

 

2.1. Tight-Binding Model 

 
Firstly, we define structural properties of Graphene. Unit cell of Graphene 

consists of two Carbon atoms which are form as A and B sublattices in Hexagonal 

lattice. Atomic distance between two nearest Carbon atoms is a = 0.142 nm. The 

primitive unit vectors are: 

 

 𝒂𝟏  =  
𝑎
2

(√3, 3), 𝒂𝟏  =  
𝑎
2

(−√3, 3), 𝒃 =  𝑎(0, 1) (2.01) 
 

Where 𝒃 is defined as a vector between A and B sublattices in the same unit cell 

(Güçlü et al. (2014)). Using the primitive vectors, location of the A and B type atoms 

can be found by the following equations: 

 

 

 𝑹𝐴  = 𝑛𝒂𝟏  +  𝑚𝒂𝟐  +  𝒃  

𝑹𝐵  = 𝑛𝒂𝟏  +  𝑚𝒂𝟐 (2. 02) 
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Above n and m are integers. 

 

 

 
 

Figure 2.1. Primitive unit vectors a1, a2, and b; atomic sites A and B of Graphene 

(Remade from the source Güçlü et al. (2014)). 

 

The carbon atoms of the Graphene have four special electrons three of which 

contribute to sp2 hybridization. In that way, carbon atoms are tightly bonded together 

and give the robust character to Graphene. Meanwhile, the electron in the pz orbital, 

involved in the electronic structure of Graphene by π bonding. 
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Figure 2.2. Depiction of atoms and bonding orbitals in Graphene. 

 

Thus, before constructing our Hamiltonian, we start by defining the 

wavefunction of the pz electron by using Bloch’s theorem; 

 

𝛹𝒌
𝐴(𝒓)  =

1
√𝑁

� 𝑒𝑖𝒌𝑹𝐴

𝑹𝐴

𝜙𝑧(𝒓 − 𝑹𝐴), 𝛹𝒌
𝐵(𝒓)  =

1
√𝑁

� 𝑒𝑖𝒌𝑹𝑩

𝑹𝐵

𝜙𝑧(𝒓 − 𝑹𝐵) (2.03) 

 

In the wave functions, we defined N as the number of unit cells, 𝜙𝑧 is the  pz 

orbital, and the orbitals are orthogonal to each other. The Hamiltonian is: 

 

  
𝐻 =

𝑝2

2𝑚
+ � 𝑉(𝒓 − 𝑹𝐴) + � 𝑉(𝒓 − 𝑹𝐵)

𝑅𝐵𝑅𝐴

 (2.04) 

 

V is the atomic potential at 𝑹. We diagonalize the Hamiltonian as; 

 

  
𝐻(𝒌)  = �

�𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐴� �𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐵�
�𝛹𝒌

𝐵�𝐻�𝛹𝒌
𝐴� �𝛹𝒌

𝐵�𝐻�𝛹𝒌
𝐵�

� (2.05) 

 

We are assuming the first-nearest neighbor interactions. Thus, diagonal terms of 

the hamiltonian become zero. 

 

�𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐴�  ≈ 0 �𝛹𝒌
𝐵�𝐻�𝛹𝒌

𝐵�  ≈ 0 (2.06) 
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The off-diagonal elements are; 

 

�𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐵� =
1
𝑁

� 𝑒𝑖𝒌(𝑹𝐴−𝑹𝐵)

𝑅𝐴,𝑅𝐵

� 𝑑𝒓𝜙𝒛
∗(𝒓 − 𝑹𝐴) 𝑉(𝒓 − 𝑹𝐴)𝜙𝑧(𝒓 − 𝑹𝐵) (2.07) 

 

We call the integral part of the Eq. (2.08) as hopping integral 𝑡, and its value 

determined experimentally that 𝑡 ≈  −2.8 eV (Neto et al. (2009)).  

 

�𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐵� =
1
𝑁

� 𝑒𝑖𝒌(𝑹𝐵−𝑹𝐴)

𝑅𝐴,𝑅𝐵

� 𝑑𝒓𝜙𝒛
∗(𝒓 − 𝑹𝐴) 𝑉(𝒓 − 𝑹𝐴)𝜙𝑧(𝒓 − 𝑹𝐵)

�������������������������
𝑡

 (2.08) 

 

Where we considered the first nearest neighbors only. The wavevectors becomes 

 

  �𝛹𝒌
𝐵�𝐻�𝛹𝒌

𝐴� =  𝑡(𝑒𝑖𝒌𝒃 + 𝑒𝑖𝒌(𝒃−𝒂𝟏) + 𝑒𝑖𝒌(𝒃−𝒂𝟐) 

�𝛹𝒌
𝐴�𝐻�𝛹𝒌

𝐵� =  𝑡 (𝑒−𝑖𝒌𝒃 + 𝑒−𝑖𝒌(𝒃−𝒂𝟏) + 𝑒−𝑖𝒌(𝒃−𝒂𝟐))���������������������
𝑓(𝒌)

 

 

(2.09) 

Finally, we can solve the system by defining eigenvalue equation; 

 

 𝜀𝒌 �
𝑐1
𝑐2

� = 𝑡 �
0 𝑓(𝒌)

𝑓∗(𝒌) 0 � �
𝑐1
𝑐2

� 

 
→  𝜀±(𝑘) = ±𝑡𝑓(𝒌) 

(2.10) 

 

The resulting energies are corresponding to the conduction and valence bands 

for positive and negative energies respectively. 

