
MEDIUM-AWARE INFERENCE FOR WIRELESS
SENSOR NETWORKS

A Thesis Submitted to
the Graduate School of
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ABSTRACT

MEDIUM-AWARE INFERENCE FOR WIRELESS SENSOR

NETWORKS

In wireless sensor networks, multilevel quantization is necessary in order to find

a compromise between small power consumption of sensors and good detection perfor-

mance at the fusion center (FC) and generally, distance measures like J-divergence (JD)

are used for quantization. This thesis proposes an approach based on maximizing the av-

erage output entropy of the sensors under both hypotheses named as maximum average

entropy (MAE) method which is used in a Neyman-Pearson criterion based distributed

detection scheme in order to detect a point source.

Firstly, a deterministic signal with isotropic propagation model was considered.

The receiver operating characteristics with multilevel MAE quantization of sensor out-

puts was evaluated both when the sensor outputs are available error-free at the FC and

when they are transmitted using non-coherent communication via Rayleigh fading chan-

nels. Also sequential probability ratio tests of Wald were performed. Then, the case of

spatially correlated sensors with a Gaussian isotropic event source was investigated. The

computational requirements in evaluating multidimensional cumulative densities necessi-

tated a rectangular grid model of sensor deployment and block-diagonal approximations

of covariance matrix related to the event signal at the sensors without losing generality.

The simulation studies show the success of MAE in the deterministic signal model

and at six-level quantization its performance approaches that of non-quantized data trans-

mission. In the sequential tests, again MAE was more successful compared to MJD result-

ing in smaller average sample numbers. It was observed that spatial correlation degrades

system performance and MJD performs better in hypothesis tests based on change in vari-

ance.
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ÖZET

TELSİZ ALGIÇ AĞLARI İÇİN ORTAM GÖZETEREK ÇIKARSAMA

Telsiz algıç ağlarında algıçların düşük güç harcaması ile füzyon merkezindeki iyi

sezim başarımı arasında bir ödünleşme bulmak için çok seviyeli nicemleme gereklidir ve

genellikle J-ıraksaması gibi uzaklık ölçütleri nicemlemede kullanılmaktadır. Bu tez ikili

hipotez testindeki her bir hipotezin geçerli olduğu durumda algıçların çıkış entropisini

enbüyük yapmaya dayalı, enbüyük ortalama entropi (MAE) yöntemi olarak adlandırılan

ve Neyman-Pearson kriterine dayalı bir dağıtık sezim projesinde noktasal bir kaynağı

sezmek için kullanılan bir yaklaşım önermektedir.

İlk olarak, yönbağımsız yayılım modeli ile gerekirci bir sinyal ele alınmıştır. Al-

gıç çıktılarının MAE nicemlemesi ile alıcı çalışma karakteristiği, algıç çıktılarının hatasız

olarak füzyon merkezinde bulunduğu ve evre-uyumsuz iletişim kullanılarak Rayleigh

sönümlemeli kanal üzerinden yollandığı her iki durum için elde edilmiştir. Wald’ın sıralı

olasılık oranı testi de uygulanmıştır. Sonra Gauss bir yönbağımsız olay kaynağı ile uzam-

sal ilintili algıçların olduğu durum incelenmiştir. Çok boyutlu birikimli yoğunlukların

hesaplanmasındaki işlemsel gereksinimler, algıç yayılımı için dikdörtgensel bir ağ mod-

eli ve genel geçerlilik kaybedilmeksizin algıçlardaki olay sinyaliyle ilgili kovaryans ma-

trisinin blok-köşegenel yaklaşıklıklarını gerektirmiştir.

Benzetim çalışmaları MAE’nin gerekirci sinyal modelindeki başarısını göster-

mektedir ve altı-seviyeli nicemleme ile başarımı nicemlenmemiş veri iletimininkine yak-

laşmaktadır. Sıralı testlerde yine MAE, MJD’ye kıyasla daha başarılı olmuş ve daha

küçük ortalama örnek oranı sonucuna ulaşmıştır. Uzamsal ilintinin sistem başarımını

kötüleştirdiği ve MJD’nin varyansta değişime dayalı hipotez testlerinde daha başarılı

olduğu gözlemlenmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Wireless sensor networks (WSNs) have come into the spotlight recently due to a

major development in the Micro-Electro-Mechanical Systems (MEMS) (Hill et al., 2004;

Ragam and Sahebraoji, 2019). The recent development of WSNs has made this field a

research focus on intensive researches. The researchers are widely using it in monitor-

ing and characterizing large physical environments and for tracing various environmental

or physical conditions such as temperature, pressure, wind, and humidity. Apart from

these, WSNs have vast fields to be applied in, such as harmful environmental explo-

ration, wildlife monitoring, target tracking and smart cities established based on Internet

of Things (IoT) (Rajput and Kumaravelu, 2019; Muduli et al., 2018; Wahdan et al., 2015;

Zanella et al., 2014). Typically a WSN uses a huge number of comparatively inexpensive

and low-energy sensors to collect observations and pre-process the observations. These

sensors are generally deployed in the environment. Owing to strict energy and band-

width restrictions, observations of the sensors are frequently needed to be quantized be-

fore transmitting them to a fusion center (FC) where a global decision is made (Al-Jarrah

et al., 2018; Ciuonzo et al., 2012). A very important aspect of the detection procedures

in WSNs that discriminates them from classical detection problems is their distributive

nature which necessitates solving additional coupled optimization problems.

The pioneering research on distributed detection (DD) was made by Tenney and

Sandell (Tenney and Sandell, 1981) and Chair and Varshney (Chair and Varshney, 1986a).

In (Tenney and Sandell, 1981), a detection problem consisting of two sensors and one FC

with a fixed fusion rule was considered to show that the optimum local decision rule is

the likelihood ratio test (LRT) under the Bayesian criterion. However, individual thresh-

olds are coupled. Later, in (Chair and Varshney, 1986a), it was shown that the optimum

fusion rule at the FC for multiple observations is also an LRT both under the Neyman-

1



Pearson (NP) and the Bayesian criteria. Determining local decision rules is significantly

more complicated. The optimality of LRT for each local decision rule was considered in

(Tsitsiklis, 1993) and (Viswanathan and Varshney, 1997), by assuming conditional inde-

pendence of the observations under each hypothesis. But because of the coupling between

the LRT thresholds at the local detectors among themselves and with the one at the FC

solving the global optimization problem is mathematically complex though not intractable

(Tsitsiklis and Athans, 1985). This complexity suggested determining the thresholds of

the local detectors independently, that is, the threshold of each sensor is optimized for

fixed decision rules at the other detectors and the FC (Veeravalli and Varshney, 2012).

The adopted conditional independence assumption in those works produces only locally

optimal decisions, but even they become prohibitively complex for large sensor networks

and simpler solutions are needed. Additionally, the gain obtained by having more sen-

sor nodes outperforms the gain of getting more information from each sensor in WSNs

(Veeravalli and Varshney, 2012).

Most of the previously mentioned WSN applications considered the field source

where Signal-to-Noise Ratio (SNR) is known in which the probability of detection and

probability of false alarm, is known to the FC. On the other hand, in many scenarios,

the point source has been considered where the emitted signal is assumed to be unknown

and decays as a function of the distance from the target. These works deal with targets

that emit an isotropic signal (Niu and Varshney, 2007; Niu and Varshney, 2006; Ciuonzo

and Rossi, 2017). In (Niu and Varshney, 2007), the detection performances, namely

either probability of false alarm and probability of detection have been derived by several

methods in order to simplify its computations. Differently in (Niu and Varshney, 2006) a

generalized LRT (GLRT) detector and the Cramer-Rao Lower Bound (CRLB) are derived;

however, GLRT needs a grid search on both the emitted power from the target and the

location domains. Therefore, simpler solutions are needed. In (Ciuonzo and Rossi, 2017),

one-bit DD of an uncooperative target is considered which assumes that both the target

location and the emitted signal are unknown at FC. In that work, a generalized- locally

optimum detector (G-LOD) test with nuisance parameters has been proposed for a fixed

value of local sensor thresholds, moreover different types of fusion rules are developed

according to the detection framework. However, these works have considered binary data

transmissions and the effect of Rayleigh fading was not considered.
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Traditional DD systems were developed by assuming an error-free communication

between the local detectors and the FC (Viswanathan and Varshney, 1997). Applying this

theory to WSNs leads to a detection performance loss in case of erroneous channels.

Fusion rules for DD systems considering fading channels were first discussed in (Chen

et al., 2002) and later in (Chen et al., 2004; Chen and Willett, 2005; Niu et al., 2006)

mainly for a binary hypothesis testing whereas M-ary hypothesis testing was considered

in (Kotecha et al., 2005; Liu et al., 2011; Maleki and Vosoughi, 2012; Hajibabaei and

Vosoughi, 2014) for binary data transmissions. Many times the sensor observations are

spatially correlated, however, the works considering local and global decision rules have

not considered this until now, to the best of our knowledge.

1.2. Objectives of the Thesis

In this thesis, we will propose a novel method for quantizing the sensor outputs

in order to suggest a compromise between the low power consumption of the wireless

sensors and better global detection performance. Specifically, we aim

• to give new insights for DD of point sources using WSNs,

• to propose information theoretic method(s) in quantization of intermediate results

(local observations or logarithms of the corresponding local likelihood ratios),

• to apply this in both of the cases when the sensor outputs are available error-free at

the FC or sent over a wireless channel,

• comparison with rival information theoretic methods,

• applying the proposed information theoretic method(s) for sequential detection of

point sources in WSN,

• accounting for sensor correlations, i.e., introducing location-awareness to the de-

veloped method.

3



1.3. Organization of the Thesis

We start our discussion in Chapter 2 by introducing preliminaries of the DD, se-

quential detection, composite hypothesis testing and energy detector.

In Chapter 3, we formulate the parallel DD problem of a point source including

sensor to FC transmission over a Rayleigh fading channel and various fusion rules. Also,

the proposed average entropy based quantization method, the Jd based method and their

relation are considered.

In Chapter 4, we have generalized the classical sequential probability ratio test

(SPRT) to different types of data transmissions, using MAE and MJD quantization method.

In Chapter 5, a spatial correlation model for the sensor observations is proposed

using a stochastic signal propagation.

We give the conclusions of the thesis and suggestions for future research in Chap-

ter 6.
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CHAPTER 2

PRELIMINARIES

WSNs are in a form of collective sensor nodes that must provide cooperation in

performing particular functions. Specifically, one of the prominent applications of WSNs

is performing event detection by utilizing the ability of these nodes to sense, process

data, and communicate with each other. In several WSN applications such as fire detec-

tion and target detection, the aim is to evaluate and estimate the generated signal from a

point source by collecting the observations from the individual sensor nodes. Differently,

in some applications such as seismic monitoring and temperature monitoring where the

physical phenomenon is dispersed out over the sensor field, the source can be modeled as

a field source. In this thesis, we are interested in the DD of point sources with the aid of

a WSN where we possibly exploit the spatial correlation among the sensors. So, under-

standing the basics of DD is crucial and in this chapter, we firstly give the basics of DD.

Afterwards, we give the fundamentals of composite hypothesis testing since in the con-

sidered DD problem composite hypothesis tests are required to make at local detectors.

Subsequently, we mention the basics of sequential detection. Then, in the last part of the

chapter, we shortly give the essentials of energy detection which is the applied method of

detection in the thesis when spatial correlation of the sensor observations are taken into

account.

2.1. Distributed Detection

For the following part of the thesis, we will consider the DD problem for binary

hypothesis testing using NP detection formulation and Bayesian formulation.
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2.1.1. Distributed Neyman-Pearson Detection

The DD problem includes the design of the detection rule at the local detectors and

at the FC. Firstly, we will consider a detection problem by assuming that the local detector

performances are known and they are given by the variables (pfa1 , pd1) and (pfa2 , pd2).

Moreover, we consider that the local detectors transmit their binary decisions to the FC

over perfect reporting channels as shown in Figure 2.1. In the following, we will design

the detection rules for given local binary decisions u1 and u2, for the first and second

detectors, respectively. We can write the likelihood functions under hypothesis H0 and

H1 for the local decision vector u = [u1 u2], which represent the observations at FC,

respectively as follows:

FC

Sensor 2

Sensor 1 u1

u2
u0

pfa1 , pd1

pfa2 , pd2

Figure 2.1. Distributed detection with two sensors.

p(u|H0) = pu1
fa1
(1− pfa1)

1−u1pu2
fa2
(1− pfa2)

1−u2 (2.1)

and

p(u|H1) = pu1
d1
(1− pd1)

1−u1pu2
d2(1− pd2)

1−u2 , (2.2)

assuming pdi > 0.5 and pfai < 0.5 for i = 1, 2.

Note that for the two sensor we have the vector[u1 u2]
T which gives 4 possible outputs

with their probabilities under H0 as follows: [0 0]T with (1− pfa1)(1− pfa2), [0 1]T with

(1 − pfa1)(pfa2), [1 0]T with (pfa1)(1 − pfa2) and [1 1]T with (pfa1)(pfa2). These 4 cases

construct p(u|H0). In the same way, we can write p(u|H1). We give them in Table 2.1

also. From (2.1) and (2.2) we can obtain the likelihood ratio (LR), Λ(u), as:

Λ(u) =
p(u|H1)

p(u|H0)
=

(1− pd1)(1− pd2)

(1− pfa1)(1− pfa2)

[
pd1(1− pfa1)

pfa1(1− pd1)

]u1
[
pd2(1− pfa2)

pfa2(1− pd2)

]u2

. (2.3)
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Taking the natural logarithm of (2.3) gives:

log(Λ(u)) = u1 log

(
pd1(1− pfa1)

pfa1(1− pd1)

)
+ u2 log

(
pd2(1− pfa2)

pfa2(1− pd2)

)
+

(1− pd1)(1− pd2)

(1− pfa1)(1− pfa2)
(2.4)

where log(·) denotes the natural logarithm. With more simplification of (2.4) we can

re-write it as :

log(Λ(u)) = w1u1 + w2u2 + w0, (2.5)

where w1 = log
(

pd1 (1−pfa1 )

pfa1 (1−pd1 )

)
> 0, w2 = log

(
pd2 (1−pfa2 )

pfa2 (1−pd2 )

)
> 0 and w0 =

(1−pd1 )(1−pd2 )

(1−pfa1 )(1−pfa2 )
.

For this case, we consider an NP type detection at the FC using binary decisions

from the two sensors (u1 and u2) in order to make a global decision u0 ≡ {0(H0), 1(H1)}:

u0NP
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1 if log(Λ(u)) > η

H1 w.p. α if log(Λ(u)) = η

H0 if log(Λ(u)) < η

(2.6)

where w.p. stands for "with probability". For this case, we can see that the log(Λ(y))

takes only 4-values as shown in Table 2.1 which means that a randomized test is needed

to achieve all points on the receiver operating characteristics (ROC) curve. Referring to

Figure 2.2 and (2.6) the resulting NP test can be given as:

u0NP
=

⎧⎨
⎩ 1 if log(Λ(u)) > w0

1 w.p. α =
pFC
fa −α1

1−α1
if log(Λ(u)) = w0

(2.7)

for α1 ≤ pFCfa < 1,

u0NP
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if log(Λ(u)) > w1 + w0

1 w.p. α =
pFC
fa −α2

α1−α2
if log(Λ(u)) = w1 + w0

0 if log(Λ(u)) = w0

(2.8)

for α2 ≤ pFCfa < α1,
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u0NP
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if log(Λ(u)) > w2 + w0

1 w.p. α =
pFC
fa −α3

α2−α3
if log(Λ(u)) = w2 + w0

0 if log(Λ(u)) < w2 + w0

(2.9)

for α3 ≤ pFCfa < α2 and

u0NP
=

⎧⎨
⎩ 0 if log(Λ(u)) < w1 + w2 + w0

1 w.p. α =
pFC
fa

α3
if log(Λ(u)) = w1 + w2 + w0

(2.10)

for 0 ≤ pFCfa < α3, α1, α2 and α3 can be given as:

α1 = 1− (1− pfa1)(1− pfa2),

α2 = 1− (1− pfa1)(1− pfa2)− pfa1(1− pfa2),

α3 = 1− (1− pfa1)(1− pfa2) − pfa1(1− pfa2)− (1− pfa2)pfa1 .

p0(log( (u)) > )

1

1

2

3

w0 w1 + w0 w2 + w0
w1 + w2 + w0

Figure 2.2. Probability that the LR is greater than the threshold, η, under H0 in the DD

problem consisting of 2 sensors.
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Table 2.1. The possible outputs for the two sensors and their corresponding probabilities.

u1 u2 log(Λ(u)) p(u|H0) p(u|H1)
0 0 w0 (1− pfa1)(1− pfa2) (1− pd1)(1− pd2)
0 1 w2 + w0 (1− pfa1)pfa2 (1− pd1)pd2
1 0 w1 + w0 pfa1(1− pfa2) pd1(1− pd2)
1 1 w1 + w2 + w0 pfa1pfa2 pd1pd2

pD

pFA

1

1

A

B

C

(1, 1)

(0, 0)

w2 > w1

Figure 2.3. ROC curve for DD problem consisting of 2 sensors.

2.1.2. Distributed Bayesian Detection

In the subsection 2.1.1, we considered a DD problem which supposes that the

local detectors are already designed and we made a design for the FC whereas in this

subsection we will design the whole system including the decision rules at each sensor

and the fusion rule at the FC.

2.1.2.1. Derivation of the Bayesian Local Decision Rules when All

Decision Rules are Inter-Dependent

In this subsection, we present a Bayesian approach for a DD problem consisting

of K-sensors connected to the FC through perfect reporting channels to perform a binary
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Table 2.2. Monotonic global fusion rules at the FC according to binary decisions from

two sensors.

u1 u2

u0
(0,0) A B C (1,1)

0 0 0 0 0 0 1

0 1 0 0 1 1 1

1 0 0 0 0 1 1

1 1 0 1 1 1 1

global decision u0, as shown in Figure 2.4. Let y = [y1, y2, ..., yK ]
T represent the ob-

servations vector and u = [u1, u2, ..., uK ]
T represent the local decision vector. We aim

to find the fusion rule which minimizes the Bayesian risk � given by (2.11). The prior

probabilities p(Hj) and the decision costs cij are needed to solve this problem; cij denotes

the cost to decide Hi when Hj is true where i, j = 0, 1.

