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ABSTRACT

COMPARISON OF CLASSIFICATION ALGORITHMS IN PITCH TYPE
PREDICTION PROBLEM

The dramatic increase in the use of IoT devices has been leading to a huge amount

of valuable data to be discovered. The knowledge extraction from such a huge amount

of data requires an organized scientific set of processes. This requirement has pointed

out the importance of the data mining applications. As a major data mining application,

classification is a supervised learning technique that requires a feature set and target class

through the training process. For the training process, the key point is determining the

appropriate feature set for the classification algorithm. The improvements in cutting-edge

technologies such as high resolution camera systems have made extracting the insights

about next pitch available. Consequently, pitch type prediction has been standing out

as an important research topic. In order to predict next pitch type, existing researches

mostly focus on pitcher profile, batter profile and previous pitch data in feature set. There

is no study analyzing the effect of the zone information in the prediction of the next pitch

type. Therefore, this study has analyzed the contribution of zone information in pitch type

prediction. Our approach is that, we aimed to reveal the contribution of zones with the

high strike low bat rates for pitch type decision in pitcher and batter player match up. This

aim directed us to analyze the pitch type prediction problem for both zone-based and non-

zone-based approaches so that we can exhibit how much zone information contributes to

the problem through different classification algorithms.
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ÖZET

ATIŞ TİPİ TAHMİNLEME PROBLEMİNDE SINIFLANDIRMA
ALGORİTMALARININ KARŞILAŞTIRILMASI

İnternet bağlantılı cihaz kullanımındaki çarpıcı artış, devasa miktarda keşfedile-

cek kıymetli verinin oluşmasına neden olmaktadır. Bu kadar büyük miktarlardaki veri-

den anlamlı bilgi çıkarmak organize edilmiş bir dizi bilimsel işlem gerektirmektedir.

Bu gereklilik veri madenciliği uygulamalarının önemine işaret etmektedir. Temel bir

veri madenciliği uygulaması olarak sınıflandırma, eğitim süresince özellik kümesi ve

hedef sınıfı gerektiren denetimli bir öğrenme tekniğidir. Eğitim işlemi için önemli nokta

sınıflandırma algoritması için uygun özellik dizisine karar vermektir. Yüksek çözünür-

lüklü kamera sistemleri gibi son gelişen teknolojiler bir sonraki atış hakkında çıkarım

yapmaya imkan sağlamıştır. Bunun sonucunda atış tipi tahminlemesi önemli bir araştırma

konusu olarak öne çıkmaktadır. Bir sonraki atış tipini tahminlemek için mevcut çalış-

malar özellik kümesinde çoğunlukla atıcı profili, vurucu profili ve önceki atış bilgilerini

kullanmıştır. Bölge bilgisinin bir sonraki atış tipini tahminlemedeki etkisini analiz eden

bir çalışma olmadığından dolayı bu çalışma bölge bilgisinin atış tipi tahminlemesindeki

katkısını analiz etmiştir. Yaklaşımımız atışı vurucu eşleşmelerinde, yüksek atış ve düşük

vuruş değerli bölgelerin atış tipi kararına katkısını ortaya çıkarmak şeklindedir. Bu amaç

bizi atış tipi tahminleme probleminde bölge bilgisinin katkısını ortaya koyabilmek amacıyla

bölge temelli ve bölgesiz olarak sınıflandırma algoritmalarını incelemeye yöneltmiştir.
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CHAPTER 1

INTRODUCTION

The recent technological improvements have lead to a dramatic increase in the use

of data sources such as the world wide web, mobile networks and IoT devices. Conse-

quently, the amount of data streaming through different sources has increased. As the

amount of data increases, understanding the huge amount of data has been a challenge.

It is difficult to analyze and understand such a big amount of data with usual techniques.

Due that reason, we need a group of scientific and well-organized set of processes to

understand the knowledge in the data. Data mining contains three major approaches to

reveal undiscovered useful information from raw data that are classification, clustering

and association (Prasad, 2011).

Data mining is the process of extracting undiscovered patterns or useful informa-

tion from large volume of raw data (Jawad et al., 2015). As a major data mining applica-

tion, classification has been used in a variety of problems related to scientific research and

business. It includes different classification methods with different characteristics. These

characteristics define the effectiveness and appropriateness of the method for the prob-

lem. Determining the feature set and classification algorithm is the key factor that affects

the efficiency and performance metrics of the solution. Classification result metrics are

sensitive to the feature set and must be analyzed for different feature set scenarios.

Classification algorithms are supervised learning techniques that require dataset

with class labels in the training phase. They are trained by the training set and tested with

test set which is a predetermined portion of the dataset. The training set must include

class labels so that the classification algorithm can be trained. After the training phase,

the classifier model is tested with the test set to determine the performance of the classifier

model. To determine the performance of the classifier model, it is tested with the test set

but training set performance metrics must also be taken into consideration to analyze bias

and variance error. If the classifier model achieves well with the training set but not with

the test set, we define this situation as variance error. When the classifier model is exposed

to high bias, classifier model performance is not acceptable and we call this problem
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underfitting. When the classifier model is exposed to high variance between training and

test set, the classifier model can generalize enough beyond the training dataset and we call

this problem overfitting. Classifier model performance must be in a balance point between

bias and variance errors so that overall model performance can be at an acceptable level.

In baseball games, pitchers are the players who throw the ball to batter players with

various types that are called pitch type. Pitch types differ in various metrics mainly launch

angle, horizontal and vertical break, speed etc (Li et al., 2010). Pitch type tendency of a

pitcher differs by many factors such as player handedness, strength. Batter performance

changes against different pitch types. Strike zone is the imaginary field that is about half

meter above from the ground. It is about 0.6 meter width and 0.7 meter height. This

imaginary field is just in front of batter player. A pitcher usually wants to throw a strike

that must go though the strike zone and can not be hit by a batter. A batter wants to hit

the ball and earn score for the batting team. As the pitcher performance changes, batter

performance also changes against the different pitch types. A batter may perform well

against a specific pitch type while performing bad against another. Another situation is

that pitcher and batter players may perform differently in the strike zone for the same

pitch types. A pitcher may throw fastballs with a higher success rate into specific strike

zones than another. A batter may hit a specific pitch type with a higher success rate in a

specific strike zone.

The current studies focus on predicting the next pitch type with pitcher and bat-

ter profile informations and previous pitch metrics. In 2012, Ganeshappilai and Guttag

made a binary classification by using a static feature set mainly including fundamental

pitch metrics, game and player information (Ganeshapillai and Guttag, 2012). In 2014,

M.Hamilton, et al. extended the study of Ganeshappilai and Guttag by implementing the

adaptive feature set selection(Hamilton et al., 2014). This research focused on revealing

how adaptive feature set selection contributes to pitch type prediction. In 2018, Sidle

and Tran made a multi-class classification by using historical player tendencies, pitcher

and batter informations(Tran, 2017). When we analyze these 3 major studies, we realize

they focus on the correlation between pitch type and player performance metrics such

as pitcher and batter profile informations, individual pitch metrics. However pitch zone

information is neglected as a mutual information between pitcher and batter player. The

term pitch-zone uncertainity also points out the importance of zone information on player
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performances (Kim and JuUNG, 2018). As we review the discussions about the effect of

zone information on player performances, we decided to study on extracting the effect of

zone information in pitch type prediction problem.

In the proposed solution, we have implemented a zone-based and non-zone-based

pitch type prediction approach. We calculated the strike and batting counts in each zone.

When predicting the pitch type for a pitcher batter pair, we have calculated the pitch type

that pitcher throws with high strike rates and batter hits low bat rates. To determine this

pitch type, we counted strike and batting values. Furthermore, we have implemented an

equation that boosts pitch type with high strike rate for pitcher and low strike rate for

batter. In the normalization function part we have explained these processes. In order to

observe the contribution of zone information for pitch type prediction problem, we trained

classifier models for two feature set separately. The feature set that contains zone infor-

mation is explained in implementation chapter as zone based pitch type prediction. We

also implemented the version without zone information and explained it as a subsection

in implementation. For both approaches, we explained and compared the results. To sum

up, we observed whether zone is a significant feature and important decision maker for

baseball players.