 

2.2. Peierls Substution 

 
In this section, we introduce the perpendicular magnetic field to our solutions by 

implementing a vector potential A associated with the magnetic field B. We start with 

the Hamiltonian given by Eq. (2.04), under Landau Gauge transformation (Peirels 

(1933), Hofstadter (1976)); 
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𝐻 =

(𝒑 − 𝑒
𝑐 𝑨)2

2𝑚
+ � 𝑉(𝒓 − 𝑹𝐴) + � 𝑉(𝒓 − 𝑹𝐵)

𝑅𝐵𝑅𝐴

 (2.11) 

 

 Solution of the new Hamiltonian requires resulted to a phase difference to the 

Eq. (2.03); We can conclude that, in an applied uniform perpendicular external 

magnetic field, hopping parameters changed to Peierls substitution; 

 

 �̂�𝑖𝑗  →  �̂�𝑖𝑗𝑒𝑖𝜑𝑖𝑗 
 

(2.12) 𝜑𝑖𝑗 =  
1

𝜑0
� 𝑨 ∙ 𝒅𝒍

𝑟𝑗

𝑟𝑖

 =  
𝐵𝑧(𝑥𝑖𝑦𝑗 −  𝑥𝑗𝑦𝑖)

2𝜑0
 

 

𝜑0 =  
ħ𝑐
𝑒

 
 

In above equation,  𝜑𝑖𝑗 is the Peierels phase between i and j lattice sites. 𝐵𝑧 is 

the applied magnetic field, x and y are the coordinates of corresponding axes. 𝜑0 is 

magnetic quantum flux. The second-quantization formalizm.  TB Hamiltonian becomes: 

 

 𝐻𝑇𝐵  = � �̂�𝑖𝑗𝑒𝑖𝜑𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ ℎ. 𝑐. (2.13) 

 

For example, to define the Hamiltonian of a benzene ring referring to Fig. 2.3., 

we can construct a matrix in the following form; 

 

 
 

Figure 2.3. Illustration of a benzene ring in a magnetic field. Atomic sites labeled from 

1 to 6 respectively. 
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𝐻𝑇𝐵  = 𝑡

⎝

⎜
⎜
⎛

     0 𝑒𝑖𝜑12 0
       𝑒𝑖𝜑21 0 𝑒𝑖𝜑23

      0 𝑒𝑖𝜑32 0

0 0 𝑒𝑖𝜑16

0 0 0
𝑒𝑖𝜑34 0 0

0 0 𝑒𝑖𝜑43

0 0 0
𝑒𝑖𝜑61 0 0

0 𝑒𝑖𝜑45 0
𝑒𝑖𝜑54 0 𝑒𝑖𝜑56

0 𝑒𝑖𝜑65 0 ⎠

⎟
⎟
⎞

 (2.14) 

 

 

We can use this method for the construction of bigger GQDs with desired 

magnetic fields. 

 

2.3. Atomic Collapse and Coulomb Impurity 

 
The hamiltonian of a hydrogen atom in free space  (Griffiths et al. (2018)) is 

shown by; 

 

 
𝐻 =

𝑝2

2𝑚
−

1
4𝜋𝜀0

𝑒2

𝑟
 (2.15) 

 

Let us consider the potential part of the Hamiltonian which we refer to as 

Coulomb potential. To define atoms with varying nucleus charges, the potential 

simplify to; 

 

 
𝑉(𝑟) = −

1
4𝜋𝜀0

𝑒2

𝑟
→ −

1
4𝜋𝜀0

𝑍𝑒2

𝑟
 (2.16) 

 

To define other atoms in free space, the potential changes to (Shytov et al. 

(2009)); 

 

 ∆𝑝∆𝑟 = ħ 
 

𝐾(𝑟) =
𝑝2

2𝑚
→

ħ2

2𝑚𝑟2 
(2.17) 

 

Then the Hamiltonian becomes in terms of radius; 

 

 
𝐻 =

ħ2

2𝑚𝑟2 −
1

4𝜋𝜀0

𝑍𝑒2

𝑟
 (2.18) 
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As you can see from Eq. (2.18) that the kinetic term prevents an electron to fall 

into the nucleus. Thus, quantum mechanical description requires an infinite amount of 

energy for 𝑟 → 0. High kinetic energy required the relativistic effect and applying 

relativity to the Eq. (2.17); 

 

 
𝐾(𝑟) =

𝑝2

2𝑚
→ 𝑐�𝑝2 + 𝑚𝑒

2𝑐2~𝑐𝑝 →
ħ𝑐
𝑟

 (2.19) 

 

With the last result, the kinetic energy has the same order as the potential 

energy. Thus, we have an opening for an electron to fall into the nucleus. Dirac equation 

for a 1𝑆 state reveal that; 

 

 
𝐸1𝑆1 2⁄ = 𝑚𝑒�1 − �

𝑍𝑒2

ħ𝑐
�

2

 (2.20) 

 

 𝑒2

ħ𝑐
=  𝛼,  𝛼 ≈

1
137 

 (2.21) 

 

Where 𝛼 is the fine structure constant. The energy of the 1S state becomes 

complex when the 𝑍 = 𝛼−1. Further revealed that electrons live up to the critical 

nucleus charge 𝑍𝑐 = 172. The region where 137 <  𝑍 <  𝑍𝑐 is called the subcritical 

regime, and 𝑍 > 172 is called the supercritical regime. As seen in Fig. 1.2., the 

electrons in the supercritical regime interactes with positronic continuum states resulted 

in resonance for a finite lifetime. However, these requirements bring experimental 

challenges. On the other hand, relativistic properties of the charge carriers in Graphene 

might give rise to similar physics of the atomic collapse with lesser energy (Moldovan 

et al. (2016)). Let consider the fine structure of the Graphene as: 

 

 𝛼𝐺 =  
𝑐

𝑣𝐹

𝛼
𝜅

= 300
𝛼
𝜅

≈
300

137𝜅
≈

2.2
𝜅

 (2.22) 

 

𝑣𝐹 = 106  𝑚
𝑠

 is the Fermi velocity, and 𝜅 ≈ 2.5 is the dielectric constant of 

Graphene. To describe the Coulomb potential in Graphene as close to Eq. (2.16), the 
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two-dimensional Dirac-Kepler problem described the electronic states in the vicinity of 

the impurity that radiates the Coulomb charge as (Shytov et al. (2009)): 

 

 
ħ𝑣𝐹 �

0 −𝑖𝜕𝑥 − 𝜕𝑦
−𝑖𝜕𝑥 + 𝜕𝑦 0 � 𝛹 = �𝜀 −

𝑍𝑒2

𝜅𝑟
 � 𝛹 (2.23) 

 

As it can be seen from the above equation that the solution depends on the 

Coulomb potential. We can define a new dimensionless parameter as 𝛽 = 𝑍𝑒2 ħ𝑣𝐹𝜅⁄ , 

where |𝛽| < 1
2
  is equivalent to the subcritical regime and |𝛽| > 1

2
 is equivalent to the 

supercritical regime. We will refer to 𝛽 as coupling constant. To implement the new 

parameter to the Eq. (2.16), Coulomb potential can be written as: 

 

 
𝑉𝐶𝑃  = −ħ𝑣𝐹𝛽 �

𝑐𝑖𝜎
† 𝑐𝑖𝜎

𝑟𝑖𝑖,𝜎

 (2.24) 

 

 

 Where we used 𝑟 as the distance from impurity center to the site 𝑖. Including Eq. 

