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ABSTRACT

CHARACTERIZATIONS OF SIMPLE-DIRECT MODULES

In this thesis, we study on simple-direct-injective and simple-direct-projective

modules. We give a complete characterization of the aforementioned modules simple-

direct-injective and simple-direct projective modules over the ring of integers. The rings

whose simple-direct-injective right modules are simple-direct-projective are fully charac-

terized. These are exactly the left perfect right H-rings. The rings whose simple-direct-

projective right modules are simple-direct-injective are right max-rings. For a commu-

tative Noetherian ring, we prove that simple-direct-projective modules are simple-direct-

injective if and only if simple-direct-injective modules are simple-direct-projective if and

only if the ring is Artinian. In addition, various closure properties and some classes of

modules that are simple-direct-injective (resp. projective) are given.
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ÖZET

BASİT-DOĞRUDAN MODÜLLERİN KARAKTERİZASYONLARI

Bu tezde basit-doğrudan-injektif ve basit-doğrudan-projektif modüller üzerine çalı-

şılmıştır. Bu modüllerin tam sayılar halkası üzerinde tam karakterizasyonları verilmiştir.

Basit-doğrudan-injektif sağ modüllerin basit-doğrudan-projektif olduğu halkalar tam ola-

rak karakterize edilmiştir. Bu halkalar tam olarak sol mükemmel ve sağ H-halkalar ol-

maktadır. Basit-doğrudan-projektif sağ modüllerin basit-doğrudan-injektif olduğu hal-

kalar max-halka olmaktadır. Değişmeli Noether bir halka için, basit-doğrudan-projektif

modüllerin basit-doğrudan-injektif olması ile basit-doğrudan-injektif modüllerin basit-

doğrudan-projektif olmasının denk olduğu ve bu halkaların tam olarak Artin halkalar

olduğu gösterilmiştir. Bunun yanında söz konusu bu modüllerin bazı özellikleri ve basit-

doğrudan-injektif (projektif) olan bazı modül sınıfları verilmiştir.
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LIST OF ABBREVIATIONS

R an associative ring with unit unless otherwise stated

Z, Z+ the ring of integers, the ring of positive integers
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Mod − R the category of right R-modules

⊕i∈I Mi direct sum of R-modules Mi
∑

i∈I Mi direct product of R-modules Mi

M ⊗R N the tensor product of the right R-module M and the left R-

module N

E(M) the injective envelope (hull) of a module M

Ker( f ) the kernel of the map f

Im( f ) the image of the map f

soc(M) the socle of the R-module M

rad(M) the radical of the R-module M

T (M) the torsion submodule of a module M

Z(M) the singular submodule of a module M

� isomorphic
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⊆⊕ direct summand

� small submodule
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CHAPTER 1

INTRODUCTION

In (Nicholson, 1976), a right module is called direct-injective if every submodule

isomorphic to a direct summand is a direct summand. Direct-injective modules are also

known as C2-modules. A right module is a C3-module if the sum of any two direct

summands with zero intersection is again a direct summand. These modules and several

generalizations are studied extensively in the literature. Recently, the "simple" version

of C2-modules and C3-modules are studied in (Camillo et al., 2014). Namely, a right

module is called simple-direct-injective if every simple submodule isomorphic to direct

summand is itself a direct summand, or equivalently if the sum of any two simple direct

summands with zero intersection is again a direct summand (see (Camillo et al., 2014)).

Dual to direct-injective modules, a right module M is called direct-projective, or a

D2-module if, for every submodule A ⊆ M with M
A isomorphic to a direct summand of M,

then A is a direct summand of M (see (Nicholson, 1976)). In (Ibrahim et al., 2016) and

(Ibrahim et al., 2017) the authors investigate and study a dual notion of simple-direct-

injective modules. A right module M is called simple-direct-projective if, whenever A

and B are submodules of M with B simple and M
A � B ⊆⊕ M, then A ⊆⊕ M. Some well

known classes of rings and modules are characterized in terms of simple-direct-injective

and simple-direct-projective modules (see (Camillo et al., 2014), (Ibrahim et al., 2016),

(Ibrahim et al., 2017)).

In this thesis, we characterize simple-direct-injective and simple-direct-projective

modules over the ring of integers and over semilocal rings. We show that, the ring

is semilocal if and only if every right module with zero Jacobson radical is simple-

direct-projective. We prove that the rings whose simple-direct-injective right modules are

simple-direct-projective are exactly the left perfect right H-rings. We show that, the rings

whose simple-direct-projective modules are simple-direct-injective are right max-rings.

For a commutative Noetherian ring, we prove that, simple-direct-projective modules are

simple-direct-injective if and only if simple-direct-injective modules are simple-direct-

projective if and only if the ring is Artinian.
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In chapter 3, we characterize simple-direct-projective abelian groups (Theorem

3.1). As a byproduct, a characterization of simple-direct-projective modules over local

and local perfect rings is obtained. We prove that the ring is semilocal if and only if every

right module with zero Jacobson radical is simple-direct-projective.

In chapter 4, a complete characterization of simple-direct-injective abelian groups

is given (Theorem 4.1). Motivated by the fact that nonsingular right modules are simple-

direct-projective over any ring, we prove the corresponding result for simple-direct-injective

modules. We show that, nonsingular right modules are simple-direct-injective if and only

if projective simple right modules are injective. We also give a characterization of simple-

direct-injective modules over semilocal rings. We show that simple-direct-injective mod-

ules are closed under coclosed submodules over any ring, and closed under pure submod-

ules provided the ring is commutative. Partial converses of these results are given.

Following ( (Sharpe and Vamos, 1972), sec. 4.4), we say R is a right H-ring if

for nonisomorphic simple right R-modules S 1 and S 2, HomR(E(S 1), E(S 2)) = 0. Com-

mutative Noetherian rings, and commutative semiartinian rings are H-ring by ( (Sharpe

and Vamos, 1972), Proposition 4.21) and ( (Camillo, 1978), Proposition 2), respectively.

Right Artinian rings that are right H-rings are characterized in ( (Papp, 1975), Theorem

9). Some classes of noncommutative H-rings are also studied in (Golan, 1981). A ring R

is called right max-ring if every nonzero right R-module has a maximal submodule.

In ( (Camillo et al., 2014), Theorem 3.4.), the authors characterize the rings over

which simple-direct-injective right modules are C3-modules. They prove that these rings

are exactly the Artinian serial rings with J2(R) = 0. In ( (Ibrahim et al., 2016), Theorem

4.9.), the authors prove that every simple-direct-injective right R-module is D3-module if

and only if every simple-direct-projective right R-module is C3-module if and only if R is

uniserial with J2(R) = 0.

At this point, it is natural to consider the rings whose simple-direct-injective mod-

ules are simple-direct-projective, and the rings whose simple-direct-projective modules

are simple-direct-injective. Right C3-modules and right D3-modules are simple-direct-

injective and simple-direct-projective respectively. Thus, uniserial rings with J2(R) = 0

are examples of such rings.

In chapter 5, we prove that, every simple-direct-injective right module is simple-

direct-projective if and only if the ring is left perfect right H-ring (Theorem 5.1). As a

2



consequence, we show that, commutative perfect rings are examples of such rings. For a

commutative Noetherian ring, we obtain that, simple-direct-injective modules are simple-

direct-projective if and only if the ring is Artinian (Corollary 5.3). We show that, the

rings whose simple-direct-projective right modules are simple-direct-injective are right

max-rings (Proposition 5.2). For a commutative Noetherian ring, we prove that, simple-

direct-projective modules are simple-direct-injective if and only if simple-direct-injective

modules are simple-direct-projective if and only if the ring is Artinian (Corollary 5.4).

3



CHAPTER 2

PRELIMINARIES

In this chapter, we give some known definitions and results about rings and mod-

ules that are used in this thesis.

2.1. Rings, Modules and Module Homomorphisms

Definition 2.1 A ring is defined as a non-empty set R with two binary operations

+, · : R × R −→ R with the properties:

(i) (R,+) is an abelian group with zero element;

(ii) (R, ·) is a semigroup;

(iii) for all a, b, c ∈ R the distributivity laws are valid

(a + b)·c = a·c + b·c, a ·(b + c) = a·b + a·c.

A ring R is said to be commutative if the multiplication is commutative in R; that

is, a · b = b · a for all a, b ∈ R. We say that R is a domain (or integral domain) if R has

no zero divisor.

Definition 2.2 Let R be a ring. A subset I of R is called a right ideal in case the following

conditions are satisfied:

(i) For all a, b ∈ I, a + b ∈ I,

(ii) For all a ∈ I and all r ∈ R, ar ∈ I.

Similarly, I is called a left ideal, whenever, for all a ∈ I and all r ∈ R, ra ∈ I. In

addition, if I is a left and right ideal of R, then I is called an ideal.

Definition 2.3 An ideal P in a ring R is said to be a prime ideal if P � R and, for ideals

I, J ⊂ R, IJ ⊂ P implies that I ⊂ P or J ⊂ P.
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In particular, an ideal P of a commutative ring R is said to be a prime ideal if, for all

a, b ∈ R, a · b ∈ I implies that either a ∈ I or b ∈ I.