H0/H1

Sensor 1 Sensor 2 Sensor K

FC

u0

y1 y2 yK

u1 u2 uK

Figure 2.4. Parallel topology of DD with fusion center.

� = c00p(H0) (1− pFA) + c10 p(H0) pFA + c01 p(H1) (1− pD) + c11 p(H1) pD

= c00 p(H0) + c01 p(H1) + (c10 − c00) p(H0) pFA − (c01 − c11) p(H1) pD

(2.11)
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where pFA and pD represent the probability of false alarm and probability of detection at

the FC which are given respectively by:

pFA =
∑
u

p(u0 = 1|u) p(u|H0) (2.12)

and

pD =
∑
u

p(u0 = 1|u) p(u|H1). (2.13)

We can simplify the Bayesian risk in (2.11) as

� = c+ cFA pFA − cD pD, (2.14)

where

c = c00 p(H0) + c01 p(H1),

cFA = (c10 − c00) p(H0) > 0,

cD = (c01 − c11) p(H1) > 0,

c10 > c00, c01 > c11.

By substituting the global probability expression of false alarm pFA from (2.12) and the

global probability of detection pD from (2.13) in (2.14) we can rewrite it as in [7, sec. 2],

(Hoballah and Varshney, 1989)

� = c+ cFA
∑
u

p(u0 = 1|u) p(u|H0)− cD
∑
u

p(u0 = 1|u) p(u|H1), (2.15)

where
∑

u represents the summation over all possible values of u which corresponds to

2K possibilities. The end result for the local decision rule at sensor m is obtained as in

(2.16) and the derivations are given in Appendix A.

λ(ym)
H1

≷
H0

cFA
∑

um

∫
ym A(um)

[∏K
k=1,k �=m p(uk|yk)

]
p(ym|ym, H0))dy

cD
∑

um

∫
ym A(um)

[∏K
k=1,k �=m p(uk|yk)

]
p(ym|ym, H1)dy

. (2.16)

where

um = [u1, u2, ..., um−1, um+1, ...uK ]
T , is the local decision vector excluding the mth de-

cision with K − 1 elements,

umj = [u1, u2, ..., um−1, um = j, um+1, ...uK ]
T ,

ym = [y1, y2, ..., ym−1, ym+1, ...yK ]
T , observation vector excluding the mth observation
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with K − 1 elements, j = 0, 1, and

A(um) = (p (u0 = 1|um1)− p (u0 = 1|um0)).

The LRT in (2.16), depends on the global decision A(um), and also on the decisions from

the other sensors p(uk|yk) and even it’s a function of the observations for the same sensor

p(ym|ym, Hj), j = 0, 1, which makes it data dependent. For this reason, it is called as

non-conventional or data dependent LRT (Viswanathan and Varshney, 1997).

2.1.2.2. Conditionally Independent Local Observations

If the observations of each detector are independent of other detectors then p(ym|-
ym, Hj) can be written as p(ym|Hj) which is an independent decision rule; the decision

rule will not be data-dependent as in the previous section 2.1.2.1 and it will be given

similar to (Varshney, 2012) as:

λ(ym)
H1

≶
H0

cFA
∑

um A(um)
∏K

k=1,k �=m

∫
ym p(uk|yk)p(yK |H0)dyk

cD
∑

um A(um)
∏K

k=1,k �=m

∫
ym p(uk|yk)]p(yK |H1)dyk

, (2.17)

the right-hand side which is a constant, and thus the local decision rule becomes a standard

LRT with a constant threshold.

2.1.2.3. Fusion Rule at the FC

In a similar manner to what we have described in section 2.1.2.1 we can drive the

fusion rule at the FC. Let u∗ be a one out of 2K possible values of the local decision u,

i.e. if we have two sensors u∗ could be one possibility from the four possible values like

[1 0]. Then, we can express (2.15) as follows:

� = c+ cFA p(u0 = 1|u∗) p(u∗|H0)− cD p(u0 = 1|u∗) p(u∗|H1)

+cFA
∑
u�=u∗

p(u0 = 1|u) p(u|H0)− cD
∑
u�=u∗

p(u0 = 1|u) p(u|H1).
(2.18)

The term p(u0 = 1|u∗) in (2.18) represents the probability of global decision at the FC in

favor of H1 for a particular local decision u∗.
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Rearranging the previous equation and taking the global decision p(u0 = 1|u∗) as a

common factor gives:

� = c+ cFA
∑
u�=u∗

p(u0 = 1|u) p(u|H0)− cD
∑
u�=u∗

p(u0 = 1|u) p(u|H1)

+p(u0 = 1|u∗) [cFA p(u∗|H0)− cD p(u∗|H1)] .

(2.19)

In a similar manner to what we have performed for minimizing the average risk at the local

decisions, we will apply it here for minimizing the average risk at the global decision.

From (2.19), we can minimize the average risk by assigning the value 1 to p(u0 =

1|u∗) if the term cFAp(u
∗|H0)−cDp(u

∗|H1) < 0 and assigning the value 0 if cFAp(u
∗|H0)−

cDp(u
∗|H1) > 0, (Viswanathan and Varshney, 1997), which yields:

cFA p(u∗|H0)dy
H1

≶
H0

cD p(u∗|H1)dy. (2.20)

We have 2K inequalities, which represent the number of possibilities for u∗. Where

p(u∗|H0) =

∫
y

p(u∗|y) p(y|H0)dy (2.21)

for the continuous observations. As we mentioned previously, if the local detectors are

independent of each other then we can rewrite (2.20) as

cFA

∫
y

(
K∏
k=1

p(u∗
k|yk)

)
p(y|H0)dy

H1

≶
H0

cD

∫
y

(
K∏
k=1

p(u∗
k|yk)

)
p(y|H1)dy. (2.22)

In Appendix B, we consider a simple example consisting of two sensors to show how we

can design a DD problem.

2.1.2.4. Incorporation of Binary Symmetric Channels Between

Sensors and FC

In this section, we consider accounting of a simplified realistic channel model

for transmission of sensor data to the FC, namely binary symmetric channel (BSC). In

this model, a bit transmitted from sensor k arrives at the FC without error with probability

(1−bk) and correspondingly inverted with probability bk. As shown in Figure 2.5, we will
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consider a parallel topology consisting of two sensors and one FC. Assume the observa-

tions are independently and identically distributed (i.i.d.) and the BSCs are characterized

by p(û1 = 0|u1 = 0) = 1 − bk, p(û1 = 1|u1 = 0) = bk, p(û1 = 1|u1 = 1) = 1 − bk and

p(û1 = 0|u1 = 0) = bk as shown in Figure 2.6.

Sensor 1

H0/H1

Sensor 2

y1 y2

BSC BSC

u1 u2

FC

u0

û1 û2

Figure 2.5. DD problem with BSC

From (2.17) the likelihood ratio at the first sensor is

λ(y1)
H1

≷
H0

cFA
∑

u2

∫
y2
A(u2)p(u2|y2) p(y2|, H0)dy2

cD
∑

u2

∫
y2
A(u2)p(u2|y2) p(y2|H1)dy2

(2.23)

where A(u2) for the case of an ideal channel depends directly on the local decisions u1

and u2 as follows

A(u2) = p(u0 = 1|u1 = 1, u2)− p(u0 = 1|u1 = 0, u2). (2.24)

On the other hand, using the imperfect channels BSCs affects the decision at the

FC which depends on the values of û1 and û2 instead of u1 and u2. Using the law of total

probability, A(u2) is given as

A(u2) =
∑
û1,û2

p(u0 = 1|û1, û2) p(û1, û2|u1 = 1, u2)−p(u0 = 1|û1, û2) p(û1, û2|u1 = 0, u2).

(2.25)
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1 bk

1 bk

bk

bk

0 0

1 �

Figure 2.6. Binary symmetric channel

Let ηijk = p(u0 = i|û1 = j, û2 = k) where i, j, k = 0, 1, then

A(u2) =
∑
û1,û2

η1û1,û2 p(û2|u2) [p(û1|u1 = 1)− p(û1|u1 = 0)] (2.26)

where i, j, k = 0, 1.

We can obtain the LRT at the second sensor in a similar fashion as follows:

λ(ym)
H1

≷
H0

cFA
∑

u1

∫
y1
A(u1)p(u1|y1) p(y1|, H0)dy1

cD
∑

u1

∫
y1
A(u1)p(u1|y1) p(y1|H1)dy1

(2.27)

where

A(u1) = p(u0 = 1|u2 = 1, u1)− p(u0 = 1|u2 = 0, u1)

=
∑
û1,û2

p(u0 = 1|û1, û2) p(û1, û2|u2 = 1, u1)− p(u0 = 1|û1, û2) p(û1, û2|u2 = 0, u1).

(2.28)

Substituting ηijk in (2.28) gives:

A(u1) =
∑
û1,û2

η1û1,û2 p(û1|u1) [p(û2|u2 = 1)− p(û2|u2 = 0)] . (2.29)

The fusion rule at the FC for the BSCs can be obtained in a similar manner to what

is derived in section 2.1.2.3. Let u∗ be a particular outcome for û1 and û2 values. Then

the decision rule will be given as

cFA p(u∗|H0)
H1

≶
H0

cD p(u∗|H1), (2.30)

where
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p(u∗|H0) =
∑
u

p(u∗|u) p(u|H0)dy

=
∑
u

∫
y

p(u∗|u) p(u|y) p(y|H0)dy

=
∑
u1,u2

∫
y1

∫
y2

p(û1|u1) p(û2|u2)︸ ︷︷ ︸ p(u1|y1) p(u2|y2) p(y1|H0) p(y2|H0)dy1dy2.

(2.31)

and

p(u∗|H1) =
∑
u1,u2

∫
y1

∫
y2

p(û1|u1) p(û2|u2)︸ ︷︷ ︸ p(u1|y1) p(u2|y2) p(y1|H1) p(y2|H1)dy1dy2.

(2.32)

The underbraced terms in the previous equations correspond to the channel between the

local sensors and the FC.

2.1.2.5. Identical Local Detectors

In this section, we will consider a special case of interest that happens when the

local detectors are identical. The probability of false alarm and the probability of detec-

tion at each sensor are the same, p̃fa and p̃d respectively, which is only possible in the case

of field sources (Yu and Ephremides, 2006; Tsitsiklis, 1988). We assume that each sensor

performs T binary observations, yk(t) = 0 or 1, k = 1, ..., K and t = 1, ..., T , addition-

ally, the observations at each sensor and across sensors follow an i.i.d. distribution. The

number of ones, nk out of T observations at each sensor is a sufficient statistic to make its

local decision, which obeys a binomial pdf under both hypotheses H0 and H1 respectively

which given as:

p[nk|H0] =

(
T

nk

)
(p̃fa)

nk (1− p̃fa)
T−nk (2.33)

and

p[nk|H1] =

(
T

nk

)
(p̃d)

nk (1− p̃d)
T−nk . (2.34)

From Bayes rule

p[nk|H1]

p[nk|H0]

H1

≷
H0

p(H0)

p(H1)
. (2.35)
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Substituting (2.33) and (2.34) in (2.36) gives:

(
T
nk

)
(p̃d)

nk(1− p̃d)
T−nk(

T
nk

)
(p̃fa)nk(1− p̃fa)T−nk

H1

≷
H0

p[H0]

p[H1]
. (2.36)

Taking the natural logarithm and rearranging the terms in (2.36) yields the local threshold

β at each sensor as follows:

nk ≥
log p(H0)

p(H1)
+ T log 1−p̃fa

1−p̃d

log p̃d(1−p̃fa)
p̃fa(1−p̃d)

= β. (2.37)

The local optimal fusion rule at each sensor is given as

�k =

⎧⎨
⎩ H1 if nk ≥ β

H0 if nk < β.
(2.38)

The final decision at the FC is performed depending on the binary local decisions [�1, �2 ,

..., �K ] at K sensors, which also follows an i.i.d. distribution. Thus the total number of

ones at the FC, L =
∑K

k=1 �k, obey also a binomial pdf under both hypothesis H0 and H1

respectively as follows:

p[L|H0] =

(
K

L

)
pLfa(1− pfa)

K−L (2.39)

and

p[L|H1] =

(
K

L

)
pLd (1− pd)

K−L, (2.40)

where pfa, pd represent the probability of false alarm and probability of detection at each

local detector, which is given respectively as follows:

pfa = p[�k = 1|H0] = p[nk ≥ β|H0] =
T∑

nk=�β�

(
T
nk

)
(p̃fa)

nk (1− p̃fa)
T−nk , (2.41)

and
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pd = p[�k = 1|H1] = p[nk ≥ β|H1] =
T∑

nk=�β�

(
T
nk

)
(p̃d)

nk (1− p̃d)
T−nk (2.42)

�β� denotes the ceiling function which maps β to the least integer greater than or equal to

β. Again, using Bayes rule

p[L|H1]

p[L|H0]

H1

≷
H0

p(H0)

p(H1)
(2.43)

we will write the threshold at the global detector as

η =
log p(H0)

p(H1)
+K log 1−pfa

1−pd

log pd(1−pfa)
pfa(1−pd)

. (2.44)

The final decision rule will be as follows:

Ĥ =

⎧⎨
⎩ H1 if b ≥ η

H0 if b < η.
(2.45)

The overall false alarm and detection probabilities are given by

pFA = p[L ≥ η|H0] =
K∑

L=�η�

(
K
L

)
pLfa (1− pfa)

K−L, (2.46)

pD = p[L ≥ η|H1] =
K∑

L=�η�

(
K
L

)
pLd (1− pd)

K−L. (2.47)

In our previous discussions we considered the case of one-bit decision but also it

is possible to perform quantized M -bit quantity (qk for sk, qk ∈ {0, 1, ..., 2M − 1}), 1 ≤
M ≤ T ) at each sensor. Then, the FC makes the last decision based on the quantized

information from the K-sensors {q1, q2, ..., qK}. In (Zhang et al., 2002) some optimal

quantization algorithm was developed where they supposed that the number of 1′s out of

T observations {n1, n2, ..., nT} is a sufficient statistic, so it is sufficient to quantize nk into

an M-bit quantity qk at sk and send it to the FC. Therefore, the quantization algorithm is

a mapping of nk ∈ {0, 1, ..., T} to qk ∈ {0, 1, ..., 2M − 1} for k = 1, ..., K.

All sensor nodes apply identical quantization algorithms because the system parameters

are the same for all the nodes. For binary hypothesis testing based on the k quantized

18



quantities {q1, q2, ..., qk}, the decision has been taken as follows:

Ĥ = H1 if p[H1|q1, ...qk] ≥ p[H0|q1, ...qk]. The optimal decision rule at the

control center is given by

Ĥ =

⎧⎨
⎩ H1 if

p[q1,...qk|H1]
p[q1,...qk|H0]

≥ p[H0]
p[H1]

H0 if
p[q1,...qk|H1]
p[q1,...qk|H0]

< p[H0]
p[H1]

.
(2.48)

2.2. Sequential Detection

In the classical theory of hypothesis testing, the number of observations is treated

as constant. Many approaches such as the NP approach and Bayesian approach can be

employed in a fixed sample size (FSS) detection. On the other hand, the sequential test

depends on the outcome of the observation process and the test thresholds, therefore, the

number of observations is not predetermined, but a random value. For some experiments,

a decision can be made by taking a small number of observations, while for others, the

process of making observations is extended before making a decision. The main two

approaches of designing the sequential tests are the Bayesian sequential test and SPRT

which are presented next.

2.2.1. Bayesian Sequential Test

Bayesian sequential test expresses the hypothesis testing problem as an optimal

stopping problem where the prior probabilities are assumed to be known and there is a

cost of c units for each observation. The cost of deciding Hi is true when Hj is present is

denoted as cij for i, j = 0, 1. The Bayes sequential test takes samples y1, ..., yK until Λ(y)

falls outside the interval (π̄, π) and then it decides on H0 or H1, depending on whether

Λ(y) falls below π or above π̄.

Sequential decision rule (φ, δ) for the likelihood ratio can be given in terms of two deci-

sion statistics, φ and δ, as follows:

φn(y) =

⎧⎨
⎩ 0 if π < Λ(y) < π̄

1 otherwise,
(2.49)
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and

δn(y) =

⎧⎨
⎩ 1 if Λ(y) ≥ π̄

0 if Λ(y) ≥ π,
(2.50)

where

π̄ =
γu
k

1− γu
k

p(H1)

p(H0)
, (2.51)

π =
γl
k

1− γl
m

p(H1)

p(H0)
, (2.52)

and γu
k , γl

k are the upper and lower thresholds defined for the posterior probability (Levy,

2008,Poor; 2013). The thresholds can be found by using the backward induction method,

which proceeds backward in time, from the end of a situation or problem, to decide a

series of optimal actions, i.e. by finding the threshold at step 20 in Figure 2.7 we can

proceed to find the optimal thresholds at any step (DeGroot, 2005; Ferguson, 2014). Fig-

ure 2.8 is an example to illustrate the effect of the sample cost on the upper and lower

thresholds for the Bayesian sequential test. The simulation has been performed by con-

sidering Bayesian costs c01 = 1, c10 = 2 and c11 = c00 = 0, for two different value of the

sample cost c = 0.3 and c = 0.03 as shown in Figure 2.7 and 2.8 respectively, whereas

the likelihood functions are given below:

p(y|H0) =

(
1√
2π

)
exp

(
(ym + 1)2

2

)
, (2.53)

p(y|H1) =

(
1√
2π

)
exp

(
(ym − 1)2

2

)
. (2.54)

We can notice in Figures 2.7 and 2.8 that the distance between the upper and lower thresh-

olds decreases by increasing the sample cost which gives the sequential test a higher op-

portunity to exceed one of the two thresholds and take the final decision with less number

of observations.

20



Observation Number

0 5 10 15 20 25

T
h
r
e
s
h
o
ld

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

¯

Figure 2.7. The thresholds for the Bayesian sequential test with a sample cost c=0.03.