(2.24) to Eq. (2.14), the total Hamiltonian becomes: 

 
 

𝐻 = � (�̂�𝑖𝑗𝑒𝑖2𝜋𝜑𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ ℎ. 𝑐. ) −ħ𝑣𝐹𝛽 �
𝑐𝑖𝜎

† 𝑐𝑖𝜎

𝑟𝑖𝑖,𝜎

 (2.25) 

 

 

We defined the full Hamiltonian used in the second-quantized form for the TB model. 

 

2.4. Mean-field Hubbard Approximation 
 

 Additionally, we considered spin orientation of pz electrons and onsite spin 

interactions by Hubbard model. To include these effects, we employed mean-field 

approximation to estimate ground state properties in the Hubbard model. We are 

starting with the full many-body Hamiltonian to define the spin-dependent potential as: 
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 𝐻 = � 𝑡𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  
1
2

� 〈𝑖𝜎𝑗𝜎 ′|𝑉|𝑘𝜎 ′′𝑙𝜎 ′′′〉
𝑖,𝑗,𝑘,𝑙
𝜎,𝜎′,

𝜎′′,𝜎′′′

𝑐𝑖𝜎
† 𝑐𝑗𝜎′

† 𝑐𝑘𝜎′′𝑐 𝑙𝜎′′′ 
(2.26) 

  

Here, we used k and l are lattice sites, σ′′ and σ′′′ spin orientations as dummy 

indices for our proof.  

 

 〈𝑖𝜎𝑗𝜎 ′|𝑉|𝑘𝜎 ′′𝑙𝜎 ′′′〉  =  〈𝑖𝑗|𝑉|𝑘𝑙〉〈𝜎|𝜎 ′′〉〈𝜎 ′|𝜎 ′′′〉 

(2.27) 
〈𝜎|𝜎 ′′〉〈𝜎 ′|𝜎 ′′′〉 =  𝛿𝜎𝜎′′𝛿𝜎′𝜎′′′ 

𝐻 = � 𝑡𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  
1
2

� 〈𝑖𝑗|𝑉|𝑘𝑙〉
𝑖,𝑗,𝑘,𝑙,

𝜎,𝜎′

𝑐𝑖𝜎
† 𝑐𝑗𝜎′

† 𝑐𝑘𝜎′𝑐 𝑙𝜎 

 

Since we are interested in the on-site Coulomb interaction, all lattice sites are the 

same; i=j=k=l. The term 〈ij|V|kl〉 = 〈ii|V|ii〉 = U, where U is the on-site Coulomb 

potential. 

 1
2

� 〈𝑖𝑗|𝑉|𝑘𝑙〉
𝑖,𝑗,𝑘,𝑙,𝜎,𝜎′

𝑐𝑖𝜎
† 𝑐𝑗𝜎′

† 𝑐𝑘𝜎′𝑐 𝑙𝜎 =
1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎′

† 𝑐𝑖𝜎′𝑐𝑖𝜎
𝑖,𝜎,𝜎′

 (2.28) 

 

According to Pauli-exclusion principle, σ ≠ σ'. We can also define a 

anticommutation relation as; 

 

 �𝑐𝑖𝜎′𝑐𝑖𝜎� = 0    𝑐𝑖𝜎′𝑐𝑖𝜎 =  −𝑐𝑖𝜎𝑐𝑖𝜎′ (2.29) 

 

Using the anticommutation relation, Eq. 2.28 becomes; 

 

 1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎′

† 𝑐𝑖𝜎′𝑐𝑖𝜎 = 
𝑖,𝜎 ≠𝜎′

−
1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎′

† 𝑐𝑖𝜎𝑐𝑖𝜎′  
𝑖,𝜎 ≠𝜎′

 (2.30) 
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We can also define another anticommutation relation as; 

 

 �𝑐𝑖𝜎′
† 𝑐𝑖𝜎� = 0  𝑐𝑖𝜎′

† 𝑐𝑖𝜎 =  −𝑐𝑖𝜎𝑐𝑖𝜎′
†  (2.31) 

 

Using the anticommutation relation, Eq. 2.30 becomes; 

 

 −
1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎′

† 𝑐𝑖𝜎𝑐𝑖𝜎′ =
𝑖,𝜎 ≠𝜎′

1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎𝑐𝑖𝜎′

† 𝑐𝑖𝜎′  
𝑖,𝜎 ≠𝜎′

 (2.32) 

 

Next, we define the number operator as; 

 

 𝑐𝑖𝜎
† 𝑐𝑖𝜎 =  𝑛𝑖𝜎 𝑐𝑖𝜎′

† 𝑐𝑖𝜎′ =  𝑛𝑖𝜎′ (2.33) 

 

Thus, the Eq. 2.32 becomes; 

 

 1
2

𝑈 � 𝑐𝑖𝜎
† 𝑐𝑖𝜎𝑐𝑖𝜎′

† 𝑐𝑖𝜎′ =  
1
2

𝑈 � 𝑛𝑖𝜎𝑛𝑖𝜎′

𝑖,𝜎 ≠𝜎′𝑖,𝜎 ≠𝜎′
 (2.34) 

 

For σ, σ'. The spin-configurations σ, σ'. can become either ↑ and ↓, or ↓ and ↑, 

respectively. Introducing the spin-configuration to the Eq. 2.34, the exact Hubbard term 

is found. 

 

 1
2

𝑈 � 𝑛𝑖𝜎𝑛𝑖𝜎′

𝑖,𝜎 ≠𝜎′
 →  

1
2

𝑈 �(𝑛𝑖↑𝑛𝑖↓ + 𝑛𝑖↓𝑛𝑖↑) =  𝑈 � 𝑛𝑖↑𝑛𝑖↓
𝑖𝑖

 (2.35) 

 



18 

Thus, Hamiltonian including Hubbard U term becomes; 

 𝐻 = � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  𝑈 � 𝑛𝑖↑𝑛𝑖↓
𝑖

 (2.36) 

 

The next step is introducing mean-field approximation to the Hubbard model. 

