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ABSTRACT

ELECTRONIC, MAGNETIC AND TRANSPORT PROPERTIES OF
GRAPHENE QUANTUM DOTS WITH CHARGED IMPURITIES

In this thesis, electronic, magnetic, and transport properties of armchair edged

hexagonal and zigzag edged triangular graphene quantum dots (GQDs) are investigated

in the presence of charged impurities. In this manner, a special attention has been paid

to the Coulomb impurity problem in these structures. The collapse of the wave functions

starting from the 1S1/2 state is studied in the presence of not only the Coulomb impurity

but also in the presence of a Coulomb charged vacancy with the help of tight-binding

and extended mean-field Hubbard (MFH) models. Here, we report an interaction induced

renormalization of the critical coupling constant (βc). In addition, our results suggest that

the induced charge for the interacting fermions is smaller than that of the non-interacting

fermions. Furthermore, the transport coefficients reveal two different characteristics of

the subcritical (β < βc) and supercritical (β > βc) regimes. As for the charged vacancy,

the bare carbon vacancy induces a local magnetic moment in the hexagonal GQDs, but it

is suppressed when the vacancy is charged with the subcritical Coulomb potential.

Except the pristine cases of the GQDs, we numerically study a Coulomb impurity

problem for the interacting fermions restricted in disordered hexagonal GQDs. In the

presence of randomly distributed lattice defects and spatial potential fluctuations induced

by Gaussian impurities, the response of βc for atomic collapse is mainly investigated by

local density of states (LDOS) calculations within the MFH model. We find that both

types of disorder cause an amplification of the critical threshold. As for the zigzag edged

triangular GQDs, in the presence of the bare vacancy, we exactly obtain the spin splitting

with the help of LDOS calculations in the energy spectrums, which are dominated by the

edge states around the Fermi level. Similar to the hexagonal GQDs, if the vacancy is

charged, the local magnetic moment disappears in these GQDs.
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ÖZET

YÜKLÜ SAFSIZLIKLAR İÇEREN GRAFEN KUANTUM
NOKTALARIN ELEKTRONİK, MANYETİK VE TAŞINIM

ÖZELLİKLERİ

Bu tezde, koltuk kenarlı altıgen ve zikzak kenarlı üçgen grafen kuantum

noktaların (GKN) elektronik, manyetik ve taşıma özellikleri yüklü safsızlıklar varlığında

incelenmektedir. Bu manada, bu tür yapılarda Coulomb safsızlık problemine özel bir

dikkat gösterilmiştir. Dalga fonksiyonlarının 1S1/2 durumundan başlayarak çöküşü,

sadece bir Coulomb safsızlığı varlığında değil aynı zamanda yüklü bir boşluk varlığında

da sıkı bağlanma ve genişletilmiş ortalama alan Hubbard (OAH) modelleri yardımıyla

çalışılmıştır. Burada, kritik bağlanma sabitinin (βc) etkileşim kaynaklı artışını rapor

ediyoruz. Ek olarak, sonuçlarımız etkileşmeyen duruma kıyasla etkileşen fermiyonlar

için indüklenen yükün azaldığını öngörmektedir. Dahası, taşıma katsayıları kritik altı (β

< βc) ve kritik üstü (β > βc) rejimlerin iki farklı karakterini ortaya çıkartmaktadır. Yüklü

karbon boşluğuna gelince, çıplak boşluk altıgen GKN’larda yerel bir manyetik moment

meydana getirir, ancak çıplak boşluk kritik altı Coulomb potansiyeli ile yüklendiğinde

yerel manyetik moment bastırılmaktadır.

Farklı büyüklükteki temiz GKN’ların haricinde, düzensiz altıgen GKN’lara

sınırlandırılmış etkileşen fermiyonlar için Coulomb safsızlık problemi nümerik olarak

incelenmektedir. Rastgele dağıtılmış örgü kusurları ve Gauss safsızlıklarının neden

olduğu uzamsal potansiyel dalgalanmalar varlığında, βc’ğin tepkisi genişletilmiş OAH

modelindeki yerel durum yoğunluk (YDY) hesaplamaları ile araştırılmıştır. Her iki tür

bozukluğunda kritik eşiğin yükselmesine neden olduğu gösterilmiştir. Zikzak kenarlı

üçgen GKN’lara gelince, yüksüz boşluk varlığında, Fermi seviyesi civarında kenar

durumları tarafından domine edilmiş enerji spektrumları içerisinde, YDY hesapları

yardımıyla, spin ayrışması tam olarak bulunmuştur. Altıgen GKN’lara benzer şekilde,

eğer boşluk yüklenirse, yerel manyetik momentin kaybolduğu gösterilmektedir.
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CHAPTER 1

INTRODUCTION

Graphene with relativistic massless Dirac fermions is the perfect playground for

testing the predictions of quantum electrodynamics (QED) such as the Klein tunneling

(Katsnelson et al. (2006)) and the fractional quantum Hall effect (Bolotin et al. (2009)).

Another one of these predictions is atomic collapse, which refers to as the spontaneous

formation of electrons and positrons in the electrostatic field produced by a atomic

nucleus. The single-atom-thick material allows one to observe atomic collapse with the

help of experimentally accessible Coulomb impurities. In this thesis, we have examined

atomic collapse in finite graphene samples. First, we will introduce the finite graphene

samples, which have taken into consideration. Second, in this chapter, we will introduce

the long-standing phenomenon of QED in graphene in more detail.

1.1. Graphene and Graphene Quantum Dots

Graphene consists of carbon atoms arranged in a honeycomb lattice with a carbon-

carbon distance of a = 1.42 Å. Electronic configuration of carbon atoms is 1s22s22p2 in

which the two 1s electrons are core electrons of the atoms, and which are irrespective

of the conduction process. In this electron configuration, the remaining four electrons

distribute themselves among the remaining four orbitals in which each orbital takes a

single electron (Neto et al. (2009)). Actually, the three valance electrons in s, px, py

orbitals form σ bonds between the carbon atoms by the sp2 hybridization, oriented at 120◦

with respect to each other, which is responsible for the robustness of the lattice structure.

The remaining single valance electrons in pz orbitals correspond to the πz bonds, which

are perpendicular to the graphene plane and determine the electronic properties of the

lattice. Bravais lattice of graphene consists of two atoms, which are labelled as A and

B in the unit cell, and the interaction between these two atoms leads to the formation

of the valance (π) and conduction (π∗) bands. In the tight binding (TB) approximation,

dispersion relation of graphene shows that the valance and conduction bands touch each
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other at six points in the Brillouin zone, which indicates that graphene is a zero-band-gap

semiconductor (Neto et al. (2009)), see Fig. 1.1(a)-(c). Graphene, as a two-dimensional

(2D) allotrope of carbon, is of significant interest starting from its first experimental

isolation (Novoselov et al. (2004)), since a novel sp2-hybridized carbon network has

significant physical properties (Neto et al. (2009)) as compared to other carbon allotropes.

Starting from its experimental isolation from graphite, which is actually stacked layers of

graphene sheets held together by the weak Van der Waals forces, most of the studies

search a way to use graphene for the next generation devices. Significant physical

properties such as high thermal conductivity, high electrical conductivity, high elasticity

and flexibility render graphene a very studied material with great possibilities. As for the

current literature, a great part of the electronic properties of graphene has been reviewed

by Castro-Neto et al. (Neto et al. (2009)), transport properties by Das Sarma et al. (Sarma

et al. (2011)), and many-body effects by Kotov et al. (Kotov et al. (2012)), Vozmedano et

al. (Vozmediano and Guinea (2012)), and MacDonald et al. (MacDonald et al. (2012)).

A broad range of topics related to graphene science can likewise be found in books,

e.g., Katsnelson (Katsnelson and Iosifovich (2012)), Aoki et al. (Aoki and Dresselhaus

(2013)), and Torres et al. (Torres et al. (2020)).

Figure 1.1. (a) Bravais lattice of graphene whose the lattice constant is 2.46 Å, (b) in-

plane σ, which are consisting of the sp2 hybridization, and out of plane π
bonds in graphene, and (c) 3D dispersion relation of graphene shows the

valance and conduction bands. Here, the inequivalent K and K’ points is

also shown (Source: (Yazdi et al. (2016)).
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Since the single-atom-thick material is a semiconductor with a zero-energy band

at the Dirac point (DP), the current can not be turned on/off. Furthermore, because of the

Klein paradox and the zero band gap, it is hard to restrict Dirac fermions to an external

electric field, which inhibits its application to transistors. It leads to another question:

Can we take graphene as a beginning material and modify its electronic, magnetic, and

transport properties by adjusting the size, the shape, and the kind of edge? Actually,

by creating graphene quantum dots (GQDs) (Ponomarenko et al. (2008)), it is possible

to engineer physical properties of graphene. In this manner, the GQDs have attracted

increasing interest in material science (Güçlü et al. (2014)). By controlling the size of

bulk graphene with the help of 0D GQDs, the energy gap can created, which can be tuned

to a range of frequencies from terahertz to ultraviolet. In this way, the limited size of

graphene can be turned into a semiconductor. Similarly, one can imagine designing a

magnet and a laser by using these 0D carbon materials and making nanoscale quantum

circuits consisting of the GQDs. Obtaining graphene nanostructures from single layer

graphene brings about two stable edges, which are armchair and zigzag edges, and these

edges can be described in such a way that the sublattice imbalance is preserved or not.

These stable edges are responsible for the anti-ferromagnetic and ferromagnetic ground

states in these finite samples. As we will show below, these two kinds of edge and

the different shapes of the GQDs dictate a significant part of electronic and magnetic

properties of these nanostructures.

The experimental manufacturing methodologies of the GQDs fall into two main

categories, which are top-down and bottom-up techniques. Top-down technique refers to

peeling of mass graphene-based materials, which is most generally graphite, to produce

monolayer graphene. This technique requires deeper knowledge about the material in

order to obtain the GQDs. In addition, the process may contain complex techniques

including concentrated acids, solid oxidizing, and high temperatures. On the other hand,

the bottom-up technique uses a combination of different particles with fragrant structures

in order to produce the GQDs. In spite of its complexity, this technique provides an exact

control of the morphology and size dispersion of the particles delivered (Bacon et al.

(2014)). As a good example for the bottom-up technique, atomically precise πz-extended

triangular graphene quantum dots with zigzag edges were constructed via a precursor

molecules (Su et al. (2019)).
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Throughout this thesis, in the presence of experimentally relevant charged

impurities, we will study the electronic magnetic, and transport properties of the

hexagonal GQDs with armchair edges and the triangular GQDs with zigzag edges,

which are illustrated in Fig. 1.2(a) and Fig. 1.2(b), respectively. In our numerical

calculations, we obtained these GQDs by cutting from an infinite monolayer graphene.

Such GQDs come to the fore with their size-dependent, edge-dependent, and shape-

dependent intrinsic properties. For example, the hexagonal GQD with armchair edges

has an energy gap, which corresponds to confined Dirac fermions (Güçlü et al. (2010)).

This energy gap is inversely proportional to the number of atoms of the hexagonal

GQDs. These GQDs are anti-ferromagnetic due to their armchair edges, and transmission

coefficients of them are also inversely proportional to the number of atoms (Polat et al.

(2020)). As for the triangular GQDs with zigzag edges, they have a net magnetic moment

in their ground states due to the spin-polarized edge states (Su et al. (2019)). On the other

hand, as a motivation for this thesis, charged impurities in these QDs can be used to adjust

these intrinsic properties for many purposes. As an example, when a Coulomb impurity is

placed at the center of the hexagonal GQDs, and if the value of coupling strength between

the GQD and the Coulomb impurity exceeds a critical threshold, we found that the lowest

energy electron state of the hexagonal GQD turns into a quasi-bound state (QBS), which

corresponds to the first supercritical state, i.e., the 1S1/2 state, of the Coulomb impurity.

This is known as the graphene version of atomic collapse in the current literature, and

similarly, many supercritical states can bound to the Coulomb impurity, depending on

the value of the coupling strength (Shytov et al. (2007a)). Such a formation of the

quasi-bound state in the QDs results in a sudden downshift in the transmission peaks, as

demonstrated by our previous work (Polat et al. (2020)). In addition to this special effect,

it is well-known that the local magnetic moment, i.e., spin-splitting in the energy spectrum

between spin-up and spin-down fermions, in graphene can be induced by introducing a

bare vacancy, but it can be adjusted by charging the vacancy with the Coulomb potential

(Polat et al. (2020)). On the other hand, the valley splittings or orbital splitting in the

electron and hole channels continue to exist, as discussed by our previous study (Polat

et al. (2020)). As for other impurities in the GQDs, we also studied the effect of electron-

hole puddles induced by Gaussian impurities and the lattice distortions induced by point

vacancies on atomic collapse with the help of local density of state calculations within
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the extended mean field Hubbard model (Polat and Güçlü (2020)). These calculations

simply show us that atomic collapse can also be observed in a defect-rich samples such

as hydrogenated graphene (Polat and Güçlü (2020)). In short, by modifying the structure

of a 2D lattice via experimentally relevant impurities, electronic, magnetic and transport

properties of the GQDs can be adjusted, and which can be used to create new type of

devices in the near future.

Figure 1.2. An illustration of the hexagonal GQD with armchair edges in (a) and the

triangular GQD with zigzag edges in (b), which are under examination in

this thesis. A and B sublattice atoms are represented by red and blue filled

hard spheres, respectively.

For these GQDs, the energy spectrums within the TB approximation are given

below in Fig. 1.3(a)-(d). Here, we restrict ourselves only to the nearest neighbour

interaction of the lattice sites. For hexagonal GQDs consisting of 114 atoms, the energy

spectrum has a clear band gap, as shown in Fig. 1.3(a), and the first states above and

below the Fermi level (FL) are doubly degenerate, as shown in the zoomed portion of

the energy spectrum [Fig. 1.3(a)]. As for the triangular GQDs with zigzag edge, there

is an localized edge states within the energy spectrum, and such states are responsible

for the ferromagnetism in these GQDs [Fig. 1.3(c)-(d)]. Similarly, we have two doubly

degenerate states around the FL for the triangular GQDs.

