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ABSTRACT

QUANTUM WALKS: ENTANGLEMENT BETWEEN SPATIAL
DEGREES OF FREEDOM AND INTERFERENCE IN
MULTI-PHOTON WALKS

Quantum walks can be described as quantum analogues of classical random
walks. In quantum walks, the direction of the walker is dictated by the quantum state
of a coin in a coherent fashion. Unlike classical random walk with a fair coin, quantum
walk has non-Markovian property. First, we studied 2-D quantum walk analytically and
numerically with one-walker and two entangled coins to investigate the transfer of the
entanglement in initial coins state to spatial degrees of freedom. The coins are Hadamard
Coin, Fourier Coin, among which the Fourier coin generates entanglement, thus increase
entanglement between spatial degrees of freedom. Here we calculated the amount of
entanglement using negativity. In the second part we studied average photon number
correlations for 1-D quantum walk with many body bosonic walkers, like different light
sources, to investigate quantum interference effects and we showed the second-order in-
tensity correlations function (¢(? (7)) in terms of the probability amplitudes of the 1-D
quantum walk with Hadamard coin. We compared the resulting correlations for various

initial many photon states.

Keywords: Quantum, Entanglement, Interference, Photon.

iii


Yusuf Karlı
Keywords: Quantum, Entanglement, Interference, Photon.


OZET

KUANTUM YURUYUSU: UZAY SERBESTLIK DERECELERI
ARASINDA DOLANIKLIK VE COK FOTONLU
YURUYUSLERDE GiRISIM

Kuantum yiiriiyiisleri, klasik rastgele yiiriiyiisiiniin kuantum benzeri olarak tanim-

lanabilir. Kuantum yiiriiyiislerinde yiiriiyiicliniin gidecegi yon bir kuantum parasinin

kuantum durumuna gore belirlenir.Klasik rastgele yiiriiyiislerin aksine kuantum yiiriiyiisleri

Markov o6zelliklerine sahip degildir. Bu tezde ilk boliimde 2 boyuttaki kuantum yiiriiyiis-
lerde, baglangigcta kuantum paralar arasinda bulunan dolaniklifin uzay serbestlik dere-
celerine transferini inceledik. Kullanilan kuantum paralar Hadamard ve Fourier paralar
olarak secidi. Hadamard parasinin aksine Fourier parast her adimda dolaniklik yaratmak-
tadir. Dolamklik miktar1 ”Negatiflik” metodu kullanilarak hesaplandi. Ikinci boliimde
ortalama foton sayilar lizerinden 1 boyutta ¢cok fotonlu kuantum yiiriiyiislerdeki kuantum
girisim etkilerini ve 2. mertebe yogunluk korelasyonlarint Hadamard para ile yapilan 1
boyutta kuantum yiiriiylisiiniin olasilik genlikleri tistiinden gosterdik ve farkli baslangi¢

durumlarina sahip sonuclar birbirleriyle karsilagtirdik.

Anahtar Kelimeler: Kuantum, Dolaniklik, Girisim, Foton.
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CHAPTER 1

INTRODUCTION

A random walk is the process involving of a walker who moves randomly away
from the initial starting point. The basic example of a random walk is the classical motion
of a particle(walker) on a line, the direction is determined randomly by tossing a fair coin
which has two degrees of freedom. Quantum walk is the analog of classical random walk.
However, it is important to clearly define quantum walk, randomness is the result of the
quantum mechanical superposition principle and the measurement postulate. Quantum
walk was defined first in 1993 by Y. Aharonov, L. Davidovich, and N. Zagury. Quantum
walks were studied both on Discrete and Continuous models. The first quantum algo-
rithm for discrete quantum walk was studied by Y. Aharonov(2001) and Ambainis(2001).
The first quantum search algorithms based on quantum walk which proved that quantum
walk can be used to make faster search on graphs, (A. Ambainis, J. Kempe, A. Rivosh,

2005)(Aaronson, Ambainis, 2005)(Childs, 2004).

1.1. Classical Random Walk

Walker

5 -4 -3 2101 +2 +3 +4 +5

Figure 1.1.: A walker is positioned at x=0 and t=0. where t represents the instant preced-
ing the tossing of a coin.

Classical random walk on a line can be defined as random movements on a space
that has one spatial degree of freedom. This process can be imagined as walking where
each step is determined by the tossing of a coin and if the coin gives head the walker
makes one steps to left, if it gives tails the walker makes a step in the opposite direction.
If we consider that the particle (or walker)is initially at x=0 and t=0, then after t steps,
the position of walker becomes probabilistic. At t=1, the walker can be at x=1 with a

probability of % or at x=-1 with a probability of % Long time probability distribution of




Table 1.1. Probability of the walker, that is initially positioned at x=0, after time t.