We start by deriving the number operators in terms of their averages as; 

 

 𝑛𝑖↑ =  〈𝑛𝑖↑〉 + (𝑛𝑖↑ −  〈𝑛𝑖↑〉)  𝑛𝑖↓ =  〈𝑛𝑖↓〉 + (𝑛𝑖↓ −  〈𝑛𝑖↓〉) (2.37) 

 

Where; 

 ∆𝑛𝑖↑ =  (𝑛𝑖↑ −  〈𝑛𝑖↑〉)  ∆𝑛𝑖↓ =  (𝑛𝑖↓ −  〈𝑛𝑖↓〉) (2.38) 

 

Then the product of the number operators with opposite spins becomes; 

 

 𝑛𝑖↑𝑛𝑖↓ =  [〈𝑛𝑖↑〉 + ∆𝑛𝑖↑ ][〈𝑛𝑖↓〉 + ∆𝑛𝑖↓ ]  

(2.39) 

 = 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 + 〈𝑛𝑖↑〉∆𝑛𝑖↓ + 〈𝑛𝑖↓〉∆𝑛𝑖↑ + ∆𝑛𝑖↑∆𝑛𝑖↓   

 

 ∆𝑛𝑖↑∆𝑛𝑖↓ ≈ 0 

 

 𝑛𝑖↑𝑛𝑖↓ = 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 + 〈𝑛𝑖↑〉∆𝑛𝑖↓ + 〈𝑛𝑖↓〉∆𝑛𝑖↑  

 = 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 + 〈𝑛𝑖↑〉(𝑛𝑖↓ −  〈𝑛𝑖↓〉) + 〈𝑛𝑖↓〉(𝑛𝑖↑ −  〈𝑛𝑖↑〉) 

 = 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 + 〈𝑛𝑖↑〉𝑛𝑖↓ + 〈𝑛𝑖↓〉𝑛𝑖↑ − 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 −  〈𝑛𝑖↓〉〈𝑛𝑖↓〉 

 𝑛𝑖↑𝑛𝑖↓ = 〈𝑛𝑖↑〉𝑛𝑖↓ + 〈𝑛𝑖↓〉𝑛𝑖↑ − 〈𝑛𝑖↑〉〈𝑛𝑖↓〉 

 

The Hamiltonian of mean-field Hubbard becomes; 
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 𝐻𝑀𝐹𝐻  = � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  𝑈 �(〈𝑛𝑖↑〉𝑛𝑖↓ + 〈𝑛𝑖↓〉𝑛𝑖↑ − 〈𝑛𝑖↑〉〈𝑛𝑖↓〉)
𝑖

 (2.40) 

 

Our result quadratic in terms of 𝑐𝑖𝜎
† 𝑐𝑖𝜎, we can proceed by including the 

Hamiltonians of the bulk form; 

 

 𝐻𝑀𝐹𝐻  = � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖,𝑗,𝜎

 →  𝐻𝑀𝐹𝐻
𝐵  = � �̂�𝑖𝑗𝑐𝑖𝜎

† 𝑐𝑗𝜎
𝑖,𝑗,𝜎

 (2.41) 

 

Where �̂�𝑖𝑗 is the hopping parameter of the bulk Graphene. Assuming the spin-

dependent number operators for pristine bulk Graphene; 

 

 〈𝑛𝑖↑〉 =  〈𝑛𝑖↓〉 =  
1
2

 (2.42) 

 

Evaluating the MFH Hamiltonian for a general system; 

 

 

 

 

𝐻𝑀𝐹𝐻  = 

 

𝐻𝑀𝐹𝐻  −  𝐻𝑀𝐹𝐻
𝐵 +  𝐻𝑀𝐹𝐻

𝐵   

= � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  𝑈 �(〈𝑛𝑖↑〉𝑛𝑖↓ + 〈𝑛𝑖↓〉𝑛𝑖↑ − 〈𝑛𝑖↑〉〈𝑛𝑖↓〉)
𝑖

 

− � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+  
𝑈
2

� �𝑛𝑖↓ + 𝑛𝑖↑ −  
1
4�

𝑖

+  � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖,𝑗,𝜎

 

(2.43) 

 

Then we get the final form of the MFH Hamiltonian; 

 

 𝐻𝑀𝐹𝐻  = � �̂�𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖,𝑗,𝜎

+  𝑈 �(〈𝑛𝑖↑〉
𝑖

−
1
2

)𝑛𝑖↓ + (〈𝑛𝑖↓〉 −
1
2

)𝑛𝑖↑ (2.44) 
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 𝑈 is the constant term for adding extra electron on site i, where 𝑈 = 16.522
𝜅′  eV, 

and 𝜅′ = 6 is the effective dielectric constant (Güçlü (2014)). Total Hamiltonian 

including onsite spin interaction is: 

 

 
𝐻 = � �̂�𝑖𝑗𝑒𝑖2𝜋𝜑𝑖𝑗𝑐𝑖𝜎

† 𝑐𝑗𝜎
<𝑖,𝑗>𝜎

 −ħ𝑣𝐹𝛽 �
𝑐𝑖𝜎

† 𝑐𝑖𝜎

𝑟𝑖𝑖,𝜎

 

+ 𝑈 �(〈𝑛𝑖𝜎�〉
𝑖,𝜎

−
1
2

)𝑛𝑖𝜎 

(2.45) 

 

This how can be used for a finite size Graphene with impurities 

 

2.5. Further Details 

 

2.5.1. Magnetic Length 

 
In our calculations, we consider the magnetic length for the motion of a charged 

particle under a magnetic field for comparison to charged impurity problem. Starting 

with the centripetal Newtonian force and Lorentz force; 

 

 𝑚𝑣2

𝑟
= 𝑞𝑣𝐵 (2.46) 

 

Where 𝑞 =  𝑒 𝑐⁄ . Solving the equation for r gives; 

 

 𝑚𝑣𝑐
𝑒𝐵

= 𝑟 (2.47) 
 

The Eq. (2.47) is called the Larmor radius. Let consider the allowed minimum 

distance; according to the uncertainty principle; 

 

 
∆𝑥∆𝑝 ≥  

ħ
2

 (2.48) 
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Let assume that we are leaving the constant numbers out. Momentum can be 

defined as ∆𝑝 =  𝑚𝑣, and ∆𝑥 = 𝑟. Replacing and solving for the momentum in the Eq. 