We will study that the effects of charged impurities on the electronic and magnetic

properties when they are intentionally introduced to these structures. In the next, starting

from the prediction of the QED, we will examine the current literature findings related

to the Coulomb impurity, and the equivalence of this phenomenon is experimentally

reachable in bulk graphene (Wang et al. (2013)). In this manner, the Coulomb impurity
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Figure 1.3. (a) shows the energy spectrum of the hexagonal GQD consisting of 114

atoms, (b) belongs to a zoomed portion of the same spectrum around the

Fermi level, (c) and (d) show the energy spectrum of the zigzag-edged

triangular GQDs consisting of 118 atoms.

problem paves the way for observing of the collapse resonances in graphene with the help

of local density of state measurements.

1.2. Atomic Collapse in Quantum Electrodynamics

Rutherford’s model has revealed the problem related to the stability of the atoms.

The electron rotating around the nucleus falls to the center by losing its energy, that is,

atomic collapse. However, in the context of quantum mechanic, the atoms are stable in a

Coulomb field due to the uncertainty principle. Indeed, the Coulomb potential created by

the nucleus with a charge of Ze scales with -Ze/r, where r is the distance from the center

of the nuclear charge, and the kinetic energy of the electron is given by p2/2me. If the

electron is restricted to a region of the space, its momentum uncertainty can be written as

p ∼ h/r, and the kinetic energy takes the form of ∼ h2/2mr2. r must approach to zero in

order to fall an electron to the nucleus. While the distance converges on zero, the kinetic

energy of electron diverges more quickly than the potential energy, -Ze/r. As a result,
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the situation is expected to be energetically forbidden.

This explanation brings up a new question related to the behaviour of a potential,

scales with −k/rn where n ≥ 2, and which is more singular than the Coulomb potential.

When the Schrödinger equation is solved in the presence of a potential scales with −k/rn

in which a non-relativistic atomic collapse occurs. Quantum mechanical example of the

fall-to-center problem has a bound energy solution when the strength k is larger than

h2/(8me). If we take into account the relativistic effects, the Dirac equation has to be used

instead of the Schrödinger equation, especially for superheavy atoms. It is well-known

that the kinetic energy term in the Dirac equation is a linear function of momentum, that

is ∼ h/r, as expressed above. Indeed, the Coulomb potential in the Dirac equation also

causes to atomic collapse.

Figure 1.4. Energy spectrum of hydrogen atom for different Z values. Subcritical (Z <
Zc) and supercritical (Z > Zc) regimes are separated by a critical valance

charge of Zc. A bound state turns out a resonance state in the negative

energy continuum (Source: (Reinhardt and Greiner (1977)).

The exact solution of a three-dimensional Dirac equation in an external Coulomb

field, produced by a point nucleus, is only consistent up to a critical threshold Zc = α−1

∼ 137, where α = e2/�c is the Sommerfeld fine-structure constant (Zeldovich and Popov

(1972)). For larger values of the nuclear charge Z, the energy eigenvalues become purely

imaginary, the wave function is non-normalizable, and its real part exhibits oscillatory

behavior (Greiner (2000)). It was previously believed that such an equation could not
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be solved. On the other had, the singularity of the point nucleus at the center leads to

a non-self-adjoint Hamiltonian that could not be properly solved unless a finite-size for

the nucleus is introduced (Pomeranchuk and Smorodinsky (1945)). This regularization

results in a larger critical threshold of Zc ∼ 172 above which the wave function becomes

a narrow resonance with a finite lifetime in compliance with Fano
′
s formalism. The

behaviour of atomic collapse states as a function of nuclear charge Z for the real atoms is

shown in Fig.1.4 (Reinhardt and Greiner (1977)).

The lowest bound state 1S1/2 with the total angular momentum quantum number

j = 1/2 dives into the negative energy continuum, and formerly bound state becomes a

resonant state. In spite of its long-standing history (Greiner (2000)), such a phenomenon

so-called collapse of the vacuum is far from being proven in experiments performed

with real atoms (Schweppe et al. (1983); Cowan et al. (1985)). However, in terms of

experimental accessibly, the situation is completely different in the single-layer graphene.

Experimentally accessible Coulomb impurities are at the edge of supercritical regime,

and putting them together, one can show the atomic collapse resonances in graphene, and

as we will obtain with the help of numerical calculations, the same measurement and

observation can be also possible in the finite sized graphene samples.

1.3. Coulomb Impurity Problem in Graphene

In the graphene version of atomic collapse, Dirac fermions form the vacuum

itself, and the Coulomb impurity acts as a nucleus that couples to the vacuum by means

of a dimensionless coupling strength β = Zαg, where αg = 2.2/κ is the fine structure

constant, Z is the nuclear charge of the impurity, and κ is the dielectric constant (Neto

et al. (2009)). When β exceeds a critical coupling constant βc, the lowest energy electron

state of graphene firstly turns into a QBS (Pereira et al. (2007)), which corresponds to

the 1S1/2 state of the impurity, and an infinite number of QBS can appear for massless

Dirac fermions, depending on the value of β (Shytov et al. (2007a)). This critical value is

estimated to be βc = 1/2 in the case of non-interacting massless Dirac fermions (Khalilov

and Ho (1998)), and graphene reduces the critical threshold for the the 1S1/2 state to

Zc � 1 through a larger fine structure constant αg (Pereira et al. (2007); Shytov et al.

(2007a,b)). As for the size of the vacuum, the critical coupling constant remains the
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same, i.e., βc = 1/2 for the lowest angular momentum channel, when non-interacting Dirac

fermions are confined in smaller-sized GQDs (Van Pottelberge et al. (2017)). But on the

other hand, the role of electron interactions in this phenomenon seems to be important.

A further extension of the problem takes electron interactions into account in which

overscreening of the Coulomb impurity is reduced by electron-electron interactions, and

this causes to increase in the critical threshold, which becomes slightly greater than a

unit charge, .i.e., Zc > 1 (Biswas et al. (2007); Terekhov et al. (2008)). The common

point of these theoretical studies is that atomic collapse can be observed in graphene

with the help of experimentally accessible Coulomb impurities such as calcium (Ca)

dimers and cobalt (Co) trimmers (Wang et al. (2012, 2013)). Therefore, the idea of

creating an artificial supercritical atom with a smaller critical valence charge has received

considerable experimental attention (Wang et al. (2012, 2013); Mao et al. (2016); Wong

et al. (2017); Lu et al. (2019)). Indeed, the formation of an infinite family of quasi-bound

states in the presence of the clusters of charged Ca dimers on bulk graphene have been

successfully monitored via the local density of states (LDOS) in an experimental study

(Wang et al. (2013)).

On the other hand, all theoretical calculations have assumed a disorder-free

graphene by ignoring the experimental facts (Hashimoto et al. (2004); Martin et al.

(2008)), and the question of effects of imperfections on atomic collapse in graphene has

not been addressed yet. Atomic scale defects (Meyer et al. (2008); Banhart et al. (2011))

and the intercalation of hydrogen atoms (McCreary et al. (2012); Wang et al. (2018);

Çakmak et al. (2018)) may arise during the growth process, and these defects lead to

an imperfect honeycomb lattice (Eckmann et al. (2012); Li et al. (2019)). Furthermore,

such a deformed vacuum can fluctuate in response to spatial charge inhomogeneities

caused by substrate (Burson et al. (2013); Özdemir et al. (2016)). To find out ambiguous

consequences of these distortions beyond conventional perspective of the theory, the

hexagonal GQDs with armchair edges (Güçlü et al. (2010)) could provide a practical

playground, since these GQDs serve as a bridge between the finite-sized samples and

bulk graphene thanks to their special band-gap characteristics (Güçlü et al. (2010, 2014)).

Free of localized edge states, the band gap is proportional to the inverse square root of

number of atoms (Egap ∝ kmin ≈ 2π/Δx ∝ 1/
√

N) (Sheng et al. (2012)). It corresponds

to linear photon dispersion relation for confined Dirac fermions (Güçlü et al. (2010)). As
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we will show in this thesis, atomic collapse can be observed in all sizes of these GQDs.

As for the vacuum polarization, the Coulomb impurity is screened by Dirac

fermions leading to an effective charge of the impurity. It is calculated from the

exact solution of 2D Dirac-Kepler problem for the subcritical and supercritical Coulomb

potential in Ref. (Shytov et al. (2007b)). It can be noted that when the impurity has a

subcritical charge, 2D Dirac-Kepler problem is consistent. For the supercritical charge,

however, Dirac operator is not self-adjoint, and a finite size of the nucleus must be

introduced, as previously explained. In addition, Dirac vacuum polarization changes its

character in the supercritical regime. The study states that the polarization charge does not

show long-range tail, and this charge is concentrated on the scale of Coulomb impurity

radius in the subcritical regime. In the supercritical regime for non-interacting fermions,

on the other hand, polarization charge scales with a power law form (∼1/r2). This tail

is due to additional term found in the scattering phase for the supercritical charge, and

this additional term does not contribute to the polarization charge. Moreover, they show

that there is an oscillation behaviour in the LDOS. Deviation from linear screening for

supercritical impurities found in Ref. (Shytov et al. (2007b)) can be considered as an

interesting example of the nonlinear screening.

In this thesis, starting from the pristine hexagonal GQDs with armchair edges,

we construct a set of Dirac vacuums that differ in size, and we study electronic and

transport properties of these vacuums with the help of the TB and the extended mean-field

Hubbard (MFH) models in the presence of the central Coulomb impurity. The effects of

the size of vacuum and electron-electron interactions on the critical coupling constant

are investigated in greater detail. As previously mentioned, the size of the vacuum for

both models does not cause any change in the critical value of the coupling strength, but

the electron-electron interactions cause an increase in the critical threshold from βc =

0.5 (TB) to βc = 0.6 (MFH). In addition, the spin and valley symmetries are discussed,

and spin-independent Coulomb impurity has no effect on the these symmetries for the

clean vacuums. We also discuss the screening of the Coulomb impurity in different

sized pristine hexagonal GQDs, and we calculate the effective charge of the impurity

with the help of induced charge calculations. Furthermore, to reveal the role of vacuum

imperfections, the critical threshold is studied by placing the Coulomb impurity at the

center of disordered hexagonal GQDs. Deviations from the perfection in the vacuum
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are intentionally created by: (1) randomly distributed point vacancies with different

concentrations and (2) electron-hole puddles induced by Gaussian impurities. We find a

strong dependence of the critical threshold on both types of disorder, leading to increase in

the critical coupling constant. Some of these results have readily reported in our previous

papers (Polat et al. (2020); Polat and Güçlü (2020)).

1.4. Single Charged Vacancy

Mao et al. (Mao et al. (2016)) demonstrated that a positive charge can be deposited

into a single carbon vacancy by applying voltage pulses of 2 − 3 V for > 10 seconds with

the help of a scanning tunneling microscope (STM) tip. A charged vacancy in graphene

is in analogy with the piling up positively charged ions and similarly leads to the sudden

appearance of a sequence of QBS (Mao et al. (2016)). Besides, it is well-known that

the removal of a single carbon atom lifts the spin and valley degrees of freedom (Neto

et al. (2009)), hence the local magnetic moment is induced (Yazyev and Helm (2007)).

Since only a prominent resonant peak is observed in previous studies (Ugeda et al. (2010,

2011)), the spin splitting has recently attracted attention in experiments (Zhang et al.

(2016); González-Herrero et al. (2016)). In addition, for a while there has been significant

progress in measurement of the valley splittings around a bare carbon vacancy (Li et al.

(2019)) thanks to discrete energy levels and an unconventional method of preparation of

GQDs (Freitag et al. (2016, 2018)). The question arises as to what sort of changes in

physical properties happen after a bare vacancy is positively charged with the subcritical

(β > βc) and supercritical (β < βc) Coulomb potentials.

In this sense, the hexagonal GQDS with armchair edges are advantageous. Of

all the GQDs that have been reported so far (Ezawa (2007); Fernández-Rossier and

Palacios (2007); Akola et al. (2008); Schnez et al. (2008); Mueller et al. (2010); Wimmer

et al. (2010); Zarenia et al. (2011); Hämäläinen et al. (2011); Olle et al. (2012); Sheng

et al. (2012); Subramaniam et al. (2012); Güçlü et al. (2014)), the hexagonal GQDs

with armchair edges deserve attention due to well-known properties, among which, (1)

sublattice symmetry results in spin symmetry; (2) two doubly degenerate levels in the

vicinity of the FL account for the valley symmetry (Güçlü et al. (2014)). These internal

properties indicate that the pristine hexagonal GQDs with armchair edges carry all the
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four-fold symmetries of bulk graphene. Therefore, it becomes possible to follow the

evolution of the spin and valley splittings as a function of the coupling strength β when a

bare point vacancy is deliberately created, and its charge is gradually increased.

Here, the different sized hexagonal (triangular) GQDs with armchair (zigzag)

edges are studied by using the TB and MFH models in the presence of a bare and a charged

vacancy placed near the center (at the center) of the QD. Hubbard descriptions including

electron-electron interactions and spin effects are investigated for not only a bare vacancy

but also for a charged vacancy. The critical coupling constant is numerically found as

βc 	 0.5 and βc = 0.7 for the non-interacting (TB) and the interacting (MFH) fermions,

respectively. In addition, the valley splitting as a function of β is also studied. We found

for the hexagonal GQDs that the spin splitting vanishes in the subcritical regime, but the

valley splitting continues to exist in both regimes.

Furthermore, a charged Coulomb vacancy is placed at the center of triangular

GQDs with zigzag edges. The effect of the charged vacancy on the electronic

and magnetic properties has been analyzed in the absence of the spatial charge

inhomogeneities. From a bare vacancy to a charged vacancy, the spin splitting has been

extracted by LDOS calculations in the energy spectrum, which is significantly dominated

by the edge states around the FL for the triangular GQDs. By approaching the vacancy,

we obtained the spin splitting in such a complex energy spectrum, and the evolution of

the spin splitting as a function of the coupling strength has been numerically examined.