X | -4 312 (-1 10 1 2 3 4

—+
/

ﬁ
Il

1/2 172
1/4 172 1/4
1/8 3/8 3/8 1/8
1/16 1/4 3/8 1/4 1/16

ﬁ
Il

H
Il

TR RINAT
Bl —=|o

the walker can be described by factorial representation of Pascal’s Triangle and Stirling’s

x!

formula. When ¢ 4 x is odd or x > t, the probability is zero. Where (Zj) = o and
x! ~ 21z (f)x due to Stirling’s Formula.

t
P, = 27t (1.1)
t+x
2

Where (3) = (m_x—;),y, and x! ~ v/2[lx (f)x due to Stirling’s Formula.
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Figure 1.2.: Probability distribution after t step later



1.2. Quantum Walk

To introduce the quantum version of the classical random walk, first we should
start by defining the Hilbert spaces for the coin and the spatial degrees of freedom. The
coin Hilbert space #H ¢ has 2 dimensions with orthonormal basis states (]0) and |1) ) the
analog of the classical coin states being heads/tail or rightward/leftward. The Hilbert
space (Hp) of the spatial part has infinite dimension with the discrete basis (|z) : x € Z
). Total Hilbert space of the system becomes H¢ @ H p. The state of coins can be defined

as follows:
0), = 1), = (1.2)

The position of the walker is represented by computational basis. For instance, if the

walker is at the point x=0, the spatial part of the state can be described as follows:
= 0) = |0) (1.3)

Hadamard coin is the most natural quantum analog of the classical coin operator, it mixes

the coin and maps the coin states |0) and |1) to superposition states with equal weight.

1
1
H[1), = E(I% =) (1.5)

The shift operator S changes the walker’s position depending on the state of the coin. If
the coin state is |0), the shift operator moves the walker’s position from |z) to |z + 1). If

the coin state is |1), the position of the walker becomes |z — 1).

510).10), =10). 1), (1.6)
S can be written as follows:
S=10),(0l.® Y |e+1)(z[+]1) A, ® > |r—1) (] (1.8)

The coin operator should act only on the coin degree of freedom and the shift operator(S)
should act on all degrees of freedom. Therefore the total evolution operator U can be
defined as follows:

U=S(CoI (1.9)



Where I represents the identity operator which has the same dimension with spatial degree

of freedom. The total state of the walker one step later can be described as follows:

|¢>t+1 =U |w>t (110)

If the walker is positioned at z = 0 and the coin state is |0). The initial state of the walker

can be written as follows
V) =10).10),, (L.11)

One step later, the total state becomes as follows:

9), = Ul (1.12)

The total state of the walker after t steps can be described as follows:

[, = Ut [h)g (1.13)

To better understand, we can use o symbols to represent the coin state. Thus the shift

operator S can be written as follows:

S=>" i o, 2+ (—=1)%) (o, z| (1.14)

=0 z=—00
The quantum walk is a non-markovian process which means the evolution of the walk
is dependent on the initial coin state. The state of the walker after t steps later can be

described in terms of the probability amplitudes as follows:

W7y = A7 (t)|2) |o) (1.15)

Where A9 (t) is the probability amplitude. o is the coin state and ¢’ is the initial coin

state. The probability amplitudes should satisfy the normalization for a chosen initial state

o’.

, 2 o 2
> |anw| + |z =1 (1.16)
The probability of the walker being at position x at time t can be defined as follows:

2

P () =Y |4z (1.17)

The unitary evolution operator U can be represented in a diagonal form in momentum

space. Analytical solution of unitary operator for initial coin state 0 = 0 was shown by



R. Portugal. Portugal (2013) To find an analytical solution of initial coin state ¢ = 1, The

total state after ¢ + 1 time later can be written as follows:
[Vei1) = U [y) (1.18)

[esr) = Y S (Aro()C10,2) + A ()C |1, 7)) (1.19)

Where C is the coin operator. In this case it’s Hadamard transform. C operator only acts

on coin states and maps them to equalweight superposition states of |0) and |1).
1 1
—(Ago(t) + Ap1()S 0, 2) + —=(A,o(t) — Az1(2))S |1, x
;ﬁ( o(0) + Aea(1)S10,2) + = (Aso(t) = Asa (1) [1.2) (1.20)
Using the Equation 1.14, S operator moves the walker depending the coin state.