Definition 2.4 Let R be a ring and (M,+) be an abelian group with a function

f : M × R −→ M defined by f (m, r) = m · r. M is called a right R-module, denoted by

MR, if the following properties are satisfied for all r, s ∈ R and all m, n ∈ M;

(i) (m + n) · r = m · r + n · r;

(ii) m · (r + s) = m · r + m · s;

(iii) m · (r · s) = (m · r) · s;

(iv) m · 1R = m where 1R is the identity of R.

Throughout this thesis, rings are associative with unity (1R) and modules are uni-

tary. We generally use the right R-module, so a module and an R-module both will mean

a right R-module.

Definition 2.5 Let M be a right R-module. N is called a submodule of M if N is a

subgroup of (M,+) closed under scalar multiplication by R, that is, nr ∈ R for all r ∈
R, n ∈ N, and denoted by N ⊆ M. Then N is also an R-module by the operation induced

from M.

Definition 2.6 Let M and N be two right R-modules. The function f : M −→ N is called

a right R-homomorphism (R-module homomorphism) in case, for all m, k ∈ M and all

r ∈ R

f (m + k) = f (m) + f (k),

f (m)r = f (m)r.

The set of R-homomorphisms from M to N is denoted by HomR(M,N) or Hom(MR,NR)

or simply Hom(M,N). For f ∈ Hom(MR,NR), the kernel and the image of f are defined

as follows;

Ker( f ) = {m ∈ M | f (m) = 0}
Im( f ) = { f (m) ∈ N | m ∈ M}.

5



Let M be a right R-module. For a submodule K of M, the set

M
K
= {x + K | x ∈ M}

is called a factor (or quotient) module of M by K.
M
K

is a right R-module by defining

the operations of R on this factor module;

(m + K)r = mr + K,

(m + K) + (n + K) = (m + n) + K.

Lemma 2.1 (The Isomorphism Theorems) ( (Anderson and Fuller, 1992), Corollary

3.7) Let M and N be a right R-modules.

(1) If f : M −→ N is an epimorphism with Ker( f ) = K, then there is a unique isomor-

phism ρ : M
K −→ N such that ρ(m + K) = f (m) for all m ∈ M.

(2) If K ⊆ L ⊆ M, then
M
L
�

( M
K )

( L
K )
.

(3) If H ⊆ M and K ⊆ M, then

(H + K)

K
�

H
(H ∩ K)

.

2.2. Injective and Projective Modules

In this section, we give the definitions and some characterizations of injective and

projective modules.

Definition 2.7 A right R-module E is said to be injective if, for each right module B

and for every submodule A of B, any homomorphism f : A −→ E can be extended to a

homomorphism g : B −→ E; such that g ◦ i = f , that is, there exists a homomorphism

6



g : B −→ E making the following diagram commute;

0 �� A i ��

f
��

B

g��
E

We give a characterization of injective modules in the following proposition.

Proposition 2.1 ( (Anderson and Fuller, 1992), Proposition 18.1) The following state-

ments about a right R-module E are equivalent:

(1) E is injective;

(2) For each monomorphism f : KR −→ MR, the map

Hom( f , E) : HomR(M, E) −→ HomR(K, E)

is an epimorphism;

(3) For each bimodule structure RES , the functor

HomR(−, RE) : MR −→ S M

is exact;

(4) For every exact sequence

M′
f �� M

g �� M′′

in MR the sequence

HomR(M′′, E)
g∗ �� HomR(M, E)

f ∗ �� HomR(M′, E)

7



is exact.

Proposition 2.2 ( (Anderson and Fuller, 1992), Proposition 18.7) A right R-module E is

injective if and only if every monomorphism

0 �� ER
�� MR

is splitting.

A group G is said to be divisible if, the equation nx = a is solvable in G for all

element a of G and for all positive integer n. Equivalently, G is divisible if and only if

nG = G for every positive integer n.

Lemma 2.2 ( (Fuchs, 1970), p.99 Ex.1) A group is divisible if and only if it has no maxi-

mal subgroup.

Theorem 2.1 ( (Fuchs, 1970), Theorem 21.1) Divisible abelian groups are injective.

Definition 2.8 Let P be a right R-module. P is called projective if, for all right mod-

ule homomorphism g : P −→ B and for all epimorphism f : A −→ B, there exists a

homomorphism h : P −→ A such that g = f ◦ h, that is, there exists a homomorphism

h : P −→ A making the following diagram commute;

A
f �� B �� 0

P

g

��

h

��

Proposition 2.3 ( (Anderson and Fuller, 1992), Proposition 17.2.) The following state-

ments about a right R-module are equivalent:

(1) P is projective;

(2) Every epimorphism MR −→ PR −→ 0 splits;

(3) P is isomorphic to a direct summand of a free right R-module.

8



2.3. Special Submodules

In this section, we recall the definitions of some special submodules, and give

some examples of them. In addition to this, we represent their characterizations.

Definition 2.9 A submodule L is called a direct summand of M, denoted by L ⊆⊕ M, if

the following conditions are satisfied:

(i) L + K = M for some submodule K of M, and

(ii) L ∩ K = 0.

Proposition 2.4 (Modular Law) ( (Wisbauer, 1991), p.39) If A, B, C are submodules of

a module M and B ⊆ A, then we have

A ∩ (B +C) = B + (A ∩C).

2.3.1. Simple and Small Submodules

Definition 2.10 (1) If M has no nontrivial proper submodule, that is, M has two sub-

modules which are zero submodule and itself, then we say that M is a simple mod-

ule.

(2) A submodule K of a right R-module M is called small if, whenever K + L = M for

some L ⊆ M, then L = M. In this case, we write K � M.

(3) Let M be an R-module and N ⊆ M. We call N is an essential submodule of M ,

denoted by N � M, if (N ∩ L) � 0 for each nonzero submodule L of M.

Lemma 2.3 ( (Anderson and Fuller, 1992), Corollary 2.10) A factor module M
L is simple

if and only if L is a maximal submodule of M.

Definition 2.11 Let M be an R-module.

(1) The sum of all simple submodules of M is called the socle of M, denoted by soc(M).

9



(2) The intersection of all maximal submodules of M is called the radical of M, denoted

by rad(M).

Proposition 2.5 ( (Anderson and Fuller, 1992), Proposition 9.7) Let M be a right R-

module, then

soc(M) =
∑
{K ⊆ M| K is simple in M}

=
⋂
{L ⊆ M| L is essential in M}.

A module M is said to be semisimple if, M = soc(M).

Proposition 2.6 ( (Anderson and Fuller, 1992), Proposition 9.13) Let M be a right R-

module. Then

rad(M) =
⋂
{K ⊆ M| K is maximal in M}

=
∑
{L ⊆ M| L is small in M}.

2.3.2. Close, Coclosed and Pure Submodules

Definition 2.12 A submodule N of a right R-module M is said to be a closed submodule

of M whenever N � K for some submodule K of M, then K = N.

Proposition 2.7 Let A, B, C be submodules of a module M with A ⊆ B ⊆ C.

(1) If A is closed in C, then A is closed in B.

(2) If A is closed in M, then K
A is essential in M

A where K � M and A ⊆ K.

(3) If B is closed in M, then B
A is closed in M

A .

Definition 2.13 A submodule L of a module M is said to be coclosed if L
K � M

K for K ⊆ L,

then L = K.

A module L is said to be hollow, if every proper submodule of L is small.

10



Proposition 2.8 ( (Clark et al., 2006), 3.7 Properties of coclosed submodule) Let M be a

right R-module and K ⊆ L ⊆ M.

(1) If L is a coclosed submodule of M, then L
K is a coclosed submodule of M

K .

(2) If K � L and L
K is coclosed in M

K , then L is a coclosed submodule of M.

(3) If L ⊂ M is coclosed, then K � M =⇒ K � L;

hence rad(L) = L ∩ rad(M).

(4) If L is hollow, then either L is closed in M or L � M.

(5) If f : M −→ N is small epimorphism and L is coclosed in M, then f (L) is coclosed

in N.

(6) If K is coclosed in M, then K is coclosed in L. Converse is also true if L is coclosed

in M.

Proposition 2.9 Let M be a right R-module. If K is a coclosed and simple submodule of

M, then K is a direct summand.

Proof Let K be a coclosed and simple submodule of M. Then K is not small in M.

Thus there is a maximal submodule L of M such that L + K = M. Since K is simple, we

have K ∩ L = 0. Then M = L ⊕ K, that is, K ⊆⊕ M. �

Definition 2.14 A monomorphism f : M −→ N of right modules is called pure-monomorphism

if the induced map

f ⊗ 1L : M ⊗ L −→ N ⊗ L

is a monomorphism for each left module L.

Definition 2.15 Let M be a right R-module. A submodule L of M is said to be pure

submodule of M if the map

i ⊗R 1N := L ⊗R N −→ M ⊗R N such that i ⊗R 1N(a ⊗R b) = a ⊗R b

is a monomorphism for every left R-module N, where i : L −→ M is the inclusion map

and 1N : N −→ N is the identity map. This means that, the inclusion map i : L −→ M is

a pure-monomorphism.