The aim of this thesis is to reveal the importance of zone information in pitch

type prediction problem. In this manner both zone-based and non-zone-based approach

has been implemented. We considered understanding the importance of zone information

as a feature. Additionally, we also aimed to understand how often pitcher players take

zone information into consideration or how significant the zone information as a decision

maker. We also wanted to understand how classification algorithms perform for zone-

based and non-zone-based approaches. Another conclusion that we wanted to reveal is

whether the zone is a contributive feature or an additional cost in pitch type prediction

problem.

To roughly introduce the design of this thesis, chapter 2 composes of the back-

ground information about the data mining and major data mining applications, classi-

fication algorithms and detailed information about pitch type prediction problems. We

explained the definition of data mining and major data mining applications. To reinforce

the meaning of the data mining applications, we used graphics and visual materials. As

this thesis context is related to classification we highlighted the classification as one of
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the data mining applications. We explained the differences and structures of the classifi-

cation algorithms we used in the implementation chapter. We have also introduced what

the pitch type prediction problem is in this chapter. Chapter 3 composes of the results of

the literature search that we made to clarify how we can contribute as either theoretical

manner or problem domain. Chapter 4 composes of the theoretical framework that we

implement including calculations, matrices, formulations and diagrams were explained

in this chapter. We explained the processes starting from the operations through dataset

ending with training schema with metrics and calculations. We also explained the aim

of this thesis by illustrating with diagram and charts in this chapter. Chapter 5 explains

the results of implementation which define the consequence of our aim in this study. We

explained how the implementation resulted and evaluate the results by referring to the im-

plementation chapter. In chapter 6, we concluded the test results of pitch type prediction

for both zone-based and non-zone-based approaches. For both approaches, we discussed

and evaluated the contribution of zone information.

4



CHAPTER 2

BACKGROUND

In this chapter we explained the fundamental concepts of data mining and pitch

type prediction problem. In the data mining section, we have explained major data mining

applications those are association, clustering and classification. Since classification is the

main focus of this thesis, we have explained the classification in detail as the last subsec-

tion. We have also explained the characteristics of the classification algorithms that we

have implemented. The characteristics of each algorithm have been discussed with visual

materials and plots. The explanations of classification algorithms have been referred by

implementation chapter. We also explained the concepts and definitions related to the

pitch type prediction problem that are required to understand the implementation of this

thesis.

2.1. Data Mining

With the advancement of technological research studies on information technolo-

gies, the amount of unprocessed data has been increasing in various areas (Bharati and

Ramageri, 2010). Due to that reason, the importance of data becomes more valuable. The

main factor for such a condition is intensive usage of IoT devices and world wide web.

This situation leads to an increase in the amount of raw data to be processed. These are the

inevitable things for our daily life and they can not be processed via traditional methods.

The issue of such big amount of data leads to the reveal of big data concepts meaning that

it handles the evaluation and analysis of big data with new approaches. Data mining is

introduced as one example of major approaches to analyze the data effectively and to be

able to make it meaningful for different aspects.

Data mining is the organized set of processes to extract hidden information in

raw dataset. The extracted information from raw datasets are mostly assessed as patterns

which represents implicit useful information through data. Data mining is necessary to

understand the future trends and strategies. Various data mining techniques are shaping
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the kinds and patterns of data. The most popular data mining applications can be exem-

plified as classification, association and clustering methods as we have mentioned before.

2.2. Association

Association analysis is generally performed to extract the relationships between

attributes of datasets. It is used to discover the interesting patterns and rules between the

attributes in datasets. Association looks for the association rules and these rules aim at

anticipating the existence of an item based on the existence of other items inside database

records. One of the most typical scenarios is positioning products inside stores aims to

increase to sale records.

2.2.1. Support

Support shows the percentage of a transaction among the dataset (Prajapati et al.,

2017). It can be calculated for a single item or a group of items which we call itemset.

Support is calculated by the frequency of an itemset with respect to whole dataset.

support(x) =
|x|
N

(2.1)

Equation 2.1 states that, support is calculated by dividing the quantity of the itemset by

the whole dataset. N is the total number of records in dataset.

Table 2.1. Invoice List
Invoice Items

1 Tea,Coke,Bread
2 Bread, Cheese, Olive, Macaroni
3 Sugar, Cheese, Detergent,Bread, Macaroni
4 Bread, Cheese, Tea, Macaroni
5 Cheese, Macaroni, Beer,Coke

In the example dataset in Table 2.1, there is a dataset composes of invoices. In

order to find Support(Tea) we divide the frequency of Tea by dataset count which is 2/5.
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Similarly, to find the support of an itemset we do the same calculation. For example,

support(Cheese, Macaroni) is 4/5 which means, Cheese and Macaroni exist together in

the 4 records out of 5 total records. So support is 75%.

2.2.2. Confidence

Confidence shows the ratio of an itemset which exists in a specified portion of

the dataset. Confidence(x,y -> z) means the ratio of the records in which z exists out of

records in which x and y already exists.

confidence(x→ y) =
Supp(xUy)

Supp(x)
(2.2)

Equation 2.2 (Ait-Mlouk et al., 2017) states that, division of the number of records in

which x,y and z exists together by the number of records in which x and y exist together

gives the confidence(x,y→ z)

Table 2.1 states that; cheese, macaroni and bread exist 3 times in the records where

Cheese and Macaroni exists. So confidence is 75%. The idea which might be revealed

through such a scenario is that, store owner may send bread advertisements to customers

who already bought cheese and macaroni.

2.3. Clustering

Clustering is an unsupervised learning technique which aims to find any group of

data in a dataset by using similarity metrics.(Omran et al., 2007). These groups are con-

structed according to the specific similarity metrics. Additionally, the similarity between

different clusters should be minimum. This similarity is called as between-group similar-

ity. And also, each group has inner similarity value to indicate the similarities between

group objects that should be maximum. It is known as within-group similarity.Figure 2.1

shows that two data groups have separate characteristics those have triangle and square

shapes. Shapes are different from each other. This means that the datapoints form a high

within group similarity and low between group similarity. Ideally, within-group similarity
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should be high and between-group similarity should be low. In Figure 2.1, y is a small

distance since data-points are inside same cluster. In contrast x is a large distance as the

points reside in different cluster.

Figure 2.1. Clusters

2.3.1. Euclidean Distance

Euclidean distance measures the similarity by calculating the distance between

data-points. For a 2-dimensional input space those are x and y, we can calculate the

similarity metric with cardesian coordinates of datapoints. Let us consider that x1, y1, x2

and y2 are the x and y coordinates of samples as unit of distance.

d =
√
(x2 − x1)2 + (y2 − y1)2 (2.3)

Equation 2.3 shows the calculation of distance between two points in 2-d input space.

Any new datapoint must be appointed to the cluster which is closer to the new datapoint.

For example, k-means clustering algorithm appoints a new node with euclidean distance

similarity

2.3.2. Jaccard Distance

Jaccard distance measures the ratio of intersection of data groups out of the union

of data groups. X and Y corresponds to data classes.

J(X, Y ) = |X ∩ Y |/|X ∪ Y | (2.4)
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Equation 2.4 (Vorontsov et al., 2013) shows the formulation of jaccard distance similarity.

2.3.3. K-Means Clustering

K-Means is one of the major clustering algorithms which requires initial clustering

counts. K represents the number of clusters. K-means algorithm randomly locates the

initial cluster centroids (Goyal and Kumar, 2014). In each iteration, K-Means algorithm

updates the centroids with new attending nodes. Figure 2.2 shows us that, distance

Figure 2.2. New Node

between new node and cluster centroids are d1 and d2. In this iteration new node is

attended to the cluster whose centroid is closer to new node. After attending, cluster

centroid is updated.

2.4. Classification

Classification is a supervised data mining application for classifying data by using

classifier models. Classifier models are generated by training from the training set with

classification algorithms. The aim of a training a classifier model is the generalization

of the data. Common classification algorithms are decision tree, naive bayes classifier,

artificial neural networks, support vector machines and boosting classifiers.
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Figure 2.3. Classification
(Source: Google, 2020)

2.4.1. Decision Trees

A decision tree is a classifier which generalizes the data by partitioning recur-

sively. Decision trees starts with a root node to construct the tree (Xiaohu et al., 2012).