2.2.2. Sequential Probability Ratio Test

This approach aims to minimize the expected number of observations, as well as

to satisfy the required probability of detection and probability of false alarm under the two

hypotheses Hj , for j = 0, 1. The optimal solution for this problem is known as Wald’s

SPRT (Wald and Wolfowitz, 1948). For developing SPRT, consider the problem of the

binary hypothesis testing H0 versus H1 and let p(yi|Hj) denote the probability density

function (pdf) of the random variable yi, i = 1, 2, ..., K, which represents the observation

at each local sensor. The observations at each sensor node and across sensor nodes are

assumed to be i.i.d. conditioned on hypothesis Hj for j = 0, 1. Each local detector

transmits its observation to the FC where the final decision is made. SPRT(η0, η1) for

testing H1 versus H0 is defined by two positive constants η0 and η1 (η0 < 1 < η1), which

are chosen to achieve specific value of detection probability, where

pd � η1pfa (2.55)

and

1− pfa �
1

η0
(pm). (2.56)

From (2.55) and (2.69) we can prove that by using the sequential detection we

can achieve a very high pd near to 1 and a very low pfa near to 0 by increasing the number
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Figure 2.8. The thresholds for the Bayesian sequential test with a sample cost c=0.3.

of observations as follows:

let η1 =
A
B

and η0 =
1−A
1−B

where A,B ∈ [0, 1]. Then we can re-write (2.55) as

pfa ≤ B

A
pd ≤ B

A
(2.57)

and (2.69) as

1− pd ≤ 1− A

1− B
(1− pfa) ≤ 1− A

1− B
, (2.58)

by adding (2.57) and (2.59) we can find

pfa + (1− pd) ≤ 1− A+ B, (2.59)

from this equation, we can see that it is possible to achieve a specific probability of error

by choosing the specific value for A and B.

At each phase of testing, the likelihood ratio function Λ(y) is computed and com-

pared to the thresholds η0 and η1. We can characterize the performance of an SPRT in

terms of the ASN and operating characteristic (OC) functions; they are discussed below

(Kowalski, 1971; Levy, 2008).

A. Average Sample Number of the SPRT
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Assume that K represents the number of observations needed to terminate the se-

quential test, and E(K|Hj) represents the expected value of K under hypothesis

Hj , for j = 0, 1, and it is defined as the ASN which is given as follows:

E(K|H1) ≈
pm log( pm

1−pfa
) + (1− pm) log(

1−pm

pfa
)

DKL(p(y|H1)||p(y|H0))
, (2.60)

E(K|H0) ≈
(1− pfa) log(

pm

1−pfa
) + (pfa) log(

1−pm

pfa
)

−DKL(p(y|H0)||p(y|H1))
, (2.61)

where

DKL(f(y)||g(y)) =
∫

f(y) log

(
f(y)

g(y)

)
dy (2.62)

represents the Kullback-Leibler divergence between two pdfs f(·) and g(·).

B. The OC function of the SPRT

The OC function, L(θ), for SPRT(η0, η1) can be defined as the probability of termi-

nating the sequential test by accepting hypothesis H0 when θ is the actual value of

the parameter. OC function is important in cases where the exact knowledge of the

parameter(s) of the distribution function is unknown. An approximate formula for

OC is given by

L(θ) =
Bh(θ) − 1

η
h(θ)
1 − η

h(θ)
0

(2.63)

where h(θ) is non-zero and unique solution for the following equation,

∫ ∞

−∞

[
p(y|θ1)
p(y|θ0)

]h(θ)
p(y|θ)dy = 1, (2.64)

when y is a continuous random variable and

∑
y

[
p(y|θ1)
p(y|θ0)

]h(θ)
p(y|θ) = 1 (2.65)

when y is a discrete random variable. From (2.64) and (2.65) , it is clear that

h(θ0) = 1 and h(θ1) = −1. Hence, it follows from (2.63) that for η0 and η1, we

have L(θ0) = 1− pfa and L(θ1) = pm.
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2.3. Composite Hypothesis Testing

The simple hypothesis testing assumes full knowledge of the likelihoods under hy-

potheses but in practical problems, the pdf may not be known completely. For example,

the strength of the received signal in a mobile communication system may not be known

exactly due to shadowing effects and channel fading. The variance of noise in a radar

receiver may fluctuate due to interference or jamming. The received signal amplitudes in

target detection may not be known in advance. We will express the unknown parameter

vector θj under hypothesis Hj as p(y|Hj;θj), j = 0, 1. We will start our discussion by

considering a one-sided parameter test with unknown signal amplitude A > 0 as follows.

Case 1: Consider a composite binary hypothesis testing problem with unknown

signal amplitude, A > 0 in additive white Gaussian noise (AWGN)

H0 : yk = εk,

versus

H1 : yk = A+ εk,

(2.66)

where yk denotes an i.i.d. observation under hypothesis Hj , j = 0, 1. εk denotes AWGN

with variance σ2
N and mean zero where k = 1, ..., K represents the number of observa-

tions. We will design a NP detector that yields the maximum probability of detection pd

for any value of the probability of false alarm pfa and for any value of A. This test is

called a uniformly most powerful (UMP) test; it refers to the test which gives the maxi-

mum detection probability (in statistics pd is called as the power of a test) for any value

of A > 0 (Kay, 1993). The NP detector will be designed as if we know the value of A

and then we will manipulate it in a way making the test not dependent on the unknown

parameter A as follows

p(y|H1, A)

p(y|H0)
=

(
1√
2πσ2

N

)K

exp
(

−∑K
k=1(yk−A)2

2σ2
N

)
(

1√
2πσ2

N

)K

exp
(−∑K

k=1 y
2
k

2σ2
N

) H1

≷
H0

η. (2.67)

Simplifying of (2.67) results in
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K∑
k=1

yk
H1

≷
H0

τ, (2.68)

where τ = K
2
A +

σ2
N

A
log η and A > 0. The summation of the observations yk is the

sufficient statistic for this test.

The observations under H0 follow a Gaussian distribution with zero mean and σ2
N/K

variance. We can determine τ from the false alarm constraint

pfa = Qfunc

(
τ√
σ2
N/K

)
, (2.69)

then

τ =
√
KσNQ

−1
func(pfa), (2.70)

which is independent of A; where Qfunc(·) represents the complimentary cumulative dis-

tribution function for standard Gaussian random variable. Maximum pd for any value of

A > 0 is given as:

pd = 1−Qfunc

(
KA− τ√

KσN

)
. (2.71)

The inequality in (2.68) will be inverted if the A < 0. Unfortunately, UMP tests rarely

exist. If, for instance, A may take any value, −∞ < A < ∞, then we will obtain different

tests for the positive A and the negative A which makes the test fail and consequently, we

will not be able to decide whether to choose H0 or H1. For a UMP to exist the parameter

test must be one-sided. Thus, two-sided testing problems never produce UMP tests but

the one-sided problem may.

Based on the previous discussion, we can manipulate the test and solve it without

dependence on the unknown parameter as a special case. In the next section, we will

consider two major approaches to composite hypothesis testing; the Bayesian approach

and the generalized LRT .
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2.3.1. Bayesian Approach

The Bayesian approach considers the unknown parameters θj as a random variable

and assigns a prior pdf to it, in order to obtain likelihood functions that are independent

of the unknown parameters.

The optimal NP detector with the Bayesian approach is given (Kay, 1993) as

Λ(y) =

∫
p(y|H1;θ1)p(θ1)dθ1∫
p(y|H0;θ0)p(θ0)dθ0

H1

≷
H0

η, (2.72)

where θj is a vector of the unknown parameters and the integrals are multidimensional

with dimension corresponding to the ones of θj , j = 0, 1. The resulting integrals in (2.72)

give an LRT which does not include unknown parameters. Even though the Bayesian

approach gives an optimal decision rule, in general it suffers from some weakness such as

it is difficult to assume the prior probability in many applications. Moreover the averaging

concerning the prior probabilities may not be possible to find in a closed-form.

From our discussions in Case 1, we conclude that a one-sided test may produce a

UMP test whereas a two-sided test never produces a UMP test. In the following example,

we will use the Bayesian approach for a two-sided test.

Case 2: In this example, we will consider the binary hypothesis testing in (2.66)

where the unknown signal amplitude, A, has a Gaussian pdf with mean zero and variance

σ2
A denoted as A ∼ N (0, σ2

A) and it is independent of the noise εk; the symbol "∼" stands

for "distributed according to". So, the conditional pdf under H0 is known whereas the

conditional pdf under H1 is given by

p(y|H1, A) =

(
1√
2πσ2

)K

exp

(
−∑K

k=1(yk − A)2

2σ2
N

)
. (2.73)
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But

p(y|H1) =

∫ ∞

−∞

(
1√
2πσ2

N

)K

exp

(
−∑K

k=1(yk − A)2

2σ2
N

)
1√
2πσ2

N

exp

(
− A2

2σ2
A

)
dA

=

(
1√
2πσ2

N

)K
⎛
⎝ 1√

1 +
Kσ2

A

σ2
N

⎞
⎠ exp

(
−∑K

k=1 y
2
k

2σ2
N

)
exp

⎛
⎜⎝
(∑K

k=1 yk

)2
2σ2

N(K +
σ2
N

σ2
A
)

⎞
⎟⎠

(2.74)

and

p(y|H0) =

(
1√
2πσ2

N

)K

exp

(
−∑K

k=1 y
2
k

2σ2
N

)
. (2.75)

Substituting θ1 = A in (2.72) we can write the optimal NP detector with Bayesian

approach as

Λ(y) =

∫ ∞

−∞

(
1

2πσ2
N

)−K
2

exp

(
−∑K

k=1(yk − A)2

2σ2
N

)
1

2πσ2
A

−1
2

exp

(
− A2

2σ2
A

)
dA

(
1√
2πσ2

N

)K

exp
(−∑K

k=1 y
2
k

2σ2
N

) H1

≷
H0

η.

(2.76)

Evaluating the integral in the numerator and performing further simplifications we can

write (2.76) as

Λ(y) =
1√

1 +
K σ2

A

σ2
N

exp

⎡
⎢⎣
(∑K

k=1 yk

)2
2σ2

N

(
K +

σ2
N

σ2
A

)
⎤
⎥⎦ H1

≷
H0

η. (2.77)

The likelihood ratio in (2.77) depends only on the observations and known parameters.

Taking the natural logarithm of (2.77) gives

(
K∑
k=1

yk

)2
H1

≷
H0

2σ2
N

[
K +

σ2
N

σ2
A

]
ln

(
η

√
1 +

Kσ2
A

σ2
N

)
(2.78)

or ∣∣∣∣∣
K∑
k=1

yk

∣∣∣∣∣ H1

≷
H0

τ (2.79)

where τ =
(
2σ2

N

[
K +

σ2
N

σ2
A

]
log
(
η
√

1 +
Kσ2

A

σ2
N

))1/2
. The decision statistics pfa and pd are

found respectively as
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pfa = p

(∣∣∣∣∣
K∑
k=1

yk

∣∣∣∣∣ > τ |H0

)
= 2Qfunc

(
τ√
Kσ2

N

)
(2.80)

and

pd = Qfunc

(
KA+ τ

σN

√
K

)
+Qfunc

(
τ −KA

σN

√
K

)
, (2.81)

where τ =
√
KσNQ

−1
func

(
pfa
2

)
.

2.3.2. Generalized Likelihood Ratio Test

The GLRT uses the ML estimates (MLEs) to replace the unknown parameters.

GLRT does not consider an optimal decision rule but it is used widely because it has

a less restrictive assumption and is easy to implement. GLRT does not treat unknown

parameters as random variables but it estimates them using MLE. The LRT is given as:

p(y|H1, θ̂1)

p(y|H0, θ̂0)

H1

≷
H0

η (2.82)

where θ̂j represents the MLE of θj and then p(y|Hj, θ̂j) = argmax
θj

p(y|Hj,θj), j = 0, 1.

We can write the GLRT also in the following form:

argmax
θ1

p(y|H1,θ1)

argmax
θ0

p(y|H0,θ0)

H1

≷
H0

η. (2.83)

This detector is not used in the thesis.

2.4. Energy Detector

In this section, we will illustrate the energy detector for a binary hypothesis testing

problem consisting of a group of K sensors and one FC which cooperate to detect the

existence of a point source. The hypothesis testing at each sensor node can be described

as
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H0 : yk = εk,

versus

H1 : yk = sk + εk,

(2.84)

where yk denotes the observation at the kth sensor and εk denotes AWGN with variance

σ2
N and zero mean. sk denotes the received signal which obeys a Gaussian distribution

with zero mean and variance σ2
s , i.e. yk ∼ N (0, σ2

N) under H0 and yk ∼ N (0, σ2
s + σ2

N)

under H1, where {yk, k = 1, 2, ..., K} are i.i.d.. Using the NP detector the decision will

be in favor of hypothesis H1 if

Λ(y) =

1

(2π(σ2
s+σ2

N))
K
2
exp
(
−

∑K
k=1 yk

2(σ2
s+σ2

N)

)
1

(2πσ2
N)

K
2
exp
(
−

∑K
k=1 yi
2σ2

N

) H1

≷
H0

η, (2.85)

or equivalently

Λ(y) =
(

σ2
N

σ2
s + σ2

N

)K
2

exp

(
1

2

(
K∑
k=1

y2k

)[
1

σ2
N

− 1

σ2
s + σ2

N

])
H1

≷
H0

η, (2.86)

which simplifies to

exp

(
1

2

(
K∑
k=1

y2k

)[
1

σ2
N

− 1

σ2
s + σ2

N

])
H1

≷
H0

η

(
σ2
s + σ2

N

σ2
N

)K
2

. (2.87)

By taking the natural logarithm of (2.87)

K∑
k=1

y2k
H1

≷
H0

η̃, (2.88)

where

η̃ = 2σ2
N

[
1 +

σ2
N

σ2
s

]
log

(
η

[
1 +

σ2
s

σ2
N

]K
2

)
. (2.89)

Then, we find the probability of false alarm pfa as

pfa = p

{
K∑
k=1

y2k > η̃|H0

}
. (2.90)
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We can normalize the Gaussian random variable yk in (2.90) by dividing both sides of

the inequality over σ2
N to get a sum of squared normalized Gaussian random variable,∑K

k=1

(
yk
σN

)2
which represents a chi-square distribution with K degrees of freedom.

pfa = p

{
K∑
k=1

(
yk
σN

)2

>
η̃

σ2
N

|H0

}
. (2.91)

Then pfa and pd can be written in terms of the incomplete Gamma function (Γinc(·))
respectively as

pfa = 1− Γinc

(
η̃

2σ2
,
K

2

)
(2.92)

and

pd = 1− Γinc

(
η̃

2(σ2
N + σ2

s)
,
K

2

)
. (2.93)

The relationship between (2.92) and (2.93) can be represented as a ROC curve, as shown

in Figure 2.9. The black curve is obtained at SNR= σ2
s

σ2
N
= 1 with K = 3 observations. For

the same number of observations, we can extend the region of achievable (pfa, pd) pairs

by increasing the value of SNR to
σ2
s

σ2
N
= 4 as shown in the red curve. We can see also

that the ROC performance can be increased by increasing the number of observations to

K = 6 as shown by the blue curve.
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Figure 2.9. ROC curve for the energy detector
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CHAPTER 3

MAXIMUM AVERAGE ENTROPY-BASED

QUANTIZATION OF LOCAL OBSERVATIONS FOR

DISTRIBUTED DETECTION

3.1. Introduction

In WSNs, there are strict energy and bandwidth restrictions. Because of this,

observations of the sensors are frequently needed to be quantized before transmitting them

to a FC in an effort to find a compromise between low power consumption of the wireless

sensors and good global detection performance. So, in this chapter, we will consider the

problem of how the sensor outputs should be quantized.

Optimum quantization levels in the sense of information theoretic criteria for DD

systems were presented in (Poor and Thomas, 1977; Poor, 1988; Lee and Chao, 1989;

Warren and Willett, 1999). In (Poor and Thomas, 1977), the quantization based on Ali-

Silvey distances between two simple hypotheses were investigated. After that, in (Poor,

1983; Poor, 1988), the divergence was proposed as a distortion measure by considering a

class of f-divergence measures which shows that the loss in divergence is quadratic with

the quantization step size. In (Lee and Chao, 1989; Warren and Willett, 1999), the au-

thors considered that each local detector transmits a multiple-bit decision to the FC. The

solution for partitioning the local decision space was derived by maximizing the distance

between the mean values of the quantized hypotheses. It was shown that the global de-

cision performance increases monotonically by increasing the number of partitions at the

individual detector. This method is locally optimum in the sense of JD, but it does not

necessarily yield a globally optimum solution. Even when only four quantization levels

are considered, the solution is given by complicated analytic expressions explaining the

functional relationships between the detection probability and the false alarm probability

of all detectors and their derivatives. In those works, it was assumed that all local sensors
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are identical NP detectors observing the same SNR.

In (Altay and Delic, 2016), in order to perform optimum quantization in the sense

of mean-error, deflection criterion (DC) and Chernoff information (CI) was defined for

DD systems consisting of one FC and multiple sensors by using Bayesian detection crite-

rion. DC and CI pose a nonlinear and non-convex problem, which mostly has more than

one extreme. These kinds of optimization criteria are suitable for the case of known SNR

where the probability of detection and probability of false alarm is known for each local

detector.

Inspiring from quantization of signals using the Maximum Output Entropy (MOE)

in (Messerschmitt, 1971), we propose an entropy based method by maximizing the aver-

age entropy of observations under both hypotheses to determine the quantization intervals

at distributed sensors in order to optimize the global binary decision at the FC about the

existence of a point source under the NP criterion where sensors observe different sig-

nal levels which they do not know. Although maximizing the entropy is a well-known

approach, it has not been used in decision problems until now to the best of our knowl-

edge. the most probable reason for this is the widespread acceptance that an information

theoretic criterion for decision problems should concentrate on the distance of rival hy-

potheses. We consider scenarios with non-equally important hypotheses, that is why NP

criterion is considered to be more suitable compared to the probability of error criterion,

in this thesis.