11



In particular, a subgroup A of an abelian group B is called pure subgroup of B if

and only if

nA = A ∩ nB

for each integer n (see (Fuchs, 1970)).

Lemma 2.4 ( (Fuchs, 1970), Lemma 26.1) Let K, L be submodules of M such that K ⊆
L ⊆ M. Then;

(1) If K is pure in L and L is pure in M, then K is pure in M.

(2) If L is pure in M, then L
K is pure in M

K .

(3) If K is pure in M and L
K is pure in M

K , then L is pure in M.

Now, we give a characterization of pure submodule.

Definition 2.16 A right module M is said to be finitely presented if M � Rk

L for some

finitely generated L ⊆ Rk.

Definition 2.17 A sequence of right R-modules, and homomorphisms fi for all i ∈ Z+,

· · · fi−2 �� Ai−1

fi−1 �� Ai
fi �� Ai+1

fi+1 �� · · ·

is called an exact sequence provided that Im( fi) = Ker( fi+1) for each positive integer

i ∈ Z+.

Proposition 2.10 Let A be a submodule of a right R-module B. The following conditions

are equivalent;

(1) A is a pure submodule of B.

(2) 0 −→ A ⊗ N −→ B ⊗ N is monic for every left R-module N.

(3) For every finitely presented module N,

Hom(N, B) −→ Hom(N,
B
A

) −→ 0

is exact.
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(4) Every system of m linear equations

n∑

i=1

xiri j = aj, j = 1, · · ·m

with ri j ∈ R and aj ∈ A (i = 1, · · · , n, j = 1, · · · ,m) which has a solution in Bn, also

has a solution in An.

A sequence of right modules 0 → A → B → C → 0 is called a pure-exact

sequence if the sequence 0 → A ⊗ N → B ⊗ N → C ⊗ N → 0 is exact for each left

R-module N.

Definition 2.18 A right R-module M is called flat module if every short exact sequence

of the form

0 �� A i �� B �� M �� 0

is pure exact, that is i(A) is a pure submodule of B, where i : A −→ B is the inclusion

map.

An abelian group G is called bounded if nG = 0 for some positive integer n.

Theorem 2.2 ( (Fuchs, 1970), Theorem 27.5) A bounded pure subgroup is a direct sum-

mand.

Lemma 2.5 ( (Lam, 1999), Corollary 4.92) If A is a pure submodule of a right R-module

B, then

A ∩ BI = AI

for any left ideal I of a ring R.
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2.3.3. Torsion Submodule

Let G be an abelian group. The set

T (G) = {g ∈ G | ng = 0 f or some positive integer n}

is a subgroup of G. T (G) is called the torsion subgroup of G. We say that a group G is

torsion, if T (G) = G. A group G is called torsion free if G has no nonzero element which

has finite order, that is, T (G) = 0. A group G is said to be mixed group if G is neither

torsion nor torsion free group.

Let Ω be the set of prime integers. An abelian group G is called p-group if, the orders of

elements of G are powers of a fixed prime p ∈ Ω. Let the subset Tp(G) of G consist of all

elements g ∈ G whose orders are a power of the prime p ∈ Ω; that is, png = 0 for some

n ∈ Z+, that is,

Tp(G) = {g ∈ G | png = 0 f or some positive integer n}.

Tp(G) is a subgroup of G which is called the p-primary component of G.

Theorem 2.3 ( (Fuchs, 1970), Theorem 8.4) A torsion group G is direct sum of p-groups

Tp(G) belonging to different primes p, that is, G = ⊕p∈ΩTp(G). The Tp(G) are uniquely

determined by G.

In particular, T (G) = ⊕p∈ΩTp(G) for every group G.

Definition 2.19 A commutative domain R is called Prüfer domain if each finitely gener-

ated ideal of R is projective.

Proposition 2.11 ( (Fuchs and Salce, 2000), Proposition 8.12) A domain R has the prop-

erty that the torsion submodules of all mixed R-modules are pure if and only if R is Prüfer.

Lemma 2.6 Let G be a Z-module and T (G) the torsion submodule of G. Then T (G) is a

coclosed submodule of G.
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Proof Set T = T (G). By Proposition 2.11, T is a pure submodule of G. In order

to show that T is a coclosed submodule of G, suppose T
A is small in G

A for some proper

submodule A of G, and let us obtain a contradiction. If T
A has no maximal submodules,

then T
A is injective by Lemma 2.2 and Theorem 2.1. Being small and injective implies

T
A = 0, that is, T = A, a contradiction. Now, suppose there is a maximal submodule L of

T such that A ⊆ L ⊆ T. By ( (Anderson and Fuller, 1992), Lemma 5.18), homomorphic

images of small submodules are small, and hence T
L is small in G

L . By Lemma 2.4 (2) pure

submodules are closed under factor modules, so T
L is pure in G

L . On the other hand, T
L is

simple, and so it is bounded. Then T
L is a direct summand of G

L by Theorem 2.2. Now, T
L

is both small and a direct summand in G
L , which is a contradiction. In conclusion T

A is not

small in G
A for any proper subgroup A ⊆ T , that is, T is a coclosed subgroup of G. �

2.3.4. Singular and Nonsingular Modules and Submodules

Now, we recall the concepts of the singular and nonsingular modules and submod-

ules.

Definition 2.20 Let P(R) be the set of all essential right ideals of the ring R. Given any

R-module M, we set

Z(M) = {x ∈ M | xI = 0 for some I ∈ P(R)}.

Then Z(M) is a submodule of M. Z(M) is said to be the singular submodule.

Definition 2.21 Let M be an R-module. If Z(M) = M, then M is called singular. If

Z(M) = 0, then M is called nonsingular.

Example 2.1 Let R be a commutative domain and M be an R-module. Then the singular

submodule Z(M) of M is equal to the torsion submodule T (M) of M.

Definition 2.22 LetA be any class of modules.

(1) Let A be a submodule of an R-module M. M is called an essential extension of A

if, every nonzero submodule of M has nonzero intersection with A. We say that A
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is closed under essential extension provided B ∈ A whenever A ∈ A and A � B.

(2) Given any short exact sequence

0 −→ A −→ B −→ C −→ 0

of modules, the middle term B is called a module extension (or just extension) of

A by C. We say thatA is closed under module extension provided B ∈ A whenever

B is an extension of a module A ∈ A by C ∈ A.

Proposition 2.12 ( (Goodearl, 1976), Proposition 1.22)

(1) The class of nonsingular right R-modules are closed under submodules, direct prod-

uct, essential extensions and module extensions.

(2) The class of singular right R-modules are closed under submodules, factor modules

and direct sum.

Proposition 2.13 ( (Goodearl, 1976), Proposition 1.24) A simple right R-module S is

either singular or projective, but not both.

Lemma 2.7 ( (Goodearl, 1976), Corollary 1.25) Every nonsingular semisimple right R-

module is projective.

In particular, every nonsingular simple right R-module is projective.

2.3.5. Neat, Coneat and Absolutely Coneat Submodules

Now, we give the definitions of neat, coneat and absolutely coneat submodules.

The classical notion of purity for abelian groups is generalized to the notion of neatness.

Thus, for a subgroup A of an abelian group B is called neat if pA = A ∩ pB, for every

prime integer p ∈ Ω which is similar with pure subgroup of an abelian group.

Definition 2.23 A submodule N of a right R-module is said to be coneat in M if

Hom(M, S ) −→ Hom(N, S ) −→ 0
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is epic for every simple right R-module S .

Definition 2.24 A right module M is called absolutely-coneat if, M is coneat in every

module containing it as a submodule.

Proposition 2.14 ( (Crivei, 2014), Theorem 3.2) The following are equivalent for an R-

module M.

(1) M is absolutely coneat.

(2) M is absolutely coneat submodule of an injective module.

(3) M is absolutely coneat submodule of an absolutely coneat module.

2.4. Noetherian and Artinian Rings and Modules

Definition 2.25 (1) A module M is said to be Noetherian if, for every ascending chain

M1 ⊆ M2 ⊆ M3 ⊆ ...

of submodules of M, there is an integer n ∈ Z+ such that Mn = Mn+k for each

positive integer k.

(2) A module M is said to be Artinian if, for every descending chain

M1 ⊇ M2 ⊇ M3 ⊇ ...

of submodules of M, there is an integer n ∈ Z+ such that Mn = Mn+k for each

positive integer k.

(3) A right R-module M is called semiartinian if, every nonzero factor of M has a

nonzero socle.

Proposition 2.15 ( (Anderson and Fuller, 1992), Corollary 10.11) Let M be a nonzero

module.
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(1) If M is Artinian, then M has simple submodule; in fact, soc(M) is an essential

submodule.

(2) If M is Noetherian, then M has a maximal submodule; in fact, rad(M) is a small

submodule.

Definition 2.26 (1) A ring R is said to be right Noetherian if all nonempty set of right

ideals of R contains a maximal member.

(2) A ring R is said to be right Artinian if every nonempty set of right ideals of R

contains a minimal member.