Up to now, we introduce bulk graphene and the GQDs in Sec. 1.1, atomic collapse

in QED in Sec. 1.2, the Coulomb impurity problem in graphene in Sec. 1.3, and a charged

vacancy problem in Sec. 1.4. In particular, the Coulomb impurity problem starting from

its original version to the current graphene version is introduced. Also, we have defined

this phenomenon in the GQDs with some results from our previous articles published

within the scope of this thesis (Polat et al. (2020); Polat and Güçlü (2020)). On the other

hand, in the next chapter, the numerical methods employed thought this thesis will be

introduced. We exactly solve the finite sized Hamiltonians within the TB and the MFH

models, and in this way, we study the effect of charged impurities on the electronic,

magnetic, and transport properties of the different sized hexagonal and triangular GQDs.
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CHAPTER 2

THEORETICAL MODELS

This chapter contains our numerical methods such as the tight binding model,

the extended Hubbard model within the mean field approximation, the details of the

screening calculations, local density of states calculations, transport calculations, and the

spin density calculations. By using these calculations, we successfully study different

kinds of charged impurity problems in the GQDs.

The rest of this chapter is organized as follows. In Sec. 2.1, the tight binding model

is discussed in greater detail from the bulk graphene to the finite sized samples. Sec. 2.2

introduces the extended Hubbard model, and the mean field approach is theoretically

applied to this model in Sec. 2.3. In Sec. 2.4, the effective charge calculation is discussed.

Sec. 2.5, Sec. 2.6, and Sec. 2.7 describe the local density of state, transmission coefficient,

and spin density calculations, respectively.

2.1. Tight-Binding Model

The honeycomb lattice of graphene is actually a combination of two triangular

Bravais lattices, which are nonequivalent A and B sublattices, and the distances between

these two sublattices is known as the carbon-carbon distance a = 1.42 Å. In this system,

a1,2 = a/2(±√
3, 3) are the primitive unit vectors. The positions of all sublattices can be

derived from these primitive vectors as follows:

RA = na1 +ma2 + b

RB = na1 +ma2, (2.1)

where n and m are integer numbers, and the vector b goes from the A (red) sublattice to

the B (blue) sublattice in the unit cell, as shown in Fig. 2.1. In this thesis, we model the

non-interacting fermions with the help of TB approach, whereas we will use the mean

field Hubbard model to describe the πz dynamics of the interacting fermions. The latter

will be introduced in the next section. As for the lattice, two dimensional honeycomb
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lattice can be constructed via these primitive vectors for A and B sublattices. The single

electron wave function on sublattice A can be expressed through a linear combination of

the πz orbitals of the A sublattices, whereas the single electron wave function on sublattice

B can be expressed through a linear combination of the πz orbitals of the B sublattices as

follows:

ΨA
k (r) =

1√
NU

∑
RA

eikRAΦz(r−RA)

ΨB
k (r) =

1√
NU

∑
RB

eikRBΦz(r−RB). (2.2)

Here, the wave vector k labels the wave functions owing to the transition symmetry and

Bloch’s theorem,
√
NU stands for the number of unit cells, Φz(r−RA,B) represents the

orthogonal πz orbitals at the position R, and the expansion coefficients can be expressed

by the terms eikRA,B .

Figure 2.1. Graphene honeycomb lattice with A (red) and B (blue) atoms in a unit cell.

Here, b defines a vector between these two atoms in the unit cell (Source:

(Güçlü et al. (2014)).

One can extract the wave functions by using above equations. Starting from these

equations, the total electron wave function can be written as follows:

Ψk(r) = AkΨ
A
k (r) + BkΨ

B
k (r), (2.3)

where the coefficients Ak and Bk can be found with the help of the diagonalization of

the Hamiltonian matrix, and ΨA
k (r) and ΨB

k (r) are the orthogonal wave functions. These

wave functions can be written into the tight-binding Hamiltonian to calculate the energy

14



dispersion relation of the unit cell. In this way, the πz dynamics of the non-interacting

Dirac fermions can be studied. The tight-binding Hamiltonian is given by

H(k) =

⎛
⎝
〈
ΨA

k

∣∣H∣∣ΨA
k

〉 〈
ΨA

k

∣∣H∣∣ΨB
k

〉
〈
ΨB

k

∣∣H∣∣ΨA
k

〉 〈
ΨB

k

∣∣H∣∣ΨB
k

〉
⎞
⎠ (2.4)

in which ΨA
k (r) and ΨB

k (r) are the orthogonal wave functions, as previously mentioned,

and Hamiltonian is given by H = p2/2m +
∑

RA
V (r−RA) +

∑
RB

V (r−RB). Terms〈
ΨA

k

∣∣H∣∣ΨA
k

〉
and

〈
ΨB

k

∣∣H∣∣ΨB
k

〉
are assumed to be zero within the nearest neighbours

approximation, whereas the cross terms can be explicitly written as follows:

〈
ΨB

k

∣∣H∣∣ΨA
k

〉
=

1

NU

∑
〈RA,RB〉

eik(RA−RB)

∫
drΦ∗

z(r−RB)V (r −RB)Φz(r−RA)

〈
ΨA

k

∣∣H∣∣ΨB
k

〉
=

1

NU

∑
〈RA,RB〉

eik(RA−RB)

∫
drΦ∗

z(r−RA)V (r −RA)Φz(r−RB)︸ ︷︷ ︸
the hopping integral t

(2.5)

in which we restrict ourselves only to the nearest neighbours. The hopping integral is

t =
∫
drΦ∗

z(r−RA)V (r − RA)Φz(r−RB) = -2.8 eV (Neto et al. (2009)). The above

equation will become

〈
ΨA

k

∣∣H∣∣ΨB
k

〉
= t(e-ikb + e-ik(b−a1) + e-ik(b−a2))〈

ΨB
k

∣∣H∣∣ΨA
k

〉
= t(eikb + eik(b−a1) + eik(b−a2)). (2.6)

Finally, we define f (k) = (e-ikb + e-ik(b−a1) + e-ik(b−a2)), and we can write

E±(k) = ±tf(k), (2.7)

which corresponds to the band structure of graphene. The conduction and valance bands

meet at the six corners of the Brillouin zone, which indicates that graphene has zero band

gap at the K and K’ points of the first Brillouin zone.

In finite sized samples, we study the TB model by exactly diagonalize the NxN

matrix in which N is the number of carbon atoms. As given below in Eq. 2.8, in our

numerical calculations, we only take into account the nearest neighbour hopping of the

electrons, and the hopping term is taken to be t = -2.8 eV (Neto et al. (2009)). In addition,

the on-site energies of πz orbitals can be taken to be zero leading to the other terms in

the matrix is zero. In this manner, the tight-binding Hamiltonian will be the backbone of
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our extended mean-field Hubbard calculations. The tight binding matrix can be written as

follows:

HTB =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t . . . t

t 0 . . . 0
...

...
. . .

...

t 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

. (2.8)

Here, this matrix has been written by assuming that the atom indexed as i = 1 and the

atom indexed as j = 2 are the nearest neighbour to each other. The same assumption is

also done for the atoms indexed as i = 1 and j = N. The term t is used for the hopping

of the electron from the atomic site of i = 1 to atomic site of j = 2. The same hopping

parameter has to be written in the Hamiltonian for hopping from the atomic site of i =2

to i = 1. Next, we will give the details how we add the onsite and the offsite Coulomb

repulsion terms to such a matrix.

2.2. Extended Hubbard Model

One can start with the many-body Hamiltonian in second quantized form, and

such a Hamiltonian can be expressed in terms of creation and annihilation operators as

follows:

H =
∑
pq

t̂pqc
†
pcq +

1

2

∑
qprs

〈
pq
∣∣V̂ ∣∣rs〉 c†pc

†
qcrcs (2.9)

in which the terms t̂ and V̂ are independent of the spin. On the other hand, the terms p, q,

r, and s depend on the spin, and these terms can be represented by the following states,

which are p = iσ, q = jσ
′
, r = kσ

′′
, and s = lσ

′′′
, respectively. When these four terms with

spin dependency are rewritten into Eq. 2.9, the first term on the right hand side can be

written as follows:

t̂pq = 〈p|t|q〉 =
〈
iσ
∣∣t∣∣jσ′

〉
= 〈i|t|j〉

〈
σ
∣∣σ′

〉
= tijδσσ′ , (2.10)

and the second term on the right hand side has to be expanded under these assumptions.

This interaction term will be divided into two main interactions, which are onsite and

offsite Coulomb repulsions. In this manner, it can be rewritten with the help of spin
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dependency of the above four terms as follows:

V̂pqrs =
〈
pq
∣∣V̂ ∣∣rs〉 =

〈
iσ
∣∣ [〈jσ′∣∣V̂ ∣∣kσ′′

〉]
lσ

′′′
〉

=
〈
i
∣∣ [〈j∣∣V̂ ∣∣k〉] ∣∣l〉〈

σ
∣∣ [〈σ′∣∣σ′′

〉] ∣∣σ′′′
〉
= V̂ijklδσ′σ′′δσσ′′′ . (2.11)

When Eq. 2.10 and Eq. 2.11 are rewritten into Eq. 2.9, the non-zero values have to be

held. After that, the many-body Hamiltonian becomes

H =
∑
〈ijσ〉

t̂ijc
†
iσcjσ +

1

2

∑
ijklσσ′

〈
ij
∣∣V̂ ∣∣kl〉 c†iσc

†
jσ

′ckσ′clσ, (2.12)

where the Coulomb matrix elements in the integral form are given by

〈
ij
∣∣V̂ ∣∣kl〉 =

∫ ∫
dr1dr2ψ

∗
i (r1)ψ

∗
j (r2)

2

κ|r2 − r1|ψk(r2)ψl(r1). (2.13)

Here, r1 and r2 are the position of first and second electrons, respectively. If the equations

l = i and k = j are satisfied,
〈
ij
∣∣V̂ ∣∣kl〉 becomes

〈
ij
∣∣V̂ ∣∣ji〉, which is the Coulomb

interaction between two electrons in the lattice sites i and j. As an another option,〈
ij
∣∣V̂ ∣∣kl〉 is equivalent to the exchange term

〈
ij
∣∣V̂ ∣∣ij〉 if l = j and k = i. The exchange

term is only possible for electrons on the lattice sites i and j with the same spin σ = σ
′
.

We restrict ourselves in order to obtain the exchange term, which is in compliance

with the Pauli-exclusion principle. It dictates that the spin components have to be different

from each other σ 
= σ
′
. In this approach, we can assume the following equality between

our four indexes as i = j = k = l. Starting from this fact, the last expression in Eq. 2.12 turns

into the exchange term with the help of
〈
ij
∣∣V̂ ∣∣kl〉 =

〈
ii
∣∣V̂ ∣∣ii〉 = U. It can be expressed

as

1

2

∑
ijklσσ

′

〈
ij
∣∣V̂ ∣∣kl〉 c†iσc

†
jσ′ckσ′clσ =

1

2
U

∑
i,σ �=σ

′
c†iσc

†
iσ′ciσ′ciσ. (2.14)

With the help of the communication relations: (1) {ciσ′ , ciσ} = 0 for σ 
= σ
′ → ciσ′ciσ =

−ciσciσ′ and (2) {c†
iσ′ , ciσ} = 0 → c†

iσ′ciσ = −ciσc
†
iσ′ , and by introducing the number

operator as niσ = c†iσciσ, Eq. 2.14 reads

1

2
U

∑
i,σ �=σ′

c†iσc
†
iσ′ciσ′ciσ =

1

2
U
∑
iσσ′

niσniσ′ = U
∑
i

ni↑ni↓, (2.15)

where the factor of 1/2 is cancelled by two exchange terms. As for the Coulomb

interaction, the equations l = i and k = j lead to an another expression as
〈
ij
∣∣V̂ ∣∣kl〉
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=
〈
ij
∣∣V̂ ∣∣ji〉 = V̂ij . For the last term in Eq. 2.12, the communication relations of (1)

{cjσ′ , ciσ} = 0 → cjσ′ciσ = −ciσcjσ′ and (2) {c†
jσ

′ , ciσ} = 0 → c†
jσ

′ciσ = −ciσc
†
jσ

′ can be

used. The resulting equation is

1

2

∑
ijklσσ′

〈
ij
∣∣V̂ ∣∣kl〉 c†iσc

†
jσ

′ckσ′clσ =
1

2

∑
ijσσ′

V̂ijc
†
iσc

†
jσ

′cjσ′ciσ =
1

2

∑
ijσσ′

V̂ijninj . (2.16)

To obtain the final form of the many-body Hamiltonian including the exchange and the

Coulomb interactions, Eq. 2.15 and Eq. 2.16 have to added to each other. The final form

of Hamiltonian in Eq. 2.9 is given as follows:

H =
∑
〈ijσ〉

t̂ijc
†
iσcjσ + U

∑
i

ni↑ni↓

︸ ︷︷ ︸
Hubbard Model

+
1

2

∑
ijσσ′

V̂ijnini

︸ ︷︷ ︸
Extended Hubbard Model

. (2.17)

The first two terms refer to the Hubbard Hamiltonian, whereas all terms are known as

the extended Hubbard Hamiltonian. Since this Hamiltonian can not be solved for a

system consisting of many electrons, we have to employ the mean-field approach. In

this assumption, an electron moves in a mean field, which is created by other electrons in

the system.

2.3. Mean Field Approach

In this section, we will study a mean-field approach for the extended Hubbard

model. To employ the mean-field approach, which assumes an electron moving in a field

created by other electrons in the system, we will make assumptions with the expansions.