The other nodes have incoming edges. Any node except root which has outgoing edges is

an internal node. The remaining nodes are called leaves. Leaves are the terminal points

and decisions are performed by terminal nodes. Internal node splits the input space into

subspaces. Classification starts with the root node and ends with the leave nodes by clas-

sifying recursively. We say recursively because the decision tree splits the input space

into subspaces until leaves. In Figure 2.4, play tennis is classified by leaf nodes and other

attributes are located in tree according to splitting criteria. Entropy and gini index are the

fundamental metrics to determine splitting attributes for decision trees. These attributes

are used to determine best splitting attibute for creating the decision tree.

gini index = 1−
n∑

i=1

p2(xi) (2.5)

entropy =
n∑

i=1

−p(xi) log2 p(xi) (2.6)

The x values are the splitting attributes to be determined in Equation 2.5 nd 2.6. p prob-

ability represents the ratio of each class after separation. During the construction of tree,

in each level gini index and entropy is calculated to determine splitting attribute.
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Figure 2.4. Classification
(Source: Ao et al., 2008)

ID3 is the first decision tree algorithm which was developed by Ross Quinlann in

1986. It was developed to classify categorical features. In order to construct the tree, ID3

algorithm uses the maximum information gain. ID3 algorithm prunes the tree to increase

generalization rate.

C4.5 is the extended version of ID3 algorithm. In addition to ID3, C4.5 algorithm

has the ability to work on continuous data. It can dynamically partition the data into

discrete set of intervals.

2.4.2. Naive Bayesian Classifier

Naive Bayesian classifiers are statistical classifiers based on Bayes Theorem and

calculates the conditional probability of all target classes by feature vector. Naive Bayesian

classifier selects the highest conditional probability to classify the feature vector. Naive

Bayesian classifiers require features to be independent from each other. Naive Bayesian

classifiers have been used in practical applications such as text mining, diagnostics sup-

port systems.

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(2.7)
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As we see in Equation 2.7 (Kaviani and Dhotre, 2017), Y composes of the vector set

and X is the target class, To calculate the conditional probability of X given Y, bayesian

equation is calculated. Naive bayesin classifier calculates X values with all possible Y

conditions and classifies to the highest probability class.

2.4.3. Support Vector Machines

Support vector machines are supervised learning algorithms based on statistical

learning theory (Evgeniou and Pontil, 2001). The support vector classifier finds a sep-

arating hyperplane to generalize input space. To decide the hyperplane, support vector

machines use the support vectors. Support vector machines have been using in various

problems such as speech analysis and face recognition.

Figure 2.5. Support Vectors on 2D Data
(Source: Han et al., 2011)

Figure 2.5 shows that, there are multiple support vectors in a dataset. To determine

the hyperplane which generalize the data, most efficient support vectors must be selected

by the classification algorithm.

As larger margin separates the classes better, the hyperplane generalizes the data

better and achieves better accuracy. In Figure 2.6 a large margin finds a separating hyper-

plane which is wider than others. This means that this support vector machine generalizes
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Figure 2.6. Separating Hyperplanes with Different Sizes
(Source: Han et al., 2011)

the dataset with better accuracy. Support vector classifiers focus on the seperating hyper-

plane to determine the classes.

2.4.4. Artificial Neural Network

The concepts of artificial neural networks are explained by human neurons. Roughly

explaining, a neural network is a set of connected perceptron nodes. Each connection has

a weight which is computed after iterative backward and forward propagation steps(Han

et al., 2011). These weights are adjusted in repetitive training iterations to classify classes

with a sufficient accuracy level.

A typical neural network consists of an input layer, one or multiple multiple hid-

den layers and output layer. They are fully connected neural networks because every node

in a layer is connected to all nodes in the next layer. In figure 2.7 we see an artificial neural

network 3 layers that are input layer, hidden layers and output layer. Each node in each

layer corresponds to a human neurons. Input layers forward the inputs taken from output

nodes of the previous output layer. We see w symbols. They are the weights through each

connection. During the training phase any input coming to a neural network is multiplied

by these weights and forwarded to the next node which is called forward propagation. If

the accuracy level is not acceptable, it is iteratively trained again that is called backward

propagation.
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Figure 2.7. Artificial Neural Networks
(Source: Han et al., 2011)

2.4.5. Ensemble Methods

Emsemble methods are specialized classification methods that aims increasing ac-

curacy by using combination of multiple models instead of using single model (Buhlmann,

2012).

Figure 2.8. Ensemble Methods
(Source: Han et al., 2011)

Bagging and boosting classifiers are the major ensemble methods. Bagging clas-

sifiers perform sampling with replacement. Each classifier is trained by samples and

final classification considers the voting of there multiple classifiers. Similarly boosting

classifiers contains multiple classifiers each of which is trained through the dataset. Each

classifier may achieve different accuracy results. In Figure 2.8 we see that, ensemble clas-

sifier is composed of multiple sampling weights and new data is classified with ensemble

classifier.
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2.5. Performance Evaluation Metrics

As data mining is organized set of processes, to evaluate the performance of a

classification, we need performance evaluation metrics. Selecting the appropriate per-

formance metrics is one of the key factors to evaluate classifier performance (Liu et al.,

2014). In order to evaluate classifier performance, we need to know which performance

metrics should we use. In this chapter we explain the common performance evaluation

metrics used to evaluate classification results.

2.5.1. Positive and Negative Classes

In a binary classification, the class that we need to investigate is the positive class.

For example if we try to detect heart disease patients with classification, the hearth disease

patients can be stated with positive classes and healthy patients can be stated as negative

classes. Class labels depend on how to interpret the classes.

2.5.2. TP, FP, TN and FN

As performance evaluation metrics TP (True Positive), FP (False Positive), TN

(True Negative) and FN (False Negative) are the fundamental metrics that we need to

know. In typical metrics the letter on the right shows the actual class and the letter on the

left shows the classification. For instance if we state TP, this states a sample in positive

class which is classified as correctly positive.

2.5.3. Accuracy and Error Rate

Accuracy shows the ratio of the data which is classified by the classification algo-

rithm correctly.

accuracy =
TP + TN

P +N
(2.8)
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It is calculated by dividing the sum of correctly classified positive and negative values by

positive and negative classes.

Error rate shows the ratio of the data which is classified by the classification algo-

rithm incorrectly.

errorrate =
FP + FN

P +N
(2.9)

It is calculated by dividing the sum of incorrectly classified positive and negative values

by sum of positive and negative data.

2.5.4. Sensitivity and Specificity

Sensitivity shows the ratio of the true positive classifications out of true classifica-

tions.

sensitivity =
TP

TP + TN
(2.10)

It is calculated by dividing the amount of correctly classified positive values by the sum

of correctly classified positive values and correctly classified negative values.

Specificity shows the ratio of the data which is classified as negative out of nega-

tive data. It is calculated by dividing the amount of correctly classified negative values by

sum of correctly classified negative values and incorrectly classified positive values(Van

Stralen et al., 2009).

specificity =
TN

TN + FP
(2.11)

Specifity is calculated by divding true negative classifications by sum of true negative

classifications and false positive classfications.
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2.6. Pitch Type Prediction

The pitch type prediction problem is predicting the next pitch type to be thrown

by the pitcher. For the baseball game, estimating the type of pitch is very strategic to the

opponent team. Because if the opponent team can estimate the pitch type, they can be in

a better condition to hit the ball. The common attributes are pitch type metrics that are

collected until the specific time (Hoang et al., 2014). In this manner, the type of pitch

affects the difficulty of the pitch.

Figure 2.9. Illustration of a Typical Pitch
(Source: Williams Jr and Kelley, 2000)

In the Figure 2.9 pitcher player throws the ball with certain body movements. This

depends on the various metrics such as speed, angle, and location of the ball. To sum up

all the metrics determine the type of the pitch. Pitch type prediction is the problem of

predicting the next pitch type to be thrown by pitcher player to hitter player. As wee see

in Figure 2.10 hitter player can take the position against pitch type.

Figure 2.10. Illustration of a Typical Hit
(Source: Kidokoro et al., 2020)
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2.6.1. Pitch Type

Pitch type is a combination of multiple metrics and factors that mostly speed,

angle, direction. These metrics distinguish the type of a pitch as illustrated in Figure 2.11

for fourseam fastball and two seam fastball.