(3) A ring R is called semiartinian if every nonzero right R-module has a nonzero socle.

Proposition 2.16 ( (Sharpe and Vamos, 1972), Proposition 1.19) The following state-

ments are equivalent:

(1) R is right Noetherian (resp. right Artinian).

(2) Every finitely generated right R-module is right Noetherian (resp. right Artinian).

2.5. Some Special Rings

In this section, we recall the definitions of local, semilocal, perfect and H-rings.

Also, we give some characterizations of these special rings.

2.5.1. Local and Semilocal Rings

Definition 2.27 A ring R is called local if it has a unique maximal right ideal.

Definition 2.28 A ring R is called semilocal if R
J(R)

is a semisimple ring.

Proposition 2.17 ( (Anderson and Fuller, 1992), Proposition 15.15) For a ring R, the

following statements are equivalent:

(1) R is a local ring,
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(2) R has a unique maximal left ideal,

(3) J(R) is a maximal left ideal,

(4) The set of elements of R without left inverse is closed under addition,

(5) J(R) = {x ∈ R | Rx � R} ,

(6) R
J(R)

is a division ring,

(7) J(R) = {x ∈ R | x is not invertible},

(8) If x ∈ R then either x or 1 − x is invertible.

Lemma 2.8 ( (Anderson and Fuller, 1992), Corollary 15.18) Let R be a ring with radical

J = J(R). Then for every left R-module M,

JM ⊆ Rad(M).

If R is semisimple modulo its radical, then for every left R-module M,

JM = Rad(M)

and M
JM is semisimple.

2.5.2. Perfect Rings

In this part, our aim is to remind the notion of right (left) perfect rings. This

depends on a new notion called T -nilpotency.

Definition 2.29 A subset A of a ring R is called right (resp. left) T-nilpotent if, for

any sequence of elemets of {a1, a2, a3, ...} ⊆ A, there exists an integer n ∈ Z+ such that

an...a2a1 = 0 (resp. a1a2...an = 0).

Definition 2.30 A ring R is called right (resp. left) perfect if R
J(R)

is semisimple and J(R)

is right (resp. left) T -nilpotent.
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Theorem 2.4 ( (Anderson and Fuller, 1992), Theorem 28.4) Let R be a ring with radical

J = J(R). Then the following statements are equivalent:

(1) R is right (left) perfect,

(2) R
J is semisimple and every nonzero right (left) R-module contains a maximal sub-

module,

(3) Every flat right (left) R-module is projective;

(4) R satisfies the minimum condition for principal left (right) ideals,

(5) R contains no infinite orthagonal set of idempotents and every nonzero left (right)

R-module contains a simple submodule.

2.5.3. H-Rings

Now, we give the definition and characterization of H-rings.

Definition 2.31 A ring R is called right H-ring if, HomR(E(S 1), E(S 2)) = 0 for noniso-

morphic simple right R-modules S 1 and S 2.

Proposition 2.18 ( (Sharpe and Vamos, 1972), Proposition 4.21) Let R be a Noetherian

ring and P1, P2 are prime ideals of R. Then the following statements are equivalent:

(1) P2 ⊆ P1,

(2) HomR(E( R
P2

), E( R
P1

)) � 0.

For a commutative ring R, it is known that every maximal ideal of R is prime.

Hence commutative Noetherian rings are H-rings by Proposition 2.18.
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CHAPTER 3

SIMPLE-DIRECT-PROJECTIVE MODULES

In this chapter, we give some closure properties of simple-direct-projective mod-

ules. Then we give a complete characterization of simple-direct-projective modules over

the ring of integers and over semilocal rings.

Definition 3.1 A right R-module M is called simple-direct-projective if, whenever A and

B are submodules of M with B simple, and M
A � B ⊆⊕ M, then A ⊆⊕ M. This module is

simple version of D3 module.

Lemma 3.1 Let M be a simple-direct-projective right module and L a coclosed submod-

ule of M. If soc(M) ⊆ L, then L is simple-direct-projective.

Proof Let L be a coclosed submodule of M. Suppose L
K � S ⊆⊕ L, where S is a simple

submodule of L. Then S is a coclosed submodule of M as well by Proposition 2.8 (1). As

S is a coclosed submodule of M, S is not small in M. Thus S ⊆⊕ M by Proposition 2.9.

Since L is a coclosed submodule of M, L
K is a coclosed submodule of M

K by Proposition

2.8 (1). Thus L
K is not small in M

K , and so L
K ⊕ N

K =
M
K , for some submodule N of M.

Clearly, L ∩ N = K and M
N � S ⊆⊕ M. Since M is simple-direct-projective, M = N ⊕ B

for some simple submodule B of M. Using the fact that soc(M) ⊆ L we get, by modular

law, that L = L ∩ N ⊕ B, that is, L ∩ N = K ⊆⊕ L. Hence L is simple-direct-projective. �

The followings are trivial examples of simple-direct-projective modules.

Example 3.1 (1) The right R-modules with no simple summands are simple-direct-

projective.

(2) The right R-modules with no maximal submodules are simple-direct-projective.

(3) The right R-modules whose maximal submodules are direct summands are simple-

direct-projective.

Lemma 3.2 Let M be a right module. Suppose soc(M) ⊆ rad(M) or
M

soc(M)
has no

maximal submodules. Then M is simple-direct-projective.
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Proof If soc(M) ⊆ rad(M), then M has no simple summands and so it is simple-

direct-projective. Now, assume that
M

soc(M)
has no maximal submodules, and let K be a

maximal submodule of M. Then K + soc(M) = M. Thus there is a simple submodule S

of M such that K + S = M. By simplicity of S , K ∩ S = 0, and so K ⊆⊕ M. Hence M is

simple-direct-projective. �

Proposition 3.1 ( (Ibrahim et al., 2016), Proposition 2.4) A direct summand of a simple-

direct-projective module is again simple-direct-projective.

Proof Let K ⊆⊕ M, L be a maximal submodule of K and K
L � B ⊆⊕ K with B simple.

Our aim is to show that L ⊆⊕ K. Since K is a direct summand, M = K ⊕ T for some

submodule T of M. Using the modular law and the isomorphism theorem (3), we get

M
L + T

=
L + T + K

L + T
�

K
(L + T ) ∩ K

=
K

L + (T ∩ K)
=

K
L
.

Then M
L+T � B. Since M

L+T is simple, L ⊕ T is a maximal submodule of M. On the other

hand, K = X ⊕ B for some X ⊆ K. Then M = X ⊕ B ⊕ T , so B ⊆⊕ M. Since M is

simple-direct-projective, L ⊕ T ⊆⊕ M. Thus M = L ⊕ T ⊕ S for some S ⊆ M. Then, we

have

M = K ⊕ T = L ⊕ T ⊕ S =⇒ K = L ⊕ S .

Hence, L ⊆⊕ K, and so K is simple-direct-projective. �

3.1. Simple-Direct-Projective Abelian Group

Now, by using the results of the previous section, we are able to give a char-

acterization of simple-direct-projective abelian groups. For torsion groups we have the

following.

Proposition 3.2 If M is a simple-direct-projective abelian group, then the torsion sub-

group T (M) of M is simple-direct-projective.

Proof Let M be a simple-direct-projective abelian group. Since simple abelian groups

are torsion, soc(M) ⊆ T (M). Hence the proof is clear by Lemma 3.1 and Lemma 2.6. �
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Proposition 3.3 Let M be a torsion abelian group. The following statements are equiva-

lent.

(1) M is simple-direct-projective.

(2) Tp(M) is simple-direct-projective for every p ∈ Ω.

(3) For every p ∈ Ω,

(i) soc(Tp(M)) ⊆ rad(Tp(M)), or

(ii)
Tp(M)

soc(Tp(M))
has no maximal subgroup.

Proof

(1) ⇒ (2) Since M is torsion, M = ⊕p∈ΩTp(M) by Theorem 2.3. Then, by Propo-

sition 3.1, Tp(M) is simple-direct-projective for every p ∈ Ω.

(2) ⇒ (3) Suppose that (i) does not hold. Then there is a simple subgroup S of

Tp(M) such that S is not contained in rad(Tp(M)). Thus S is not small in Tp(M), and so,

S ⊆⊕ Tp(M). Note that, all simple subgroups and simple factors of Tp(M) are isomorphic

to S . Assume that A is a maximal subgroup of Tp(M) such that

soc(Tp(M)) ⊆ A ⊆ Tp(M).

Therefore,
Tp(M)

A � S ⊆⊕ Tp(M). Then, as Tp(M) is simple-direct-projective, Tp(M) =

A ⊕ S ′ for some simple submodule S ′ of Tp(M). Consequently,

S ′ ⊆ soc(Tp(M)) ⊆ A,

which is a contradiction. Hence
Tp(M)

soc(Tp(M))
has no maximal subgroup, that is, (ii) holds.

(3)⇒ (2) It follows by Lemma 3.2.

(2) ⇒ (1) Let A and B be subgroups of M with B simple and M
A � B ⊆⊕ M. As B

is simple, there is a p ∈ Ω such that B ⊆ Tp(M) and pB = 0. As B ⊆⊕ M, B ⊆⊕ Tp(M).