(2.48); 

 

 
𝑚𝑣 =  

ħ
𝑟

 (2.49) 

 

Applying the Eq. (2.49) to the Larmor radius formula, and solving for radius, we 

get; 

 

 
�ħ𝑐

𝑒𝐵
= 𝑙𝐵 (2.50) 

 

The  𝑙𝐵 is called as the magnetic length. We can simplify further by making 

�ħ𝑐 𝑒⁄  equal to 26 nm. In our work, 𝑙𝐵 is an important length scale that will be 

compared to the size of the GQDs.  

 

2.5.2. Local Density of States of the Impurity Center  
 

Starting with the LDOS as (Polat et al. (2020)): 

 

 𝑁(𝐸, 𝑟)  = �|𝛹𝑛(𝑟)|2𝛿(𝐸 − 𝐸𝑛)
𝑛

 

 
(2.51) 

 

Where 𝛹 is the eigenvector, and 𝐸𝑛 is the eigenvalue of the n’th state. To define 

the LDOS of the impurity center, we used the average of the probability densities of the 

6 central carbon atoms around the charge impurity; 

 

 
|𝛹𝑛(𝑟)|2 =  

1
6

�|𝛹𝑛𝑖(𝑟)|2
6

𝑖

 (2.52) 
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LDOS will help us to monitor the evolution of the atomic collapse effect on the 

energy levels and the R1 state. In the work of Moldovan et al., it was indicated that 

LDOS becomes maximum at the impurity center. Additionally, the resonance states are 

experimentally detectable by measuring LDOS with scanning tunneling spectroscopy 

(Moldovan et al. (2017)). 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSIONS 
 

 

In this section, we studied varying-sized armchair-edged hexagonal GQDs with 

tuning both external magnetic field and impurity charge to understand the atomic 

collapse in magnetic field. The number of atoms in the considered GQDs are 42, 114, 

222, 546, 1626, 3282, 5514, 6162, 7566, 8322, and 10806 to obtain consistent system to 

work of Polat et al. We placed a charged impurity at the center of each structure. To 

identify the evolution of TLBS and R1 state of atomic collapse, the charge is adjusted in 

each calculation. Since we are considering only the R1 state, we acknowledged the 

spectrum used by Polat et al. (Polat et al. (2020)). After we found parallel results to the 

earlier findings, we implemented the magnetic field. We considered the case where the 

magnetic fields are 0, 10, 25, 50, 100, 150, 200, 250 T and compared to the radius of the 

structures in terms of the magnetic length. We also evaluated the probability density 

evolution of the R1 state in the impurity center. Finally, we investigated the atomic 

collapse of Hofstadter's butterflies of GQDs. 

 

3.1. Charged Impurity 
 

We firstly started with the consideration of impurity charge without magnetic 

field. We tested pristine GQDs with varying sizes where the number of the atom and 

radius of the flakes are differ in each structure. Primary calculations are done in TB and 

the results can be seen in Fig. 3.1. 

Atomic collapse calculations of GQDs from small to bigger in terms of radius 

are presented in Fig. 3.1. It is noticeable that energy levels are affected by the impurity 

charge independent from the dot size. As the size of the GQD increases, energy levels 

close to the Fermi level in terms of eigenvalue energy, converged to the Fermi level. 
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Figure 3.1. Energy of the eigenvalues vs Coupling Constant 𝛽 spectrum for a) 42, b)  546, 

c) 1626, and d) 5514 atoms in TB. Vertical dashed red line correspond to the 

location of the critical charge (𝛽𝑐). 

 

 It is shown by Polat et al. that independent of the size of the GQD, TLBSs cross 

the Fermi Level at the same point. As seen in both Figs. 3.1. and 3.2. that atomic 

collapse affected the whole spectrum with including TLBS. Introducing the MFH to the 

TB slightly changed the 𝛽𝑐, but the atomic collapse effect was seen in both methods. 

Additionally, our study is consistent with the work of Polat et al. in TB and MFH 

formalism without a magnetic field. 

We took our starting point referring to both of the results of Polat et al. and 

Moldovan et al. Indicated by the Moldovan et al., atomic collapse can be observable in 

the resonance states of the LDOS of the charged impurity center. It has been noted that 

scanning tunneling spectroscopy is experimental instrumentation that observes the 

LDOS. Also, the LDOS becomes maximum at the impurity center. In short, resonance 

states are measured by experimental techniques by observing the LDOS at the impurity 

center.We considered the LDOS of the impurity center based on the eigenvalues and 

eigenfunctions of the GQDs. We contour plotted the LDOS on top of the spectrum of 

energy and coupling constant, and it can be seen for TB in Fig. 3.3. 
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Figure 3.2. Energy vs Coupling Constant spectrum for a) 42, b) 546, c) 1626, and d) 

5514 atoms in MFH. Vertical dashed red line correspond to the location of 

the 𝛽𝑐. 

 

As it can be seen from Fig. 1.5. that resonance states become more prominent at 

the regime where the impurity charge greater than the 𝛽𝑐 (supercritical). In this thesis, 

we concerned about the first resonance state (R1) which requires relatively lower 

impurity charge than other resonance states. 

 

 

 
 

Figure 3.3. LDOS of the impurity center for a) 42, b) 546, c) 1626, and d) 5514 atoms 

in  TB. 
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As seen in Fig. 3.3. that at an increasing size of the GQD, the R1 resonance state 

becomes more observable at the supercritical regime. However, in the smaller GQDs, 

the maximum of the LDOS followed collapse of TLBS which used in the work of Polat 

et al. Additionaly, TLBS contributes first to R1 state at the supercritical regime. 

Introducing MFH results to the smaller GQDs negligibly changed the LDOS. A 

small shift in the value of the impurity charge is still present in the LDOS of the MFH 

results. Although it is depent on the location of the eigenvalues, magnitude of the LDOS 

of the energy states resembled similarity to the TB results as in Fig. 3.3. 