In this approach, Δn terms are assumed to be negligibly small within the mean field

approach. In this manner, we can expand the terms ni↑ and ni↓ in Eq. 2.17 in terms of Δn

terms as follows:

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉)︸ ︷︷ ︸
Δni↑

ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉)︸ ︷︷ ︸
Δni↓

. (2.18)

When these expressions are written instead of ni↑ni↓ and ninj products, the following

equations can be obtained: (1) ni↑ni↓ = ni↑〈ni↓〉 + ni↓〈ni↑〉 + 〈ni↑〉〈ni↓〉, and the other one
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(2) ninj = ni〈nj〉 + nj〈ni〉 + 〈ni〉〈nj〉, respectively. Thus, the many-body Hamiltonian is

written by putting these terms instead of the Hubbard interaction terms as follows:

H ≈ HMF =
∑
〈ijσ〉

t̂ijc
†
iσcjσ + U(ni↑ 〈ni↓〉+ ni↓ 〈ni↑〉+ 〈ni↑〉 〈ni↓〉)

+
1

2

∑
ijσσ

′
V̂ij(ni 〈nj〉+ nj 〈ni〉+ 〈ni〉 〈nj〉). (2.19)

Such an equation is actually quadratic in terms of c†iσcjσ, which can be accepted as

follows:

HMF → HBULK
MF =

∑
ijσ

τ̂ijc
†
iσcjσ, (2.20)

and the following assumptions can be made for a bulk structure to produce results related

to half-filled model, which are given as follows:

〈ni〉 = 1

〈niσ〉 = 1

2
. (2.21)

As a result, we can write the following equation under these assumptions

HMF = HMF −HBULK
MF +HBULK

MF

=

�������∑
〈ijσ〉

t̂ijc
†
iσcjσ + U

∑
i

ni↑ni↓ +
1

2

∑
ijσσ′

V̂ijninj

��������−
∑
〈ijσ〉

t̂ijc
†
iσcjσ − U

2

∑
i

(ni↑ + ni↓ − 1

2
) +−1

2

∑
ijσσ′

V̂ij(ni + nj − 1)

+
∑
ijσ

τ̂ijc
†
iσcjσ, (2.22)

after the necessary arrangements are done, as well as, V̂ij = V̂ji and (〈ni〉 − 1)nj =

(〈nj〉− 1)ni, this equation can be reduced to the extended mean-field Hubbard model. Its

Hamiltonian reads

HMFH = t
∑
〈ij〉σ

(
c†iσcjσ + H.c.

)
+ U

∑
iσ

(
〈niσ〉 − 1

2

)
niσ

+
∑
ij

Vij (〈nj〉 − 1)ni, (2.23)

where the first term describes the tight-binding Hamiltonian with a hopping amplitude of t

= -2.8 eV in which the operator c†iσ (ciσ) creates (annihilates) an electron with spin σ at the
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lattice site i. U = 16.52/κ eV is the onsite Coulomb repulsion (Güçlü et al. (2014)), where

κ = 6 is equivalent to that of the SiO2 substrate under the effects of interband polarization

(Ando (2006)). 〈niσ〉 is the spin-dependent expectation value of electron densities, and

niσ is the spin-dependent number operator. Third term Vij is associated with the off-

site Coulomb repulsion, which is set to be 8.64/κ eV, 5.33/κ eV, and 27.21/κdij eV for

the nearest-neighbors, next-nearest-neighbors, and the remote atomic sites, respectively

(Güçlü et al. (2014); Potasz et al. (2010)). dij is the distance between the sites i and j at

relatively large distances, and it is in atomic units. Since the last Hamiltonian excludes

any quadratic terms in terms of cjσ, the Hamiltonian has a quartic structure, presently.

Notwithstanding, since we don’t have the occupation numbers in the Hamiltonian, one

can start with the initial matrices. In this manner, the TB Hamiltonian, with the n and m

numbers in RB and RB vectors, one can obtain the complete Hamiltonian consisting of

the electron-electron interactions by adding U and Vij terms into the TB Hamiltonian.

For the Coulomb impurity problem, we solve the extended mean-field theory

of the Hubbard model starting from a single-band tight-binding approximation for πz

orbitals. The πz electron dynamics are described by the following effective Hamiltonian

HMFH = t
∑
〈ij〉σ

(
c†iσcjσ + H.c.

)
+ U

∑
iσ

(
〈niσ〉 − 1

2

)
niσ

+
∑
ij

Vij (〈nj〉 − 1)ni − �vFβ
∑
iσ

c†iσciσ
ri

, (2.24)

Herein the nearest neighbor hopping term t preserves the electron-hole symmetry in

the absence of the Coulomb potential (Pereira et al. (2007)). The second term is the

on-site interaction term in which only two electrons with opposite spin can occupy the

same lattice site by paying an extra correlation energy of U. The last term stands for the

Coulomb potential in which ri is the distance between the lattice site i and the center of

the Coulomb potential (Moldovan and Peeters (2016)), and vF is the Fermi velocity. The

coupling constant β is assumed to be attractive ( > 0) without loss of generality.

2.4. Screening Calculations

As the coupling strength β is increased, the charge in the vicinity of the central

Coulomb potential is induced (Pereira et al. (2008)). Such an charge inducement reduces
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the charge of the impurity, and this is known as the screening of the impurity, which

can be written as Zeff. = Zbare - Qind., where Qind. is the induced background charge. In the

subcritical regime, the total induced charge Qind. can be obtained by integrating the charge

density δp(r), which can be written as follows:

δp(r) =
∑

E<EF

|Ψ(r)|2 −
∑

E<EF

|Ψ0(r)|2, (2.25)

where Ψ(r) and Ψ0(r) are the discrete set of wave functions in the presence and absence of

the Coulomb potential, respectively. However, the induced background charge vanishes

if the polarization charge density δp(r) is summed up over all atomic sites; therefore,

a circle centered around the impurity with a finite radius Rmax is needed (Shytov et al.

(2007b); Kotov et al. (2008)). For this reason, the value of the induced charge Q(R) is

maximized and will be expressed as Qmax inside a radius of Rmax. Starting from the

above equation, we compute the maximum induced charge Qmax within Rmax as follows:

Qmax(r) = N

∫
Rmax<R

δp(r)dr, (2.26)

where N = 2 is the degeneracy of the problem (Pereira et al. (2008)), which is used for

both the TB and extended mean field Hubbard models. Effective charge of the impurity

for different sized clean GQDs is our quantity of interest, especially in the presence of

electron-electron interactions in this thesis.

2.5. Local Density of State Calculations

Since the Coulomb potential inversely proportional to the distance, one can

measure the strongest effect from the atoms closest to the potential. In this manner,

LDOS measurement is important for such a potential (Shytov et al. (2007a)). LDOS

is experimentally accessible through a STM (Wang et al. (2013)) and is calculated by

N(E, r) =
∑
i

|Ψi(r)|2δ(E − Ei), (2.27)

where Ψ(r) is the normalized wave function, the energy E is identical to applied bias

voltage in STM measurements, and Ei is the eigenenergy of the ith state. The LDOS

is the spatially resolved density of states (DOS), which is calculated by summing the
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discrete energy levels of the GQDs at a set of radial distances from the impurity, ranging

from r = 0.142 nm up to r = 1.136 nm. The summations are performed by using a

Gaussian membership function with a standard deviation of σ = 0.2 eV in a linearly

spaced energy interval E ∈ [-2.5,2.5]. Since the effects of random disorders may differ

from atom to atom, these calculations are separately carried out for each individual atom

at the predefined radial distances, and this is repeated in ten random disorder distributions

for each of the disordered configurations. Finally, the LDOS spectra per lattice site at

various distances are extracted by averaging over these samples in this thesis.

2.6. Transmission Coefficients

In this section, we will introduce the transmission calculations of the GQDs in

the presence of a central Coulomb impurity. The same method has been utilized in the

subcritical regime and supercritical regime. We utilize the retarded Green′s function in

energy domain to calculate the transmission coefficients in the GQDs. As a minimum

model for quantum transport calculations, Hamiltonian of the left-center-right (LRC)

system reads ⎛
⎜⎜⎜⎝
HLL HLC 0

HCL HCC HCR

0 HRC HRR

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
ΨL

ΨC

ΨR

⎞
⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎝
ΨL

ΨC

ΨR

⎞
⎟⎟⎟⎠ , (2.28)

where HLL (HRR) is Hamiltonian of the left (right) lead, and HCC is the central

Hamiltonian, which is of our interest. HLC = H
†
CL and HRC = H

†
CR refer to the coupling

between the left lead and the central region and the coupling between the right lead and

the central region, respectively. ΨL,C,R is the wave function of the related region. By

considering the retarded Green′s function in energy domain as G(E) = ((E+i0+)IN×N−
H)−1, where 0+ = 10−6×t is an infinitesimal positive number in our calculations, one can

write the following equation:⎛
⎜⎜⎜⎝
E −HLL ± i0+ −HLC 0

−HCL E −HCC ± i0+ −HCR

0 −HRC E −HRR ± i0+

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
GLL GLC GLR

GCL GCC GCR

GRL GRC GRR

⎞
⎟⎟⎟⎠ = 1.

(2.29)
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By solving this equation as given elsewhere (Zhou (2017)), one can obtain

G(E) = ((E + i0+)IN×N −Hc − ΣL − ΣR)
−1, (2.30)

where Σα = HCαG
0
ααHαC is the self energy function of the probes. The wave function

in the left lead can be written in terms of an transmitted wave Ψ0
L and an reflected wave

Ψ1
L functions as follows: ΨL = Ψ0

L + Ψ1
L, which can be inserted into Eq. 2.28. With the

help of Eq. 2.30 and the self energy function of the probes, the following equations can

be written

ΨL = (1 +G0
LLHLCGCCHCL)Ψ

0
L,

ΨC = GCCHCLGCCΨ
0
L, (2.31)

ΨR = G0
RRHRCGCCHCLΨ

0
L, (2.32)

where G0
αα is the Green′s function of the isolated leads. We can obtain the current

contribution of the left lead by using the probability current formula when the steady

state current is established. Such a contribution from left lead to the central region reads

JL =
1

�
Ψ0†

L HLCG
†
CCΓRGCCHCLΨ

0
L, (2.33)

where ΓR = ΣR − Σ†
R. For a state Ψ0

kL with quantum number k, the total probability

current from the left lead to the central region can be found as follows:

IL =
1

�

∫ ∞

−∞
dETr(G†

CCΓRGCCΓL)fL(E). (2.34)

Here, fL(E) is the Fermi function of the left lead, which is assumed to be the same

for both leads. The total steady state probability current is the sum of left and right

contributions as I = IL + IR, which reads

I =
1

�

∫ ∞

−∞
dET (E)|fL(E)− fR(E)|, (2.35)

where the transmission coefficient T (E) equals the following equation

T (E) = Tr(ΓL(E)G(E)ΓR(E)GT (E)), (2.36)

where generic electrodes are used in order to avoid structural features arising from the

electrodes in the resulting transmission spectra. For that purpose, a one-dimensional wide

bandwidth tight-binding chain is assumed. Self energies matrices (ΣN×N ) for the right
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and left leads are obtained from the analytical solution of surface Green function (Müller

et al. (2000)).

The probes are placed at the ends of the hexagonal GQDs with armchair edges,

and the hopping term from the leads to the central region is taken to be as t/4. To calculate

transmission coefficients, the Coulomb impurity problem in the hexagonal GQDs with

armchair edges is set, as shown in Fig. 2.2. Here, in the position of the left and right leads

can be seen. By taking different size hexagonal GQDs with armchair edges, we study

the effect of the Coulomb impurity on the transmission coefficients of the lowest bound

state in the subcritical and the supercritical regimes. In Eq. 2.36, ΓL,R’s are equivalent to

Figure 2.2. shows that the Coulomb potential is placed at the center of the hexagonal

GQD. Here, the left and right leads are placed at the end of the same dot,

but the size of this dot is gradually increased in our calculations.

the corresponding broadening matrices, and the hopping parameter of t in the reservoirs

is taken into account (Müller et al. (2000)). The transmission coefficients around the

resonance energies of the defect-induced and the lowest bound sates, i.e., atomic collapse

states, are numerically calculated for different values of β. In this way, we study the effect

of the coupling constant in the transport properties of th GQDs.

2.7. Spin Density Calculations

Spin density calculations is important not only in the presence of the edge states

but also in the presence of a single bare or a charged vacancy to reveal the difference
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between spin-up and spin-down fermions in the lattice sites. In the presence of a single

charged vacancy, starting from the self-consistent expectation values of electron densities,

we compute the spin density per lattice site as follows:

< szi >= mi = (< ni↑ > − < ni↓ >)/2, (2.37)

where <niσ>’s are calculated by summing up all states lying below Fermi level. Here,

the total spin of the system is given by S =
∑

i < szi > (Yazyev (2010)). Starting from

Eq. 2.37, the staggered magnetization as an order parameter of the antiferromagnetism is

numerically calculated from

μz
s =

∑
i

(−1)i < szi > , (2.38)

where (-1)i indicates that the contributions are summed up from the opposite sublattices

with opposite signs. Here μz
s is proportional to the antiferromagnetism of the structure

(Grujić et al. (2013)).

In the next chapter, we will start to study the electronic properties of the

GQDs when a Coulomb potential is placed. Formation of the quasi-bound states for a

supercritical potential, the bare charge of the Coulomb impurity, the four-fold symmetries,

the effective charge of the impurity in different sized GQDs, the effects of disorders on the

critical coupling constant, and the method of band gap measurement in triangular GQDs

with zigzag edges are introduced and are discussed.
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CHAPTER 3

ELECTRONIC PROPERTIES

The finite-size effect and the effect of electron-electron interactions in the presence

of the Coulomb potential are discussed in greater detail in this chapter. Actually,

the Coulomb impurity is placed at the center of different sized hexagonal GQDs with

armchair edges. Then, the coupling strength β is gradually increased, and the response

of the lowest energy electron state and a family of QBS is mainly observed within the

TB and MFH models. In short, the critical coupling constant is renormalized when

the electron-electron interaction is introduced, whereas the size of the vacuum has no

effect on the critical threshold in both models. As an another result, the spin and valley

degeneracies are not affected when a central Coulomb impurity is introduced. We also

study the screening of the impurity, and the induced background charge reduces the bare

charge of the impurity to the effective charge of the impurity, which is on the order

of unit charge. In addition, we will examine the effects of the random disorders for

atomic collapse. Basically, atomic vacancies and spatial potential fluctuations increase

the critical threshold. Atomic collapse similarly observed in disordered samples at higher

coupling strengths as compared to disorder-free samples. These results indicate that

atomic collapse can be observed in imperfect samples such as Ar+ ion bombarded, He+

ion irradiated, and hydrogenated graphene.