Since pB = 0 and M
A � B, we have p( M

A ) = 0, that is, pM ⊆ A. For any prime q � p, it is

easy to see that, Tq(M) = pTq(M) ⊆ pM. Thus, for all primes q � p, Tq(M) ⊆ pM ⊆ A.
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Since A is a maximal subgroup, Tp(M) is not contained in A. Otherwise we would have

M = ⊕q∈ΩTq(M) ⊆ A, which is not the case as A is a maximal subgroup of M. Thus, by

the maximality of A, we have A + Tp(M) = M. Then,

Tp(M)

A ∩ Tp(M)
�

Tp(M) + A
A

=
M
A
� B ⊆⊕ Tp(M).

Since Tp(M) is simple-direct-projective, A∩Tp(M)⊕C = Tp(M) for some simple subgroup

C of Tp(M). Then we get

M = A + Tp(M) = A + [A ∩ Tp(M) ⊕C] = A ⊕C.

Hence M is simple-direct-projective. �

Theorem 3.1 Let M be an abelian group. The following statements are equivalent.

(1) M is simple-direct-projective.

(2) (i) T (M) is simple-direct-projective, and

(ii) for each p ∈ Ω such that pM + T (M) � M, soc(Tp(M)) ⊆ rad(Tp(M)).

Proof (1) ⇒ (2) By Proposition 3.2, T (M) is simple-direct-projective. Now, let p ∈ Ω
be such that pM + T (M) � M. Then, as M

pM is a homogoneous semisimple with each

simple subgroup isomorphic to Zp and

pM + T (M)

pM
�

M
pM
,

there is a maximal subgroup A of M such that T (M) ⊆ pM + T (M) ⊆ A and M
A � Zp.

We need to show that soc(Tp(M)) ⊆ rad(Tp(M)). Suppose the contrary that

soc(Tp(M)) � rad(Tp(M)). Then there is a simple subgroup S of Tp(M) which is not

contained in rad(Tp(M)). Then S ⊆⊕ Tp(M), and since Tp(M) is a direct summand of

T (M), S ⊆⊕ T (M) as well. Then as S is a pure subgroup of T (M) and T (M) is pure sub-

group of M, S is a pure subgroup of M. Thus S is a pure and bounded subgroup of M, and

so S is a direct summand of M by Theorem 2.2. Since S � Zp and M
A � Zp � S ⊆⊕ M,
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simple-direct-projectivity of M implies that A ⊆⊕ M, that is, M = A ⊕ D for some simple

subgroup D of M. Then D ⊆ T (M) ⊆ A, which is a contradiction. Hence we must have

soc(Tp(M)) ⊆ rad(Tp(M)), and this proves (2).

(2)⇒ (1) Let A and B be subgroups of M with B simple and M
A � B ⊆⊕ M. Since

B is simple, B � Zp for some p ∈ Ω, in particular B ⊆ soc(Tp(M)) and p( M
A ) � pB = 0,

that is, pM ⊆ A. As B ⊆⊕ M, B is not contained in rad(Tp(M)). Thus soc(Tp(M)) �

rad(Tp(M)). Then pM + T (M) = M by (2). Thus A + T (M) = M. By similar arguments

as in the proof of [Proposition 3.3, (2) ⇒ (1)], we obtain that A is a direct summand of

M. Hence M is simple-direct-projective. �

Corollary 3.1 Let M be an abelian group. Suppose M
T (M)

has no maximal subgroups.

Then M is simple-direct-projective if and only if every maximal subgroup of M is a direct

summand.

Proof Sufficiency is clear. To prove the necessity, let A be a maximal subgroup of M.

Suppose M
A � Zp, where p ∈ Ω. Then pM ⊆ A. Since M

T (M)
has no maximal subgroup

and A is maximal, A + T (M) = M. Now, by the proof of [Proposition 3.3, (2) ⇒ (1)],

A ⊆⊕ M. This completes the proof. �

3.2. Simple-Direct-Projective Modules Over Semilocal Rings

Over local rings, simple-direct-projective modules are exactly the modules given

in Lemma 3.2.

Proposition 3.4 Let R be a local ring. A right module M is simple-direct-projective if

and only if

(i) soc(M) ⊆ rad(M)

(ii)
M

soc(M)
has no maximal submodules.

Proof

Suppose (i) does not hold. Then there is a simple submodule S of M such that

M = N ⊕ S . Let K be a maximal submodule of M. Since R is a local ring, R has a unique

simple module up to isomorphism. Thus M
K � S ⊆⊕ M. Hence simple-direct projectivity

of M implies that K ⊆⊕ M. Thus any maximal submodule of M is a direct summand.
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Now, if L is a maximal submodule of M, such that soc(M) ⊆ L ⊆ M, then M = L ⊕ S ′

with S ′ a simple submodule of M. Then S ′ ⊆ soc(M) ⊆ L, a contradiction. Hence M
soc(M)

has no maximal submodules. This proves the necessity.

Sufficiency is clear by Lemma 3.2. �

Over a right perfect ring, every module has a maximal submodule by Theorem

2.4. Hence the following is a consequence of Proposition 3.4.

Corollary 3.2 Let R be a local right perfect ring. A right module M is simple-direct-

projective if and only if M is semisimple or soc(M) ⊆ rad(M).

It is easy to see that every module M with rad(M) = 0 is simple-direct-injective

(see (Ibrahim et al., 2016), Remark 4.5). The following is the corresponding result for

simple-direct-projective modules. Note that, a finitely generated module M is semisimple

if and only if every maximal submodule of M is a direct summand. Recall that a ring R is

semilocal if R
J(R)

is semisimple Artinian.

Proposition 3.5 The following statements are equivalent for a ring R.

(1) R is semilocal.

(2) Every right R-module M with rad(M) ⊆⊕ M is simple-direct-projective.

(3) Every right R-module with rad(M) = 0 is simple-direct-projective.

(4) Every 2-generated right R-module M with rad(M) = 0 is simple-direct-projective.

In particular, the conditions (2)-(4) are left-right symmetric.

Proof (1) ⇒ (2) Write M = rad(M) ⊕ N for some submodule N of M. Since R is

semilocal,
M

rad(M)
is semisimple and thus N is semisimple. Now, we claim that every

maximal submodule of M is a direct summand of M. For, let A be a maximal submodule

of M. Clearly, N � A and so there exists a simple submodule K of N with K � A. Then

M = K + A and since K � A, K ∩ A = 0. Therefore, M = K ⊕ A and A ⊆⊕ M, proving the

claim. Inasmuch as every maximal submodule of M is a direct summand of M, we infer

that M is simple-direct-projective.

(2)⇒ (3)⇒ (4) Clear.

(4)⇒ (1) Let R̄ := R
J(R)

. We show that every simple right R̄-module K is projective.

Now, viewing K as an R-module, there exists an epimorphism f : R̄ → K. By the
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hypothesis, the 2-generated right module MR := K ⊕ R̄, as a right R-module, is simple-

direct-projective and so f splits by ( (Ibrahim et al., 2016), Proposition 2.1). Thus K is

isomorphic to a summand of R̄ and so K, as an R̄-module, is projective. Hence R̄ := R
J(R)

is semisimple; that is, R is semilocal.

The last statement comes from the fact that being semilocal is left-right symmetric.

�
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CHAPTER 4

SIMPLE-DIRECT-INJECTIVE MODULES

In this chapter, we give a characterization of simple-direct-injective modules over

the ring of integers and over semilocal rings. Nonsingular right modules are simple-

direct-projective over any ring ( (Ibrahim et al., 2016), Example 2.5(2)). Motivated by

this fact, we also obtain a characterization of the rings whose nonsingular right modules

are simple-direct-injective.

Definition 4.1 A right R-module M is called simple-direct-injective if, whenever A and

B are simple submodules of M with A � B ⊆⊕ M, then A ⊆⊕ M, that is, every simple

submodule of M isomorphic to a direct summand is itself a direct summand.

Lemma 4.1 Let K be a direct summand of an R-module M. If M is simple-direct-

injective, then K is also simple-direct-injective.

Proof Let A and B be simple submodules of K with A � B ⊆⊕ K. Then we get

K = B ⊕ X for some X ⊆ K. On the other hand, M = K ⊕ T for some submodule T of

M, since K is a direct summand of M. Then M = B ⊕ X ⊕ T ,and so B ⊆⊕ M. By simple-

direct-injectivity of M, A is a direct summand of M. Then A is also a direct summand of

K, so K is simple-direct-injective. �

Definition 4.2 Let A be an R-module. A is called pure-injective if, for all pure monomor-

phism f : M −→ N of right modules, any homomorphism g : M −→ A can be extended

to a homomorphism h : N −→ A such that g = h f .

Lemma 4.2 Let R be a ring and I an ideal of R. Then any pure-injective right R
I -module

is pure-injective as an R-module.