 

 

 
 

Figure 3.4. LDOS of the impurity center for a) 42, b) 546, c) 1626, and d) 5514 atoms 

in MFH. 

 

3.2 Effect of the External Magnetic field to Atomic Collapse 
 

In this section, we introduce the external magnetic field to the charged impurity 

problem. To compare results between varying-sized GQDs, we used magnetic length 

(lB) to relate to the radius of the GQDs (RGQD). It is known that energy states become 

Landau levels (LLs) in a uniform magnetic field. Moldovan et al. showed that atomic 

collapse in a uniform magnetic field resulted in resonance states formed from discrete 

LLs rather than a continuum form as in Fig. 1.5. Referring to the work of Polat et al. 

and Moldovan et al., we stressed the TLBS and formation of R1 state under magnetic 

field while adjusting the GQD size.Without the impurity charge, it is expected the LLs 
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that are resided close to 0 eV forms when the lB < RGQD. Using the magnetic length 

formula, we noted Table 1 below that the required magnetic field for the lB = RGQD. 

 

 

Number of the Atoms Flake Radius (nm) Expected Magnetic Field for 

Landau Level Formation (T) 

42 0.568 2095.32 

114 0.994 684.19 

222 1.42 335.25 

546 2.272 130.96 

1626 3.976 42.76 

3282 5.677 20.98 

5514 7.384 12.4 

6162 7.81 11.08 

7566 8.66 9.01 

8322 9.09 8.18 

10806 10.366 6.29 

 

Table 1. The number of atoms, radius, and Expected Landau Level Formation according 

to the magnetic length formula equivalence for the considered structures. 

 

We tested several sizes of the lB where the lB smaller and larger than the size of 

the radius. Introducing the magnetic field to the charged impurity, altered the crossing 

point of the Fermi level to each GQD differently. As we discussed earlier, increasing 

the size of the GQD, converges the energy levels to the Fermi level including TLBS.  

As seen in Fig. 3.5. that TLBS has lower energy than Fermi level in increasing GQD 

size and magnetic field. In other words, the 𝛽𝑐 required for TLBS to become lower than 

the Fermi level decreased when the radius of the GQD and the strength of the magnetic 

field increased. Moreover, GQD with increasing radius in a uniform magnetic field 

showed similarity to the LL formation at E = 0 eV for bulk Graphene. 
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Figure 3.5. LDOS of the impurity center of the 5514 atom GQD in a external magnetic 

field of a) 0 T, b) 10 T, c) 25T, and d) 250 T in TB. 

 

In Fig. 3.5., that we employed a uniform magnetic field for GQDs with finite 

radius. In the study of Moldovan et al., they used bulk Graphene, and they applied a 

magnetic field much smaller than what we have used in the calculations. We related the 

reason for discrete LLs to become more prominent to magnetic length via magnetic 

field (Eq. 2.50). It can be assumed theoretically that the radius of bulk Graphene is 

infinite. No magnetic field case leads to no magnetic length, and according to Eq. 2.50. 

that magnetic length can be assumed as infinite. However, introducing a magnetic field 

immediately resulted in a finite magnetic length, that is smaller than the radius of 

Graphene where the LLs are noticeable. GQDs have a finite radius, where we compare 

the magnetic field via the lB to identify the evolution of the notability of LLs in charged 

impurity. In Figs. 3.5. and 3.6, we used a GQD with the radius of 7.38 nm and B of 0, 

10, 25, and 250 T where lB are ∞, 8.22, 5.20, and 3.00 nm, respectively. For B = 0 and 

10 T cases, lB > RGQD, however, for B = 25 T case where lB < RGQD, the form of the R1 

state is negligibly changed in both TB and MFH methods in Figs. 3.5. and 3.6. For both 

B = 10 and 25 T cases, separation of LLs has similarity to the B = 2 T case of Fig. 1.5. 
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Figure 3.6. LDOS of the impurity center of the 5514 atom GQD in a external magnetic  

field of a) 0 T, b) 10 T, c) 25T, and d) 250 T in MFH. 

 

Employing MFH, we identified similar results as we did without a magnetic 

field, which is the collapsing of the lower energy required to the slightly greater charge 

at the supercritical regime where 𝛽 > 1. Meanwhile, the magnetic field resulted in 

TLBS decrease below the Fermi level at the subcritical regime. Additionally, at higher 

magnetic fields inter-level spacing between LLs is noticeable (Figs. 3.5. (d) and 3.6. 

(d)). Moreover, the form of the R1 state significantly changed to the other situations. In 

a way, B = 250 T for this GQD has a similarity to the B = 12 T case of the bulk 

Graphene. After the LDOS of the impurity center for varying magnetic fields and GQDs 

was calculated, we compared our results for GQDs with varying sizes. As you can see 

in Fig. 3.7., we plotted the location of the R1 state formations which originated from 

TLBS at the subcritical regime and following the location of the maximum of the LDOS 

at the spectrum of eigenvalue energy and impurity charge. 

As seen in Fig. 1.4. that Polat et al. indicated the 𝛽𝑐 of the GQDs with varying 

sizes by a blue dashed line. We employed the same reasoning for the no magnetic field 

case by red dashed line. When a magnetic field is introduced, the 𝛽𝑐 requires TLBS to 

become lower than the Fermi levels changed. Additionally, the shift on the 𝛽𝑐 depends 

on the size of the GQD. We found that the multiple 𝛽𝑐 of the GQDs with varying sizes 

in a uniform magnetic field are different from each other. On the other hand, we found 

another relation with consideration of the lB. 
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Figure 3.7. The plot of the R1 resonance states for varying GQD for decreasing lB 

(increasing B) in TB. Red lines referring to lB < RGQD and Blue lines 

referring to lB > RGQD. Vertical dashed red line correspond to the crossing of 

the TLBS. lB and RGQD in units of nm. 

 

In the Figs. 3.7. and 3.8., we plotted the evolution of the R1 state with blue lines 

when lB > RGQD and red lines when lB < RGQD. At B = 0 T, TLBS of all GQDs meets at a 

certain point where we refer it as the crossing point (CP). In B = 0 T case, the CP has E 

= 0 and 𝛽 = 0.5. Implementing magnetic field, where lB > RGQD still meets at a certain 

point while the energy and the charge of the CP are different from the B = 0 T case.  