3.2. System Model

In this chapter, a binary hypothesis testing problem is considered, where a group

of K sensors and one FC cooperate to detect the existence of a point source as shown in

Figure 3.1. The hypothesis testing at each sensor node can be described as

H0 : yk = εk,

versus

H1 : yk = Ak + εk,

(3.1)

where yk denotes the observation at the kth sensor and εk denotes AWGN with variance σ2
N

and zero mean. Ak denotes the received signal amplitude which is equal to αkAmax. Each
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sensor in the range of the point source detects a signal attenuated with a factor of αk and

makes a local decision uk. The local decision is transmitted through the multiplicative

channel hk to the FC where the final decision u0 is made. In Figure 3.1, the sensor

outputs {ūk, k = 1, 2, ..., K}, the AWGNs in the channel from the sensors to the FC

{ξk, k = 1, 2, ..., K} and the received signals {ȳk, k = 1, 2, ..., K} are shown as vectors

in accordance with the M -dimensional signal model of FSK related modulated signal

model, explained in detail in section 3.2.2.1.

+

1

Sensor 1

h1

y1 ū1
ȳ1

FC u0

1
1

+

+

2

Sensor 2

h2

y2 ū2
ȳ2

2
2

+

+

K

Sensor K

hK

yK ūK
ȳK

K
K

+

Point

Source

Figure 3.1. Parallel distributed detection system

Based on the dispersion pattern over the surveillance zone and the physical char-

acteristics, the phenomenon to be detected can be modeled either as a field source or a

point source. A field source is dispersed over the sensor field such as in temperature mon-

itoring. On the other hand, the event is generated by a single point source such as in target

detection and fire detection.

3.2.1. Point Source

In this chapter, we consider a point event source emitting constant power uni-

formly in all directions. For such a source the signal amplitude received by a sensor will

be inversely proportional to the distance from the source. Considering uniformly deployed

sensors, only those sensors which are within a circle the radius of which is determined by

the sensitivity of the sensors will receive a signal.
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Let Amax denote the signal amplitude on a circle with radius rmin centered by the

event location as shown in Figure 3.2. We assume that Amax corresponds to the maximum

detectable signal level or the saturation level of the sensors and Amin denotes the minimum

value of the detectable signal observed at a distance of rmax from the event location. This

yields a different and unknown amplitude value for each individual sensor. Assuming

there are no sensors in the small circle, the pdf of the normalized signal amplitude, An =

A/Amax, at a sensor will have the form shown in Figure 3.3 and will be given as:

Normalized coordinate in x1-direction, x1/rmax
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Figure 3.2. Positions of the event location and uniformly distributed sensors in a sce-

nario for detecting a point source.

p(An) =
1

An log(L)
(3.2)

where L = Amax/Amin. We define the SNR as the ratio between the maximum signal

power, A2
max, and the noise power, σ2. Let us assume that K of the sensors uniformly

deployed in the area will be in the fat ring (or punctured disk) described by the radii rmin
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and rmax. Then, the signal amplitudes at these sensors will be independent and come from

the pdf given in (3.2) in the case of an event. Assuming that the sensor observations are

available distortion-free at the FC, i.e. without transmission over a wireless channel, the

optimal Bayesian NP detector can be written as:

Λ(y) =

K∏
k=1

∫ Amax

Amax/L

p(yk|H1;Ak)p(Ak)dAk

p(y|H0)

H1

≷
H0

η. (3.3)

Since each Ak comes from the independent and identical pdf given in (3.2), we eliminate

the index, k, and express the likelihood ratio as

Λ(y) =

K∏
k=1

∫ Amax

Amax/L

1√
2πσ2

N

exp

(−(yk − A)2

2σ2
N

)
1

A log(L)
dA

(
1√
2πσ2

N

)K

exp
(

−∑K
k=1(yk)

2

2σ2
N

) H1

≷
H0

η, (3.4)

where y = [y1, y2, ..., yK ]
T denotes vector of observations from K sensors.

3.2.2. Fusion System: Channel Between Sensors and FC

In this section, we will investigate the complete model of the sensor to FC commu-

nication by using a Rayleigh fading channel model and an M -ary FSK modulation scheme

where each one of the M different symbols is transmitted by a carrier wave of a different

frequency. M -FSK is a suitable modulation scheme for low-power low data rate trans-

mission as preferred by the majority of the sensor device equipment. In (Hajibabaei and

Vosoughi, 2014), the error probability when the detectors perform FSK modulation was

minimized when training symbol transmit power is zero. Accordingly, the non-coherent

demodulation of M -FSK was adopted in this thesis. Additionally, in order to concentrate

on the fusion of sensor data with non-identical signal levels, we considered the case of

no channel, i.e. when error-free sensor outputs are available at the FC, which we called

as direct data transmission (DDT). Once data from the sensors are at the FC, an equal

gain fusion rule is applied for every different type of sensor transmissions to FC since the

relative reliability of sensor outputs are not evaluated.
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Normalized signal level at sensors, An = A/Amaxfor L = 10
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Figure 3.3. The pdf of the signal amplitude observed at the sensors, p(An).

3.2.2.1. Fading Channel

In this subsection, the problem of fusing the data transmitted over a fading channel

is considered, as shown in Figure 3.1. The FC has only information on the channel statis-

tics. non-coherent M -FSK modulation is employed for transmitting data to the FC. Let

uk denote the M -FSK modulated symbol at sensor k, where uk ∈ {em,m = 1, ...,M}
and em is an M×1 column vector, all elements of which except the mth one are zero. We

refer to the transmit power of the data symbol as Pd. Assuming M -dimensional signal

model for representing the orthogonal channels of M -FSK modulation scheme between

the detectors and the FC (Hajibabaei and Vosoughi, 2014) simplifies the analysis. Then,

the output of the channel which is corresponding to detector k at the FC can be given as:

ȳk =
√

Pkhkuk + ξk

= hkūk + ξk

(3.5)

where Pk represents the received power which is a function of Pd, the wavelength, the path
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loss exponent and the distance between detector k and the FC (Hajibabaei and Vosoughi,

2014) and it describes the effect of large scale fading. The channel noise is denoted as

nk which is a zero mean complex Gaussian vector ξk ∼ CN (0, σ2
nIM), where IM is

an M × M identity matrix. The complex channel coefficient hk in (3.5) is modeled as

hk ∼ CN (0, 1) which can be also represented as hk = αke
jφk , where αk represents the

amplitude with Rayleigh distribution and φk represents the phase with uniform distribu-

tion. We adopt NP criterion to find the optimal and a sub-optimal fusion rule at the FC in

order to obtain a global decision u0 ∈ {H0, H1} as follows.

I. The optimal fusion rule for the i.i.d. vectors, ȳk, k = 1, 2, ..., K, is defined as

follows:

log (Λ(Y)) = log

(
p(y|H1)

p(y|H0)

)
= log

(
K∏
k=1

p(ȳk|H1)

p(ȳk|H0)

)
H1

≷
H0

η, (3.6)

where Y is the matrix composed by row-wise stacking column vectors ȳk, k =

1, 2, ..., K.

Expanding p(ȳk|H1) and p(ȳk|H0) in (3.6) over the M -level sensor decisions we

obtain

log (Λ(Y)) =
K∑
k=1

log

(∑M
m=1 p(ȳk|uk(m))p(uk(m)|H1)∑M
m=1 p(ȳk|uk(m))p(uk(m)|H0)

)
H1

≷
H0

η, (3.7)

where K represents the number of sensors and M represents the number of quan-

tization levels at each local sensor. The conditional density p(ȳk|uk(m)) in (3.7)

is a complex multi-variate Gaussian density, ȳk∼ CN (0, Cȳ), Cȳ represents the

diagonal matrix with entries Cȳ(j, j) = σ2
n for j 
= m and Cȳ(j, j) = Pkσ

2
h+σ2

n for

j = m, where j = 1, ...,M . We can prove that p(ȳk|uk(m)) equals to

1√
πM det |Cȳm |

exp
{−(ȳk − μ)HC−1

ȳm
(ȳk − μ)

}
. (3.8)

The values of p(uk(m)|H1) represent the probability masses under hypothesis H1,

which are estimated as:

pH1
m =

∫ Amax

Amax/L

pH1
m (An)p(An)dAn, (3.9)
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where pH1
m (An) represents the probability mass under H1 as shown in Figure 3.4 for

an observed signal level An which is the mean of the Gaussian signal.

The values of p(uk(m)|H0) represent the probability masses under hypothesis H0:

p(uk(m)|H0) = pH0
m . (3.10)

Figure 3.4 shows a possible partitioning of a pdf under hypothesis Hi, i = 0, 1 and

the probability masses for M = 4 corresponding to the areas under the pdf between

successive thresholds.

II. A sub-optimal fusion rule can be derived as follows: In (3.7) we see both the ef-

fects of fading channel and the local detection outputs in order to achieve the op-

timal performance. A direct alternate could be used as a sub-optimal fusion rule

by separating this into two-steps. First, ȳk is used to infer about the local detector

by applying the maximum likelihood (ML) estimate as an intermediate decision,ûk,

and then, the optimum fusion rule based on ûk is applied:

ûk = argmax
m

θm, (3.11)

where θm is given as

θm = p(ȳk|uk(m)). (3.12)

We can re-write (3.8) as in (Hajibabaei and Vosoughi, 2014)

p(ȳk|uk(m)) =
1√

πM det |Cȳm |
exp

(
Pkσ

2
h|ȳk(m)|2

σ2
n(σ

2
h + σ2

n)

) M∏
j=1

exp

( |ȳk(j)|2
σ2
n

)
.

(3.13)

By substituting (3.13) in (3.11) after eliminating the terms which are irrelevant to

m, we can re-write (3.11) as

ûk = argmax
m

exp

(
Pkσ

2
h|ȳk(m)|2

σ2
n(σ

2
h + σ2

n)

)
, (3.14)
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where m = 1, ...,M . Note that |ȳk(m)|2 in (3.14) denotes the squared envelopes of

M cross-correlators corresponding to non-coherent FSK detection.

The final decision rule is given as

u0 =
K∑
k=1

ûk

H1

≷
H0

η. (3.15)
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Figure 3.4. A partitioning of the pdf for the observations at each sensor for 4-level

quantization.

3.3. Quantizer Design

It is aimed to make a global decision at the FC under the NP criterion. Let us

assume that each sensor will only make a single observation and will transmit this obser-

vation to the FC. Then, sensors will make i.i.d. observations under H0 and none of the

sensors can estimate the signal level under H1. Consequently, there is no information at
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the sensors in order to use different quantization thresholds under H1. So, it is reason-

able to use identical quantization thresholds at each sensor irrespective of their distance to

the event location since it cannot be estimated. Definitely, the choice of the quantization

thresholds affects the performance which makes it desirable to choose the quantization

thresholds which maximize the system performance. This chapter proposes the maxi-

mum average entropy (MAE) method, that is, determining the quantization thresholds at

the sensors in a way to maximize the average entropy of the discrete information col-

lected at the FC under both hypotheses without considering the effects of the wireless

channels between sensors and FC. To the best of our knowledge, all of the entropy based

quantizers for detection problems are some distance measures (Poor and Thomas, 1977;

Altay and Delic, 2016). The proposed MAE method differs from them in that it max-

imizes the transmitted information corresponding to both of the underlying probability

mass functions (pmfs) jointly.

The optimum detector at the FC is based on likelihood ratios as given in (3.4).

Equivalently, one can use log-likelihood (logarithm of likelihood) ratios (LLRs) and the

LLR for the kth sensor with an unknown signal amplitude can be calculated by using the

expected value of the signal amplitude, Ā, as follows:

Λ(yk) = − Ā2

2σ2
N

+
Ā

σ2
N

yk. (3.16)

The linear (or more appropriately affine) transformation of observations in (3.16) to LLRs

is irrelevant in entropy based quantization because that kind of transformation only results

in translation and scaling of the underlying pdfs and will preserve the resulting probability

masses corresponding to a vector of thresholds (such as β1, β2 and β3 in Figure 3.4). Con-

sequently, the sensors will transmit a quantized observation signal to the FC. A common

information based criterion for determining the quantization thresholds is the maximum

JD (MJD) method which was used in the case of the constant signal level at sensors for-

merly (Lee and Chao, 1989). We will first explain these criteria and subsequently the

relation between them. Two toy examples in Appendix C are utilized for a better under-

standing of the proposed method MAE and the corresponding MJD from the previous

work. The quantization thresholds are found using these methods and the corresponding

ROC curves are obtained.
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3.3.1. Maximum Average Entropy Method

An intuitive idea to have optimum performance at the FC is to maximize the en-

tropy under both hypotheses which we call as MAE method. So, we propose to determine

the quantization intervals at the sensors as resulting in MAE under both hypotheses. The

entropy of a quantized sensor output can be calculated based on the partitioning of the

observation pdf at each sensor as shown in Figure 3.4. In this figure, the number of quan-

tization intervals is 4. For a general number of M quantization intervals, there will be

M − 1 thresholds, {β1, β2, ..., βM−1}, and M partitions with corresponding probability

masses of observations
{
pHi
1 , pHi

2 , ..., pHi
M

}
where i = 0, 1. Under Hi, the entropy of the

observation can be estimated as

F̂Hi
= E

(
−

M∑
m=1

pHi
m log2(p

Hi
m )

)
bit. (3.17)

The expectation, E(·), is with respect to (w.r.t.) the distribution of the K sensors and in

the special case of the scenario described in Figure 3.2, this distribution is uniform in the

sensing range of the sensors defined by a circle within a radius of rmax from the event

location. pHi
M =

[
pHi
1 , pHi

2 , ..., pHi
M

]
denotes the vector of these probability masses, i.e. the

probabilities of the partitions. In practice, an estimate of this expectation is obtained by

averaging the information of the sensors over the distribution of the sensor locations and

AWGN realizations which is called a histogram method (Messerschmitt, 1971). Figure

3.5 shows the entropy function F̂H0 , F̂H1 and F̂av = 1
2

(
F̂H0 + F̂H1

)
for binary quantiza-

tion. For M -ary quantization, β∗
M =

[
β∗
1 , β

∗
2 , ..., β

∗
M−1

]
denotes the vector of optimum

quantization thresholds in the sense of MAE which is found as

β∗
M = argmax

βM

F̂av. (3.18)

The main part of the proposed MAE algorithm is given in Algorithm 1. Optimal quanti-

zation thresholds for binary quantization corresponds to the maximum of F̂av as shown in

Figure 3.5 which is β∗
2 = 0.093. In a similar way, we can estimate the optimal thresholds

for 3-level quantization to be β∗
3 = [−0.341 0.528] as shown in Figure 3.6 in terms of

equal level contours. Similarly, the optimum thresholds are β∗
4 = [−0.367 0.195 0.835]
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in the case of 4-level quantization and β∗
6 = [−1.08 −0.572 −0.060 0.4513 0.963]

for 6-level quantization. The given optimal quantization thresholds are found for SNR = 0

dB.
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Figure 3.5. The entropy functions F̂H0 , F̂H1 and F̂av for binary quantization.

3.3.2. Maximum J-Divergence Method

JD can be written in terms of the relative entropy for discrete probability distribu-

tions P and Q observed under the two hypotheses H0 and H1, respectively, as follows:

J = DKL(P ||Q) +DKL(Q||P ), (3.19)

where the relative entropy between two pmfs P (x) and Q(x) is given as follows:

DKL(P ||Q) =
∑
x∈χ

P (x) log2

(
P (x)

Q(x)

)
, (3.20)
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Figure 3.6. The entropy functions F̂H0 , F̂H1 and F̂av for three level quantization.

where χ denotes the alphabet of the pmfs for P and Q. In our context, JD measures

the distributional distance or dissimilarity between the distributions of the observations

under two hypotheses H0, H1 and this can be used to find the local thresholds. The choice

of local thresholds facilitates the design of local detectors which in turn determines the

performance of the whole system. An estimate of the expected value for the JD can be

obtained by averaging the contribution to the JD over the distribution of sensor locations

and noise realizations as performed for entropy of the observations in (3.17) and can be

written as:

Ĵ = E

(
M∑

m=1

[
pH1
m log2

(
pH1
m

pH0
m

)
− pH0

m log2

(
pH1
m

pH0
m

)])
, (3.21)

where we substitute pH0
m and pH1

m for pmfs P (x) and Q(x) in (3.20) that is the proba-

bility masses corresponding to the partitions of the pdf. For M -ary quantization, β	
M =

[β	
1 , β

	
2 , ..., β

	
M−1] denotes the JD optimized vector of quantization thresholds which can
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Algorithm 1 The procedure of performing MAE quantization.

1: Input A,σ2
N � Where A- signal amplitude and σ2

N- noise variance

2: βm = βlow : δβ : βhigh

3: Initialize the iteration m = 0, z = 0, x = 0
4: exhausted search for M − 1 thresholds such as βM−1 ≥ βM−2 ≥ ... ≥ β1

5: for z = 1 to length(βm) do � estimate the entropies for all possible thresholds

6: Step size of δβ = 0.01
7: Aj = Alow : δA : Ahigh

8: calculate the weight of each Aj

9: wj =
1

Aj log(L)

10: for x = 1 to length A do � Averaging over the histogram of A

11: Step size of δA = 0.01
12: calculate the probability mass functions under hypothesis H1

13: pH1
m =

∫
Aream

p(y|H1)dy, m = 1 : M
14: calculate the entropy under hypothesis H1

15: H1 = wj × (−∑M
m=1 p

H1
m log2(p

H1
m )) bit.

16: end for
17: F̂H1 =

∑
x(H1)

18: calculate the probability mass functions under hypothesis H0

19: pH0
m =

∫
Aream

p(y|H0)dy
20: calculate the entropy under hypothesis H0

21: F̂H0 = −∑M
m=1 p

H0
m log2(p

H1
m )bit.