1 1
; E(Am,o(t) + Az (t) 0,2 + 1) + E(Ax,o(ﬂ — A )Lz —=1) .21

If we can regroup terms with the same indices, we can write the probability amplitudes

above for x+1 as follows:

1

Aot +1) = NG (Az—10(t) + Ae-1,1(1)) (1.22)
1

Aot +1) = —= (Azs10(t) — Azs1,(2)) (1.23)

V2

To find the analytical solutions for the evolution of the probability amplitudes, we will

write the state of the walker in the discrete momentum space using Fourier transform.

o0

Aeo(t) = D e Ay 0 (1.24)

T=—00

Then we can define |k) vector in terms of |z) in momentum space.

k) =" e |z) (1.25)

xT

Thus, the total state of the walker at time t can be written as follows:

™ dk —
|1/)t>:/ %ZAIM |0, k) (1.26)

Now we can apply U operator to the total state in the momentum space. First we will

apply S operator to the state |o, k).

Sloky = e* S0, z) (1.27)



We defined the action of S operator in the equation 1.14 . Thus the equation above be-

comes

Sloky =Y e* o,z +(=1)7). (1.28)

We can rename indices as ' = x + (—1)?. Thus we can write v = 2’ — (—1)°

Sloky =Y =008 g, a) (1.29)
We can write ¢***' |2’} in momentum space as |k)
Sloky=>_ eV o, k) (1.30)

The equation above shows us the shift operator changes phase of the total state in mo-
mentum space. So the evolution operator in momentum space for each k can be defined

as follows:

U, = | cou (1.31)

Where C is Hadamard coin.

Uy = ' ' (1.32)

To diagonalize Uy, we can write characteristic polynomial as follows:

ety ek
V) -5 A

—ik ik —ik ik
_ (6 _ <_@ —/\) e (1.34)

V2 V2 V2 V2

1 e—ik eik 1

=== A—=+2A +V——> 1.35
( NG IV, R (13

etk _p—ik

Using the exponential form of sin k = <—=¢

, the characteristic polynomial becomes as

follows:

A+ V2\isink — 1 (1.36)

And the eigenvalues a; and eigenvectors |a;) can be found as follows:

a; = e_iwk , Gy = ei(ﬂ+wk) (137)



—ik

1 e
a1) = —=
Cc— \/Eefiwk _ e*’ik’
(1.38)
1 o—ik
|ag) = —= | |
ct _\/ielwk _ efzk
With the following definitions:
i ( L i k) (1.39)
wy = arcsin [ —=sin .
’ V2

1 1 cos k
— =l — 1.40
ct 2 ( q:\/1+COSQk) (1.40)

Therefore the unitary evolution operator can be shown as follows:

™ dk |
Ut :/ %ewkt lay) %) (K| (aa] + €9 |az) 1k} (K| {aa| (1.41)

Where |k) is,
k) = Z ™™ | z) (1.42)

If we write the total state after t time later.

|1he) = U* 1) (1.43)

For the initial coin state o = 0, initial state can be written as |¢;) = [0 = 0) |z = 0) .

0 = | [ e ) 1 ]l + €65 ) ) (Gl o = 0) o =)

_p 2T
(1.44)
Using the eigenvectors in the Equation 1.38.

(k[ (a1]o = 0) |z = 0)

(klr =0) =1 (1.45)
ik

ailo =0) =

< 1‘ > \/C__

(k[ (az|lo = 0) |z = 0)

(klr=0)=1 (1.46)
ik

<a2‘0 = O> = \/C—Jr

Thus |1/;) becomes as follows:

" —iwyt e i(mtw)t e’* dk
[¥0) = e N |a1) + e T |az) | [k) o (1.47)

—Tr



T —1k
Y I
o c \/ée*iwk — etk
(1.48)
1 e~k dk

i(mHwg ) t+ik k
e ¢t \ _\/2eiwr — ik HE) 2m

For the initial coin state 0 = 0, the probability amplitudes can be found in momentum

space as follows:

A(t) = et o —ellmran)t (1.49)
1 . . . . 1 . . . .
AR (1) = —eT TR (VeI — T — TR (et 4 e7F) - (1.50)
C C

For the initial coin state o = 1, the initial state can be written as

9 = lo = 1) e =0).
o = | [ e and ) (6 ol + € ) 1) (] Gl = 1) = 0
- (1.51)
(k] o] o = 1) = 0)
(kl[|z=0) =1 (1.52)
B B \/Eeiwk o eik
(@l lo = 1) = o=
(k] ol o = 1) = 0)
(k[|z =0) =1 (1.53)

—\/§€_iwk o eik
Vet

(as] o =1) =

The equation 1.51 can be written as follows:

_ —zwkt \/_eza)k —e a e i(mHwg)t \/_eizwk —¢ a dk
) = [/ (—w_ )r D+ ( — )| 2>] 0 5
(1.54)