Figure 2.11. Fourseam Fastball and Twoseam Fastball
(Source: Dhakar, 2020)

2.6.2. Strike Zone

Strike zone is the zone where the ball thrown by the pitcher player must arrive. To

throw a valid pitch, the pitcher player must throw the ball inside the strike zone. Strike

zone is a virtual field that is about half meters above from the ground, 0.6-meter in width

and 0.7-meter in height next to hitter player. As we see in Figure 2.12, the hitter player is

waiting for a pitcher player to throw the ball. Pitcher player aims to locate the ball inside

the strike zone so that pitch is valid.

In the baseball game, strike zone is a critical factor to win the game. The points

are determined whether strikes can reach to the strike zone or not. So, a pitcher player

tries to throw the ball inside of strike zone. Similarly batter player defends the strike

zone and tries to prevent ball from reaching to the strike zone. In order to throw the ball,

there are few pitch types for pitcher players. These pitch types defines how the ball flies

against strike zone. Launch angle, trajectory are the one of the metrics that are effected
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by pitch types. So, pitch type is a critical factor and each pitcher may set some strategies

for determining the pitch type.

Figure 2.12. Strikezone
(Source: Bible, 2020)
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CHAPTER 3

RELATED WORK

In this chapter, we introduced the previous studies that we analyzed during the

literature search process. We have explained how the previous studies handled the pitch

type prediction problem. In a theoretical manner, we analyzed the classification algorithm

they have used. We have also analyzed how their approach against the problem. We have

analyzed 3 papers that aim to predict the next pitch type with classification algorithms.

3.1. Predicting The Next Pitch

If a batter can estimate the next pitch type to be thrown by the opponent pitcher

player, he can be in a better position to hit the ball (Ganeshapillai and Guttag, 2012). The

motivation of the research is that, estimating the type of pitch provides a better condition

for the hitter player. To hit such a fast-moving ball, a hitter player may focus on the correct

location on the strike zone. In this study Ganeshappilai and Guttag used a linear support

vector machine classifier with a soft margin. The most useful features were pitcher/batter

prior, pitcher/count prior, the previous pitch, and the score of the game. This study is a

binary classification to predict whether the next pitch type is a fastball or not.

Figure 3.1. Support Vector Machine and Soft Margin (Source: Ganeshapillai and Gut-
tag, 2012)
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As we see in Figure 3.1, the support vector machine classifier classifies the pitch

types with a separating hyperplane.

Figure 3.2. Feature Vector
(Source: Ganeshapillai and Guttag, 2012)

As we see in Figure 3.2, the feature vector consists of features related to the game,

player, previous pitches. They considered 359 pitchers who threw at least 300 pitches in

2008 and 2009. The average accuracy of their model is 70%.

3.2. Applying Machine Learning Techniques to Baseball Pitch

Prediction

The key difference between this research and previous research(Ganeshapillai and

Guttag, 2012) is the feature selection method. Rather than using a static set of features, a

different optimal set of features is used for each pitcher/count pair. They aimed to increase

the accuracy with an adaptive feature selection algorithm. They considered data from

236 pitchers and their mode achieved 77.45%. They used k nearest neighborhood and

support vector machine classifier to predict the next pitch. Another significant advantage

of this model is that, a feature selection algorithm provides the feature independence.

Naive Bayesian classifiers require the feature independence which is mostly not satisfied.

However, as they select the features ultimately with dynamic feature selection, the state

features are highly independent. They stated their model can be improved with batting

averages and multi-class classification. This study is a binary classification which predicts

whether the next pitch type will be fastball or not.
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3.3. Using Multi-Class Classification Methods to Predict Baseball

Pitch Types

This study aims the make a multi-class classification (Tran, 2017). They used 3

classification algorithms to predict the next pitch type that are linear discriminant analysis,

multi-class support vector machines and classification trees. To reduce the model variance

between different models, they used voting techniques with ten of each model. For the

support vector machine classifier, they used a one-vs-one approach rather than one-vs-all.

Because one-vs-all leaves a gap where the classification algorithm may fail. They used

5-fold cross-validation to find the optimal classification parameters.

Figure 3.3. One-vs-one and one-vs-all Approaches
(Source: Tran, 2017)

Figure 3.3 explains the difference between one-vs-one and one-vs-all approach.

Bold lines show the class separation by using support vectors with a one-vs-one approach.

Since this approach considers the support vectors between class as pairwise, it does not

cause to gap. Thin lines show the class separation by using a one-vs-all approach. Since

this approach considers the support vectors between one class to remaining classes, one-

vs-all approach may cause a generalization gap through dataset. This gap may lead to

wrong classification results.
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CHAPTER 4

ZONE BASED PITCH TYPE PREDICTION

This chapter mainly focuses on explaining the steps that we followed to evaluate

to reveal the contribution of zone information in pitch type prediction. In order to un-

derstand the effect of zone information, we have analyzed the classification algorithms

for predicting the next pitch type for baseball pitchers against batters. As classification

algorithms we selected 5 common classification methods those are decision trees, naive

bayesian classifier, support vector machines, neural networks(perceptron) and boosting

classifier. We have compared characteristics of these classification algorithms and ex-

plained the whole procedure in 4 sections those are problem evaluation, strike and batting

stats, probability distribution matrices, training schema.

In the problem evaluation part, we have the whole process that we followed by

starting from the dataset to the training part. We explained why we calculated strike and

batting stats for pitcher and batter players, structure of probability distribution matrices.

We also explained the pitcher and batter probability distribution matrices and the normal-

ization equation that we applied in this section. Algorithm 4 and Algorithm 5 explain the

transformation operations that we applied to data.

Strike and batting stats section explains how we calculated the zone-based and

non-zone-based strike and batting stats for pitcher and batter players. We have also ex-

plained the dataset attributes that we picked up and their meaning.

The probability distribution matrix section explains the calculation of a single

probability distribution matrix for a pitcher batter match up. We have explained the cal-

culation steps of pitcher and batter probability matrices as separate subsections and the

transformations that we applied to each. We have also explained dot product matrix mul-

tiplication operation for pitcher and batter probability matrices to calculate the probability

distribution matrix.

In the final step, we explained the training schema that we set up. We have men-

tioned about the feature set and target here to figure out the training schema. Training

schema explains the the structure of feature set and how we trained the classifier model.
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4.1. Problem Evaluation

As we explained in the background chapter, characteristics of pitch types differ

in different parameters like speed, horizontal and vertical breaks, etc. In this study, our

approach is detecting the pitch type that pitcher throws with high success and batter bats

with low success for a pitcher batter match up.

In order to analyze the player pitch and bat informations, we used master league

baseball data of 2015-2018 years(Schale, 2019). This dataset composes of pitch by pitch

data. Every pitch is recorded with pitcher id, batter id and other metrics such as speed,

angle, type etc. We used pitcher id, batter id, type, pitch type, zone fields. Pitcher id and

batter id are unique player ids corresponding to players that throws the ball and hits the

ball. Type represents whether the pitch is a strike or ball or is in play. Strike is represented

as S, the ball as B, in play as X. A pitcher normally aims to make strike(S) and batter aims

to hit the ball which means(X). We have explained the definitions of strike(S), ball(B) or

ball-in-play(X)

To predict the next pitch type, we analyzed the player performances and calculated

the most successful pitch types that pitcher throws and most unsuccessful pitch types that

batter hits.

Figure 4.1. Dataset Transformation

In Figure 4.1 we observe data transformation steps. In the first level, we calculated the

strike and batting stats from historical data of each pitcher and batter players. In the

strike and batting stats section we explained the calculations in detail. Then we grouped

the pitches and hits into zones and pitch types. In other words, we have had strike and

batting stats of each pitch type in 14 zones of the strike zone. By using these zone-based

strike and batting information, we have extracted the probability distributions of pitcher
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and batter players in match up. Then, we calculated the dot product of pitcher and batter

probability matrices to calculate the overall pitch type probability matrix. This matrix

represents the joint probability of pitch types in each zone.

4.2. Feature Vector Calculation

The feature vector composes of an 18x14 matrix for zone-based approach and

1x18 matrix for non-zone-based approach. The difference is that, we have taken the zone

information into consideration for zone based approach. Therefore, we have calculated

18 joint probability for 18 pitch types for a zone.

Figure 4.2. Strike and Batting Probabilities for Both Approaches (Source:Williams Jr
and Kelley, 2000; Kidokoro et al., 2020)

As we analyze the 4.2, we observe that, the pitcher player may throw the ball against 14

different zones in strike zone. There are 14 different zones for a pitcher player to throw

the ball inside strike zone. The figure 4.2, the pitcher player throws the pitch type FF

which means fourseam fastball against zone 1.