22: F̂av =
1
2
(F̂H0 + F̂H1)

23: end for
24: find the optimal thresholds

25: β∗
M = argmax{βM} F̂av.

be given as

β	
M = argmax

βM

Ĵ . (3.22)

Again, based on the pdfs at SNR = 0dB, optimization of JD is performed. Optimal

quantization thresholds correspond to the maximum of Ĵ which is found to be β	
2 = 0.17

for binary quantization as shown in Figure 3.7. In a similar way, we can estimate the

optimal thresholds for 3-level quantization to be β	
3 = [−0.444 0.784] as shown in

Figure 3.8 . Similarly, the optimal thresholds are β	
4 = [−0.725 − 0.699 0.6559] and

β	
6 = [−6.19 − 0.572 − 0.0603 0.9628 6.59] in the cases of 4-level and 6-level

quantizations, respectively.
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Figure 3.7. The JD for binary quantization.

3.3.3. Relation of MAE and MJD Methods

In this subsection, we will demonstrate that both of the information based criteria,

namely, MAE and MJD, maximize similar quantities in showing that they are positively

proportional. Let us first express DKL(P ||Q) given in (3.20) as follows:

DKL(P ||Q) =
∑
x∈χ

P (x) log2

(
1

Q(x)

)
︸ ︷︷ ︸

R1

+
∑
x∈χ

P (x) log2(P (x))

︸ ︷︷ ︸
−FH0

≥ 0. (3.23)

The equality holds only when P = Q. Similarly,

DKL(Q||P ) = R2 − FH1 ≥ 0, (3.24)

where R2 =
∑

x∈χ Q(x) log2

(
1

P (x)

)
. Substituting (3.23) and (3.24) into (3.19)

J = R1 +R2 − (FH0 + FH1) ≥ 0. (3.25)
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Figure 3.8. The J-divergence for three level quantization.

Then, defining DKL(P ||Q) = c1FH0 and DKL(Q||P ) = c2FH1 , we can re-write the JD

in (3.25) to show that there is a proportionality relation between the JD and the average

entropy (AE):

J = c1FH0 + c2FH1

= min{c1, c2} (FH0 + FH1)︸ ︷︷ ︸
2Fav

+c3
(3.26)

with

c3 =

⎧⎨
⎩ (c1 − c2)FH0 for c1 ≥ c2,

(c2 − c1)FH1 for c1 ≤ c2

⎫⎬
⎭ . (3.27)

Obviously ci ≥ 0 for i = 1, 2 and 3. This means that AE and JD are positively propor-

tional.
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3.4. Simulation Results

Monte Carlo simulations have been performed in order to evaluate the detection

performance for the proposed method at SNR= 0 dB for K = 25 transmitting sensors

and L = Amax/Amin = 10. First, we have performed simulations using the DDT method,

that is assuming the sensor outputs are available error-free at the FC for both MAE and

MJD methods. Then, a Rayleigh fading channel is considered to show the channel effect

on the performance of our proposed quantization method, MAE.

3.4.1. Binary Direct Data Transmission

In Figure 3.9, the ROC, that is probability of detection (pD) versus probability

of false alarm (pFA), curves are plotted for the cases of using the quantization intervals

from MAE and MJD methods for the binary data transmission and the corresponding

non-quantized data transmissions. The Kth root quantization, which uses the Kth root

of the global probability of false alarm pFA = 0.1 to find probability mass function (pmf)

pH0
2 = 0.89 at each sensor, is also provided for the comparison with the proposed method,

MAE. Kth root method corresponds to setting the false alarm threshold at the FC to a

single "one" coming from any of K sensors. In this figure, we observe a slightly better

performance of the MAE-based method compared to the MJD-based one. Each of them

performs much better compared to the trivial Kth root method which is supplied as an

obvious lower bound. Additionally, we observe that they are clearly inferior to the non-

quantized case which shows that there is quite a large space for gain in using higher levels

of quantization.

3.4.2. Performance of MAE and MJD with Multilevel Quantization

The simulation performances for the three-level, four-level and six-level quantiza-

tions by using the MAE and MJD methods are also obtained for DDT.

ROC curves obtained using MAE and MJD methods for three levels of quantiza-
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Figure 3.9. Comparison between the ROC curves obtained using MAE, MJD and Kth

root methods for binary and Gaussian (non-quantized) DDT.

tion and non-quantized data are shown, in Figure 3.10. This figure depicts that at global

false alarm probability pFA = 0.2, the probability of detection, pD, attains the values

0.653, 0.684 and 0.803 for the cases of three-level data transmissions with MJD, MAE

and the non-quantized data transmission, respectively. Increasing the quantization level

makes the MAE and MJD methods perform more closer to the performance without quan-

tization which is depicted in Tables 3.1 and 3.2.

Table 3.1 shows the pD for 2, 3, 4 and 6 level MAE and MJD based quantized and

non-quantized data transmissions for the values of pFA = 0.1, 0.2, 0.3 and 0.4. At each

quantization level MAE method performs better compared to MJD and the performance

increases when the quantization level is increased. At 6-level quantization pD obtained by

MAE based method is only slightly inferior to the limiting case with no quantization as

shown in Figure3.11. Quantitatively, the difference in pD is 0.022, 0.014, 0.018 and 0.002

for pFA values of 0.1, 0.2, 0.3 and 0.4, respectively. Table 3.2 shows the achieved gain in

pD by using the MAE method w.r.t. MJD method and is given by G =
(
pMAEi
D − pMJDi

D

)
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Figure 3.10. Comparison between the ROC curves obtained using MAE and MJD meth-

ods for three-level and Gaussian (non-quantized) DDT.

with the resulting percentage gain PG = (G× 100%)/pMAEi
D , where i = 2, 3, 4, 6.

Table 3.1. The relation between pD and pFA for different levels of quantization ob-

tained with MAE and MJD methods.

pFA

pD
MJD2 MAE2 MJD3 MAE3 MJD4 MAE4 MJD6 MAE6 non-quantized

0.1 0.425 0.432 0.497 0.520 0.567 0.592 0.629 0.643 0.665

0.2 0.590 0.610 0.653 0.684 0.728 0.760 0.772 0.789 0.803

0.3 0.710 0.720 0.755 0.790 0.810 0.845 0.850 0.867 0.885

0.4 0.787 0.805 0.825 0.858 0.860 0.895 0.903 0.922 0.924

It is obviously seen from the previous tables that MAE outperforms MJD for M ≥
2 levels. The achieved gain of MAE w.r.t. MJD is on average 0.0138 with a corresponding

percentage gain of 2.13% for the binary data transmissions, whereas the average gains are

= 0.0305, 0.0318 and 0.0168 with corresponding average percentage gains as 4.31%,

4.12% and 2.09% for 3-level, 4-level and 6-level data transmissions, respectively. In
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Figure 3.11. Comparison between the ROC curves obtained using MAE method for six-

level and Gaussian (non-quantized) DDT.

the same manner, the average difference in pD, for pFA = 0.1, 0.2, 0.3 and 0.4, between

the 6-level data transmissions achieved by MAE and non-quantized data transmissions

equals to 0.014 with 1.8% and it is 0.03 with 3.9% between MJD and non-quantized data

transmissions. These results show that 6-level data transmission by using MAE is very

close to the non-quantized data transmission and gives better performance than the MJD

method.

3.4.3. Multiple Level Data Transmission over Rayleigh Fading

Channel

Figure 3.12 shows the ROC curves for 2, 3, 4 and 6 level MAE based quantized

and non-quantized data transmissions by using M -FSK modulation scheme with non-

coherent demodulation over Rayleigh fading channels and the optimal fusion rule in (3.7).

The threshold, η, for each pFA was estimated by running a Monte Carlo simulation under
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Table 3.2. Achieved gain in pD by using the MAE method in quantization instead of

MJD.

pFA

pD
2-Level 3-Level 4-Level 6-Level

G PG G PG G PG G PG

0.1 0.01 1.63 0.023 4.42 0.025 4.22 0.014 2.17

0.2 0.02 3.28 0.031 4.53 0.032 4.21 0.017 2.15

0.3 0.01 1.39 0.035 4.43 0.035 4.14 0.017 1.96

0.4 0.018 2.2 0.0330 3.85 0.035 3.914 0.019 2.06

no event case. In this figure we can see that the obtained, pD for 6-level quantization falls

behind the limiting case of no quantization by 0.09 at pFA = 0.1. This gain diminishes

at pFA = 0.7. When we compare the performances of different quantization levels, the

achieved gain in pD by transmitting 6-level quantization instead of 2-level quantization

is 0.21 for pFA = 0.1 and this gain diminishes at pFA = 0.99. Also, the sub-optimal

fusion rule in (3.15) have been used to find the ROCs for the different type of data trans-

missions. Figure 3.13 shows a comparison between the optimal and sub-optimal fusion

rule for 2 and 6 levels data transmissions and compare them with the non-quantized data

transmissions. The dashed line in ROCs for the sub-optimal fusion rule correspond to

randomization in the tests (Poor, 2013). This figure shows that the achieved gain by using

the optimum fusion rule w.r.t. the sub-optimal rule is 0.3 and 0.6 at pFA = 0.1 for the

2-level and 6- level data transmissions, respectively.

3.5. Conclusions on MAE Based Quantization Method

This chapter, proposed multiple level quantization methods for the sensor outputs

in a WSN composed of uniformly deployed sensors and a FC used to detect a static event

which can be observed as signals emitted from a point source. The developed method is

an NP criterion-based DD scheme depending on MAE and MJD. Obtained ROCs show

that the MAE method for quantizing sensor outputs performs significantly better than the

MJD and Kth root method or other choices for determining the thresholds in binary quan-
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Figure 3.12. ROC curves in the case of fading channel by using MAE based quantiza-

tion and optimum fusion rule.

tization of sensor outputs. The performance obtained using the MAE method has been

also investigated for three-level, four-level, and six-level quantization. The increasing

number of levels in quantization has resulted in better performance as expected, the six-

level data transmissions approach to the non-quantized data transmissions after the value

of pFA = 0.2. Also, the effects of the Rayleigh fading channel from the sensors to the FC

have been investigated incorporating non-coherent M-FSK communication between sen-

sors and FC. Optimal decide and fuse and a suboptimal decide then fuse type fusion rules

are applied at the FC. Using the wireless channel model similar results were obtained as

in DDT. Again, results with 6-level quantization were comparable to non-quantized data

transmission.
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quantized data transmissions in the case of fading channel.
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CHAPTER 4

SEQUENTIAL DETECTION FOR MULTIPLE LOCAL

SENSORS

4.1. Introduction

Traditional detection methods use only one processor to detect signals such as in

sonar or radar systems. Recently, there is a growing interest in using several sensors, that

are geographically distributed to accomplish signal detection (Ekchian and Tenney, 1982;

Tenney and Sandell, 1981; Chair and Varshney, 1986b). In (Tenney and Sandell, 1981),

they consider a detection problem consisting of two sensors and one FC with a fixed

fusion rule to show that the optimum local decision rule is the LRT under the Bayesian

criterion. Later, in (Chair and Varshney, 1986b), it was shown that the optimum fusion

rule at the FC for multiple sensors is also a LRT under the NP and the Bayesian criteria.

Then, in (Tsitsiklis, 1988), they considered the case when the number of sensors goes to

infinity to show that the optimal decision rule is an identical LRT . In (Blum and Deans,

1998), a distributed random signal detection problem with multiple-bit decisions have

been covered.

Many works on decentralized detection, containing the above mentioned approa-

ches, consider a FSS approach where the FC collects a fixed number of observations to

make its final decision at a fixed time. There is also a noteworthy volume of literature that

considers the sequential detection, i.e. (Tantaratana and Thomas, 1977b; Veeravalli et al.,

1993; Fellouris and Moustakides, 2010; Yilmaz et al., 2012a) when the data acquisition

is costly and the decision delay is important. The initial research on sequential detection

theory was proposed by Wald in (Wald and Wolfowitz, 1948) to decide between two

simple hypotheses. The SPRT has been proposed in (Wald and Wolfowitz, 1948) where

the cumulative sum of the LLRs is compared with prescribed thresholds to perform the

final decision at the FC. SPRT is the optimum among all the sequential test in terms of
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the minimum ASN required to obtain specific detection performance. SPRT requires four

times less ASN compared to the FSS for specific performance (Poor, 2013).

Tantaratana and Thomas investigate the performance of the sequential detection

for binary level data transmissions (the sign test) in (Tantaratana and Thomas, 1977a).

Also in (Tantaratana and Thomas, 1977b) they examine the optimal sequential quantizer

for multi-level data transmissions of a constant signal. In that work, a considerable saving

in the ASN by using sequential detection instead of the optimum FSS detector (Tenney

and Sandell, 1981; Chair and Varshney, 1986b) has been demonstrated. After that in

(Veeravalli et al., 1993), a binary hypothesis testing problem was investigated for the sys-

tem with a local memory restricted on the past decisions and full feedback. The sequential

detection problem was performed at the FC depending on the received i.i.d. information

from each sensor.

Then in (Cheng et al., 2005), a distributed sequential detection problem under

communication constraints is studied. A scalar quantizer (independent quantizer design

for Bayesian detection) was used to map the received signal at each sensor to a discrete

M -level signal and transmit it to the FC where the sequential data fusion scheme is per-

formed. After that in (Chaudhari et al., 2009), the authors applied a sequential detection

problem at FC to detect OFDM signals. The comparison with FSS detection shows a

significant saving in the ASN needed to perform the final decision at FC.

In this thesis, we use the regular Rayleigh fading channel model for the wireless

channel. Additionally, optimal fusion rules are utilized which are modified from the ones

for M -ary hypothesis testing in (Hajibabaei and Vosoughi, 2014) in order to match the

binary hypothesis testing problem with M -ary modulated data transmission rather than

binary modulated data transmission for SPRT in (Yilmaz et al., 2012b).

We notice from the literature that there are two main approaches to solve the se-

quential problem. The first one solves the sequential test by optimizing the Bayesian

problem by using the dynamic programming (Wald and Wolfowitz, 1948), i.e. SPRT,

whereas the second approach considers an asymptotic regime which supposes that the

cost of the observations is very low (Berger, 2013; Baum and Veeravalli, 1994). The sec-

ond approach cannot be applied to WSNs because of the limitation on the power of the

sensors. Therefore, the dynamic programming approach is used in this thesis.

From the previous discussion, we can notice that the hypothesis testing procedures
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can be classified into two main categories according to the number of observations or the

test duration. In the classical theory of hypothesis testing, the number of observations is

treated as constant. Many approaches such as the NP approach and the Bayesian approach

can be employed in a FSS detection. On the other hand, the sequential test depends on

the outcome of the observation process and the test thresholds, therefore, the number of

observations is not predetermined, but a random value. For some experiments, a decision

can be made by taking a small number of observations, while for others, the process of

making observations is extended before making a decision.

A comparison between FSS detection and SPRT has been performed for the binary

hypothesis testing problem in (3.1), according to the number of observations required

to achieve a specific performance. The pdfs of the random variable y under the two

hypotheses H0 and H1 are given as N (0, σ2
N) and N (Ā, σ2

N) respectively. The LLR,

log(λ(y)), can be calculated by using the expected value of the signal amplitude, Ā, as

follows:

log (λ(y)) = − Ā2

2σ2
N

+
Ā

σ2
N

y. (4.1)

By using (2.62) we can find the Kullback-Leibler divergence for the conditional pdfs

p(y|H0) and p(y|H1) under the two hypotheses H0 and H1 respectively, as follows:

DKL(p(y|H1)||p(y|H0)) =

∫ ∞

−∞
log(λ(y))p(y|H1)dy =

Ā2

2σ2
N

, (4.2)

DKL(p(y|H0)||p(y|H1)) = −
∫ ∞

−∞
log(λ(y))p(y|H0)dy = − Ā2

2σ2
N

. (4.3)

For pm = pfa we can re-write (2.60) and (2.61) as follows:

E(K|H1) = E(K|H0) ≈ 2σ2
N

Ā2
log

(
1− pfa

pfa

)
[1− 2pfa] . (4.4)

Now, let’s find the sample number for FSS. The best block detector is the LR detector,

which has probability of false alarm, pfa and probability of detection, pd for a given sample

size N . For a given pd and pfa, the sample size needed for FSS detection can be given as:

pfa = Qfunc

(
λ√
Nσ2

N

)
. (4.5)
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By taking the inverse of (4.5)

Q−1
func(pfa) =

(
λ√
Nσ2

N

)
. (4.6)

So, the threshold can be written as

λ =
√

Nσ2
NQ

−1
func(pfa). (4.7)

Then the probability of detection for the given pfa and N will be found as

pd = Qfunc

(
λ−Nμ√

Nσ2
N

)
. (4.8)

By substituting (4.7) into (4.8), we can rewrite (4.8) as

pd = Qfunc

(√
Nσ2

NQ
−1
func(pfa)−Nμ√
Nσ2

N

)
, (4.9)

which can be further simplified to

pd = Qfunc

(
Q−1

func(pfa)−
√
Nμ

σN

)
. (4.10)

By taking the inverse of (4.9) as

Q−1
func(pd) =

(
Q−1

func(pfa)−
(√

Nμ

σN

))
(4.11)

we can find the sample size for the FSS detection as

N =
σ2
N

μ2

(
Q−1

func(pd)−Q−1
func(pfa)

)2
. (4.12)

Figure 4.1 shows the ratio of the expected number of the observations for SPRT and

the number of observations for FSS detection, for pfa = 0.01, pd = 0.99 and
σ2
N

μ2 = 1.
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Figure 4.1. Ratio of the expected number of observations in sequential detection and

the sample size in block detection versus the global probability of false

alarm.

This figure depicts that sequential detection can save around 1/3 of the observations at

pfa = 10−6.

The following subsections will consider two operating modes according to the

place(s) at which decisions are made and the contents of the transmissions from the sensor

nodes to FC.