Proof Let M be a pure-injective right R
I -module. Let B be a right R-module, and A

a pure submodule of B. Let i : A → B be the inclusion map. Then by Lemma 2.5

AI = A ∩ BI. Thus the natural map

j :
A
AI
−→ B

BI
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given by j(a + AI) = a + BI is a pure monomorphism. In order to show that M is a

pure-injective R-module, let f : A→ M be an R-homomorphism. Then

f (AI) = f (A)I ⊆ MI = 0.

Thus AI ⊆ Ker( f ), and so f = fπ, where π : A → A
AI is the natural epimorphism, and

f : A
AI → M is the homomorphism induced by f , that is, f (a + AI) = f (a) for each a ∈ A.

Since M is a pure-injective R
I -module, there is a homomorphism

g :
B
BI
−→ M

such that f = g j. Let π′ : B → B
BI be the natural epimorphism. For φ = gπ′, it is

straightforward to check that, φi = f , that is, φ extends f , and so M is a pure-injective

R-module. �

Lemma 4.3 Let R be a commutative ring. Let M be an R-module and N a pure submodule

of M. If M is simple-direct-injective, then N is simple-direct-injective. The converse is

true if soc(M) ⊆ N.

Proof Suppose M is a simple-direct-injective module and N a pure submodule of M.

Let S 1 � S 2 with S 1, S 2 simple submodules of N and S 1 ⊆⊕ N. Now, S 1 is pure in N,

and N is pure in M. Then S 1 is pure in M by Lemma 2.4. Since R is commutative, simple

modules are pure-injective by ( (Cheatham and Smith, 1976), Corollary 4). Being pure

and pure-injective implies S 1 ⊆⊕ M. Therefore S 2 ⊆⊕ M, because M is simple-direct-

injective. Using the modular law, for some submodule X of M, we get

N = N ∩ M = N ∩ (S 2 ⊕ X) = S 2 ⊕ (N ∩ X).

Hence S 2 ⊆⊕ N, and so N is simple-direct-injective.

Now, assume that N is a pure submodule of M, and soc(M) ⊆ N. Let S 1 � S 2

be two simple submodules of M and S 1 ⊆⊕ M. Then S 1 ⊆ N, S 2 ⊆ N and S 1 ⊆⊕ N.

Since N is simple-direct-injective, S 2 ⊆⊕ N. As S 2 is pure in N and N is pure in M, S 2 is
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pure in M. Then S 2 ⊆⊕ M, because S 2 is both pure-injective and pure in M. Hence M is

simple-direct-injective. �

Definition 4.3 A right R-module M is said to be absolutely pure if it is pure in all module

containing it as a submodule.

Definition 4.4 An R-module E′ is called an injective envelope (or injective hull) of an

R-module M if, it is both an injective module and essential extension of M, and denoted

by E′ = E(M).

Corollary 4.1 Let R be a commutative ring and M be an absolutely pure module. Then

each module K such that M ⊆ K ⊆ E(M) is simple-direct-injective.

In particular, absolutely pure modules are simple-direct-injective.

Proof Since M is a pure submodule of E(M) and E(M) is simple-direct-injective, M is

simple-direct-injective by Lemma 4.3. As M is essential in E(M), soc(M) = soc(K) for

each module K such that M ⊆ K ⊆ E(M). Hence K is simple-direct-injective, again by

Lemma 4.3. �

Corollary 4.2 Let R be a Prüfer domain. A module M is simple-direct-injective if and

only if the torsion submodule T (M) of M is simple-direct-injective.

Proof Let M be an R-module. Then T (M) is pure in M by Proposition 2.11. Since

simple modules are torsion, soc(M) ⊆ T (M). Now, the proof is clear by Lemma 4.3. �

Lemma 4.4 Let M be an R-module and N a coclosed submodule of M. If M is simple-

direct-injective, then N is simple-direct-injective. The converse is true if soc(M) ⊆ N.

Proof Suppose M is simple-direct-injective and N is a coclosed submodule of M. Sup-

pose S 1 � S 2 are simple submodules of N and S 1 ⊆⊕ N. Then S 1 is a coclosed submodule

of M by Proposition 2.8 (6). Thus S 1 is not small in M, and so S 1 ⊆⊕ M. By simple-

direct-injectivity of M, S 2 ⊆⊕ M. Therefore S 2 ⊆⊕ N, and N is simple-direct-injective.

Now, assume that N is a coclosed submodule of M, and soc(M) ⊆ N. Let S 1 � S 2

be two simple submodules of M and S 1 ⊆⊕ M. Then S 1 ⊆ N, S 2 ⊆ N and S 1 ⊆⊕ N. Since

N is simple-direct-injective, S 2 ⊆⊕ N. As S 2 is coclosed in N and N is coclosed in M, S 2

is coclosed in M. Then S 2 ⊆⊕ M, and so M is simple-direct-injective. �
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Now, we will mention about the fully invariant submodule and the direct limit.

Aforementioned notions will be used in the following Theorem 4.1 and Proposition 4.1.

Definition 4.5 A submodule A of an R-module M is called a fully invariant in M, if

f (A) ⊆ A for each f ∈ EndR(M).

For an R-module M socle, radical and singular submodule of M are trivial exam-

ples of fully invariant submodule.

Lemma 4.5 ( (Camillo et al., 2014), Lemma 2.4) Let M be a simple-direct-injective mod-

ule. Then,

(1) For any finite set {X1, X2, ..., Xk} of simple summands of M,
∑k

i=1 Xi ⊆⊕ M.

(2) The sum of all simple summands of M is fully invariant in M.

To remind the direct limit, we mention about the direct system. A direct system of

morphisms from (Mi, fi j)σ into an R-module L is a family of morphism

{ui : Mi −→ L}σ with fi ju j = ui whenever i ≤ j,

where (σ,≤) is a quasi ordered directed set and fi j : Mi −→ Mj for all (i, j) with i ≤ j is a

family of morphism, satisfying fii = idMi , fi j f jk = fik for i ≤ j ≤ k.

Definition 4.6 Let (Mi, fi j)σ be a direct system of R-modules and M an R-module. A

direct system of morphisms { fi : Mi −→ M}σ is called direct limit of (Mi, fi j)σ if, for

every direct system of morphisms {ui : Mi −→ L}σ, L ∈ Mod − R, there is a unique

morphism u : M −→ L which makes the following diagram commutative for every i ∈ σ

Mi
fi ��

ui

��

M

u
��

L

Now, we give a characterization of simple-direct-injective abelian groups.

Theorem 4.1 Let M be an abelian group. The following statements are equivalent.

31



(1) M is simple-direct-injective.

(2) T (M) is simple-direct-injective.

(3) Tp(M) is simple-direct-injective for each p ∈ Ω.

(4) For each p ∈ Ω,

Tp(M) is semisimple, or soc(Tp(M)) ⊆ rad(Tp(M)).

Proof (1)⇔ (2) Torsion subgroup of M is simple-direct-injective by Corollary 4.2.

(2) ⇒ (3) is clear, since T (M) = ⊕p∈ΩTp(M) and simple-direct-injective modules

are closed under direct summands by Lemma 4.1.

(3) ⇒ (4) Assume that soc(Tp(M)) � rad(Tp(M)) for some p ∈ Ω. Then there

is a simple subgroup S of Tp(M) such that S ⊆⊕ Tp(M). Let A be the sum of all simple

summands of Tp(M). Then any finitely generated subgroup of A is a direct summand

(hence pure subgroup) of Tp(M) by Lemma 4.5. Since A is a direct limit of its finitely

generated subgroups and direct limit of pure subgroups is pure (see resp. (Wisbauer,

1991), 24.7, 33.8.), A is pure in Tp(M). As A is semisimple and A ⊆ Tp(M), pA = 0,

that is, A is bounded. Then A ⊆⊕ Tp(M) by Theorem 2.2. Let Tp(M) = A ⊕ B. We claim

that B = 0. For, if B � 0, then soc(B) � 0. Let U be a simple subgroup of B. Since

Tp(M) is a p-group, soc(Tp(M)) is homogeneous, that is, all simple subgroups of Tp(M)

are isomorphic. Thus U ⊆⊕ Tp(M). Then U ⊆ A, which is a contradiction. Therefore

B = 0, and so Tp(M) = A is semisimple. This proves (4).

(4) ⇒ (2) Let U and V be simple subgroups of T (M) such that U � V and

U ⊆⊕ T (M). Then there is a p ∈ Ω such that U ⊆⊕ Tp(M). Thus Tp(M) must be

semisimple by (4). Since V � U, V ⊆⊕ Tp(M). Hence V ⊆⊕ T (M), and so T (M) is

simple-direct-injective. �

Proposition 4.1 Let R be a semilocal ring. For a right R-module M, let S ′ be the sum of

all simple direct summands of M. The following are equivalent.

(1) M is simple-direct-injective.

(2) S ′ is fully invariant and pure submodule of M.