The rest of this chapter is organized as follows. In Sec. 3.1, the finite-size effect

and the effect of electron-electron interactions for the lowest bound states are discussed in

greater detail. Sec. 3.2 contains screening of the Coulomb impurity by Dirac fermions. In

Sec. 3.3, atomic collapse is studied in the presence of lattice distortions and spatial charge

inhomogeneities.

3.1. Collapse of the Vacuum in Pristine Hexagonal GQDs

To reveal the effect of the size quantization, we systematically study a series of

the pristine hexagonal GQDs with armchair edges consisting of up to 10,806 atoms (R =
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10.4 nm). After this limit, physical properties approach to those of the corresponding bulk

material (Li et al. (2019)). A Coulomb potential is placed at the center of each hexagonal

GQDs; see the inset of Fig. 3.1(a).

Figure 3.1. Energy eigenvalues of the lowest bound states as a function of the coupling

constant β. (a) The critical coupling constant βc is 0.6 within the MFH

model for all samples that differ in size. The inset contains a sketch of

the problem for the hexagonal GQD that consists of 114 atoms. Here, the

sublattices A and B are red and blue filled circles, and a positively charged

impurity is at the center. Green triangles show how the leads are connected

to samples throughout our study to determine the transmission coefficients.

(b) shows a zoomed view of the energy eigenvalues around βc. (c) shows

a comparison between the TB and the MFH models for a GQD consisting

of 5514 carbon atoms.

To discuss the size effect within the MFH model, energy eigenvalues of the lowest

bound states of all samples as a function of the coupling strength β and zoomed portion

around the critical coupling constant βc are shown in Fig. 3.1(a) and (b), respectively. In

Fig. 3.1(a) and (b), each of the lowest angular momentum channels is doubly degenerate

due to the valley symmetry (Zarenia et al. (2011); Sheng et al. (2012)). In short, the spin

and valley degeneracies are preserved as a function of β. As a result, the MFH results do
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not make any discrimination between the spin components due to the spin symmetry. TB

results are given by the black lines, whereas the results of the spin-up and the spin-down

can be followed by the red and blue lines in each of these graphs, respectively. Different

kinds of symbol in Fig. 3.1(a) are attributed to the size of the hexagonal GQDs.

Each of the lowest bound states dives into the negative energies at the same value

of the coupling strength that is 0.6 within the MFH model. It can be accepted as a critical

point at this stage, and we will discuss this point in more detail below. It is clear that

a sufficiently large sizes of these GQD is enough to observe atomic collapse due to the

special characteristic of band gaps of these GQDs, as mentioned above. The collapse

states are pinned at the DP as clearly shown in the experiments (Wang et al. (2013); Mao

et al. (2016)). In this sense, our results indicate that the zero energy plays the same role

with the DP in bulk graphene. In contrast, the FL follows the highest filled level due

to a constant number of electron-like Dirac fermions. Our results pave the way for the

examination of reconstruction of the Dirac vacuum within quite small sample sizes by a

low computational cost.

On the other hand, the electron-electron interactions in half-filled MFH model

are set by the on-site U and off-site V terms. Energy eigenvalues of the TB model are

compared with those of the MFH model by setting the off-site term V to zero. As is

clear from Fig. 3.1(c), the on-site term U gives no contribution to the renormalization of

βc. In contrast, the off-site term V decreases overscreening tendency (Kotov et al. (2008,

2012)) of the TB approximation by smearing out the induced charge density (Biswas et al.

(2007)), and which turns out to be a 20% increase in βc. We directly give a critical bare

valance charge Zc as follows:

Zc

(
2.2

κ

)
= βc → Zc ≈ 1.64, (3.1)

where the dielectric constant κ = 6, and the critical coupling constant βc equals to 0.6.

It indicates that impurities with the valence charge of Zc ≈ 1.64 can be used to create

an artificial supercritical nuclei for all GQD sizes. Our result is also consistent with

the previous one in which Zc is calculated to be larger than unit charge (Terekhov et al.

(2008)). The TB result for one particular hexagonal GQD consisting of 5514 atoms shows

[Fig. 1(c)] that the lowest bound state enters the supercritical regime at βc = 0.5, which is

the same as of bulk graphene. In compliance with our non-interacting fermion results, the

critical wave functions of the circular GQDs merge into negative energies at the value of
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βc = 0.5 within the effective mass approximation with an infinite mass boundary condition

(Van Pottelberge et al. (2017)).

Figure 3.2. The formation of the spatially extended QBS around the impurity for the

GQD consisting of 222 atoms. (c) shows the energy spectrum as a function

of β. On the other hand, (a), (b), (d), and (f) show the probability density

of the lowest bound state at different values of β.

When a bound state enters into the negative energy spectrum, it becomes a

spatially extended resonance around the impurity. In Fig. 3.2, we show the formation

of the QBS around the impurity for the spin-down fermions. Here, Fig. 3.2(a) shows

the lowest energy electron state of spin-down fermions at β = 0.2. It nearly has a finite

probability density at all lattice sites. Similarly, in Fig. 3.2(b), it has a equal probability

density over all lattice sites. However, when β exceeds βc = 0.6 (MFH model), the lowest

energy bound state becomes a QBS, as shown in Fig. 3.2(d) and (e) for larger values

of β. In Fig. 3.2(a)-(e), the dashed lines represent the characteristic length scale of the

first supercritical wave function, which is calculated from the following equation 〈r〉 =

〈Ψ|r|Ψ〉. In Fig. 3.2(c), the spectrum can be seen as a function of the coupling strength

in which the DP and the FL are marked by dashed blue lines for spin-down fermions.

29



The band gap in the GQDs is only due to size restriction of massless Dirac

fermions, and here we give an interaction-induced renormalization of βc. This gap should

not be confused with that of a gapped graphene monolayer (Zhou et al. (2007)), modelled

by adding a mass term in bulk graphene (Kotov et al. (2008); Chakraborty et al. (2013);

Kuleshov et al. (2015)). Reported values of βc up to 	 0.9 (Pereira et al. (2008); Zhu

et al. (2009)) are calculated for the non-interacting massive Dirac fermions, where the

critical point is defined as the crossing of the collapse state with the lower continuum

(Pereira et al. (2008)), instead of the DP in our calculations. In addition, the FL moves

automatically down due to the absence of charge compensation, similar to our case.

In summary, the hexagonal GQDs with special characteristic band gap feature are

studied by means of the TB and the MFH models. The critical coupling constant is found

to be βc = 0.5 for the non-interacting case when the Coulomb potential is placed at the

center. However, βc is renormalized to 0.6 for all sizes in the presence of off-site electron-

electron interactions. It can be noted that the off-site repulsion term is responsible for this

incasement in βc due to the long-range repulsive tail. It is calculated that central impurities

with the nuclear charge of Zc ≈ 1.64 are at the edge of the supercritical threshold. In the

next section, we will study screening of the impurity in the subcritical regime.

3.2. Screening of the Coulomb Impurity in the GQDs

As the coupling strength β is increased, Dirac fermions actually screen the charged

impurity by inducing the background polarization charge Q around the impurity, and

which reduces the bare charge of the impurity to the effective charge of the impurity. This

is known as the screening of the charged impurity, and it is experimentally accessible

(Wang et al. (2012)). Here, we only restrict ourselves to the subcritical regime for both

non-interacting and interacting fermions. According to Eq. 2.26 with N=2, we calculate

the Q for different values of β within the TB and the MFH models. These calculations

are performed at different radial distances R from the impurity to find the induced charge

distribution as a function of the radial distance.

Fig. 3.3(a) for non-interacting fermions and Fig. 3.3(b) for interacting fermions

show that the Q can be maximized at a specific distance from the impurity, whereas it

vanishes when the summation are taken over all lattice sites. It is clear that when the
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electron interactions are turned on, the Q decreases by smearing out the charge density

from the impurity, in agreement with the previous theoretical calculations (Biswas et al.

(2007)). Maximum value of the induced charge Qmax appears at Rmax = 7a for the TB

model (non-interacting fermions), and it is at Rmax = 4a for the MFH model (interacting

fermions). In addition, the maximum value of the induced charge equals Qmax = 0.91,

which is in the unit of +|e|, for the TB model, and this value are found to be Qmax =

0.66|e| for the MFH model. Starting from the bare critical valance charge found in Eq.

Figure 3.3. The plots show the induced charge as a function of the distance R from the

impurity for a GQD consisting of 5514 atoms for the non-interacting in (a)

and interacting cases in (b), respectively. Here, β values are represented

by different colored lines. On the right hand side, the induced background

charge is the same for spin-up and spin-down fermions due to the presence

of the spin independent central Coulomb impurity.

3.1, one can calculate the effective charge of the impurity. The effective charge of the

impurity for the interacting fermions can be found as follows:

Zeff = Zc −Qind → Zeff ≈ 1. (3.2)

When the effective charge of the impurity is around one unit charge, and it is at the edge

of supercritical regime. As for the different sized hexagonal GQDs, we also calculate the

induced background charge as a function of distance from the impurity at the critical

coupling constant, i.e., βc = 0.6 (the MFH model). As is clear from Fig. 3.4(a),

the different sized GQDs consisting of 1302, 5514, and 10 806 atoms have the same
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maximum induced charge Qmax at the same Rmax. Owing to their different sizes, the

induced charge vanishes at the edge of each GQD. This also show us that the Coulomb

impurity in different sized GQDs has the same value of effective charge. This finding is

the our first knowledge in the current literature about the effective charge of the Coulomb

impurity in the GQDs. As an another issue in bulk graphene, the non-interacting case

is in a good agreement with the perturbative random phase approximation (RPA) in

which the induced charge is given by Qind = (π/2)β, as analyzed in the previous studies

(Shytov et al. (2007b); Pereira et al. (2008)). This is known as the linear screening of

the Coulomb impurity by Dirac fermions in the subcritical regime. Here, we also show

Figure 3.4. (a) The induced background charge Q as a function of the distance R from

the impurity for the GQDs consisting of 1302, 5514, and 10 806 atoms

at βc = 0.6. (b) The induced background charge Q as a function of the

distance β at Rmax = 7a (TB) and Rmax = 4a (MFH). Here, the GQDs

consist of 5514 atoms. Black, red, and blue lines represents RPA, TB, and

spin-down fermions, respectively.

that the same finding is also valid for the smaller sized GQD consisting of 5514 carbon

atoms. In Fig. 3.4(b), the black line represents the induced charge according to the

RPA, the red line represents the induced charge at a distance Rmax = 7a for the non-

interacting fermions modelled by TB method, and similarly, the blue line is attributed

to the interacting fermions such as spin-up or spin-down fermions for which Rmax is

taken as Rmax = 4a. These maximum values of the distance from the impurity are taken

with respect to Fig. 3.3(a) and Fig. 3.3(b) for non-interacting and interacting cases,
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respectively. In the inset of Fig. 3.4(b), one can see Rmax, which is illustrated in a smaller

sized hexagonal GQD. For non-interacting case, the induced charge is in agreement with

the RPA, which is known as the linear screening of the Coulomb impurity. On the other

hand, for interacting case, the induced charge stays under the black line due to smearing

out of the induced charge. In the charge inducement, the electron-electron interaction has

a significant effect for the GQDs, and the same behaviour is presumably valid for bulk

graphene (Biswas et al. (2007)).

3.3. Collapse of the Vacuum in Disordered Hexagonal GQDs

In this section, we will study the effect of vacuum imperfections. To study

the effect of the lattice defects and the spatial potential fluctuations, deviations from

the perfection in the vacuum are intentionally created by : (i) randomly distributed

point vacancies with different concentrations and (ii) electron-hole puddles induced by

Gaussian impurities. We find a strong dependence of the critical threshold on both types

of disorder, leading to up to thirty-four percent increase in the critical coupling constant.

It can be useful to discuss the effect of the vacuum size from a different perspective

before starting the imperfect (disordered) cases. The discrete energy levels of the pristine

GQDs are summed over at the impurity site for which the radial distance is taken to

be r = 0.142 nm. Here, the impurity site refers to the nearest neighbor atoms to the

impurity. Such a summation corresponds to a family of QBS in which all supercritical

states are sequentially arranged, and which contains the 1S1/2 state as the first component

(Shytov et al. (2007a)). Atomic collapse occurs when this sharp peak in the electronic

LDOS crosses just below the DP (Wang et al. (2013)), which will be the energy origin

in our calculations due to the formation of spatially extended resonances at the negative

energies (Van Pottelberge et al. (2017)). In the mean time, the FL moves down starting

from the energy origin as the coupling strength is increased within the half-filled model

(Van Pottelberge et al. (2017); Polat et al. (2020)), as previously discussed above. To

avoid too cumbersome notation, the critical coupling constant of the families of QBS is

represented by β̃c, and at this stage, only the response of the spin-up Dirac fermions

is studied for the perfect vacuums due to the presence of a spin-independent central

potential. The spin-up QBS families at the impurity site are shown in Fig. 3.5 for the
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perfect GQDs consisting of 2814, 5514, and 10 806 carbon atoms. All families are pinned

Figure 3.5. LDOS spectra at the impurity site for the numbers of 2814, 5514, and 10

806 atoms. The inset illustrates a zoomed portion of the perfect lattice with

a central Coulomb impurity.

just below the DP at β̃c = 1.0, revealing that the effect of the Coulomb impurity is the same

for all these GQDs, and the critical bare valence charge is calculated to be Z̃c ≈ 2.73 by

taking κ = 6; see Eq. 3.1.

3.3.1. Random Point Vacancies

To model lattice distortions, atomic vacancies with concentrations of 0.1%, 0.5%,

1%, and 2%, which refers to the ratio of the number of point vacancies Nvac to that of the

lattice sites N, are created by randomly and equally removing the two sublattices, A (50%)

and B (50%), of the bipartite lattice (Altıntaş and Güçlü (2018)). In this way, we create

ten different disordered GQD with totaly random lattice defect configuration. When point

defects are evenly distributed between the sublattices, i.e., A (50%) and B (50%), the FL

continues to stay at the energy origin in the absence of the impurity (Pereira et al. (2006,

2008); Kul et al. (2020)), as shown in the inset of Fig. 3.6(b). In fact, the FL is the same

for both the perfect and disordered cases that validates the previous discussion on the DP

and the FL in our defect configurations when β̃ is turned on. As for the spin symmetry, it

34



is naturally broken in the disordered lattices (Altıntaş and Güçlü (2018)). However, there

is no difference between the spin-up and spin-down families near β̃c, as shown in Fig.