On the other hand, TLBS started to diverge from the CP when lB < RGQD. In 

Figs. 3.7. and 3.8., we can see TLBS significantly diverged from the CP when lB is 

highly smaller than the RGQD. In extreme magnetic fields for a GQD in which the lB is 

much smaller than the RGQD, resulted to not only TLBS significantly diverged from the 

CP but also we refer to our previous findings. In this case, we can see the formation of 

the R1 formed from inter-level spaced LLs. Additionally, a small impurity charge is 

enough for TLBS to become lower than the Fermi level. 
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Figure 3.8. The plot of the R1 resonance states for varying GQD for decreasing lB 

(increasing B) in MFH. Red lines referring to lB < RGQD and Blue lines 

referring to lB > RGQD. Vertical dashed red line correspond to the crossing of 

the TLBS. lB and RGQD in units of nm. 

 

As you can see in Fig. 3.8., we Implemented MFH calculations to the GQDs. 

The MFH confirmed the TB findings. Although the slight shift in critical charge is still 

present, physical results remained the same. 

Furthermore, we investigated the probability density of the evolution of TLBS to 

the R1 state in varying critical regimes. We presented our results for lB > RGQD in 3.9., 

for lB < RGQD in 3.10 in TB. Lastly, we provided MFH results in Fig. 3.11. We also 

noted that a different color scale is preferred than what we have used in the LDOS plots. 

Due to the high difference in color scale among the results, each figure is set to the 

maximum probability density of individual cases. 

In Fig. 3.9. (a), TLBS is plotted without magnetic field and atomic collapse 

effects. In this case, the difference of probability density distribution around all atoms is 

more minimal in comparison to the other cases. The probability density of atomic 
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collapse effect without magnetic field is plotted in Fig. 3.9. (b,c, and d). In a subcritical 

regime (𝛽 = 0.4), the probability density of charged impurity is localized around the 

impurity center (Fig. 3.9. (b)). However,  the probability density of TLBS is observable 

in the remaining atomic sites, also. At critical charge (𝛽 = 0.5, in Fig. 3.9. (c)), a more 

localized probability density at the impurity center is noticeable than in the subcritical 

case. This localization has more magnitude in terms of probability density, and have 

more probability density difference to the remaining atomic sites. In Fig. 3.9. (d),  the 

probability density of the R1 state at 𝛽 = 1 without a magnetic field is plotted. A 

significant localization at the impurity center is present. The magnitude of the 

probability density is greatly increased, and the difference of the probability density to 

the remaining atomic sites is increased.  

The lB > RGQD for B = 10 T case is plotted in Figs. 3.9. (e, f, g, and h). In Fig. 

3.9. (e), TLBS is plotted with a 10 T magnetic field and without an impurity charge. In 

this case, the difference of probability density distribution around all atoms is more 

minimal in comparison to the cases with increasing impurity charge. Although the 

magnitude of the probability density is slightly different from the case without a 

magnetic field, magnetic field effects are minimal to TLBS.  In a subcritical regime 

(𝛽 = 0.4), the probability density of charged impurity is localized around the impurity 

center (Fig. 3.9. (f)). In this situation, we noted from Figs. 3.7. and 3.8. that magnetic 

field lowered the critical requirement for TLBS becomes lower than the Fermi Level. 

Thus, the magnetic field has increased the localization of the probability density at the 

impurity center. However,  the probability density of TLBS is observable in the 

remaining atomic sites. 

At 𝛽 = 0.5 with B = 10 T as in Fig. 3.9. (g), a more localized probability density 

at the impurity center is noticeable than in 𝛽 = 0.4. This localization has more 

magnitude in terms of probability density, and have more probability density difference 

to the remaining atomic sites. In Fig. 3.9. (h),  the probability density of the R1 state at 

𝛽 = 1 with a  B = 10 T is plotted. A significant localization at the impurity center is 

present. The magnitude of the probability density is greatly increased, and the 

difference of the probability density to the remaining atomic sites is increased. 
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Figure 3.9. The probability density of the evolution of the R1 States for 5514 atom 

GQD where lB > RGQD. 
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The lB < RGQD for B = 25 T case is plotted in Figs. 3.10. (a, b, and h) In Fig. 3.9. 

(a), TLBS is plotted with a 25 T magnetic field and without an impurity charge. In this 

case, the difference of probability density distribution around all atoms is more minimal 

in comparison to the cases with increasing impurity charge. Although the magnitude of 

the probability density is slightly different from the cases with B = 0 and 10 T, magnetic 

field effects are minimal to TLBS.  At 𝛽 = 0.5 as in Fig. 3.10. (b), a localized 

probability density at the impurity center is noticeable. In Fig. 3.10. (c),  the probability 

density of the R1 state at 𝛽 = 1 with a  B = 25 T is plotted. A significant localization at 

the impurity center is present. The magnitude of the probability density is greatly 

increased, and the difference of the probability density to the remaining atomic sites is 

increased. Although in B = 25 T case lB < RGQD, magnetic fields effects negligibly 

changed in comparison to B = 10 T. 

The lB < RGQD for B = 250 T case is plotted in Figs. 3.10. (d, e, and f) In Fig. 3.9. 

(d), TLBS is plotted with a 25 T magnetic field and without an impurity charge. In this 

case, the difference of probability density distribution around all atoms is more minimal 

in comparison to the cases with increasing impurity charge. Although the magnitude of 

the probability density is slightly different from the case with B = 0 and 10 T, magnetic 

field effects are minimal to TLBS.  At 𝛽 = 0.5 as in Fig. 3.10. (e), a localized 

probability density at the impurity center is noticeable. However, the probability density 

at the remaining atomic sites has differed from other magnetic field situations. Thus, the 

probability density is noticeable close to the impurity center, and it is noticeable at the 

edge of the GQD.  In Fig. 3.10. (f),  the probability density of the R1 state at 𝛽 = 1 with 

a  B = 250 T is plotted. A significant localization at the impurity center is present. The 

magnitude of the probability density is greatly increased, and the difference of the 

probability density to the remaining atomic sites is increased as in B = 0, 10, and 25 T. 

Although the R1 state formation is expected to be formed in inter-level spaced LLs, the 

robustness of the atomic collapse is present in the probability density. 
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Figure 3.10. The probability density of the evolution of the R1 States for 5514 atom 

GQD where lB < RGQD. 