(3) M = S ′ ⊕ N, and S ′ is a fully invariant submodule of M.
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Proof (1) ⇒ (2) By Lemma 4.5 (2), S ′ is a fully invariant submodule of M. Let

S ′ = ⊕i∈IVi, where Vi are simple for each i ∈ I. Then for each finite subset F ⊆ I,

NF = ⊕i∈FVi is a direct summand of M by Lemma 4.5 (1), and so NF is a pure submodule

of M. By ( (Lam, 1999), 4.84 (c)) direct limit of pure submodules is pure, and so S ′ =

⊕i∈IVi = limF NF is a pure submodule of M. This proves (2).

(2) ⇒ (3) Since R is a semilocal ring, R
J(R)

is semisimple. Thus every right R
J(R)

-

module is pure-injective. As S ′ is semisimple, S ′.J(R) = 0. Thus S ′ is a pure-injective

right R-module by Lemma 4.2. Being pure and pure-injective implies that S ′ ⊆⊕ M.

(3) ⇒ (1) Let A and B be two simple submodules of M such that A � B and

A ⊆⊕ M. Then A ⊆ S ′. Since S ′ is a fully invariant submodule of M, B ⊆ S ′ and so

B ⊆⊕ M. Hence M is simple-direct-injective. �

Simple submodules of nonsingular modules are projective. Thus nonsingular right

modules are simple-direct-projective over any ring (see (Ibrahim et al., 2017) 2.5 (2)).

The corresponding result for simple-direct-injective modules follows.

Proposition 4.2 Let R be a ring. The following statements are equivalent.

(1) Every projective simple right module is injective.

(2) Every nonsingular right module is simple-direct-injective.

Proof (1) ⇒ (2) Nonsingular simple right modules are projective, and so injective by

(1). Thus (2) follows.

(2)⇒ (1) Let S be a projective simple right module. Then E(S ) and S ⊕ E(S ) are

nonsingular, and so S ⊕ E(S ) is simple-direct-injective by (2). Since S ⊕ 0 � 0 ⊕ S and

S ⊕ 0 ⊆⊕ S ⊕ E(S ), S ⊆⊕ E(S ). Hence S is injective. �

Lemma 4.6 ( (Ware, 1971), Lemma 2.6) Let R be a commutative ring and S a simple

R-module. Then S is flat if and only if S is injective.

Corollary 4.3 Let R be a commutative ring. Then every nonsingular module is simple-

direct-injective.

Proof Let S be a projective simple module. Since S is projective, it is flat. Then S is

injective by Lemma 4.6. Now, the conclusion follows by Proposition 4.2. �
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Proposition 4.3 Absolutely-coneat right modules are simple-direct-injective.

Proof Let M be an absolutely-coneat right module. Suppose A and B are simple sub-

modules of M with A � B and B ⊆⊕ M. Then B is absolutely-coneat as a direct summand

of M. Thus B is injective, and so A is injective too. Then A ⊆⊕ M, and hence M is

simple-direct-injective. �

We close this chapter by recalling a characterization of right V-rings by simple-

direct-injective right modules that is proved in (Camillo et al., 2014). First we give the

definition right V-rings and a well-known characterizations of these rings.

Definition 4.7 A ring R is called right V-ring if every simple right R-module is injective.

Theorem 4.2 ( (Lam, 1999), Theorem 3.75) For a ring R, the following are equivalent:

(1) R is a right V-ring.

(2) Any proper right ideal I of R is an intersection of maximal right ideals.

(3) For any right R-module M, rad(M) = 0.

Proposition 4.4 ( (Camillo et al., 2014), Theorem 4.1) The following conditions are

equivalent for a ring R:

(1) R is a right V-ring.

(2) Every right R-module is simple-direct-injective.

(3) Every finitely cogenerated right R-module is simple-direct-injective.

(4) Direct sum of simple-direct-injective modules is simple-direct-injective.

(5) Every 2-generated right R-module is simple-direct-injective.
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CHAPTER 5

WHEN SIMPLE-DIRECT-INJECTIVE (PROJECTIVE)

MODULES ARE SIMPLE-DIRECT-PROJECTIVE

(INJECTIVE)

In the last chapter, we prove that every simple-direct-injective right module is

simple-direct-projective if and only if the ring is left perfect and right H-ring. As a con-

sequence, we show that, commutative perfect rings are examples of such rings. We prove

that the rings whose simple-direct-projective right modules are simple-direct-injective

are right max-ring. For a commutative Noetherian ring, we prove that, simple-direct-

projective modules are simple-direct-injective if and only if simple-direct-injective mod-

ules are simple-direct-projective if and only if the ring is Artinian.

Definition 5.1 (1) A module M is said to be uniserial, if its lattice of submodules is

linearly ordered by inclusion.

(2) A module M is said to be serial, if it can be written as a direct sum of uniserial

modules.

(3) The ring R is called right (left) uniserial (serial) provided R has the corresponding

properties as right (left) R-module.

Now, we give a characterization of the rings over which every simple-direct-

injective right module is simple-direct-projective. We begin with the following.

Proposition 5.1 Let R be a ring. Suppose every simple-direct-injective right R-module

is simple-direct-projective. Then R is semilocal and right semiartinian, that is, R is left

perfect.

Proof Every right module M with rad(M) = 0 is simple-direct-injective (see, (Ibrahim

et al., 2016), Remark 4.5). Thus, by Proposition 3.5, R is semilocal. Suppose R is not right

semiartinian. Then there is a nonzero finitely generated right module N with soc(N) = 0.
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As the ring is semilocal, there are only finitely many, say S 1, S 2, · · · , S n simple right

modules up to isomorphism. Let

K = S 1 ⊕ S 2 ⊕ · · · ⊕ S n ⊕ N.

Then every simple submodule of K is a direct summand, and so K is simple-direct-

injective. Let us show that K is not simple-direct-projective, and get a contradiction.

Let L be a maximal submodule of N. Since soc(N) = 0, L is not a direct summand of N,

and hence not a direct summand of K too. Let

L′ = S 1 ⊕ S 2 ⊕ · · · ⊕ S n ⊕ L.

Then L′ is a maximal submodule of K and K
L′ � S i ⊆⊕ K, for some i = 1, · · · , n. As L is

not a direct summand of K, L′ is not a direct summand of K too. Thus K is not simple-

direct-projective, which is a contradiction. Therefore R must be right semiartinian. Hence

R is left perfect by Theorem 2.4. �

Theorem 5.1 The following statements are equivalent for a ring R.

(1) R is left perfect and right H-ring.

(2) Every simple-direct-injective right module is simple-direct-projective.

Proof (1) ⇒ (2) Let M be a simple-direct-injective module. Let A be the sum of all

simple summands of M. Then A is fully invariant and M = A ⊕ B by Proposition 4.1.

Since A is a fully invariant submodule of M, soc(B) ⊆ rad(M) and Hom(A, soc(B)) = 0.

By (1) the ring is right semiartinian, and so soc(B) is an essential submodule of B. In

order to prove that M is simple-direct-projective, suppose that M
K � S ⊆⊕ M for some

simple submodule S of M. Then as S ⊆⊕ M, S ⊆ A. We claim that, A+ K = M. Suppose

the contrary that, A + K is properly contained in M, and let us find a contradiction. Then,

by maximality of K, we have A ⊆ K. Thus from M = A ⊕ B and by modular law, we get
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K = A ⊕ K ∩ B, and

M
K
=

A ⊕ B
K
=

A ⊕ B
A ⊕ K ∩ B

�
B

K ∩ B
� S .

Thus K ∩ B is a maximal submodule of B. Set N := K ∩ B. Since the ring is semilocal,

there are only finitely many simple right modules up to isomorphism. Thus

soc(B) = U (I1)

1
⊕ U (I2)

2
⊕ · · · ⊕ U (Ik)

k

for some simple right modules U1,U2, · · · ,Uk and index sets I1, I2, · · · , Ik. Since soc(B)

is an essential submodule of B, the injective hull of B is E(B) = ⊕k
i=1E(U (Ii)

i ). As

B
N � S , there is an epimorphism f : B → S . Let e : S → E(S ) be the inclusion

homomorphism. Then the homomorphism e f extends to a (nonzero) homomorphism

g : E(B) → E(S ). Since E(B) = ⊕k
i=1E(U (Ii)

i ) and g is nonzero, there is a nonzero homo-

morphism h : E(U (I j)

j ) → E(S ), for some j ∈ {1, 2, · · · , k}. It is clear that, E(U (I j)

j ) can

be embedded in E(U j)
I j . Thus, as h is nonzero, there is a nonzero homomorphism from

E(U j)
I j to E(S ). This leads to a nonzero homomorphism t : E(U j) → E(S ). So that, by

the right H-ring assumption, we must have S � U j. Then Hom(A, soc(B)) � 0, which is a

contradiction. Hence the case A+K = M must hold. Therefore, as A is semisimple, there

is a simple submodule U of A such that U + K = M and U ∩ K = 0, that is, K ⊆⊕ M.

Hence M is simple-direct-projective. This proves (2).

(2) ⇒ (1) The ring R is left perfect by Proposition 5.1. Suppose R is not right

H-ring. Then there are nonisomorphic simple right modules S 1 and S 2 such that

Hom(E(S 1), E(S 2)) � 0.