3.1(a) and Fig. 3.1(b), respectively. As is clear from these two figures, all QBS families

at the impurity site retreat from the DP depending on the concentration of these defects,

which are randomly distributed in the GQD consisting of 5514 atoms in the pristine case.

Fig. 3.1(a) and Fig. 3.1(b) point out that β̃ = 1.0 is no longer a critical coupling constant,

and it is the first effect of point defects on atomic collapse.

Figure 3.6. Spin-up QBS families in (a) and spin-down QBS families in (b) in the

presence of finite defect densities. Inset in (a) illustrates a zoomed portion

of disordered lattice with a central Coulomb impurity. The inset in (b) is

the averaged spin-down DOS that marks the FL at β̃ = 0.

These families transit from above to the edge of the DP at different β̃c which is

evident in Fig. 3.7(a)-(d). The critical coupling constant gradually increases in proportion

to the defect densities and reaches β̃c = 1.27 for random dilution at 2% [see Fig. 3.7(d)].

Actually, these defects are ubiquitous in the crystal structure (Eckmann et al. (2012)).

For example, the Raman spectrum has ∼ 0.5 G/2D intensity ratio for the high-quality

graphene monolayer grown by chemical vapor deposition (CVD) (Li et al. (2009)), and

this ratio indicates that there is a finite defect density in graphene. As is clear from

our numerical results, these structural peculiarities can cause an increase in the critical

threshold. On the other hand, the spectral shapes of all QBS families are the same as

of the defect-free case, especially in the vicinity of the impurity. It can be inferred that

atomic collapse can be similarly observed in the imperfect lattices with the help of a
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higher valance charge.

Figure 3.7. Defect-induced increase in the critical coupling constant β̃c for the

concentrations of 0.1% in (a), 0.5% in (b), 1% in (c), and 2% in (d).

The different colored lines represent the corresponding distances from the

impurity.

In the half-filled Hubbard model, the lowest energy states in the conduction band

are unoccupied vacancy-induced states whose energies are between 0 eV<E<0.4 eV

for 1% defect concentration [see the global DOS in the inset of Fig. 3.6(b)]. As

β̃ is increased, these states successively dive into the negative energies (not shown

here). However, there is no explicit crossing from the higher energy conduction

states within the energy spectrums. Therefore, of particular interest are these merging

states below the DP, and the total probability density of them is calculated by p(r) =

(1/2)
[∑

E<0 |Ψ(r)|2 −∑
E<EF

|Ψ(r)|2] in which both spin components are included.

For a representative sample, p(r) is projected into the space at different coupling constants,

ranging from β̃ = 0.5 up to β̃ = 0.8. Response of the empty defect states below the DP

to the Coulomb field for a representative sample with 1% defect density is shown in Fig.

3.8(a)-(d). It clearly shows that whenever defect states dive just below the DP, they are

localized around the missing atoms by preserving their characteristic triangular shapes

and then demonstrate a striking stability against the Coulomb impurity. Here, upward
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triangular shapes belong to the unoccupied spin-up vacancy-induced states, whereas

downward triangular shapes correspond to to the unoccupied spin-down defect states.

On the other hand, the weight of probability density around the impurity progressively

increases, but there is no formation of the first supercritical state at β̃ = 0.5 nor at β̃ =

0.6, which are the critical coupling constants of the 1S1/2 state for the non-interacting

(Shytov et al. (2007a)) and interacting (Polat et al. (2020)) fermions in a clean vacuum,

respectively. Finally, the 1S1/2 state appears at β̃ = 0.8, despite not being a direct

Figure 3.8. Response of the empty defect states below the DP to the Coulomb field for

a representative sample with 1% defect density. Their spatial distributions

are shown in (a)-(d) for β̃ = 0.5, 0.6, 0.7, and 0.8, respectively. Upward

(downward) triangular shapes belong to the unoccupied spin-up (spin-

down) vacancy-induced states. As is clear from (d), the 1S1/2 state is

formed at the center of QD marked by green dots.

contribution of the bulk states to p(r). Such a formation of the 1S1/2 state is presumably

due only to the hybridized components of the diving defect states, and the defect-induced

increases in Fig. 3.7(a)-(d) actually originate from the formation mechanism of the 1S1/2

state. Its shape is exactly the same as the 1S1/2 state of the defect-free GQDs, and this

formation is observed for all samples at around β̃ = 0.8 for random dilution at 1%.

37



3.3.2. Random Gaussian Impurities

We also study the effect of charge puddles on atomic collapse. In addition

to 1% concentration of carbon vacancies, the electron-hole puddles are created by the

superposition of contributions of randomly distributed Gaussian impurities (Bardarson

et al. (2007)) with a total number of Nimp = 16, i.e., the impurity concentration nimp

= 1.1 × 1013 cm−2. Gaussian potential at a position rn can be written as follows:

Vi =
∑Nimp

n=1 Δnexp
[− |ri − rn|2 / (2ξ2)

]
, where Δ is the impurity strength, and the

impurity correlation length is taken to be ξ = 10a (a = 0.142 nm is the C-C distance)

(Zhang et al. (2009)). Half of these impurities are chosen as positive and the other half

as negative with the help of Δ, which randomly fluctuates within three different intervals:

(i) |Δ| < 0.1t, (ii) |Δ| < 0.3t, and (iii) |Δ| < 0.5t. For example, consider the case with

the 1% defect concentration; we have ten different samples, each with totally random

distributions. For each of these samples, we randomly distribute Gaussian impurities with

|Δ| < 0.1t. This is also performed for |Δ| < 0.3t and |Δ| < 0.5t in the presence of the

1% defect concentration

Figure 3.9. Upper panel: (a) averaged potential fluctuations for |Δ| < 0.3t (only |Δ|’s
averaged), (b) the total electron-hole puddles accordingly are formed at β̃
= 0, and (c) the reformation of these charge puddles at β̃ = 1.2. Lower

panel: the same as the upper panel but now for |Δ| < 0.5t.

Prior to the collapse experiments (Wang et al. (2012, 2013); Mao et al. (2016);

Wong et al. (2017)), monolayer graphene is grown by CVD and then is transferred
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onto a hexagonal boron nitride (hBN) flake placed on a SiO2/Si substrate. To model

the spatial potential fluctuations caused by such a substrate, we randomly distributed

Gaussian impurities for the set of vacuum disordered by 1% concentration of carbon

vacancies. The averaged potential landscapes of |Δ| < 0.3t and |Δ| < 0.5t are shown

in Fig. 3.9(a) and Fig. 3.9(d), respectively. The resulting electron-hole puddles of both

spin components shows that the electron puddles (red) appear in the positive potential

regions, whereas the hole puddles (blue) manifest themselves in the negative potential

regions as can be seen in Fig. 3.9(b) for |Δ| < 0.3t and Fig. 3.9(e) for |Δ| < 0.5t. As

β̃ is turned on, the charge inhomogeneities rearrange themselves under the effect of the

Coulomb potential. For example, at β̃ = 1.2, the electron-hole puddles of |Δ| < 0.3t and

those of |Δ| < 0.5t are mapped in Fig. 3.9(c) and Fig. 3.9(f), respectively. Even if there

is no significant change in the positions of the hole puddles formed at the distances away

from the center, those close to the center leave their positions and are centered around the

stronger Coulomb impurity. As will be seen below, such a reformation has a significant

effect on the critical threshold of a family of QBS.

Figure 3.10. The effect of electron-hole puddles on the critical threshold in (a)-(c),

which are the same for both spin components. The inset in (c) shows

averaged total DOS at β̃ = 0, where black, red, blue, and purple lines

represent Δ = 0, |Δ| < 0.1t, |Δ| < 0.3t, and |Δ| < 0.5t, respectively. For

the sake of simplicity, a space between these lines is intentionally added.

LDOS spectra in Fig. 3.10(a)-(c) are calculated for the spin-up QBS family at

the corresponding radial distances, starting from the impurity site. When the positive

and negative Gaussian impurities are distributed evenly, the total DOS of the spin-up

fermions at β̃ = 0 clearly reveal that the FL is again around the energy origin for these
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configurations; see the inset in Fig. 3.10(c). There is no significant shift in the minimum

energy point at β̃ = 0, allowing us to take the energy origin as the DP for the non-zero

values of β̃. Similar to the previous cases, whenever the sharp peak enters the negative

energy spectrum, then atomic collapse has occurred. The addition of Gaussian impurities

causes to an increase in the critical threshold from β̃c = 1.20 [Fig. 3.7(c)] up to β̃c =

1.34 [Fig. 3.10(c)], and the critical valance charge is estimated to be as high as Z̃c =

3.65. In addition, we also study the point defect-free GQD consisting of 5514 atoms

for ten random distributions of |Δ| < 0.5t, and the critical threshold reaches to β̃c =

1.10 (not shown here), which is β̃c = 1.0 [Fig. 3.6(a)] in its clean case. It can be noted

that the increments in the critical threshold are independent of the sign of the substrate-

induced potential where the Coulomb impurity is placed and are directly proportional to

the strengths of Gaussian impurities. As a result, β̃c seems to be highly influenced by the

disorders within the vacuum itself.

In bulk graphene, a series of LDOS measurements performed by a STM reveals

that a cluster, composed of four calcium dimers in the charge state of +1|e|, is needed

to form an infinite family of QBS at just above the DP [see Fig. 1(D) in Ref. (Wang

et al. (2013))]. Therefore, the critical bare valance charge should be slightly greater than

Z̃c � 4 in the experiment. Accordingly, the calculated values of Z̃c are approaching to

that of the experiment, and adding these experimentally relevant factors to the Coulomb

impurity problem opens a new route towards such experimental results (Wang et al. (2012,

2013)). These findings can be useful in interpreting the experimental results of positively

charged Coulomb impurities, even if they exceed the theoretical critical value. Results

of this paper can be tested via Ar+ ion bombarded (Lucchese et al. (2010)), He+ ion

irradiated (Chen et al. (2009)), and hydrogenated (Bostwick et al. (2009)) graphene. The

latter can be achieved by transferring CVD graphene samples at different H coverages

(Bostwick et al. (2009)) onto a hBN/SiO2/Si device, which facilities to control bias and

back-gate voltages. Impurities such as cobalt trimmers (Wang et al. (2012)) and calcium

dimers (Wang et al. (2013); Wong et al. (2017)) can be gathered in a defect-rich region

by atomic manipulation of them with the help of STM, and an artificial supercritical

atom can be created from these subcritical impurities. Once the DP has been determined,

LDOS spectra can be measured at different radial or lateral distances. There should be an

increase in the critical threshold due to the partial removal of the πz states.
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3.4. Band Gap of the GQDs

Before starting the magnetic properties, we would like to introduce the band gap of

the triangular GQDs with zigzag edges, and it will be compared with that of the hexagonal

GQDs with armchair edges. As explained above, the hexagonal GQD has a special band

gap property, which corresponds to the confined Dirac fermions. However, the triangular

Figure 3.11. The band gap of different sized hexagonal and triangular GQDs with

armchair and zigzag edges, respectively.

GQDs with zigzag edges have band gap due only to the size restriction. Owing to the

presence of the localized edge states at around the Fermi level, it is not easy to exactly

determine the band gap of the triangular GQDs, especially within the mean field Hubbard

model. Since the onsite Coulomb interaction separates these edge states from the FL as

opposed to the TB model. To overcome this difficulty and to find the band band gap

in the presence of the localized edge states, we calculate the band gap of the triangular

GQDs with zigzag edges by measuring LDOS at the center atom, which has minimum

edge state probability. In this way, the probability density of the edge states at around

the FL is reduced, and only the states with bulk state character become apparent. Such a

local calculation allows us to obtain the band gap for this particular energy spectrum by

suppressing and eliminating the edge states at around the FL.

Fig. 3.11 shows us the band gaps of different sized hexagonal (blue line) and

triangular (red line) GQDs. The band gap in the triangular GQDs is the same for the

MFH and TB models. It means that there is no direct effect of the interactions within

41



the mean field approximation. The triangular GQDs have a band gap, which is always

smaller than that of the hexagonal GQDs.

Figure 3.12. (a) Spin density of the triangular GQDs consisting of 5038 atoms, (b) and

(c) show band gap for the TB and the MFH model with respect to central

atom, (d) and (e) show the edge states and their related symmetries.

As is clear from Fig. 3.12(a), the spin density shows that the edge state are

localized at the edge of the QD consisting of 5038 atoms. These edge states lead to

ferromagnetic ground state of the triangular GQDs. We measure the LDOS to find out

the band gap of these GQDs within the both models. When we measure the LDOS at the

central atom within the tight binding model [Fig. 3.12(b)], the band gap clearly appears.

The same approach is used for the MFH model, and the same result has been obtained,

please see Fig. 3.12(c). As for the edge states, we calculate the LDOS at the edge of the

triangular GQD. As shown in Fig. 3.12(d), all of the edge states localize at the FL within

the TB model. They create a degenerate state at the FL. On the other hand, the mean field

Hubbard model separates these states away from the FL with the help of onsite Coulomb

repulsion, and there is a symmetry between the spin-up and spin-down fermions, which

can be clearly seen in Fig. 3.12(e). In the STM measurements, one can measure the

edge states by fixing the bias voltage at around the FL. Similarly, by fixing the STM tip

at a specific region, one can directly measure the band gap of the triangular GQDs by

changing the bias voltage value. It will gives an energy spectrum free from the edges

states, which remove the complication of the energy spectrum.