 

We employed MFH in the probability density calculations, as seen in Fig. 3.11. 

MFH resulted in significantly closer to TB results in terms of the evolution of the 

probability density. In both methods, the increase of the impurity charge resulted in 

localized probability density at the impurity center. Also, the difference of probability 

density between the impurity center and remaining sites increased with incrementing the 

impurity charge. One notable difference between both MFH and TB methods is a slight 

difference at the maximum probability density.   
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Figure 3.11. The probability density of the evolution of the R1 States for 5514 atom 

GQD for lB is larger (a, b, c) and smaller (d, e, f) than the RGQD with MFH. 

 

3.3. Atomic Collapse of Hofstader's Butterfly 

 

In this section, we investigated the influence of the varying magnetic fields and a 

static impurity charge on the eigenenergies of the GQDs. The energy and magnetic field 

spectrum for the Pierels phase (Eq. 2.13) considered where the phase is in between 0 

and 1 are investigated. We calculated the spectrum for GQDs in varying sizes where the  
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Figure 3.12. Energy vs magnetic flux spectrum of Hofstadter's butterflies for the a) 366, 

b) 546, c) 762 atom GQDs. 
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spectrum corresponds to Hofstadter's butterfly (HB). We implemented a static 

charge impurity to the HBs and studied the LDOS of the impurity center on top of the 

spectrum of the HBs as you can see in Figs 3.13. and 3.14. 

We plotted the HBs for varying GQDs as in Fig. 3.12. Increasing the number of 

atoms in GQDs negligibly altered the characteristics of the HBs.  We calculated the 

HBs without an atomic collapse effect in Fig. 3.12. The spectrum is filled with more 

energy levels at bigger GQDs. As you can see the involvement of the energy levels into 

the inner butterflies increased by the size of the GQDs. For a GQD with RGQD = 7.384 

nm and the number of atoms is 5514, the finite size effect resulted in an unclear 

spectrum of the HBs. Implementation of the LDOS calculations to the HBs (as we used 

in Figs. 3.3., 3.4., 3.5., and 3.6.) resulted in figures that are free from finite-size effect of 

the energy levels (as you can see in Figs. 3.13. and 3.14.). Apart from the number of 

atoms of the GQD, the LDOS figure (Fig. 3.13.) negligibly filled with the energy levels 

as in Fig. 3.12. 

In earlier sections, we investigated the effect of charged impurity on the energy 

levels and the LDOS of the impurity center. Applied static impurity charge to the HBs, 

has notable differences at the whole spectrum. We considered the subcritical regime at 

Figs. 3.13. (a and b) and 3.14. (a and b), and the supercritical regime at Figs. 3.13. (c 

and d) and 3.14. (c and d). The result for the LDOS of the impurity center of HB 

without impurity charge is seen in Fig. 3.13. (a). It is seen that the LDOS is distributed 

symmetrically over the HB spectrum. We can also note that the LDOS of the impurity 

center of a GQD is almost similar to the HB of the bulk Graphene (Rhim et al. (2012)). 

At the subcritical regime (beta = 0.4 in Fig. 3.13. (b)), it is seen that the energy levels 

and the LDOS affected by the atomic collapse. Additionally, the symmetrical 

distribution of the LDOS showed a difference to the 𝛽 = 0 case.  

HB in the supercritical regime (at 𝛽 = 0.8),  It is notable that the atomic collapse 

effect is increased further (Fig. 3.13. (c)). Additionally, we noted a new distributional 

characteristic of the LDOS of the impurity center. Although the eigenenergies of the 

HBs are decreased with the presence of the charged impurity, LDOS appeared to be 

increased at the lower half of the HBs. On the other hand, LDOS at the upper half of the 

HBs is decreased. In beta = 1.2 (Fig. 3.13. (d)),  the LDOS significantly became more 

prominent at the lower half of the HB.   
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Figure 3.13. LDOS of the impurity center of Hofstadter's butterflies for the a) 𝛽 = 0, b) 

𝛽 = 0.4, c) 𝛽 = 0.8, and d) 𝛽 = 1.2 of 5514 atom GQD in TB. 

 

Furthermore, we are concerned about the atomic collapse effect on HBs with 

MFH, as seen Fig. 3.14. Calculations in the MFH method resulted in similar 

characteristics as found in the TB method. Symmetrical distribution of the LDOS of the 

impurity center in HB is found at beta =0. Including an impurity, charge affected the 

energy levels and LDOS of the impurity center. Increasing the impurity charge resulted 

in increased LDOS at the lower half of the HB while decreased LDOS at the upper half 

of the HB. 

As seen in Fig. 3.14. (a), the on-site potential due to the spin-spin interaction 

resulted in a small energy gap at the vicinity of the Fermi level for 𝛽 = 0. However, it is 

seen from Figs. 3.14. (b, c, and d), increasing the impurity charge alleviated the gap. 
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Figure 3.14. LDOS of the impurity center of Hofstadter's butterflies for the a) 𝛽 = 0, b) 

𝛽 = 0.4, c) 𝛽 = 0.8, and d) 𝛽 = 1.2 of 5514 atom GQD in MFH. 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

In this thesis, we employed TB and MFH methods to investigated the atomic 

collapse of GQDs in a magnetic field. We started by confirming earlier results. 

Applying a perpendicular magnetic field to GQD decreased the 𝛽𝑐 of each structure, and 

we found that the decrease is dependent on the dot size. It was showed that TLBS of 

GQDs had a similar critical charge that crosses the Fermi level. Although, the critical 

charge changes in a magnetic field, we found that TLBS converged to each other at a 

certain eigenenergy and impurity charge. We found that TLBS diverged the point when 

the lB < RGQD. It is shown that the R1 state formed in a series of LLs in the magnetic 

field. We show that LL formation and the increase of the inter-level space of the LLs 

improved when the lB < RGQD. Additionally, we showed the robustness of the atomic 

collapse effect of the impurity center at probability density calculations. We found that 

the magnetic field negligibly affected the evolution of the probability density of the R1 

state. Lastly, we studied that atomic collapse has an impact on the energy spectrum and 

LDOS of the Hofstadter’s butterflies. The change on the spectrum and the LDOS 

improved further when the impurity charge increases.  
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