4.2. Centralized SPRT for Multiple Local Detectors

The central LR (Λc
K(y)) evaluated at the FC for each observation time can be

given as

Λc
K(y) =

K∏
i=1

p(yi|H1)

p(yi|H0)
. (4.13)
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Equation (4.13) can be written as

Λc
K(y) =

K−1∏
i=1

p(yi|H1)

p(yi|H0)

p(yK |H1)

p(yK |H0)
, (4.14)

which is presented as the product of the Λc(y) at the (K− 1)th step Λc
K−1(y) and the kth

increment λc(yk) which is given by

λc(yk) =
p(yK |H1)

p(yK |H0)
. (4.15)

Hence,

Λc
K(y) = Λc

K−1(y) λ
c(yK). (4.16)

The centralized SPRT at step (time) k compares Λc
K(y) with two thresholds (Wald and

Wolfowitz, 1948): η1 and η0 as follows

log(Λc
K(y))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≥ log(η1), stop and decide H1

≤ log(η0), stop and decide H0

otherwise, continue,

(4.17)

where

η1 ≈ 1− pm

pfa

, η0 ≈ pm

1− pfa

. (4.18)

By taking the logarithm of the Λc
K(y) as given in (4.14), we obtain

log (Λc
K(y)) =

K−1∑
i=1

log

(
p(yi|H1)

p(yi|H0)

)
+ log

(
p(yK |H1)

p(yK |H0)

)
. (4.19)

Equation (4.19) shows that at any step of the sequential test every local sensor computes

the logarithm of its likelihood function based on its observation and transmits the result

to the FC where it uses the received local test to update its statistic log (Λc
K(y)).

Since the observations at the ith sensor, i = 1, 2, ..., K, are i.i.d. random variables,

then, λ(yK), is also a series of i.i.d. random variables. Suppose that, there is no excess

over the thresholds (Kowalski, 1971), then we have
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log(Λc
K(y)) =

⎧⎨
⎩ log(η1), w.p. pj

log(η0), w.p. (1− pj)
(4.20)

where p0 = pfa and p1 = (1− pm) for j = 0, 1.

By taking the expected value of (4.19) and separating it into two expectations we obtain

E(log (Λc
K(y)|H0)) = EKE

(
K∑
i=1

log

(
p(yi|H1)

p(yi|H0)

) ∣∣∣∣∣K,H0

)
. (4.21)

where the outer expectation is w.r.t. K and the inner one w.r.t. hypothesis H0. Now,

using the Kullback-Leibler divergence as defined in (2.62) between the conditional pdfs

p(y|H0) and p(y|H1), we can re-write (4.21) as

E(log (Λc
K(y)|H0)) = E(K|H0)[−DKL(p(y|H0)||p(y|H1))], (4.22)

The expected number of the observations for the sequential detection are given as (Levy,

2008; Van et al., 2013):

E(K|H0) =
(1− pfa) log(

pm

1−pfa
) + pfa log(

1−pm

pfa
)

−DKL(p(y|H0)||p(y|H1))
, (4.23)

and

E(K|H1) =
pm log( pm

1−pfa
) + (1− pm) log(

1−pm

pfa
)

DKL(p(y|H1)||p(y|H0))
. (4.24)

4.3. Distributed SPRT for Multiple Local Detectors

In centralized SPRT, we assumed that every local detector transmitted its real ob-

servations (Gaussian observations) to the FC. On the contrary, in this subsection, we sup-

pose that each local detector performs its binary decision and transmits the decision bit

to the FC where a distributed SPRT is performed. The binary quantization of the local

decision reduces the required communication channel bandwidth. Moreover, it simplifies
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the complexity of the SPRT at the FC. The system model defined in Section 3.2 is adopted

as the sequential detection scenario. The binary hypothesis testing problem at the FC is

given by:

H0 : yk = B(pfa)

versus

H1 : yk = PB(pd),

(4.25)

where B(pfa) is a binomial random variable with probability of success pfa when H0 is true

and PB(pd) is Poisson binomial random variable with vector of probabilities pd when H1

is true, where pd = [pd1 , pd2 , ..., pdK ]. Because of the complexity in finding a theoretical

expression for the ASN in the case of Poisson binomial distribution we assume that there

is a single pd which is valid for every sensor. In making this approximation, we consider

that the observations at the sensors are identically distributed and they come from the same

pdf of A and consequently we assume that they have the same constant signal amplitude

which is equal to the mean value of A. Then, similar to (4.23) we can write the ASN as

follows:

E(K|H0) =
(1− pfa) log(

pm

1−pfa
) + pfa log(

1−pm

pfa
)]

pH0 log (pH1/pH0) + (1− pH0) log ((1− pH1)/(1− pH0))
, (4.26)

and

E(K|H1) =
pm log( pm

1−pfa
) + (1− pm) log(

1−pm

pfa
)]

pH1 log (pH1/pH0) + (1− pH1) log ((1− pH1)/(1− pH0))
. (4.27)

Each binary local detector transmits a binary value (0 or 1) to the FC without

regard to the signal level its observation , this leads to a degradation in the system perfor-

mance by increasing the ASN, but we can compensate this degradation by further parti-

tioning of the sample space and adding more quantization levels.

The binary hypothesis testing problem for multilevel local detectors is defined as:

H0 : Yk = M(pH0
k )

versus

H1 : Yk = M(pH1
k ),

(4.28)

M(p
Hj

k ) is a multinomial random variable where the probabilities of the particular out-

comes are given by the M -vector of probability masses p
Hj

k when Hj is true for j = 0, 1.
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The ASNs for M level quantization under the two hypotheses H0 and H1 are given as

follows:

E(K|H0) =
(1− pfa) log(

pm

1−pfa
) + pfa log(

1−pm

pfa
)∑M

m=1 p
H0
m log(pH1

m /pH0
m )

, (4.29)

E(K|H1) =
pm log( pm

1−pfa
) + (1− pm) log(

1−pm

pfa
)∑M

m=1 p
H1
m log(pH1

m /pH0
m )

, (4.30)

where

pHj
m =

∫
Aream

p(y|Hj)dy (4.31)

for j = 0, 1 and m = 2, 3, 4 and 6.

4.4. Simulations for Sequential Probability Ratio Test

Monte Carlo simulations are used to evaluate the expected ASN of the MAE and

MJD quantization methods as described in Algorithm 2. First, we performed simulations

using the DDT method that is assuming that the sensor outputs are available error-free

at the FC for both of the cases when the MAE and MJD methods are used. Then, we

considered a Rayleigh fading channel to show the channel effect on the ASN with the

MAE and MJD quantization methods.

4.4.1. The Relation Between ASN and the Required pd for MAE

Method

In this section, the detection performance of SPRT with the MAE quantization

method is considered using the DDT. Firstly, we show the relationship between the ex-

pected value of ASNi and pd, where i is the index of the hypothesis Hi, i = 0, 1. Table

4.1 shows the mean of the average sample number ASNm versus pd, where ASNm is given

by

ASNm = (ASN0 + ASN1)/2 (4.32)
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where the transmitted data is either non-quantized data or MAE quantized data. Table

4.1 shows that ASNm is a monotonically increasing function of pd, for SNR= 0dB and

pfa = 0.1. At a specific probability of detection, the ASNm decreases monotonically

with increasing quantization level. Minimum ASNm is achieved using non-quantized data

transmission, while the maximum ASNm is achieved using binary data transmission. For

example, at pd = 0.9, the ASNm values using 2-level and 6-level data transmissions are

54.8356 bits and 38.8559 bits, respectively, which means that 6-level data transmission

will use 1.4113 times less energy compared to binary data transmission.

Table 4.1. The relation between the ASN and probability of detection for the different

quantization level at pfa = 0.1 and SNR= 0 dB.

pd

ASNm
non-quant. MAE6 MAE4 MAE3 MAE2

0.6 3.3529 5.9107 8.0312 11.7367 28.6040

0.7 4.4700 8.2943 11.8913 17.2741 36.6022

0.8 5.676 10.3643 15.7157 22.6094 45.9801

0.9 7.2518 15.0315 20.9756 30.4379 54.8356

0.99 11.0415 24.3748 35.9332 48.1852 75.5284

0.999 12.8885 31.7861 46.7581 60.6366 88.4240

4.4.2. Comparison Between SPRT and FSS

In this section, we compare SPRT and FSS detection according to the number of

sensors required to achieve particular false alarm and detection probabilities at FC, where

MAE and MJD are the used quantization methods. The performance of the FSS was

evaluated using k = 25 sensors at SNR= 0 dB. In order to perform a fair comparison

between SPRT and FSS using MAE and MJD quantization methods, the upper and lower

thresholds of SPRT are set using pd and pfa from Table 4.2.

In Table 4.3, the ASNi under hypothesis Hi, i = 0, 1, are evaluated for different

types of data transmissions using MAE quantization method. Table 4.3 shows a signif-

icant saving in the number of used sensors using SPRT. For example, for 6-level data
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transmission, ASNm = 5.4710 sensors using SPRT instead of using 25 sensors by FSS

to achieve pd = 0.643 and pfa = 0.1, which means saving 19.5290 sensors. It can also

be seen that at pfa = 0.1, we can save 17.27 sensors at pd = 0.592, 14.75 sensors at

pd = 0.52, and 10.8639 sensors at pd = 0.432 using 4-level, 3-level and 2-level quanti-

zation, respectively. On the other hand, we can save 20.905 sensors at pd = 0.665 and

pfa = 0.1 for non-quantized data transmissions using SPRT.

The ASNi obtained using MJD quantization method are shown in Table 4.4. We

can see that at pfa = 0.1, the ASNm = 15.94 sensors at pd = 0.425, ASNm = 11.63

sensors at pd = 0.497, ASNm = 9.19 sensors at pd = 0.567 and ASNm = 6.18 sensors at

pd = 0.629 for 2-level, 3-level, 4-level and 6-level of quantization respectively instead of

using 25 sensors by using FSS.

The obtained results from the SPRT method with MAE and MJD are listed in Ta-

ble 4.3 and Table 4.4, respectively. Table 4.3 and Table 4.4 show that the SPRT method

achieves a significant saving in the transmission power by decreasing the number of trans-

mitted observations to the FC. Moreover, it can be noticed that the ASNm obtained using

MAE is less than the ASNm resulting from using MJD.

Table 4.2. The relation between pd and pfa for different levels of quantization obtained

with MAE and MJD methods.

pfa

pd
MJD2 MAE2 MJD3 MAE3 MJD4 MAE4 MJD6 MAE6 non-quantized

0.1 0.425 0.432 0.497 0.520 0.567 0.592 0.629 0.643 0.665

0.2 0.590 0.610 0.653 0.684 0.728 0.760 0.772 0.789 0.803

0.3 0.710 0.720 0.755 0.790 0.810 0.845 0.850 0.867 0.885

0.4 0.787 0.805 0.825 0.858 0.860 0.895 0.903 0.922 0.924

4.4.3. Comparison Between MAE and MJD Methods

The simulation results of ASNm are obtained for the quantized and non-quantized

data transmissions using DDT. For the quantized data transmission, different quantization

levels are used using MAE and MJD methods. In Figure 4.2 ASNm versus log10(pfa) =

log10(pm) curves are shown where the quantization levels and methods are parameters.

This figure depicts that at log10(pfa) = log10(pm) = −3, the ASNm, attains the values
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205.2, 175.2, 131.9 and 59.28 sensors for the cases of 2-level, 3-level, 4-level and 6-level

data transmissions, respectively, with MJD, whereas it attains the values 192.5, 154, 112.5

and 49.18 sensors for the cases of 2-level, 3-level, 4-level and 6-level data transmissions,

respectively, with MAE. This means that we can save 12.7, 21.2, 19.4 and 10.1 sensors

with corresponding saving percentages (SPs) 6.18, 12.10, 14.7 and 17.03 for 2-level, 3-

level, 4-level and 6-level data transmissions, respectively, using MAE method.

Table 4.5 shows that the achieved SP in ASNm using the MAE method over MJD

method, which is given as

SP = (S × 100%)/ASNMJDi
m (4.33)

where S =
(
ASNMJDi

m − ASNMAEi
m

)
, and i = 2, 3, 4, 6.

Figure 4.3 shows theoretical ASNm which is evaluated for non-quantized and

quantized data transmissions using (4.4), (4.29), (4.30) and (4.32), respectively. The

quantization levels are 2, 3, 4 and 6 levels using MAE and MJD quantization methods. In

Figure 4.4, we show a comparison between simulation and theoretical evaluation of ASNm

for quantized and non-quantized data transmission. For the quantized data transmission,

both MAE and MJD methods are used with 4-level and 2-level quantization.

4.4.4. SPRT for Multiple Level Data Transmission over Rayleigh

Fading Channel

Figure 4.5 shows the average number of data transmission using MAE method,

M -FSK modulation scheme with non-coherent demodulation over Rayleigh fading chan-

nels and the optimal fusion rule in (3.7). In this figure, we can see that the obtained ASNm

decreases by increasing the level of data transmissions i.e. at log10(pfa) = log10(pm) =

−3, ASNm = 264, 179.4, 136.6 and 70.1 for 2-level, 3-level 4-level and 6-level quanti-

zation, respectively. Figure 4.6 shows the results obtained using MJD method of quanti-

zation and keeping every other parameter as used for Figure 4.5. This time the obtained
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Figure 4.2. Simulated ASNm versus logarithm of false alarm or miss probability for

different levels of MAE or MJD quantization and DDT.

average ASN values are 281, 213, 163.2 and 86.91 for 2-level, 3-level 4-level and 6-level

quantization, respectively. Figure 4.7 shows a comparison between the case of DDT and

Rayleigh fading channels and for 2-level, 3-level 4-level and 6-level quantization. As we

expected, to compensate for the resulted degradation caused by the fading channel, ASNm

increases to achieve a specific probability of error.

The increase in of ASNm equals 71.5, 25.4, 24.1 and 20.82 when we use the fading

channel instead of DDT to achieve log10(pfa) = log10(m) = −3 probability of error, for

2-level, 3-level 4-level and 6-level quantization, respectively.

We tabulate the achieved SP in ASNm using MAE over MJD method for the case

of fading channel in Table 4.6.
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Figure 4.3. Theoretical ASNm versus logarithm of false alarm or miss probability for

different levels of MAE or MJD quantization and DDT.

4.5. Conclusions on Sequential Detection

In this chapter, we have applied the MAE and MJD quantization methods to sensor

outputs in the case of SPRT method which is a sequential version of detection adapted to

real time analysis for streaming data flows. We have performed a comparison between

FSS detection and SPRT which shows a significant saving in the number of sensors when

using the SPRT method as expected. Moreover, the ASN for M -level data transmission

has been evaluated theoretically and using Monte Carlo simulations for both DDT and

using M -FSK modulation scheme with non-coherent demodulation over Rayleigh fading

channels with optimum fusion rule. The achieved ASN using the MAE quantization

method is less than the ASN resulting from using MJD for the same pfa and pd. The

proposed, MAE, method performed significantly better compared to the MJD method in

terms of the ASN.
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Figure 4.4. Theoretical and simulated ASNm versus logarithm of false alarm or miss

probability for different levels of MAE or MJD quantization and DDT.
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Table 4.5. Achieved gain in ASNm using the MAE method in quantization w.r.t MJD

for DDT.

pfa

ASNm
2-Level 3-Level 4-Level 6-Level

S SP S SP S SP S SP

10−4 16 5.93 26.9 12.10 22.4 13.30 14.96 19.01

10−3 12.7 6.18 21.2 12.10 19.4 14.70 10.1 17.03

10−2 8.3 6.01 16.2 13.34 14.91 16.43 5.34 13.48

10−1 3.57 6.29 7.5 14.67 7.55 19.10 0.77 4.12
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Figure 4.5. Simulated ASNm versus logarithm of false alarm or miss probability for

different levels of MAE quantization and non-coherent M-FSK communi-

cation over fading channels.
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Figure 4.6. Simulated ASNm versus logarithm of false alarm or miss probability for

different levels of MJD quantization and non-coherent M-FSK communi-

cation over fading channels.

Table 4.6. Achieved gain in ASNm by using the MAE method in quantization w.r.t

MJD in the case of fading channel.

pfa

ASNm
2-Level 3-Level 4-Level 6-Level

S SP S SP S SP S SP

10−4 19.06 5.4454 35.04 13.19 33.11 15.83 22.93 20.70

10−3 16.83 5.99 33.66 15.8 26.58 16.28 16.81 19.34

10−2 14.39 7.23 28.05 18.52 16.76 15.35 10.99 17.51

10−1 5.98 7.79 14.96 22.14 6.45 13.51 2.07 7.6
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Figure 4.7. Comparison of DDT and non-coherent M-FSK communication over fading

channel cases using simulated ASNm versus logarithm of false alarm or

miss probability for different levels of MAE quantization.
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Algorithm 2 SPRT procedure at the fusion center

1: Initialization Λc
k = 0, k=0

2: Input A,σ2
N, pm, pfa � Where A- distribution of signal amplitude, σ2

N- noise variance,

pm, pfa represent the desired probability of error needed to be achieved

3: η0 = log10
pm

p1−fa
, η1 = log10

1−pm
pfa

� Find the values of the upper and lower thresholds

4:

hypothesis testing at each sensor node

H0 : yk = εk,,
H1 : yk = Ak + εk

� hypothesis testing at each sensor node

5: local likelihood ratio: λk

6: use Algorithm 1 to find β∗
M thresholds

7: β∗
M = (β∗

1 , ..., β
∗
M−1) thresholds

8: pH0
m =

∫
Aream

p(y|H0)dy � calculate the probability masses function under

hypothesis H0

9: p̃H1
m =

∫
Aream

p(y|H0)dy � estimate the probability masses function under

hypothesis H1

10: qβ∗
M
= ζ(log(λk),β

∗
M)

11: qβ∗
M
= [qβ∗

1
, ..., qβ∗

M−1
]

12: Λc
k =

p̃
H1
M

p
H0
M

13: if Qs == q1 then
14: Λc

k =
p̃
H1
1

p
H0
1

15: else if Qs == q2 then
16: Λc

k =
p̃
H1
2

p
H0
2

17: else if Qs == qM then
18: Λc

k =
p̃
H1
M

p
H0
M

19: end if
20: while Λc

k ∈ (−η0, η1) do
21: k ← k + 1
22: wait to receive the next local decision at time tk from sensor k + 1
23: Λc

k ← Λc
k × λc

k

24: end while
25: Stop at time S = tk
26: if Λc

k ≥ η1 then
27: δ = 1
28: ASN1 = k � decide in favor of hypothesis H1 with an ASN1 = k
29: else
30: δ = 0
31: ASN0 = k � decide in favor of hypothesis H0 with an ASN0 = k
32: end if
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CHAPTER 5

SPATIAL CORRELATION MODELLING FOR SENSOR

OBSERVATIONS

5.1. Introduction

WSNs are categorized by the densely deployed sensor nodes which continuously

observe the physical phenomenon. Many times, sensor observations are highly correlated

in the spatial domain due to their high density in the network topology. Additionally,

the physical phenomenon establishes a temporal correlation between each consecutive

observation of a sensor node. A correlation region is defined as an area where the values

sensed by the sensor nodes are considered similar (for the application). According to both

application and event type, the size of the correlation region varies. For such events whose

characteristics change significantly at a short range, the sink node should decrease the size

of the correlated region. On the other hand, for events whose characteristics do not change

significantly at short range, the sink node can increase the size of the correlated region.