From now on, we will examine the magnetic properties of the GQDs in the
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presence of the charged impurities. A special attention has been paid to a charged vacancy,

which is responsible for the recovering of the spin symmetry, as we will discussed in the

next chapter. As for the triangular GQDs, we also study the single charged vacancy placed

at the center. First, we will discuss the spin splitting in these GQDs with the help of local

calculations. Second, we will show that the local magnetic moment induced by a bare

carbon vacancy can also be adjusted in these GQDs by charging the carbon vacancy (Mao

et al. (2016)).
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CHAPTER 4

MAGNETIC PROPERTIES

In this chapter, we study a single charge vacancy, which is equivalent to pulling

up many charged ions and can be realized in an experiment (Mao et al. (2016)). We

calculate the spin and valley splittings for a bare vacancy in different sized hexagonal

GQDs with armchair edges, after that, we follow these splittings by charging the single

carbon vacancy. Such splittings can be measured experimentally as mentioned in Sec. 1.4

via STM. The effect of charging the vacancy on these splittings are discussed in our

previous paper (Polat et al. (2020)). In addition, we obtain the spin splitting in triangular

GQDs with zigzag edges in this chapter.

The rest of this chapter is organized as follows. In Sec. 4.1, the spin and valley

splittings are investigated in greater detail. In Sec. 4.2, state characteristics in the presence

of a bare and charged vacancy are studied. Sec. 4.3 introduces the spin splitting in

triangular GQDs with zigzag edges.

4.1. Spin and Valley Splittings

The breaking of the four-fold symmetry in nanographene and related structures

is a vital importance in understanding the electronic as well as magnetic properties. In

this sense, we analyze the sublattice-induced symmetry breaking staring from the pristine

hexagonal GQDs. DOS obtained for the clean hexagonal GQD consisting of 5514 atoms

using the TB model shows that the highest (lowest) occupied (unoccupied) state in the

valence (conduction) band is doubly degenerate [Fig. 4.1(a)]. It can be noted that all

sizes have the same valley symmetry (Güçlü et al. (2014)), and the valley degeneracy is

observed in both the TB and the MFH models in the same way.

When a single carbon defect is intentionally created by removing of the πz orbital

of the sublattice A from the central benzene in the hexagonal GQDs with armchair edges,

the broken symmetry of the valley states shows itself as the valley splittings with equal

magnitude in electron and hole channels within the TB method, see the vertical arrows in
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Fig. 4.1(b). At the FL, we have a pronounced vacancy peak due to intervalley scattering

caused by a bare carbon vacancy. This vacancy state splits into up and down vacancy

states with equal spin probability and the occupation of <n↓> = 1 and <n↑> = 0 as

shown in Fig. 4.1(c) when the electron-electron interactions are turned on within the

MFH model. These vacancy peaks are symmetrically located with respect to Fermi level,

Figure 4.1. (a) total densities of states are shown for a pristine hexagonal GQD

consisting of 5514 atoms, (b) total TB DOS belongs to the same GQD

that contains a bare vacancy placed near the center, and (c) contains the

spin and valley splittings for both spin components.

and the spin splitting Δspin between them is found to be 78 meV for this particular GQD.

This splitting, also known as the spin polarization, is proportional to the on-site Coulomb

repulsion U (González-Herrero et al. (2016)). When it comes to the valley splittings, the

picture becomes much more complicated. Note that the total DOS distribution of the

spin-up contains two nonequivalent valley splittings. In the electron channel, we have the

valley splitting Δe,↑ of 26 meV. In the hole channel, the valley splitting Δh,↑ is found to

be 13 meV. Similarly, the total DOS distribution of the spin-down has two unequivalent

valley splittings in both channels. Interestingly, there is an additional symmetry related

to the valley splittings dictated by the electron-hole symmetry. In the presence of a bare
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vacancy on the A sublattice, that is given by

Δe,↓ = Δh,↑, Δh,↓ = Δe,↑. (4.1)

As yet there is no discussion on the effect of the size on the splittings. To analyze

the size dependence, the spin and valley splittings are plotted as a function of the size

of the hexagonal GQDs in Fig. 4.2(a). It is clear that the valley splittings dominate the

spin splitting at small sizes. On the contrary, for larger sizes, the valley splittings are quite

small as compared to the spin splitting in the presence of a single bare vacancy. Moreover,

the additional symmetry between the valley splittings, given in Eq. 4.1, is conserved as a

function of the size [see the overlapping lines in Fig. 4.2(a)].

Figure 4.2. (a) clearly shows the spin and valley splitings as a function the size of the

hexagonal GQDs. (b) the spin splitting disappears as a function of β, while

the valley splittings do not completely vanish.

When the vacancy is positively charged with the Coulomb potential, the spin

splitting decreases as a function the coupling strength β as shown in Fig. 4.2(b) for

the hexagonal GQD consisting of 5513 atoms. The quenching of the spin splitting occurs

at the coupling strength of β = 0.4 that lies in the subcritical regime. It mimics that the
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local magnetic moment can be tuned with the help of a charged vacancy. The situation is

totaly different in the valley splittings depending on the occupation of the states. While

the valley splittings of Δh,↑ and Δh,↓ increase as a function of the coupling strength, both

Δe,↑ and Δe,↓ show a decrement. However, all valley splittings continue to exist. As it

is clear, the spin splitting has a different behaviour from that of the valley splittings for

a charged vacancy, and which could prevent the valley states mixing with the spin states.

Such a behaviour can be used to create new types of spintronic devices in the near future.

4.2. State Characteristics

The TB energy spectrum of a GQD consisting of 5513 atoms is plotted in Fig.

4.3(a) as a function of β. The vacancy state, labelled as (c) in Fig. 4.3(a), is pinned at

the energy origin and dives immediately into negative energies when the carbon vacancy

is charged. From top to bottom, the spatial distributions of the πz-derived state are shown

in Fig. 4.3(c) for the following values of β = 0, 0.1, 0.2, and 0.3, respectively. When

we zoomed into the bare defect [at the top of Fig. 4.3(c)], the triangular interference

pattern due to intervalley scattering can be seen as a characteristic spatial shape (Ugeda

et al. (2010)). As β is increased, the intervalley scattering is gradually surpassed by the

interband scattering, and finally the uniform distribution of the vacancy state takes place at

the β = 0.2 and 0.3. It means that highly localized defect state returns to its original bound

state characteristic; however, these scaled figures render the uniform spatial distribution

invisible. This particular behaviour will be strengthened by means of the transmission

coefficients in the next chapter.

The spatial extension of the state labeling as (d) is shown in Fig. 4.3(a). From top

to bottom, Fig. 4.3(d) exhibits the spatial extension of the critical state around the vacancy

for β = 0, 0.3, 0.6, 0.8, and 1.0, respectively. Uniform spatial extension of the critical state

exists for β = 0 as shown at the top of Fig. 4.3(d). On exceeding the critical value, β

� 0.5, the critical state dives into negative energy spectrum, so that the appearance of

the quasi-localized state occurs around the charged vacancy. It is actually defined as the

counterpart of the 1S atomic collapse state (Mao et al. (2016)).

When the electron interactions are turned on, we have a different picture. The

energy spectrum of the spin-up is superimposed to that of the spin-down in Fig. 4.4(a)
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Figure 4.3. The energy spectrum of TB model as a function of the β is shown in (a).

The positions of the leads and the bare carbon vacancy are sketched in (b).

Scaled electronic densities per lattice of the vacancy state, i.e., LDOS, for

the β = 0, 0.1, 0.2, and 0.3 can be seen in (c), from top to bottom. The

quasi-localization of the lowest bound state is demonstrated in (d) for the

β = 0, 0.3, 0.6, 0.8, and 1.0, from top to bottom.

as a function of β. If Fig. 4.4(a) is carefully analyzed, the spin symmetry does not exist

up to β = 0.4. In other words, an exact overlap of the energy spectrums occurs at β =

0.4 meaning that the spin symmetry is regained for the larger coupling strength values,

as previously discussed. There is a defect state in the spin-up spectrum that is labelled as

(b) in Fig. 4.4(a). Its spatial distribution is displayed in Fig. 4.4(b) for β = 0, 0.2, and

0.4 starting from the top. The defect state in the spin-up spectrum merges into negative

energies when β exceeds 0.1. The ideal triangular interference pattern characteristic starts

to decay, indicating a uniformly distribution on the lattice sites. On the other hand, the

defect state in the spin-down spectrum loses its triangular shape from the moment the

vacancy begins to charge, and similarly it has a uniform distribution at β = 0.4 as shown

at the bottom of Fig. 4.4(c). At a value of β = 0.7, both spectrums have new diving

levels; see in Fig. 4.4(a). Both of the critical states become quasi-localized states in the
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supercritical regime as displayed in the right columns for spin-up (d) and spin-down (e)

states for β = 0, 0.7, and 1.2, from top to bottom, respectively. As compared to the non-

interacting case, the critical coupling constant is renormalized to βc = 0.7 in the presence

of electron-electron interactions for the charged vacancy. The critical states in both energy

spectrums collapse at the same value of βc. It can be noted that the values of βc, discussed

in this section, are valid for all sizes of the hexagonal GQDs when a vacancy is charged

with the Coulomb potential.

Figure 4.4. The energy spectrums of the spin-up and spin-down are shown in (a).

Scaled electronic densities for the vacancy states can be seen in (b) and

(c) for β = 0, 0.2, and 0.4, from top to bottom. In (d) and (e), the behaviour

of the critical states for β values of 0, 0.7, and 1.2 can be seen starting from

top.

The behavior of the staggered magnetization as an order parameter of the

antiferromagnetism is also discussed for different values of the coupling strength. As

plotted in Fig. 4.5, the staggered magnetization μz
s decreases as a function of β and nearly

vanishes when the coupling constant equals β = 0.4. This behaviour guarantees that the

spin symmetry is regained by reducing an order of the antiferromagnetism. This result

strengths our previous findings related to the charging of a vacancy. In this manner, the
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mechanisms of evolution observed for the vacancy states in the presence of a charged

vacancy seem to be the underlying reason.

In summary, it is revealed with the help of total DOS calculations that a bare

vacancy gives rise to the simultaneous formation of the valley and spin splittings in the

hexagonal GQDs with armchair edges. In particular, for larger sizes, the spin splitting

is larger than the valley splittings, whereas the valley splittings become dominant for

the smaller sized hexagonal GQDs. As the coupling strength β is increased, the spin

splitting gradually decreases and finally vanishes at β = 0.4. As an additional result,

the behaviour of valley splitting under the Coulomb field completely depend on the

occupation of the valley states. In the hole (electron) channel, the valley splittings show

Figure 4.5. The quenching of staggered magnetization μz
s, which is given as a function

of the coupling strength β.

an increment (decrement) for the larger coupling strength. However, the valley splittings

in both channel never vanish as opposed to the spin splitting. It signals that the mixing of

the valley states with the spin states is not possible in the presence of a charged vacancy.

4.3. Spin Splitting in Triangular GQDs

In triangular GQDs with zigzag edges, the degenerate edge states appear at the

FL in the tight binding energy spectrum. This actually makes difficult to specify the

defect state when a bare carbon vacancy is introduced to the structure, since the defect
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state similarly shows itself at the FL within the TB model. To overcome this issue,

we utilize the local density calculations, which is of our main interest in this section.

When a triangular GQDs are constructed with the edge atoms belong to the sublattice

A, the central atom appears as a type B atom. In Fig. 4.6(a), one can see that the

edge atoms has a net magnetic moment, i.e., the edge spin density, whereas the local

magnetic moment induced by a bare carbon vacancy can be seen at the center of the

GQD. Here, the bare carbon vacancy belongs to the sublattice B, and the triangular shape

is the characteristic shape of a single carbon vacancy. When the local density of state

calculation is performed for the nearest neighbour atoms of the bare vacancy, Fig. 4.6(b)

shows that the only single defect state shows itself at the center of the energy spectrum

within the TB method, which is a direct result of the suppression of the edge states at

the center. When electron interactions are turned on within the mean field approximation,

the spin-up and the spin-down defect states separately appear in the negative and positive

energy channels, respectively. This is actually due to the intervalley scattering caused

by a single carbon vacancy. The distance between them in the energy scale is known as

Figure 4.6. (a) shows the spin density of the triangular GQDs consisting of 5037 atoms

at the edges and the characteristic shape of the bare carbon vacancy, (b) and

(c) show the defect states for the TB, spin-up, and spin-down fermions in

the local calculations, and (d) and (e) show the symmetrical formation of

the edge states, even in the case of a bare vacancy.

the spin splitting, whose magnitude will be given below. When the same calculations are

performed for the edge states, the result within the TB model [Fig. 4.6(d)] should show

the edge states, but it is not entirely clear whether they are edge states or defect states. On

51



the other hand, with the help of on-site Coulomb repulsion, the MFH model as shown in

Fig. 4.6(e) guarantees that these states are the edge states, and these states are arranged

symmetrically around the Fermi level.

As for the relation between the spin splitting and the size of the triangular GQDs,

the spin splitting decreases when the size of the GQDs is increased. It means that it is not

easy to measure the spin splitting in bulk samples, and such a measurement can be easily

performed in the finite sample sizes, as previously done in the GQDs (Freitag et al. (2016,

2018)). When the different sized triangular GQDs are considered, the spin splitting as a

function of size of the triangular GQDs is given in Fig. 4.7. This figure shows that the

magnitude of the spin splitting is closely related with the size of the GQDs, and it is about

100 meV for the triangular GQD consisting of nearly 10,000 atoms. As a comparison,

the spin splitting in the triangular GQDs is larger than that of the hexagonal GQDs, see

the spin splitting in the hexagonal GQDs in Fig. 4.2(a). The nearly same atom number

in hexagonal GQDs has approximately 70 meV spin splitting in the presence of a bare

vacancy, and it disappears when the vacancy is charged. However, as we previously

introduced in Sec. 4.1, the valley splitting continues to exist for the hexagonal GQDs

with armchair edges. The valley splitting in the triangular GQDs is not considered in this

thesis.

Figure 4.7. The spin splitting in different sized triangular GQDs with zigzag edges.

When the size of the GQDs is increased, the spin splitting decreases

according to the local density of state calculations. Δspin is on the order of

eV.