In this study we calculated strike and batting stats for pitcher and batter players.

This process is the first level of data transformation in figure 4.1. This profile contains

the successful strike and batting averages for each strike zone. In this study we calculated

strike and batting averages in 14 zones for each pitch type.

avg_strikezone =
strikezone
totalzone

(4.1)
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avg_strike =
strike

total
(4.2)

avg_batzone =
batzone
totalzone

(4.3)

avg_bat =
bat

total
(4.4)

Equation 4.1 shows zone-based strike average for a pitch type. We calculate strike aver-

age for 14 zones explicitly however for non-zone-based approach, we only calculated 1

strike average since we do not take the zone information into consideration. Similarly we

have calculated the batting averages and there is no difference between strike and batting

average calculation

weighted_expected_strike_average =
e(avg_strikezone) ∗ totalzone

total
(4.5)

weighted_expected_batting_average =
e1−(avg_batzone) ∗ totalzone

total
(4.6)

Equation 4.5 and Equation 4.6 shows weighted expected strike and batting count. We

applied exponential function because we wanted to encourage high strike and low batting

averages more. The important point is that we subtracted the avgbat from 1 because we

want to find less successful bat zones. For non-zone-based approach, there is no zone

distinction and we calculated single weighted strike and batting averages for a pitch type.

To sum the Equation 4.5 and Equation 4.6 again, they actually tell how we have evaluated

the pitch type prediction problem. In order to find successful strike average zone and

unsuccessful batting zones we applied exponential. In order to find unsuccessful batting

zones we subtracted batting averages from 1 before applying exponential function.

P (t|s, b) =
14∑
i=1

P (s|p)P (b|b) (4.7)
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We formulated the probability of next pitch by the equation 4.7. P (s|p) corresponds

to the strike probability for pitcher with pitcher profile p. We calculated the s|p value

with weighted_expected_strike_average. Similarly P (b|b) corresponds to the batting

probability for batter with batter profile weighted_expected_batting_average. Pitcher

profile composes of 14 weighted_expected_strike_average values for a single pitch

type and contains 18 pitch type. So, P (s|p) composes of 252 values and similarly P (b|b)

contains 252 values as well. We explained P (s|p) as strike probability distribution matrix

in section 4.6.2. Strike probability distribution matrix represents the characteristics of a

pitcher player in strike performance manner through the 14 zones. We have called it as

probability distribution matrix in section 4.11

P (b|b) corresponds to the batter proability distribution matrix which composes

of 14 weighted_expected_batting_average values for a single pitch type. Similar to

P (s|p), P (b|b) composes of 18 pitch types and 252 probability values.

We have explained the batting/pitching stats, Normalization and pitcher/batter

probability distribution matrix parts in Figure 4.1.

The last but not least, we have calculated the probability distribution matrix by

multiplying the strike and batting probability distribution matrices. Consequently we have

a 18x14 matrix which contains joint probabilities of pitch types to be happen together.

Figure 4.3. Joint Probability of s|p and b|b matrices

As we notice in Figure 4.3, the probability of throwing strike against zone 1 is 0.3 which
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is slightly higher than other values. We know that, 31% of the fourseam fastball has been

successfully thrown as strike against zone 1. The batter player has been able to hit the

1% of the fourseam fastballs. This means that, if the pitcher throws a fourseam fastball

agains zone 1, it will more likely be a strike. In the feature vector applied exponential

function and inverted batting average to warn the classification algorithm against this

values. We send the message to classification algorithm and say that .3108 and .0108 are

high strike and low batting values. So this will probably a strike. In order to help the

classification algorithm realize it, we have increased the strike and batting probabilities

with exponential function. The important key is we subtracted the batting probability

from 1 before applying exponential function

4.3. Preprocessing

For this study, we used the mlb pitch dataset of 2015-2018 years(Schale, 2019).

Dataset composes of 5 different csv files those are atbats.csv, ejections.csv, games.csv,

pitches.csv and player_names.csv. Since we need to the pitch and bat information with

player names, we merged atbats.csv, pitches.csv and player_names.csv files. We merged

pitches.csv and atbats.csv with ab_id column which corresponds to a pitcher and bat-

ter matchup. Additionally, in order to merge player_names.csv with pitches.csv and at-

bats.csv, we used pitcher_id and batter_id fields. Dataset contains imbalanced pitch type

distributions.

imbalanced rate =
|pitchtypemax| − |pitchtypemin|

|pitchtypemax|
< 0.5 (4.8)

|pitchtypemin| > 50 (4.9)

To eliminate imbalanced players, we grouped pitch types under players and used

the Equation 4.8 and Equation 4.9. In Equation 4.8 we calculated the ratio of difference

difference between maximum pitch type and minimum pitch type counts. Thus, we fil-

28



tered the most imbalanced players as 0.5. Additionally we selected the players who have

at least 50 pitches.

Dataset selection performed by sorting the players with imbalanced rate metrics.

Lower imbalanced rate value gives more balanced class distributions. However, imbal-

anced rate metric is not sufficient. Because we observed players with zero pitch types

and they pretend to have low imbalanced metrics but they are useless data. So we filtered

them with minimum 50 pitch criteria.

4.4. Non-Zone-Based Pitch Type Prediction

Non-zone based pitch type prediction approach differs in feature vector from zone-

based approach. Zone based approach separates the pitches into 14 zones and then sepa-

rates into pitch types in each zone.

Figure 4.4. Strike and Batting Stats

As we see in Figure 4.4, average strike and batting values are calculated as a

single zone for pitcher and batter player for non-zone-based approach. This provides the

weighted success rates for each pitch type. In contrast, non-zone-based feature set does

not contain the zone information. It calculates the overall success rates through pitch

types.
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p(t|p, b) = p(s|t).p(b|t) (4.10)

As we analyze the Equation 4.10, probability of a pitch type is represented by multipli-

cation of strike probability and bat probability for that pitch type. For non-zone-based

approach we do not provide zone information, instead we provide 18 strike probability.

We let the classification algorithm to interpret the 18 pitch type probability to generalize

the problem

4.5. Strike And Batting Stats

Strike and batting stats are calculated by iterating through the pitches thrown by

pitcher and batters batted by batter. Difference is for pitchers, we calculated type value

S and batters type value X. S corresponds to a successful strike and X corresponds to a

successful bat.

Algorithm 1 Calculating Zone Based Strike Stats
1: procedure CALCULATE ZONE BASED STRIKE STATS(p1,p2,. . . ,pn :P set of pitches)
2: n = |P |
3: m = array of 18x14
4: for i =1 to n do
5: type = P [i][type]
6: pitchtype = P [i][pitchtype]
7: zone = P [i][zone]
8: if type is S then
9: incr m[zone][pitchtype][strike]

10: end if
11: incr m[zone][pitchtype][total]
12: end for
13: return strike stats array m
14: end procedure

In Algorithm 1 and Algorithm 2, zone-based and non-zone-based strike stats cal-

culations are explained. Similarly, Algorithm 3 and 4 explain the batting stats. Algo-

rithm 1 iterates through the n pitches which means the all pitches of a player. The

successful strike counts for 18 pitch type for each 14 zone are calculated. The line
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Algorithm 2 Calculating Non-Zone-Based Strike Stats
1: procedure CALCULATE NON-ZONE-BASED STRIKE STATS(p1,p2,. . . ,pn :P set of

pitches)
2: n = |P |
3: m = array of length 18
4: for i =1 to n do
5: type = P [i][type]
6: pitchtype = P [i][pitchtype]
7: if type is S then
8: incr m[pitchtype][strike]
9: end if

10: incr m[pitchtype][total]
11: end for
12: return strike stats array m
13: end procedure

m[zone][pitchtype] states pitches are firstly grouped as zone-based and then as pitch type

based which is 14x18=252 sub groups. The only difference between zone-based and

non-zone-based strike calculations is that, we did not group pitch types with zone for

non-zone-based approach.