The characteristics of the correlation in the WSN can be summarized as follows:

I. Spatial Correlation: Typical WSN applications require spatially dense sensor de-

ployment in order to achieve satisfactory coverage (Meguerdichian et al., 2001; Zy-

toune et al., 2010.) As a result, multiple sensors record information about a single

event in the sensor field. Due to the high density in the network topology, spatially

proximal sensor observations are highly correlated with the degree of correlation

increasing with decreasing inter-node separation.

II. Temporal Correlation: Some of the WSN applications such as event tracking may

require sensor nodes to periodically perform observation and transmission of the

sensed event features. The nature of the energy-radiating physical phenomenon

constitutes the temporal correlation between each consecutive observation of a sen-

sor node. The degree of correlation between consecutive sensor measurements may
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vary according to the temporal variation characteristics of the phenomenon.

For the correlated sensor observations, accounting for the spatial correlation be-

tween the sensors, the deterministic signal propagation model which was developed in

Chapter 3 is inappropriate because a particular sensor k will not give us any information

about the observation at the jth sensor and their correlation coefficient defined as

ρ(sk, sj) =
Cov[Sk, Sj]

σSk
σSj

(5.1)

is zero where Cov[Sk, Sj] represents the covariance function given as:

Cov[Sk, Sj] = E[Sk, Sj]− E[Sk]E[Sj]. (5.2)

For this reason, we have to consider a stochastic signal propagation model in this chapter.

For the spatially correlated model, we decide to use the Gaussian signal model which is

given in (Vuran and Akyildiz, 2006; Zheng and Tang, 2011).

In Chapter 3, we used a uniform distribution model for deploying the sensors

in the surveillance zone. In this model, at each Monte Carlo run the sensor positions

were changing, and finding the information content under a certain hypothesis, either H0

or H1, requires obtaining the probability mass functions of the LRs or the observations

for the selected thresholds. In the deterministic signal model the sensor observations

are independent and the areas under Gaussian pdfs can be calculated analytically using

the complementary cumulative distribution function. However, these probability mass

functions for the correlated signals are obtained by computationally intensive two-variate

bivariate screening (TVBS) and one variate bivariate screening (OVBS) methods (Bhat,

2018), which is not feasible to use in the case of averaging many Monte Carlo realizations

of randomly deployed sensors. As a solution, we suggest a grid model for deploying the

sensors as shown in Figure 5.1. In this case, the required covariance matrix of the signal

component will be always the same and computed once only.
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Figure 5.1. The model architecture.

5.2. System Model

In this chapter, we will consider a binary hypothesis testing problem, where a

group of K sensors is deployed uniformly in a grid and cooperate with a FC to detect the

existence of a point source as shown in Chapter 3 Figure 3.1. The hypothesis testing at

each sensor node can be described as

H0 : yk = εk,

versus

H1 : yk = sk + εk,

(5.3)
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for k = 1, 2, ..., K where yk denotes the observation at the kth sensor and εk denotes

AWGN with variance σ2
N and zero mean. The observed signal at sensor k is denoted as sk

and for that the two following statistical models are considered:

I. Independent Gaussian signals: In this case, received signals at the sensors are in-

dependent from each other and follow a Gaussian distribution with zero mean and

variance σ2
sk

. So, yk ∼ N (0, σ2
N) under H0 and yk ∼ N (0, σ2

sk
+ σ2

N) under H1,

where yk are independently distributed. By using the NP detector the decision will

be in favor of hypothesis H1 if

Λ(y) =
p(y|H1)

p(y|H0)
=

1(
(2π)

K
2

∏K
k=1(σ

2
sk

+σ2
N)

1
2

) exp
(
−1

2

∑K
k=1

y2k
(σ2

sk
+σ2

N)

)
1

(2πσ2
N)

K
2
exp
(
−1

2

∑K
k=1

y2k
σ2
N

) H1

≷
H0

η. (5.4)

We can re-write (5.4) as

Λ(y) =

(
σK
N∏K

k=1(σ
2
sk
+ σ2

N)
1
2

)
exp

(
1

2

K∑
k=1

y2k

[
1

σ2
N

− 1

σ2
sk
+ σ2

N

])
H1

≷
H0

η. (5.5)

By taking the natural logarithm of both sides we obtain:

K∑
k=1

[
1

σ2
N

− 1

σ2
sk
+ σ2

N

]
y2k

H1

≷
H0

2 log

(∏K
k=1(σ

2
sk
+ σ2

N)
1
2

σK
N

η

)
. (5.6)

Note that, in our previous discussion, in Chapter 3, the decision statistics is a linear

function of the observations, and any linear combination of a Gaussian random vari-

able is also Gaussian. We perform the full characterization of the decision statistic

for this case using the mean and the variance for the Gaussian random variable

yi. However, in this chapter, we have the summation of the squares of the random

variable yi, which is not Gaussian.

II. Correlated Gaussian signals: In this case, we will consider the general covariance

structure for the signal vector s = [s1, s2, . . . , sK ]
ᵀ which is E(ssᵀ) = Cs.
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By reference to (5.3) we can see that the observed signal y under H0 is a pure noise

and it has the covariance structure E(yyᵀ|H0) = σ2
NIK where y = [y1, y2, . . . , yK ]

ᵀ.

Under H1, we have a summation of signal and noise components which are statisti-

cally independent. Consequently, the covariance statistic will be given as E(yyᵀ|H1)

= Cs + σ2
NIK . By using the NP detector the decision will be in favor of hypothesis

H1 if

p(y|H1)

p(y|H0)
=

σK
N√

det(Cs + σ2
NIK)

exp

(−1

2
yᵀ (σ−2

N IK − [Cs − σ2
NIK ]−1

)
y
)

≷ η.

(5.7)

By taking the natural logarithm of (5.7)

yᵀ (σ−2IK − [Cs − σ2
NIK ]−1

)
y ≷ η̃, (5.8)

where η̃ = 2 log η
σN

√
Cs + σ2

NIK

5.3. Sensor Deployment Model

The WSN model considered in this chapter consists of K sensors deployed in

a grid over the surveillance zone as shown in Figure 5.1. In order to make the results

independent from the target positions, an averaging over the possible target positions is

performed. As an example, the zone inside the circle indicates the event zone for the

occurrence of the target T3; black nodes represent sensor nodes; colored nodes represent

all the possible locations for the event occurrence. Notice that each set from the same

color is shared by a specific number of sensors. E.g. the target with blue color is shared

by 4 sensors, the target with magenta and green color are shared by 2 sensors whereas the

target colors red and cyan are not shared by more than one sensor. General assumptions

in the deployment of our WSN are summarized as follows:
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i. All the sensors are following the Boolean coverage model, which means each sensor

has a fixed sensing range and the sensing zone is represented with a disc centered

by the spatial location of that sensor.

ii. Each sensor has a communication range in order to send its decision to the FC.

iii. The sensors are considered to be static (no movement) which means that the loca-

tion information for each sensor is known.

5.4. Quantizer Design

To make a global decision at the FC we use a similar assumption to what we have

proposed in Section 3.3, that is each sensor transmits a single binary observation to the

FC using an identical quantization threshold for detection. However this time following

a variance-based partitioning of pdfs under each hypothesis as shown in Figure 5.2. The

quantization thresholds are evaluated using MAE and MJD methods discussed previously

in Section 3.3. Figure 5.3 shows the entropy functions F̂H0 , F̂H1 and F̂av for binary quan-

tization considering spatially correlated signals where the optimum threshold is found to

be at β∗ = 1. On the other hand, Figure 5.4 shows the corresponding maximum of Ĵ

which is found to be at β	 = 2.2 for binary quantization considering the same signals.

Similar to what we have obtained in the 1-D case in Figure 3.4, now, in this chapter

we obtain multi-dimensional pmfs for K correlated signals under both hypotheses H1 and

H0 using analytic approximation techniques for multivariate normal cumulative density

(MVNCD). These techniques depend on a single-sided truncation of a multivariate nor-

mal distribution in which some variables are truncated while others are not. We are mainly

using TVBS and OVBS which generally come out well on top relative to other methods

according to the ability of evaluating the individual choice probabilities and computa-

tional time (Bhat, 2018). We perform a further approximation to find the pmfs using 4

sub-matrices instead of using only one large matrix, e.g. instead of using a matrix of

dimensions (22 × 22), we use a diagonal matrix consisting of 4 sub-matrices (6 × 6),
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Figure 5.2. Pdfs of the observations when there is a target at T3 position and binary

decision regions for hypothesis test based on change in variance (D0: De-

cision Region for H0, D1: Decision Region for H1)

(6 × 6), (6 × 6) and (4 × 4) as shown in Figure 5.5 and neglect the other elements of

the (22 × 22) covariance-matrix. Also a visualization for the covariance matrix and its

approximation by 4 smaller dimensional covariance matrices is given in Figure 5.6.

This simplification has been performed because the evaluation of the multi-dimens-

ional pmfs for such a large dimensional matrix is not possible for a vector of thresholds.

For the information theoretic criteria used in the thesis, namely MAE and MJD, the most

costly part computationally is finding the pmf values. So, their computational costs are

very similar.

The sub-diagonal matrices (covariance matrices) were obtained by considering

the spatial correlation between the sensors themselves (depending on the inter sensor dis-

tances, d(si, sj)) and between the sensors and the event source (depending on the distance

from the target, d(si, Tj) ) which is given by Algorithm 3 as composed of two steps:

1. Max(diagonal(Cs)); Max([σ2
11, σ

2
22, ..., σ

2
kk])

2. Score of each sensor= σ2
ii ρs,T +

∑K
j (σiσj) ρi,j
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Figure 5.3. The entropy functions F̂H0 , F̂H1 and F̂av for binary quantization of spatially

correlated signals.

where ρk,l represents the correlation coefficient in the exponential correlation model which

is given as:

ρk,l = exp (−d/θ1)
θ2 (5.9)

with θ1 > 1 used to control the correlation between the observations of the sensor and

θ2 = 1 for the exponential correlation model. Moreover, Figure 5.7 shows the sensors

which correspond to each sub-matrix; the set of sensors, 1, 2, ..., 6 determines the first

sub-matrix. Similarly, the set of sensors 7, 8, ..., 12, the set of sensors 13, 14, ..., 18 and

the set of sensors 19, 20, 21, 22 determine the second, the third and the last sub-matrix,

respectively, in Figure 5.5.
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Figure 5.4. The J-divergence for binary quantization of spatially correlated signals.

5.5. Simulations for the Spatial Correlation Model

Monte Carlo simulations have been performed to evaluate the detection perfor-

mance at SNR= 12 dB in the cases of both independent and correlated Gaussian signals

which are described by the system model given in Subsection 5.2. In Figure 5.8, the

ROCs are plotted for the case of independent but not identical Gaussian observations.

The ROCs are evaluated using MAE and MJD methods for two levels of quantization.

Two other ad hoc thresholds are provided for the comparison with MAE and MJD. In this

figure, we observe that MJD quantization method outperforms MAE method and each of

them performs better than the ad hoc thresholds for pFA > 0.4. The ad hoc threshold

value βadhoc1 = 3 performs the best for pFA < 0.3.

Figure 5.9 shows the ROC curves for the correlated Gaussian signals using MAE

and MJD based methods and the other two ad hoc thresholds. This figure depicts that

MJD optimized threshold β	 = 2.2 and the first ad hoc threshold βadhoc1 = 3 exhibit the

best performances and MAE optimized threshold β∗ = 1 performs better compared to the
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Algorithm 3 The procedure of choosing the sub-diagonal matrices.

1: Input Dim = 36; � number of the sensors in 5.1.

2: ID = vector with dimension (1×M) which includes the chosen sensors where, M =

1,2,. . . ,5.

3: Covar= Cs + σ2
NIK

4: Initialize score = Zeros(1, Dim)
5: for i = 1 : Dim do
6: for i = 1 : Dim do
7: continue

8: end for
9: Score(i) = Covar(i, i)

10: Score(i) = Score(i) + Covar(i,index(1))

11:
...

12: Score(i) = Score(i) + Covar(i,index(M))
13: end for
14: index(M + 1) = Max(score);

second ad hoc threshold βadhoc2 = 0.5. While βadhoc1 = 3 is slightly more succesful for

pFA < 0.35, β	 outperforms it for pFA > 0.6.

Figure 5.10 shows a comparison between the resulted ROC curves using the un-

correlated and the correlated signals. This figure shows that the performance degrades for

the correlated observations.

5.6. Conclusions on Spatially Correlated Observations

The spatial correlation of the sensors was considered in this chapter for the de-

tection of point sources. For this case, a Gaussian isotropic event source was applied.

The computational requirements in evaluating multidimensional cumulative densities ne-

cessitated proposing a rectangular grid model of sensor deployment and block-diagonal

approximations of covariance matrix related to the event signal at the sensors without los-

ing generality. The detector for the correlated signal case is an energy detector and the

difference of the nature of the likelihood ratio type estimators seemed to be counting on

the disadvantage of the MAE quantizer for this case. As a result, for spatially correlated

signals MJD was more successful compared to MAE.
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Figure 5.7. Spatially correlated sensors in the sensitivity circle of target T3 (colors of

sensors: Algorithm 3 based groups, numbers: decreasing order of covari-

ances of sensors)
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88



probability of false alarm

0 0.2 0.4 0.6 0.8 1

p
r
o
b
a
b
il
it
y
o
f
d
e
t
e
c
t
io
n

0

0.2

0.4

0.6

0.8

1

= 2.2
= 1

adhoc1
= 3

adhoc2
= 0.5

Figure 5.9. ROC curve for the correlated Gaussian signals (θ1 = 21.83, SNR = 12 dB

(w.r.t. a sensor at 5 unit distance)).

89



probability of false alarm

0 0.2 0.4 0.6 0.8 1

p
r
o
b
a
b
il
it
y
o
f
d
e
t
e
c
t
io
n

0

0.2

0.4

0.6

0.8

1

iid = 2.2

corr = 2.2

Figure 5.10. Comparison between i.i.d. and correlated observations for MJD method

(θ1 = 21.83 SNR = 12, dB (w.r.t. a sensor at 5 unit distance)).

90



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE

RESEARCH

6.1. Conclusions

In this thesis, we have proposed quantizing the sensor outputs by maximizing

their average information in the cases of presence and non-presence of an event in DD.

The general approach in quantization for decision processes is based on distance mea-

sures such as JD and Bhattacharyya distance. This fact may have prevented a popular

information based quantization criterion for decision processes maximizing the informa-

tion under both (all) hypotheses rather than the information in the difference of the dis-

tributions. Since among the distance measure based quantization approaches, JD is an

information-theoretic quality, we adopted JD for comparisons of the proposed method.

One reason for suggesting another method like MAE instead of MJD is the non-

symmetric nature of the considered problem and the fact that the advantage of Ali-Silvey

type criteria (Poor and Thomas, 1977) which MJD is a member of, is only valid for the

symmetric performance measure probability of error. Although maximizing the trans-

ferred information under each hypothesis as proposed by the MAE method is a concep-

tually different approach, we showed that average entropy and JD are positively propor-

tional quantities. This means that one might expect comparable performances using either

of them for determining the quantization levels which was indeed the observation in the

simulation results.

In order to concentrate on the effects of how the sensor outputs are quantized on

the system performance, we performed extensive simulation studies for the case that the

sensor outputs are available error-free at the FC which we called DDT. The performances

of considered information-based methods, namely MAE and MJD, gradually improved as

the quantization level was increased from binary to six-levels and it approached the per-
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formance of non-quantized data transmission. Additionally, the proposed method, MAE,

performed significantly better compared to MJD for any level of quantization. Also, the

effects of the Rayleigh fading channel from the sensors to the FC have been investigated

using the optimal and a suboptimal fusion rule for MAE. Due to the power efficiency and

small degradation in non-coherent communication MFSK was adopted as the modulation

scheme for the sensor to FC communication. Using the wireless channel model similar

results were obtained as in DDT. Results with 6-level quantization were comparable to

non-quantized data transmission.

In this thesis, we have shown that the sequential detection outperforms the non-

sequential detection in the ASN needed to achieve a specific probability of detection in the

deterministic isotropic signal case with unknown SNR which is an expected result. Also,

we noticed that interestingly, when sequential detection is applied, for specific values

of detection, the number of transmitted bits for M -level quantization are less than the

number of bits transmitted for binary quantization. For different types of quantization

levels, we found that ASN decreases monotonically by increasing the quantization levels

and ASN increases by increasing the target probability of detection.

The spatial correlation of the sensors is taken into the account. For this case, a

Gaussian isotropic event source was applied. The computational requirements in eval-

uating multidimensional cumulative densities necessitated proposing a rectangular grid

model of sensor deployment and block-diagonal approximations of covariance matrix re-

lated to the event signal at the sensors without losing generality.

This work showed that MAE is a valid and promising method in quantization for

detection problems.

6.2. Suggestions for Future Research

Several research issues can be suggested based on the results of this thesis. Those

are outlined below:

1. We use MAE and MJD quantization methods for binary hypothesis test. Addi-

tionally, those quantization methods can be applied to discriminate between M hy-

potheses, where M > 2. This type of problem is important, in which one of M
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signals need to be detected. Also, it arises frequently in pattern recognition systems

to distinguish between different patterns.

2. This thesis considers a parallel network topology, whereas in WSNs, there are other

network topologies to investigate such as tree and serial topologies.