The same charging process has been applied to the bare vacancy, which is at the
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center of the triangular GQDs consisting of 5037 atoms. The vacancy is charged with

the Coulomb potential by gradually increasing the coupling between the impurity and

the graphene lattice. As the charge state of the vacancy is increased, the local magnetic

moment starts to disappear in the subcritical range, as similar to what we observed in

the hexagonal GQDs. As shown in Fig. 4.8(a)-(c), we calculate spin densities at different

coupling constants of β = 0, 0.2, and 0.4, respectively. This figure is scaled with respect to

β = 0 in each case. There is no change for the edge magnetism in these triangular GQDs,

even in the case of different coupling strength values, which is evident in Fig. 4.8(a)-

(c). When a point vacancy is charged with the Coulomb potential, the edge magnetism

persist, but on the other hand, the local magnetic moment induced by a bare point vacancy

gradually weakens as a function of the coupling strength, and it disappears at β = 0.4.

This result is in compliance with the our previous findings for the hexagonal GQDs and

indicates that the local magnetic moment can be adjusted by charging a vacancy (Mao

et al. (2016)). The main point related with this result is that the defect states regain

their original bound state characteristics when a vacancy is charged with the Coulomb

potential.

Figure 4.8. (a) Spin density of the triangular GQDs consisting of 5037 atoms shows

that the edge magnetism and the triangular shape of the local magnetic

moment at β = 0, (b) and (c) are the same, but now at β = 0.2 and β = 0.4,

respectively.

In short, the formation of the quasi-localized state around a charged vacancy is

monitored with the help of LDOS. The critical state appears when the coupling constant

exceeds βc ≈ 0.5 for TB and βc = 0.7 for the MFH models for a charged vacancy. On
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the other hand, the local magnetic moment disappears when the vacancy is charged with

the Coulomb potential, i.e., regaining of the spin symmetry. The quenching of the spin

splitting is also discussed with the help of the staggered magnetization, which reinforces

the findings related to regaining of the spin symmetry. As we will show in the next chapter,

the transmission coefficient of the first critical states stays the same in the subcritical

regime, but it decreases in the supercritical regime. On the contrary, those coefficients of

the vacancy states increase in the subcritical regime as a function of the coupling strength,

but they remains the same in the supercritical regime.
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CHAPTER 5

TRANSPORT PROPERTIES

In this chapter, we will closely examine the transmission coefficients of the lowest

bound states of the different sized hexagonal GQDs in the presence of two impurity

configurations: (i) a central Coulomb impurity and (ii) a charged vacancy near the center.

In both the TB and the MFH models, we will show that a sudden downshift in the

transmission peaks shows a clear signature of the transition from subcritical β < βc to

supercritical β > βc regime.

The rest of this chapter is organized as follows. In Sec. 5.1, transmission

coefficients of the lowest bound state are studied in the presence of a central Coulomb

impurity in different sized hexagonal GQDs. In Sec. 5.2, transmission coefficients of the

lowest bound state and the defect state in the presence of a charged vacancy are examined

for different coupling strength values.

5.1. Transmission Coefficients of the Lowest Bound State

As a starting point, we will examine the transmission coefficient of different

sized hexagonal GQDs in the presence of a central Coulomb potential. The transmission

coefficients T of the lowest bound states as a function of the energy E are shown in Fig.

5.1(a), (b), and (c) for the hexagonal GQDs consisting of 546, 1,626, and 10,806 atoms,

respectively. In all figures, from left to right, each of the transmission peaks is numerically

calculated for the consecutive values of β with a step size of 0.1, starting from the β =

0. When the subfigures are compared with each other in the absence of the Coulomb

potential, i.e., β = 0, it is clear that the transmission coefficients of the lowest bound spin-

down states decrease inversely with the size of the GQDs and reaches its minimum for

the GQD that contains 10 806 atoms. It can be noted that the maximum transmission is

observed for the all GQDs consisting of up to 222 atoms, i.e., T = 1. In the subcritical

range 0 < β < βc, the transmission coefficients do not make significant changes. In

other words, the transmission coefficients of the lowest bound states remain almost the
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same in the subcritical regime due to the absence of the backscattering in the presence

of a central Coulomb impurity, in agreement with the previous theoretical calculation

(Novikov (2007)). On the other hand, when the coupling strength exceeds the critical

value of βc = 0.6, those coefficients drop immediately because of the collapse of the wave

functions. In other words, the lowest energy electron states become the 1S1/2 state of the

impurity with a spatial localization, which is known as the graphene version of atomic

collapse. The peak values of the transmission coefficients are plotted as a function of the

Figure 5.1. The transmission coefficients of the MFH model in (a), (b), and (c) for the

number of 546, 1,626, and 10,806 atoms, respectively. The behaviour of

transmission coefficients obviously corresponds to two different regime:

(1) β < βc = 0.6 is the subcritical regime and (2) β > βc = 0.6 is the

supercritical regime. Inset in (c): the critical coupling constant βc is at the

point of intersection of two lines on a linear scale.

coupling strength β in the inset of Fig. 5.1(c) for the GQD consisting of 10 806 atoms.

Two different regime are represented with the lines, and the point of intersection clearly
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exhibits βc.

As for the TB model, we also calculate the transmission coefficients for the GQDs

consisting of 5514 atoms. Fig. 5.2(a)-(c) show the energy eigenvalues of the TB and

MFH models as a function of the coupling strength β, the transmission coefficients of the

lowest energy state for TB model, and the transmission coefficients of the lowest energy

state for the MFH model. Fig. 5.2(b) shows that whenever the lowest energy electron state

dives below the zero energy, i.e., below the DP, those coefficients immediately decrease.

It basically reflects the formation of the spatially extended resonance around the impurity.

In addition, it is well-known that its width increases when such a state turns into a QBS

in the supercritical regime, which happens at βc = 0.5 for the TB model (black lines), as

shown in Fig. 5.2(a). As previously mentioned, and as shown in Fig. 5.2(a), the same

Figure 5.2. For the GQDs consisting of 5514 atoms, (a) shows the energy eigenvalues

of the TB and MFH models as a function of the coupling strength β.

(b) shows the transmission coefficients of the lowest energy state for TB

model, and (c) shows the same but now for the MFH model.

coefficients within the MFH model (red dashed line for spin-up and blue dashed line for

spin-down fermions, respectively) suddenly decrease when the lowest energy state dives

below zero energy for which βc = 0.6 is the critical coupling constant. This can be seen

in Fig. 5.2(c) for spin-down fermions.
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5.2. Transmission Coefficients for a Charged Vacancy

After the bare vacancy charged with the subcritical and supercritical Coulomb

potential, the transmission coefficients of the critical states of TB model, spin-up, and

spin-down spectrums of the MFH model are numerically calculated. First of all, in

Fig. 5.3(a), (c), and (e), the transmission coefficients are approximately 2 × 10−4 in

the subcritical regime β < βc. It can be inferred that there is no a direct effect of including

electron-electron interactions within the mean-field approximation on the transmission

coefficients of the lowest bound states. Whenever a critical state dives into the negative

energies, which happens at the βc ≈ 0.5 for TB and βc = 0.7 for the MFH spectrums in

the presence of a charged vacancy, the transmission coefficients of the lowest bound sates

immediately drop. Basically, the quasi-localized character of these states is responsible

for the decrement observed in transmission coefficients.

Figure 5.3. Transmission coefficients of the critical states of TB in (a), spin-up in (c),

and spin-down in (e) spectrums are plotted. The vacancy states in (b), (d),

and (f) can be seen as a function of energy.
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The transmission coefficient of the vacancy state in TB spectrum is plotted in

Fig. 5.3(b). It has too small transmission value at the β = 0, whereas the transmission

coefficient increases and stays nearly the same for the β > 0.1. This result actually points

out that returning to the bound state characteristic leads to an increase in the transmission

coefficient [see again Fig. 5.2(c)]. The same physics is valid for all the vacancy states

observed within the MFH models. As shown in Fig. 5.2(d), the transmission coefficient

for the vacancy state in the spin-up spectrum reaches its maximum at the β =0.4, although

there is a small deviation at the β = 0.1. When it comes to the vacancy state in the spin-

down spectrum, the transmission coefficient [Fig. 5.2(f)] gradually increases up to the β

= 0.4 when we charge the defect. The reasons for this is the regaining of the initial bound

state characteristic.
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CHAPTER 6

CONCLUSIONS

In this thesis, we study the electronic, magnetic, and transport properties of the

GQDs in the presence of charged impurities. In this manner, we find that the lowest

angular momentum channel of the hexagonal GQDs with armchair edges turns into a

quasi-bound state when the Coulomb impurity is placed at the center of these GQDs, as

similar to the bulk graphene. In addition, the different sized hexagonal GQDs have the

same characteristic. This happens at βc = 0.5 for the non-interacting fermions modelled

by the TB approximation, and the critical value becomes βc = 0.6 when the interactions

are turned on within the extended mean-field Hubbard model. Here, the interaction

induced renormalization originates from the off-site Coulomb repulsion. As for the

four-fold degeneracies of these GQDs, the spin and valley degeneracies are preserved,

even in the presence of the central Coulomb impurity. As a result, the interaction-

induced renormalization of the critical coupling constant is the new findings in the current

literature. We also calculate the effective charge of the impurity with the help of induced

background charges by specifying a circle centered around the impurity. This induced

charge around the impurity reduces the bare charge of the impurity to the effective charge

of the impurity, and it is found that the effective charge of the impurity is Zeff ≈ 1.

We also discuss the effect of lattice distortions induced by random bare carbon

vacancies and spatial potential fluctuations induced by random Gaussian impurities.

When the random bare carbon vacancies are distributed, the critical coupling constant

increases due to the presence of localized defect states around the FL. In addition to these

lattice defects, we create potential fluctuation, which is normally caused by the substrate.

The increment in βc due to the potential fluctuations arises from rearrangements of

electron-hole puddles with respect to the Coulomb field. In total, we report the increments

in βc up to %34 in the coexistence of %1 carbon vacancy and |Δ| < 0.5t. This finding

may explain why the Coulomb impurities are subcritical in experiments and mimics that

atomic collapse can be similarly observed in the defect-rich samples, and which can be

tested with hydrogenated graphene.
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As for the charged vacancy, the critical coupling constant does not show up any

change within the TB model, but on the other hand it is found to be βc = 0.7 within the

mean field Hubbard model. In addition, a charged vacancy can be used to adjust or modify

the magnetic properties of the GQDs. As an example, the local magnetic moment can be

adjusted by charging a single bare vacancy. In this manner, the spin splitting induced

by a bare vacancy strongly depends on the value of the coupling strength between the

charge state of the vacancy and the lattice of GQDs. When a vacancy is charged with

the subcritical Coulomb potential, the spin splitting gradually decreases, and finally, it

becomes to zero due to the regaining of the spin symmetry between the spin-up and spin-

down fermions. On the other hand, the valley splitting in electron and hole channels

continues to exist in not only the subcritical regime, but also in the supercritical regime.

Such a behaviour of these degeneracies may be used to create new types of spintronic

devices in the near future. In the presence of the edge states in the triangular GQDs, the

charging of the vacancy has no effect on the edge spin densities. Similar to the hexagonal

GQDs, the characteristic triangular shape of the bare vacancy in these GQDs gradually

decreases, and then it disappears in the subcritical regime.

We also study the transmission coefficients of the lowest bound states of the

different sized hexagonal GQDs within the TB and MFH models, which is in compliance

with our previous findings. A direct result related to the merging of the lowest bound

state below the zero energy level is discussed with the help of transmission coefficients.

When the lowest bound state dives into the negative energies, its transmission coefficient

in all sized hexagonal GQDs immediately decreases within both model. This means that

the lowest angular momentum channel becomes the first critical state of the impurity,

which alternatively explain the basic assumption in the graphene version of atomic

collapse. When a vacancy is intentionally created, and then, the defect state in the energy

spectrum is measured as a function of the coupling strength, we show that its transmission

coefficient increases due to the regaining of original bound sate characteristic. These

findings clearly explain the Coulomb impurity problem in the GQDs.

Although we have made the subject of the atomic collapse simpler and more

understandable throughout this thesis, the findings in the literature are related to the

perfect graphene lattice. Based on the experimental facts, an investigations of the effective

charge of the impurity can be modelled in the presence of potential fluctuations, which
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is missing in the current literature. The numerical calculations we have made only in

the presence of random vacancies can also be repeated by defining a finite potential per

atom to model the chemisorption of hydrogen on graphene lattice. On the other hand, in

experiments, one can charge the vacancy, and then measure the spin splitting as a function

of the coupling strength. There should be regaining of the spin symmetry due to the effect

of the Coulomb potential.
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Kadantsev, O. Voznyy, and P. Hawrylak (2012). Electronic and optical properties

of semiconductor and graphene quantum dots. Frontiers of Physics 7(3), 328–352.

Shytov, A., M. Katsnelson, and L. Levitov (2007a). Atomic collapse and

quasi−rydberg states in graphene. Physical Review Letters 99(24), 246802.

Shytov, A. V., M. I. Katsnelson, and L. S. Levitov (2007b). Vacuum polarization and

screening of supercritical impurities in graphene. Physical Review Letters 99(23),

236801.

Su, J., M. Telychko, P. Hu, G. Macam, P. Mutombo, H. Zhang, Y. Bao, F. Cheng, Z.-Q.

Huang, Z. Qiu, et al. (2019). Atomically precise bottom-up synthesis of π-extended

[5] triangulene. Science Advances 5(7), eaav7717.

Subramaniam, D., F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff,

M. Liebmann, J. Burgdörfer, C. Busse, et al. (2012). Wave−function mapping

of graphene quantum dots with soft confinement. Physical Review Letters 108(4),

046801.

Terekhov, I. S., A. I. Milstein, V. N. Kotov, and O. P. Sushkov (2008). Screening of

coulomb impurities in graphene. Physical Review Letters 100(7), 076803.

Torres, L. E. F., S. Roche, and J.-C. Charlier (2020). Introduction to graphene−based

nanomaterials: from electronic structure to quantum transport. Cambridge

University Press.

Ugeda, M., D. Fernández-Torre, I. Brihuega, P. Pou, A. Martı́nez-Galera, R. Pérez, and
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