Algorithm 3 Calculating Zone-Based Batting Stats
1: procedure CALCULATE ZONE-BASED BATTING STATS(p1,p2,. . . ,pn :P set of

pitches)
2: n = |P |
3: m = array of 18x14
4: for i =1 to n do
5: type = P [i][type]
6: pitchtype = P [i][pitchtype]
7: zone = P [i][zone]
8: if type is X then
9: incr m[zone][pitchtype][bat]

10: end if
11: incr m[zone][pitchtype][total]
12: end for
13: return batting stats array m
14: end procedure

Algorithm 3 and 4 similarly calculate the batting stats for each type however,

we have calculated the batting counts with X type value. X corresponds to the pitch

which could be hit by the hitter successfully. We used these stats to calculate the pitcher

and batter probability distribution matrices and then pitch type probability distribution
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matrix. The probability distribution matrix section explains how we transformed pitcher

and batter probability distribution matrices.

Algorithm 4 Calculating Non-Zone-Based Batting Stats
1: procedure CALCULATE NON-ZONE-BASED BATTING STATS(p1,p2,. . . ,pn :P set of

pitches)
2: n = |P |
3: m = array of length 18
4: for i =1 to n do
5: type = P [i][type]
6: pitchtype = P [i][pitchtype]
7: zone = P [i][zone]
8: if type is X then
9: incr m[pitchtype][bat]

10: end if
11: incr m[pitchtype][total]
12: end for
13: return batting stats array m
14: end procedure

Figure 4.5 illustrates the structure of the 14x18 strike and batting stats arrays. The

left strike zone shows the strike and total values and the right one shows the batting and

total values. This match up actually states the overall strike and batting stats of pitcher

and batter player.

Figure 4.5. Zone Based Strike and Batting Stats
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4.6. Probability Distribution Matrix

Pitch type probability matrix is the dot product of pitcher player pitch type prob-

ability matrix and batter player probability matrices.

p(t|p, b) =
14∑
i=1

p(s|t, zi).p(b|t, zi) (4.11)

p(t|p, b) =
14∑
i=1

p(s|t).p(b|t) (4.12)

In Equation 4.11 and 4.12 we have calculated the strike probability of a pitcher

and batting probability of a batter. p(s|t, zi) shows the conditional probability of strike for

pitch type t in zone zi. p(b|t, zi) shows the corresponding conditional batting probability

for the same pitch type in the same zone. They represent pitcher and batter probability

distributions that we explained in section 4.3.1 and 4.3.2. Equation 4.12 is the non-zone-

based approach and does not contain the zone information. We multiplied these two

values to calculate the joint probability.

The key point is that, our aim is calculating the joint probability of two events to

happen together. For example the probability of pitching fourseam fastball of a player

is calculated by sum of strike probability in 14 zones. However for non-zone-base ap-

proach, feature set does not contain zone information which seems considering the strike

zone as whole. For each 14 zones, we calculate the strike probability of pitcher and bat-

ting probability of hitter. In order to strongly claim it would be a strike, we expect a higher

strike probability success for pitcher and lower batting probability for batter for that pitch

type in each zone. However, for the feature set, we want lower strike probability be an

inverted value so that, lower batting probability be a boosting effect for classification al-

gorithm. We expect to catch the critical match up by preparing these metrics in feature set.

High strike average and low batting average values are expected to result in a successful

strike. Furthermore, by implementing exponential function, we notify the classification

algorithm for high strike low batting averages.
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4.6.1. Batting Probability Distribution Matrix

Higher p(s|t, zi) value and lower p(b|t, zi) value means for the specific pitch type,

it is more likely to be a strike which hitter player can not hit. This means that, we must

increase the probability of batting in low success rates. In order to do that, we have

implemented an exponential function in batter probability distribution matrix calculation

that we explained in Algorithm 4.1− success calculates the prior probability of batting

in the current zone for current pitch. By subtracting from 1, we inverted and gave higher

probability for not hitting case.

zonebasedexpectedbats = totalpitch ∗
14∑
i=1

battypee
1−success (4.13)

expectedbats = totalpitch ∗ battypee1−success (4.14)

Algorithm 5 Zone Based Batting Probability Distribution Matrix
1: procedure ZONE BASED BATTING PROBABILITY DISTRIBUTION MATRIX(P:

zonebasedexpectedbats)
2: n = |P |
3: m = array of 18x14
4: for i =1 to 14 do
5: for j =1 to 18 do
6: batcount : number of bat
7: totalpitch : number of pitch
8: p(successrate) = batcount/total

9: p(type) = totalpitch ∗ e1−success

expectedbats[j]
10: end for
11: end for
12: return zone-based batter probability distribution matrix
13: end procedure

In the Equation 4.13, we calculated the expected bat count for each pitch type in

14 zone. Then, we divided the expected bat amount by total expected bat for 14 zone. This

means that, how much probability does batter player successfully hits a specific pitch type
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in a specific zone. Actually, we found the most successful zones for batter. Algorithm 5 is

zone based approach. For non zone based approach, we just removed the inner for loop.

Table 4.1. Zone-Based Batter Strike Probability Distribution Matrix

1 2 3 4 5 6 7 8 9 11 12 13 14
FF .0047 .0968 .0394 .0636 .1593 .0863 .0816 .114 .1054 .0155 .0484 .0943 .09
CU .0 .0 .0 .08 .0971 .0294 .172 .1233 .0294 .1720 .0 .2669 .0294
FC .0209 .0569 .0418 .138 .1223 .0569 .0876 .1753 .1223 .0 .0209 .0876 .069
SI .0295 .0295 .0243 .0634 .1042 .059 .2142 .0667 .0667 .0243 .0243 .1516 .1417
CH .0148 .0 .0 .1256 .0866 .0403 .1382 .0489 .1351 .0762 .0 .319 .0148
FT .0497 .0383 .0183 .0604 .1738 .0383 .1812 .0649 .0604 .0183 .0091 .1499 .1369
IN .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
SL .0284 .0209 .0 .0537 .0104 .069 .1469 .3022 .0537 .0209 .0104 .195 .0876
KC .0 .0 .0 .2976 .1488 .0 .0 .4046 .0 .0 .0 .0 .1488
EP .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
FS .0 .0 .0 .0 .4387 .0 .3616 .133 .0 .0 .0 .0665 .0
FO .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
PO .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
KN .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
UN .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
SC .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
FA .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714
AB .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714 .0714

4/8 17/24 8/11 22/35 28/54 19/29 33/62 36/59 21/37 9/14 9/12 54/78 26/43

Table 4.1 shows the probability of hitting to a specific pitch type in each zone. For

non zone based approach, we have an array composes of overall probabilities of 18 pitch

type. The highlighed cells in Table 4.1 shows the unsuccessful batting probabilities. For

example 0.1593 of fourseam fastball in zone 5 means, this batter fails to hit the coming

pitches with this probability. If these values are relatively higher, we expect the opponent

batter player to fail hitting the ball.

4.6.2. Strike Probability Distribution Matrix

Pitcher probability distribution matrix is similar to batter except exponential part.

For pitcher, we did not do any inversion because we expect to higher success values for

strike case. However, for batting, we inverted batting averages to encourage bad batting

averages.
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zonebasedexpectedstrike = totalpitch ∗
14∑
i=1

striketypee
success (4.15)

expectedstrike = totalpitch ∗ striketypeesuccess (4.16)

Algorithm 6 Zone Based Strike Probability Distribution Matrix
1: procedure CALCULATE(zonebasedexpectedstrikes)
2: n = |P |
3: m = array of 18x14
4: for i =1 to 14 do
5: for j =1 to 18 do
6: strikecount : number of strike
7: totalpitch : number of pitch
8: p(success) = strikecount/totalpitch

9: p(type) = totalpitch ∗ ep(success)

expectedstrikes[j]
10: end for
11: end for
12: return zone based pitcher probability distribution matrix
13: end procedure

For zone based and non zone based pitcher probability distribution matrices, cal-

culation is similar with batting probability distribution matrix. The only difference is

strike success calculation in each zone. As we want high success rate for pitchers, we did

not apply inversion.