Let 0 � f : E(S 1) → E(S 2), and A = Ker( f ). Since E(S 1)

A � f (E(S 1)) ⊆ E(S 2), there is

a submodule B ⊆ E(S 1) such that B
A � S 2. Then it is clear that B ⊕ S 2 is a simple-direct-
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injective right module. On the other hand,

B ⊕ S 2

A ⊕ S 2

� 0 ⊕ S 2 ⊆⊕ B ⊕ S 2.

But A⊕S 2 is not a direct summand of B⊕S 2. Thus B⊕S 2 is not simple-direct-projective.

This contradicts with (2). Thus R must be right H-ring. �

Now, we give some consequences of Theorem 5.1.

Corollary 5.1 Let R be a commutative ring. The following statements are equivalent.

(1) R is a perfect ring.

(2) Every simple-direct-injective module is simple-direct-projective.

Proof Commutative perfect rings are semiartinian by Theorem 2.4. Thus commutative

perfect rings are H-ring by ( (Camillo, 1978), Proposition 2). Now, the proof is clear by

Theorem 5.1. �

A right Noetherian right semiartian ring is right Artinian (see, (Shock, 1974)).

Left perfect rings are right semiartinian by Theorem 2.4. Thus the following is clear by

Theorem 5.1.

Corollary 5.2 Let R be a right Noetherian ring. The following statements are equivalent.

(1) R is right Artinian right H-ring.

(2) Every simple-direct-injective right module is simple-direct-projective.

Since commutative Noetherian rings are H-rings, we obtain the following corol-

lary.

Corollary 5.3 Let R be a commutative Noetherian ring. The following statements are

equivalent.

(1) R is Artinian ring.

(2) Every simple-direct-injective module is simple-direct-projective.
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By Proposition 4.4, R is right V-ring if and only if every right R-module is simple-

direct-injective. Right V-rings are right max-rings (see, Theorem 4.2). Clearly, over right

V-rings simple-direct-projective right modules are simple-direct-injective.

Now, we consider the rings whose simple-direct-projective right modules are simple-

direct-injective.

Definition 5.2 A ring R is said to be a right max-ring if every nonzero right R-module

has a maximal submodule. In particular, rad(M) � M for every right R-module M.

Proposition 5.2 Let R be a ring. If each simple-direct-projective right R-module is simple-

direct-injective, then R is a right max-ring.

Proof Suppose the ring is not right max-ring. Then there is a nonzero right module M

such that M = rad(M). Let 0 � m ∈ M, and let K be a maximal submodule of mR. Let

h = iπ : mR −→ E(
mR
K

),

where π : mR −→ mR
K and i : mR

K −→ E(mR
K ) are the natural epimorphism and the in-

clusion homomorphism, respectively. By injectivity of E(mR
K ), there is a (nonzero) ho-

momorphism g : M → E(mR
K ) which extends h. Let L := g(M). Since M

Ker(g)
� L and

rad(M) = M, L = rad(L). Note that L has an essential socle isomorphic to mR
K . Consider

the right module N = mR
K ⊕ L. Then 0 ⊕ L is the unique maximal submodule of N and

0 ⊕ L ⊆⊕ N. Thus N is simple-direct-projective. On the other hand,

0 ⊕ soc(L) �
mR
K
⊕ 0 ⊆⊕ N,

but 0 ⊕ soc(L) is not a direct summand of N. Therefore N is not simple-direct-injective.

This contradicts with our assumption that simple-direct-projective modules are simple-

direct-injective. Hence R must be right max-ring. �

A subfactor of a right module M is a submodule of some factor module of M. The

following lemma can be easily derived from the definition of H-ring. We include it for an

easy reference.
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Lemma 5.1 R is a right H-ring if and only if for every simple right R-module S , every

simple subfactor of E(S ) is isomorphic to S .

Proof Suppose R is a right H-ring and S a simple right R-module. Let A
B be a simple

subfactor of E(S ). Assume that A
B is not isomorphic to S . Let i1 : A

B −→ E(S )

B and

i2 : A
B −→ E( A

B) be the corresponding inclusions. Then there is a nonzero homomorphism

f : E(S )

B −→ E( A
B). Thus, fπ : E(S ) −→ E( A

B) is a nonzero homomorphism, where

π : E(S ) −→ E(S )

B is the canonical epimorphism. This contradicts with the assumption

that R is right H-ring. Therefore every simple subfactor of E(S ) is isomorphic to S . This

proves the necessity.

Conversely, let S 1 and S 2 be simple right R-modules, 0 � f ∈ HomR(E(S 1), E(S 2)).

Then E(S 1)

Ker( f )
has a simple subfactor isomorphic to S 2. Thus, by our assumption, we must

have S 1 � S 2. Hence R is a right H-ring. �

Proposition 5.3 Let R be a commutative Noetherian ring. The following statements are

equivalent.

(1) R is Artinian.

(2) Every simple-direct-projective module is simple-direct-injective.

Proof (2) ⇒ (1) By Proposition 5.2, R is a max-ring. Commutative Noetherian max-

rings are Artinian by ( (Hamsher, 1966), Theorem 1).

(1) ⇒ (2) Let M be a simple-direct-projective R-module. Let S ′ be the sum of

simple summands of M. Then, by the same arguments in the proof of [Proposition 4.1,

(2) ⇒ (3)], S ′ is a pure and a pure-injective submodule of M, and so S ′ ⊆⊕ M. Let

M = S ′ ⊕N. Clearly, by the construction of S ′, N has no simple (or maximal) submodule

which is a direct summand. Now, in order to prove that M is simple-direct-injective, by

Proposition 4.1, it is enough to see that S ′ is a fully invariant submodule of M. Suppose

the contrary that there are simple submodules A, B of M such that A ⊆ S ′, B ⊆ N and

A � B. Since B ⊆ N, there is a nonzero homomorphism g : N −→ E(B). Then for

K = Ker(g), the module N
K has a maximal submodule say L

K by the Artinianity of R. Since

R is commutative and Noetherian, R is an H-ring. Thus every simple subfactor of E(B) is

isomorphic to B by Lemma 5.1. Therefore N
L � B. Now,

M
S ′ ⊕ L

=
S ′ ⊕ N
S ′ ⊕ L

� B � A ⊆⊕ M.
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Then by simple-direct-projectivity of M, S ′ ⊕ L ⊆⊕ M and, by modular law, L ⊆⊕ N.

This contradicts the fact that, N has no maximal summands. Hence S ′ is a fully invariant

submodule of M, and so M is simple-direct-injective by Proposition 4.1. This proves (2).

�

Proposition 5.4 Let R be a commutative semilocal ring. The following statements are

equivalent.

(1) R is perfect.

(2) Every simple-direct-projective module is simple-direct-injective.

Proof (2) ⇒ (1) R is a max-ring by Proposition 5.2. Semilocal max-rings are perfect

by Theorem 2.4 (3).

(1) ⇒ (2) Note that, commutative perfect rings are H-rings and max-rings. Now,

replacing Artinian by perfect the same proof of (Proposition 5.3 (1)⇒ (2)) holds. �

Remark 5.1 Over a right V-ring all right modules, in particular, simple-direct-projective

right modules are simple-direct-injective (see, ( (Camillo et al., 2014), Theorem 4.1)).

Since commutative perfect V-rings are semisimple, there is a simple-direct-injective R-

module which is not simple-direct-projective over nonsemisimple commutative V-rings by

Corollary 5.1. Therefore nonsemisimple commutative V-rings are examples of rings such

that simple-direct-projective modules are simple-direct-injective, and admit a simple-

direct-injective module that is not simple-direct-projective.

Summing up, Corollary 5.1, Corollary 5.3, Proposition 5.3 and Proposition 5.4 we

obtain the following.

Corollary 5.4 Let R be a commutative Noetherian ring. Then the following statements

are equivalent.

(1) R is Artinian.

(2) Every simple-direct-injective module is simple-direct-projective.

(3) Every simple-direct-projective module is simple-direct-injective.

Corollary 5.5 Let R be a commutative semilocal ring. Then the following statements are

equivalent.
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(1) R is perfect.

(2) Every simple-direct-injective module is simple-direct-projective.

(3) Every simple-direct-projective module is simple-direct-injective.
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CHAPTER 6

CONCLUSION

Simple-direct-injective and simple-direct-projective modules are investigated and

studied in (Camillo et al., 2014), (Ibrahim et al., 2016) and (Ibrahim et al., 2017). In this

thesis, these modules are studied further and some open problems about these modules are

addressed. The structure of simple-direct-projective and simple-direct-injective modules

are completely characterized in Theorem 3.1 and Theorem 4.1, respectively. We prove

that the rings whose simple-direct-injective right modules are simple-direct-projective are

exactly the left perfect right H-rings in Theorem 5.1. We also consider the rings over

which simple-direct-projective right modules are simple-direct-injective. These rings are

right max-rings (see, Proposition 5.2). For a commutative Noetherian ring, we prove that

simple-direct-projective modules are simple-direct-injective if and only if simple-direct-

injective modules are simple-direct-projective if and only if the ring is Artinian. The

results obtained in the thesis are published in (Büyükaşık et al., 2020).
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