3. Applying the MAE method to quantize the overshoot of the LR, that is, the amount

by which the LR exceeds the lower or the upper thresholds of the SPRT in (Yilmaz

et al., 2012b) and comparing it with non-uniform samplers which are named as

event-triggered samplers. These type of quantization methods are very important

to improve the performance of SPRT, e.g. in cognitive radio spectrum sensing,

we have to decide if the band is used by the primary user or not, especially in

time-slotted system when the decision gets late the available time for actual data

transmissions will be very small and so, it would be better to make the decision

as fast as possible. Moreover, in radar system applications, it is very important to

decide if there is a target and start dealing with this target, i.e. start tracking this

target.

4. In this thesis, we consider the cases, where the observations are i.i.d. and spatially

correlated at local sensors. However, the observations can be also temporally cor-

related in target tracking applications. Therefore, one rich area for research is to

develop proper quantization methods for temporally correlated signals.
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APPENDIX A

DERIVATION OF THE LOCAL DECISION RULE

By splitting the summation in (2.15) to two summation
∑

um

∑
um=1,0 we get

� = c+ cFA
∑
um

∑
um=1,0

p(u0 = 1|u)p(u|H0)− cD
∑
um

∑
um=1,0

p(u0 = 1|u)p(u|H1) (A.1)

where

um = [u1, u2, ..., um−1, um+1, ...uK ]
T represents the local decision vector excluding um

with K − 1 elements and

umj = [u1, u2, ..., um−1, um = j, um+1, ...uK ]
T , j = 0, 1.

Expanding
∑

um=1,0 for um = 0, 1 gives

� = c+ cFA
∑
um

[p (u0 = 1|um0) p (um0 |H0) + p (u0 = 1|um1) p (um1 |H0)]−

cD
∑
um

[p (u0 = 1|um0) p (um0 |H1) + p (u0 = 1|um1) p (um1 |H1)] .
(A.2)

Using the law of total probability we can re-write P (um0 |Hj) in terms of p(um1 |Hj)

as

p(um0 |Hj) = p(um|Hj)− p(um1 |Hj), (A.3)

for j = 0, 1. Then by substituting (A.3) in (A.2) we have

� = c+ cFA
∑
um

p (u0 = 1|um0) p (um|H0)− p (u0 = 1|um0) p (um1 |H0)

+p (u0 = 1|um1) p (um1 |H0)− cD
∑
um

p (u0= 1|um0) p (um|H1)− p (u0= 1|um0)

p (u0 = 1|um1) p (um1 |H1) .

(A.4)

After re-arranging the terms in (A.4) we can re-write it as follows:
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� = c+
∑
um

p (u0 = 1|um0) [cFAp (u
m|H0)− cDp (u

m|H1)]︸ ︷︷ ︸
cm

+
∑
um

[
(p (u0 = 1|um1)− p (u0 = 1|um0))︸ ︷︷ ︸

A (um)

p (um1 |H0) cFA

− ((p(u0 = 1|um1)− p (u0 = 1|um0))︸ ︷︷ ︸
A (um)

p (um1 |H1) pD
]
,

(A.5)

which is equivalents to

� = cm +
∑
um

A (um) [cFA p (um1 |H0)− cD p (um1 |H1)] , (A.6)

where A (um) = p (u0 = 1|um1)− p (u0 = 1|um0).

Note that the summation
∑

um includes 2K−1 terms.

We will perform further manipulations for p (um1 |Hj), j = 0, 1 in (A.6) by writing

it using a multidimensional integral as

p(u|Hj) =

∫
y

p (um|ym)︸ ︷︷ ︸
[

K∏
k=1,k �=m

p (uk|yk)
]

p (ym|Hj) p (ym|ym, Hj) dy, (A.7)

where ym =
[
y1, ..., ym−1, ym+1, ..., yK

]T
. Note that the underbraced term in the pre-

vious equation represents the decision rule for the local detector which is needed to be

designed; i.e. p (um = 1|ym) is the probability to decide H1 at a local detector given the

observation ym. If p (um = 1|ym) = 0 or 1 it means that we have a deterministic detector

(for a certain range of ym we will decide 1 and for another range we will decide 0 ) but

also it could be a randomized detector.

Using the previous equations we can write the average risk as follows:
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� = cm +
∑
um

A(um){cFA
∫
y

p(um = 1|ym)
[

K∏
k=1,k �=m

p(um|ym)
]

p(ym|H0) p(y
m|ym, H0)dy − cD

∫
y

p(um = 1|ym)
[

K∏
k=1,k �=m

p(uk|yk)
]

p(ym|H1) p(y
m|ym, H1)}dy.

(A.8)

Taking the term which represents the local detector; p(um = 1|ym) in (A.8), as a common

factor produces the following equation

� =

∫
ym

p(um = 1|ym)
[∑

um

∫
ym

A(um)
{
cFA

[
K∏

k=1,k �=m

p(uk|yk)
]
p(ym|H0)

p(ym|ym, H0)− cD

[
K∏

k=1,k �=m

p(um|ym)
]
p(ym|H1) p (y

m|ym, H1)
}]

.

(A.9)

Utilizing basic concepts of Bayesian detector design (minimum risk Bayesian detector);

if the value between outer brackets in (A.9) is negative, we will put p(um = 1|ym) = 1

which means decide H1 otherwise we will put it as zero which means decide H0.

cFAp (ym|H0)
∑
um

∫
ym

A (um)

[
N∏

k=1,k �=m

p(uk|yk)
]
p(ym|ym, H0)dy

H1

≶
H0

cDp(ym|H1)
∑
um

∫
ym

A(um)

[
K∏

k=1,k �=m

p(uk|yk)
]
p(ym|ym, H1)dy.

(A.10)

We can re-write the local decision rule in (A.10) similar to (Viswanathan and Varshney,

1997) as

p(ym|H1)

p(ym|H0)

H1

≷
H0

cFA
∑

um

∫
ym A(um)

[∏K
k=1,k �=m p(uk|yk)

]
p(ym|ym, H0))dy

cD
∑

um

∫
ym A(um)

[∏K
k=1,k �=m p(uk|yk)

]
p(ym|ym, H1)dy

. (A.11)

From the previous discussion we can see that optimizing any decision rule can be per-

formed keeping the remaining decision rules fixed which is called as person-by-person

optimization (PBPO) and it necessitates solving (K + 2K) coupled nonlinear equations.
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APPENDIX B

DESIGN EXAMPLE OF A BAYESIAN PARALLEL FUSION

NETWORK WITH TWO SENSORS

Consider a parallel topology with FC consisting of two local sensors with con-

ditionally independent and identically distributed observations, (Varshney, 2012). From

(2.17) we can write the LRT at sensor k = 1 as follow:

cD p(y1|H1)

cFA p(y1|H0)

H1

≷
H0

∑
u2
A(u2)

∫
y2

p(u2|y2) p(y2|, H0)

∑
u2
A(u2)

∫
y2

p(u2|y2) p(y2|H1)
(B.1)

where

A(u2) = p(u0 = 1|u1 = 1, u2)− p(u0 = 1|u1 = 0, u2).

Assuming ηijk = p(u0 = i|u1 = j, u2 = k),

A(u2) = η11u2 − η10u2 , for i, j, k = 0, 1.

For a binary local detector u1 we can write (B.1) as follows:

cD p(y1|H1)

cFA p(y1|H0)

H1

≷
H0

η110 − η100 + (η111 − η101 − η110 + η100)

∫
y2

p(u2 = 1|y2)p(y2|H0)

η111 − η101 + (η101 − η111 + η110 − η100)

∫
y2

p(u2 = 1|y2)p(y2|H1)
,

(B.2)

then

p(y1|H1)

p(y1|H0)

H1

≷
H0

t1 (B.3)

where

t1 =

cFA

[
η110 − η100 + (η111 − η101 − η110 + η100)

∫
y2

p(u2 = 1|y2)p(y2|H0)

]

cD

[
η111 − η101 + (η101 − η111 + η110 − η100)

∫
y2

p(u2 = 1|y2)p(y2|H1)

] .
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Following the equations from (B.1) to (B.3) we can write the decision rule for

sensor k = 2 as:

p(y2|H1)

p(y2|H0)

H1

≷
H0

t2 (B.4)

where

t2 =

cFA

[
η101 − η100 + (η111 − η101 − η110 + η100)

∫
y1

p(u1 = 1|y1)p(y1|H0)

]

cD

[
η111 − η110 + (η101 − η111 + η110 − η100)

∫
y1

p(u1 = 1|y1)p(y1|H1)

] .

We notice from (B.3) that the threshold t1 at the first sensor is a function of the de-

cision at the second sensor, which means the threshold on the first sensor is coupled with

the threshold on the second sensor. t1 is a function of t2 because t1 involves p(u2 = 1|y2)
which is a function of t2 also.

LR(y1)
H1

≷
H0

t1 = function of t2,

LR(y2)
H1

≷
H0

t2 = function of t1.

To be more specific, we assume that we have Gaussian likelihoods, yi ∼ N (0, 1),

under H0, and yi ∼ N (μi, 1), i = 1, 2 under H1 where, μ1, μ2 > 0 as given in (Varshney,

2012). The LR for the first and second detector are given respectively as:

p(y1|H1)

p(y1|H0)
= exp

(
y21 − (y1 − μ1)

2

2

)
= exp

(
μ1y1 − 1

2
μ2
1

)
(B.5)

and

p(y2|H1)

p(y2|H0)
= exp

(
μ2y2 − 1

2
μ2
2

)
. (B.6)

Simplifying (B.5) and (B.6) will give

y1
p(u1|y1)=1

≶
p(u0|y0)=0

1

μ1

log(t1) +
μ1

2
(B.7)

and

y2
P (u2=1|y0)=1

≶
P (u2=0|y2)=0

1

μ2

log(t2) +
μ2

2
, (B.8)
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respectively. Now, we can find the values of the integrals inside the expression of thresh-

olds t1 and t2. For threshold t1 the probability of u2 = 1 given a local observation y2 in

the numerator is given as:∫
y2

p(u2 = 1|y2) p(y2|H0) =

∫ ∞

1
μ2

log(t1)+
μ2
2

1√
2π

exp

(−y22
2

)
dy2

= Qfunc

(
1

μ2

log(t2) +
μ2

2

)
,

(B.9)

and in the denominator as:∫
y2

p(u2 = 1|y2) p(y2|H1) = Qfunc

(
μ2

2
+

1

μ2

log(t2)− μ2

)

= Qfunc

(
1

μ2

log(t2)− μ2

2

)
.

(B.10)

In the same way, we can evaluate the integrals inside t2 in the numerator and denominator

respectively, as follows:

∫
y1

p(u1 = 1|y1) p(y1|H0) = Qfunc

(
1

μ1

log(t1) +
μ1

2

)
(B.11)

and ∫
y1

p(u1 = 1|y1) p(y1|H1) = Qfunc

(
1

μ1

log(t1)− μ1

2

)
. (B.12)

We can re-write the thresholds t1 and t2 using the equations from(B.9) to (B.12) as

cD
cFA

t1 =
η110 − η100 + (η111 − η101 − η110 + η100) Qfunc

(
1
m2

log(t2) +
m2

2

)
η110 − η100 + (η111 − η101 − η110 + η100) Qfunc

(
1
m2

log(t2)− m2

2

) (B.13)

cD
cFA

t2 =
η101 − η100 + (η111 − η101 − η110 + η100) Qfunc

(
1
m1

log(t1) +
m1

2

)
η101 − η100 + (η111 − η101 + η110 + η100) Qfunc

(
1
m1

log(t1)− m1

2

) . (B.14)

Re-arranging the previous equations gives:

t1 =
cFA

[
η110 − η100 + (η111 − η101 − η110 + η100)Qfunc

(
1
μ2

log(t2) +
μ2

2

)]
cD

[
η111 − η101 + (η101 − η111 + η110 − η100)Qfunc

(
1
μ2

log(t2)− μ2

2

)] (B.15)

and

t2 =
cFA

[
η101 − η100 + (η111 − η101 − η110 + η100)Qfunc

(
1
μ1

log(t1) +
μ1

2

)]
cD

[
η111 − η110 + (η101 − η111 + η110 − η100)Qfunc

(
1
μ1

log(t1)− μ1

2

)] . (B.16)
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The coupled equations, (B.15) and (B.16) can be solved to obtain the values of

t1 and t2. Solving the coupled equations, (B.15) and (B.16) requires to assign values for

ηijk which represents the probability of global decision, u0 = i for given local decisions,

u1 = j and u2 = k, where i, j, k = 0, 1. In this case, we have to try all the possibilities

of u1 and u2 for a certain fusion rule and then assign the value for ηijk. For each possible

fusion rule and its corresponding ηijks we will check if the coupled equations give a

solution for t1 and t2 which is consistent with the 2K in (2.20) . In case t1 and t2 have

more than one solution, we will choose the one which minimizes the average risk, e.g.

using OR rule as global decision at FC gives η100 = 0 and η101, η110, η111 = 1 . The

possible number of fusion rules for K sensors equals to 22
K

; for our case K = 2 which

gives 16 logical function rule. From these 16 possibility we will chose AND, OR, decision

in favor of sensor 1 , and decision in favor of sensor 2. To minimize average probability of

error, let c10 = c01 = 1 and c00 = c11 = 0 which gives cFA = p(H0) and cD = p(H1). We

will consider the thresholds and the fusion rule for three different sets of values μ1 = 1,

μ2 = 1; μ1 = 1, μ2 = 1.5 and μ1 = 1, μ2 = 2. The thresholds at 2 sensors and its

corresponding average probability of error pe for the three cases are shown in the Figures

from B.1 to B.6. Figure B.1 shows the average probability of error, pe, as a function of

the prior probability, p(H0), for the case μ1 = μ2 = 1. The worst pe is achieved when the

global decision is taken according to u1and disregards u2, the red curve, which is identical

to take the global decision according u2 and disregards u1, blue squared curve. Using OR

rule gives the minimum pe for p(H0) < 0.5, black curve whereas AND rule gives the

minimum pe for p(H0) > 0.5, green curve. The minimum pe obtained from the lower

envelope of the pe curves corresponding to different fusion rules, black crossed curve;

which obtained from both OR and AND rules; represents the minimum pe in this case .

For the same case the identical thresholds for the two sensors are shown in Figure B.2.

Figure B.3 shows the average probability of error , pe, when μ1 = μ2 = 1.5. In

this figure, we can see the maximum pe is obtained when the global decision is taken

according to the first sensor only, the red curve. The pe decreases and we can achieve bet-

ter performance in terms of pe when we take the global decision according to the second

sensor, the blue curve. This is logical because both sensors have zero mean observations
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under hypothesis H0 but the second sensor has a mean, μ = 1.5 under H1 which is greater

than the mean of the first sensor, μ = 1. We can achieve a better performance in term

of pe if we increase the mean of the second sensor to be μ = 2 as shown in Figure B.5.

(Increasing the distance between the two hypotheses decreases the pe). The correspond-

ing thresholds for the cases , μ1 = μ2 = 1.5 and μ1 = μ2 = 2 are shown respectively in

Figures B.4 and B.6.
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Figure B.1. Average probability of error, case 1: μ1 = 1, μ2 = 1.

108



0 0.2 0.4 0.6 0.8 1
 p(H

0
)

0

1

2

3

4

5

6

7

8

9

T
hr

es
ho

ld

Sensor
1

Sensor
2

Figure B.2. The threshold values, case 1: μ1 = 1, μ2 = 1.
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Figure B.3. Average probability of error, case 2: μ1 = 1, μ2 = 1.5.
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Figure B.4. The threshold values, case 2: μ1 = 1, μ2 = 1.5.
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Figure B.5. Average probability of error, case 3: μ1 = 1, μ2 = 2.
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Figure B.6. The threshold values, case 3: μ1 = 1, μ2 = 2.
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APPENDIX C

TOY EXAMPLES FOR APPLYING MAE AND MJD

It is expectable that for binary quantization with symmetrical pdfs under both

hypotheses as in Case 1, one will obtain the same threshold and consequently the same

ROC performance using either of the methods. However with asymmetrical pdfs as in

Case 2, the two methods result in different thresholds and consequently different ROC

performance.

• Case 1: In this case, we consider two pdfs symmetric around the point lambda=0.5,

q(λ) = −2(λ − 1) and p(λ) = 2λ as shown in Figure C.1, where the areas A1,

A3 represent the probabilities of the partitions under p(λ) and the areas A2, A4

represent the probabilities of the partitions under q(λ) (note: p(λ) and q(λ) are

nonzero only in lambda in (0,1) (these should be defined)).

Figure C.1. Symmetric pdf

The average entropy and the J-divergence equations for this example are given re-

spectively as follows:

Fav = 0.5(−A1 log2(A1)− A2 log2(A2)− A3 log2(A3)− A4 log2(A4)), (C.1)
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J = A2 log2
A2

A3

+ A1 log2
A1

A4

− A3 log2
A2

A3

− A4 log2
A1

A4

. (C.2)

The threshold value λ̃ that maximizes both the average entropy and J-divergence

can be found by solving (C.3) and (C.4) which give λ̃MAE = λ̃MJD = 0.5, where

λ̃MAE = argmax
λ

F̂av, (C.3)

λ̃MJD = argmax
λ

J. (C.4)

• Case 2: An asymmetrical pdf set where q(λ) = 1 and p(λ) = 2λ as shown in

Figure C.2. The average entropy and the J-divergence equations are given by (C.1)

and (C.2), respectively.

Figure C.2. Asymmetric pdf

The threshold values λ̃ that maximize both the average entropy and J-divergence can

be found by solving (C.3) and (C.4) which give λ̃MAE = 0.6295 and λ̃J = 0.318.

The ROC curves have been considered for both symmetrical and asymmetrical pdfs as

shown in Figure C.3 and Figure C.4, respectively. In the case of symmetric pdfs, MAE
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outperforms the MJD for the probability of false alarm between 0 and 0.5 and is inferior

to it for the probability of false alarm between 0.5 and 1.

Figure C.3. ROC symmetrical pdfs
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Figure C.4. ROC unsymmetrical pdfs
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