Algorithm 7 Non-Zone-Based Strike Probability Distribution Matrix
1: procedure CALCULATE(expectedstrikes)
2: m = array of length 18
3: for j =1 to 18 do
4: strikecount : number of strike
5: totalpitch : number of pitch
6: p(success) = strikecount/totalpitch

7: p(type) = totalpitch ∗ ep(uccess)

expectedstrikes[j]
8: end for
9: return zone-based pitcher strike probability distribution matrix

10: end procedure
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Non-zone-based approach calculates 18 pitchtype probabilities for expected strike

values. In the Algorithm 7, we calculated the exponential of pitch type success probability

to boost higher values. Multiplication of pitch type probability with total pitch gives us

the expected strike count. By dividing it to expected strike probability, we calculated

the pitch type probability for the current zone. For non-zone-based approach we directly

calculated the pitch type probability. Table 4.2 shows the 18x14 array which is the zone-

based strike probability distribution matrix. Non-zone-based matrix is going to be a 1x14

matrix which is actually an array of length 14. The highlighted cells indicates that, the

Table 4.2. Zone-Based Pitcher Strike Probability Distribution Matrix

1 2 3 4 5 6 7 8 9 11 12 13 14
FF .025 .017 .013 .031 .044 .031 .03 .023 .019 .039 .052 .146 .072
CU .001 .0032 .0068 .007 .018 .018 .044 .0319 .022 .0021 .0262 .307 .0687
FC .0149 .0163 .0057 .0577 .0265 .0163 .0609 .0344 .0180 .0428 .0145 .3216 .0478
SI .012 .0059 .0075 .0249 .0218 .0246 .0313 .0787 .1063 .0075 .0556 .1403 .1998

CH .0 .0 .0 .0121 .0121 .0273 .0084 .0349 .0664 .0 .0403 .0892 .4304
FT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
SL .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
KC .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
EP .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
FS .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
FO .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
PO .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3678 .0 .0
KN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
UN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
SC .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
FA .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
AB .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

18/61 16/45 9/38 41/100 42/96 31/84 43/133 43/106 31/111 18/126 5/203 78/821 37/402

pitcher throws successful pitches for selected pitch types in selected zones. For example,

0.307 means his player pitches strikes with curveballs into zone 13 with 0.307 probability.

If these values are relatively higher, we expect the pitcher player to strike the ball.

4.6.3. Probability Distribution Matrix

Probability distribution matrix is the dot product of pitcher and batter probability

matrices. The line matrixpitcher[i][j]xmatrixbatter[i][j] multiplies each probability of
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each pitch type in each zone. For non-zone-based approach, 18 pitch type probabilities

were directly multiplied. In Algorithm 8, we calculated the probability of two events to

Algorithm 8 Calculating Zone-based Probability Distribution Matrix
1: procedure CALCULATE_MATRIX(matrixpitcher,matrixstats:pitcher and batter ma-

trices)
2: n = |P |
3: m = array of 18x14
4: for i =1 to 14 do
5: for j =1 to 18 do
6: matrixprobability = matrixpitcher[i][j]xmatrixbatter[i][j]
7: end for
8: end for
9: return probability distribution matrix

10: end procedure

be happen together. The probability of successful strike and successful batting events are

calculated. So, the result matrix shows the pitch type to be thrown with high strike ratio

and low bat ratio. Because we boosted the successful strike and unsuccessful bat events

by using exponential function. This matrix is the feature set to be trained with target pitch

types in training section.

4.7. Training

In this section we have explained how we set up the training schema. As we

illustrated in Figure 4.6, training set composes of probability distribution matrix which

is calculated by multiplying pitcher and batter probability matrices. We have multiplied

the pitcher and batter matrices to calculate the probability of two independent events. Our

purpose here is that, what is the probability of throwing a pitch type for pitcher and hitting

for batter. In the Equation 4.11 and 4.12 we have calculated the conditional probability of

P (t|p, b).

P (t|s, b) =
14∑
i=1

P (s|p)P (b|b) (4.17)
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Figure 4.6. Feature Set and Target

The feature set contains probability distribution matrices which composes of pitcher

and batter player match ups. According to the historical data, these match ups are forms

to a matrix by multiplying each of them. They are pitch and batter player matrices that

contains strike and batting aveare values in 14 zones.
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CHAPTER 5

EXPERIMENT AND RESULTS

In this chapter, we showed the results of comparison schema that used to compare

classification algorithms. In the implementation chapter, we have explained the workflow

that we followed by starting from dataset transformation to training plan. The classifi-

cation results for zone-based and non-zone-based approaches with different number of

classes have been evaluated. We have also analyzed correlation matrix to observe the

correlation between pitch type with Figure 5.1.

Figure 5.1. Pitch Type Correlation Matrix

5.1. Binary Classification

For the binary classification, we selected 3 pitchers who threw 820 fourseam fast-

balls and 300 sliders total. Class distributions are imbalanced and we observed the the re-

sults under this imbalanced condition as in Figure 5.2.a. According to Figure 5.2.b naive
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Figure 5.2. Zone Based Pitch Type Classification with Imbalanced Data

bayes classifier achieved best about 72%. But this impression is misleading because, since

data is highly imbalanced, classifier model biased to classify sliders as fourseam fastball

which is the majority of data. The confusion matrix in Figure 5.3 seems supporting this

idea as 75% of the sliders classified as fourseam fastball.

Figure 5.3. Naive Bayesian Classification Confusion Matrix
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In order to fix the imbalanced classes we downsampled the fourseam fastballs to

sliders as illustrated in Figure 5.4.a and observed the improvements in the results Figure

5.4.b. Naive bayes, boosting and decision tree classifiers improved accuracy about 10%

however, support vector machine and percepton remained same. As svm classifier cares

about the seperating hyperplane downsampling did not increase svm performance. Simi-

larly, as the perceptrons are the smallest unit of neural networks, we should have designed

a neural network to increase perceptron performance. Furthermore, neural networks re-

quire relatively more data.

Figure 5.4. Zone Based Classification with Balanced Data

For the non zone based approach, we can say that, naive bayesian classifier was

effected most because the zone based approach is based on bayesian theory. We give

the probability distributions of 18 pitch types for each zone and let the classifier interpret

each. Another important point is that, svm performance improved because, the classes

are linearly seperable as we removed the zones from feature set.

Naive Bayesian classifier decreased the performance as illustrated in Figure 5.5

the feature set is based on bayesian theory. Since we removed the zones from feature set,

we had probability distributions of pitch types in which dependency rate is more than the

zone-based approach.
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Figure 5.5. Non Zone Based Classification Test Accuracy Results

5.2. Multi Class Classification

In this section we introduced the experiments with 3,4 and 5 classes to observe the

classification results for both approaches.For 3-class classification, we used 3929 pitches

that composes of 2716 fourseam fastballs, 786 sliders and 426 curveballs.

Figure 5.6. Zone Based Multi Class Classification with Imbalanced Data
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Figure 5.6.b shows that perceptron achieved really bad results. The reason is that,

since the perceptrons are the smallest unit of neural networks, they should be trained with

backward and forward propagation. The accuracy for binary imbalanced set was about

69% and we observed 45% for perceptron. As the feature vector complexity and data

size increases, perceptron performance decreases, since it requires forward and backward

propagation. Svm achieved 70% but we see that it classified 62% of the curveballs and

93% of the sliders as fourseam fastballs.Since the fourseam fastball data size is dominant,

svm seemed successfull. But this is not the case and we observed it from confusion matrix

in Figure 5.7.To analyse the confusion matrix of results, we can say that, support vector

classifier achieved well with fourseam fastball which is but it confused with 93% of slid-

ers by evaluating as fourseam fastball. Naive Bayesian classifier and boosting classifier

achieved close to svm classifier which is around 65%.

Figure 5.7. Svm Classifier Confusion Matrix

Similarly, they also performed well with fourseam fastballs but performed bad

with sliders. Decision tree classifier and perceptron performed bad and we can say that

current data is not convenient for them. We need to analyze the data again for decision

trees. Perceptrons which are the smallest unit of neural networks requires multi layer

neural network design. They should be trained with forward and backward propagation.

Consequently we observed worst results from perceptron. To sum up we can say that,

the data illustrated in Figure 5.6.a is not convenient for naive bayes, decision tree and
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perceptron classifier. Due that reason, we applied undersampling to fourseam fastball

and observed again. We observed better results with balanced which is in Figure 5.8.a

Figure 5.8. Zone Based Multi Class Classification with Balanced Data

data except perceptron. Boosting performed 89%, decision tree 87%, naive bayes 79%,

svm 76% and perceptron achieved 50%. Classifers increased their performance except

perceptron as illustrated in Figure 5.8.b.Figure 5.9 shows us that, boosting classifer clas-

sified 19% of the sliders as fourseam fastball. Decision tree classifier classified 20% of

the sliders as fourseam fastball. It means that decision tree and boosting classifier could

not disinguish 20% of the sliders from fourseam fastballs.

Figure 5.9. Confusion Matrix for Boosting and Decision Tree
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Figure 5.10. Non Zone Based Classification Test Accuracy Results

Table 5.1. Test Accuracy Results for Zone/Non Zone Based Approaches

Binary

(%)

3-Class

(%)

4-Class

(%)

5-Class

(%)

Boosting 76/79 89/87 84/85 77/77

Svm 71/79 76/77 76/78 71/71

D.Tree 73/79 87/87 83/84 75/77

N.Bayes 80/57 79/76 79/75 71/69

Perceptron 70/46 50/49 36/39 29/32

The non-zone-based classification results with balanced data is illustrated in Fig-

ure 5.10. The comparison of zone based and non zone based classification test accuracy

results are illustrated in Table 5.1. In order to evaluate the classification results from zone

based to non zone based, we can say that, decision tree tend to achieve better results. It

seems decision tree was not able to find sufficient splitting attributes in performance eval-

uation matrix which corresponds to the feature vector. In contrast, naive bayes classifer

performed better with zone based classification. Since our probability matrix calculation

is based on bayesian theory, we can state that naive classifier achieves better with zone

based approach. The decrease from 80% to 57% seems supporting our idea. Perceptron

as the smallest unit of neural networks performed insufficient in this study. When we ob-
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tain the test accuracy metrics in Table 5.1, perceptron achived worse results in non zone

based approach. It seems decreasing the complexity and dimensionality from zone-based

to non zone based did not fit for perceptron.

Boosting classifier kept its performance and performed statefull results. We can

claim that, as boosting classifiers uses multiple classification algorithms or samples dur-

ing classification, boosting classifier generally performed more smooth performance lines

relative to other classifiers.

Support vector classifier is another classifier which did not perform a dramatic

decrease from zone based to non zone based approach. Svm classifiers care about the

separating hyper plane, switching to non zone based approach did not effect. The plot in

Figure 5.11 contains the zone based and non zone based results which are the blue and red

bars respectively. Boosting, support vector machine classifier and decision tree classifier

achieved better results with non zone based classification. Binary classification classi-

fied fourseam fastballs and sliders. It seems zone information is not vital to distinguish

fourseam fastballs from sliders for boosting, svm and decision tree classifier. However,

naive bayes and perceptron decreased accuracy rate. We consider that, since our feature

vector based on bayesian theory and we removed the zone information from conditional

probabilities, naive bayes classifier performance effected.

Figure 5.11. Comparison of 2 Approaches for Binary Classification in Test Set

Perceptron performance also decreased because perceptron is not applicable for

the problem. We should design a neural network instead of a single perceptron.
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Figure 5.12. Comparison of 2 Approaches for 3 Class Classification in Test Set

For the 3 class classification we classified for fourseam fastball, slider and curve-

ball. As we move from binary to 3 class, boosting and decision tree classifier performance

increased. This gives us the idea that, the data size and class count are the significant fac-

tors in test accuracy rates. Support vector machine classifier and naive bayesian classifier

performance shows a similar accuracy rates. Another point is that, decision tree perfor-

mance shows almost same between zone-based and non-zone-based approach. This gives

us the idea that, decion tree did not get significant knowledge from zone information.

Figure 5.13. Comparison of 2 Approaches for 4 Class Classification in Test Set
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For analyzing the results from 5.13 to Figure 5.14, we observe an overall decrease

in accuracy rates of all classifiers.The current training schema seems insufficient to gen-

eralize the problem as the class counts increase.

Figure 5.14. Comparison of 2 Approaches for 5 Class Classification in Test Set

The reason could be related to number of data or feature set. So 5-class classifica-

tion must be trained again with different data size and feature set.
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CHAPTER 6

CONCLUSION

The context of this thesis is revealing the contribution of zone information in pitch

type prediction problem by implementing major 5 classification algorithms for zone-based

and non-zone-based approaches. We implemented binary and multi-class classification

with support vector machine, decision tree, naive bayes, boosting and perceptron clas-

sifiers for both approach and observed the results. Furthermore, for both approach we

repeated the training and test processes with different data size and class distributions to

observe the effect of data conditions to the results.

Pitch type prediction problem aims to estimate the next pitch type between pitcher

and batter player in baseball games. Pitcher and batter player matchup forms a pairwise

condition and pitcher players make strategical decisions against batter players to pitch

most successful pitch type. In order to predict the pitcher player next pitch type decision,

existing researches has focused on evaluating it as a classification problem. Average team,

player and pitch based metrics has been mostly used for classification processes.

In order to determine the direction of this study, we analyzed 3 previous studies

of Ganeshappilai and Guttag, M. Hamilton et al., Sidle and Tran. Ganeshappilai and

Guttag implemented a binary classification by evaluating the problem as fastball and non-

fastball prediction. M. Hamilton et al. extended the study of Ganeshappilai and Guttag

by implementing an adaptive feature set selection algorithm. Sidle and Tran implemented

multi-class classification for pitch type prediction with 3 classification methods.

As the theory of the this study, we based our study on bayesian theory in which

we set pitcher and batter player matchup as conditions. As we mentioned in probability

distribution matrix section, we studied to catch most successful pitch type stats for pitcher

player. In contrast, for batter player, we studied to catch most unsuccessful pitch types

by reverting strike success rates for batter player. We calculated the joint probabilities

of pitcher and batter player matchup as probability distribution matrix and trained. We

implemented this training schema for both zone-based and non-zone-based approach to

observe whether zone is a significant attribute in pitch type prediction problem.
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To review the classification algorithms in each approach, naive bayes classifier

mostly achieved better with zone information for binary, 3-class, 4-class and 5-class clas-

sifications. The largest decrease in accuracy is in binary classification. This decrease

points out that zone significantly contributed to distinguish fourseam fastballs from other

pitch types. Another important point is that, fourseam fastballs are intented to be thrown

against certain strike zones with respect to other pitch types. Because naive bayes classi-

fier performance dramatically decreased for fourseam fastball and other seperation. For

3-class, 4-class and 5-class we observed a smooth decrease in accuracy values. As the

probability distribution matrix is based on bayes theory, zone information seems fitting to

our training schema and contributed to the results.

Decision tree classifier performed robust performance trends as we analyze from

zone-based to non-zone-based test accuracy results in Table 5.1. Accuracy values were

higher in non-zone-based approach and it seems decision tree successfully partitioned

the data in leaf nodes as target pitch types. It seems zone information is not vital for

decision tree however decision tree results were highly affected by the imbalanced class

distributions as we see in Figure 5.10. This points out that, decision tree classifier is

sensitive to the class distributions. To roughly speaking, we can say that decision tree

classifier can be used for non-zone-based approach efficiently.

Support vector machine classifier performed typical characterics of separating hy-

perplane structure because support vector classifier performed better test accuracy values

with non-zone-based approach. Since support vector classifiers focus on the separating

hyper planes, the feature set of strike and batting success rates were enough to distinguish

pitch types. Performance values were also satisfying for imbalanced cases and this is an-

other typical support vector machine behavior as it does not care about number of samples

in class distributions. It seems support vector machine classifier is a suitable method for

both approaches.

Ensemble method classifier achieved one of highest performance values and ro-

bust trends agains non-zone-based approach and imbalanced data conditions. Since we

used boosting classifier, it executed the combination of multiple models. Ensemble clas-

sifer performed well against imbalanced class distributions and non-zone-based feature

set. We can say that, ensemble classifier is a suitable method for both approaches.

Perceptron classifier showed one of the most interesting results. For both ap-
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proach, it performed worst test accuracy values and inacceptable results. The reason is

that, implementing a single perceptron is not sufficient for this problem. We should have

designed a multi-layer perceptron which called artificial neural network. Consequently it

performed inacceptable results for both zone-based and non-zone-based approaches.

To sum up the overall view of results for zone-based and non-zone-based ap-

proaches, we can say that zone information is not a vital decision maker for pitch type

prediction. Because we did not observe a significant difference between two approaches

in overall perspective for ensemble, decision tree and support vector machine classifier,

however naive bayes classifier showed down trends in accuracy metrics. As the classi-

fier algorithms have weak and strong points in various conditions, this problem can be

handled without zone information. We can also decrease the cost of zone dimension by

eliminating zone information from feature set with appropriate classifier algorithm as we

mentioned at the beginning of this research.
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