For initial coin state ¢ = 1, the probability amplitudes can be found in the same way in

momentum space as follows:

%62 Ttwy ) t— zk( \/_e—zwk . eik) (155)
C

1 . . A A
A,lco(t) = Fe_(lwkt+lk)(\/§ezwk _ ezk) +
1 o -
Ap(t) = L—_emkt(\/iew’“ — M) (V2eT ek — ezk)}

[ et (ot = ey )

ct

(1.56)



The probability amplitudes in real space can be found by taking inverse Fourier transform

as follows:

/ " dk /
A7, (1) = / 5 AL (1) (1.57)

Using the equation 1.17, the probability distributions of quantum walk with initial

—T

coin state 0’ = 0 and ¢’ = 1 after 100 steps later can be plotted by using the analytical
result at the equation 1.56. The Matlab code that is used to evaluate the plotted results

can be found in the Appendix ...

Probability Distrubution of Qwalk With Initial Coin State o'=0
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Figure 1.3.: Probability distribution of 1-D quantum walk (with initial coin state zero)
is plotted by using the following formula, P°(100) = [A%(100)* +
| A, (100)|°. It can be clearly said that the quantum walk with the hadamard
coin is much faster compared to the probability distribution of the classical
random walk in the Figure 1.2. The most probable position for the walker to
be at is the position z = 68. The direction of the walk is dictated to the right
by the initial coin state.



Probability Distrubution of Qwalk With Initial Coin State o'=1
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Figure 1.4.: Probability distribution of 1-D quantum walk (with initial coin state is one)
is plotted with the following formula, P1(100) = |AL,(100)|* 4 | AL, (100)|*.
Unless the case initial coin state is zero, the direction of the walk is dictated
to the left by the initial coin state.
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CHAPTER 2

ENTANGLEMENT TRANSFER IN 2-D QUANTUM WALK

2.1. 2-D Quantum Walk with Entangled Coins

2-D quantum walk with two coins can be described as one walker walking on the
x direction depending on the first coin state and the y direction depending on the second
coin state. 2-D quantum walk with entangled coins is the analog of 2-D classical walk but
the coins are initially entangled. The state of the coins can be chosen as one of the Bell

States.As it is well known, Bell states are maximally entangled pure bipartite states.

1
) = 5 (100) & 11) @.1)
1B.) = —(Jo1) = [10)) 2.2)

Sl

2

0 1
Where the coin state |0) = and |1) = . Also |00) represents the tensor product
1 0

of two |0) states. It can be shown as tensor product |00) = |0) |0) = |0) ® |0)
As an example of a coin in 2 dimensions, The Hadamard Coin in 2-D is defined

as the tensor product of two single coin operators.
C=H®H (2.3)

As well the shift operator can be chosen for 2-Dimensions.

S=100)(00[® Y  |z+1,y+1){z,yl
T,y=—00
+01) (01 ® Y |r+1,y—1)(z,yl
. (2.4)
+]10) (10[®@ > |z =1,y + 1) (x,y]
T,y=—00

[e.9]

T, y=—00
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Using S and C operators, the evolution operator can be written. First we should multiply
with the coin operator by using the tensor product, since the coin operator only acts on the
coin subspace, the action on the two spatial subspaces are denoted by identity operators

and therefore the unitary that describe the evolution becomes
U=5SCxI®I). (2.5)

Therefore, like 1-D quantum walk, the state of the walker can be written in terms of the

evolution operator and the initial state

i) = U* [yho) - (2.6)

In this thesis |¥, ) is chosen as the initial coin state and the walker is positioned at x=0

and y=0. Thus the initial state of the walker becomes:

%0) = |coin) o @ |x) o @ |y) o (2.7)
o) = |84} © 12 = 0) © 1y =0) @8)
) = 7500} + 1)) @ |2 = 0) @ |y =0 29)

2.1.1. Hadamard Coin in 2-Dimensions

Coins are the vital part of the fairness of the evolution operators. Hadamard coin
represents Hadamard Transform that makes the superposition of |0) and |1) with equal
weight. Therefore it can be said that Hadamard Coin is a fair coin and it can be shown in

Dirac notation as follows.

H =

0) +1]1) 0) — 1)
75 01+ === 1] (2.10)

can be also shown as |+) and |—) respectively. It also can be shown in

[0)+]1) |0)—[1)
7 and 7
matrix form as follows.

H=_— 2.11
V2 \1 -1 1D

Hadamard transform in 2 Dimensions can be defined as the tensor product of Hadamard
Coin in 1-D.
C=H®H (2.12)

12



In matrix form:
C L b 0%y L b (2.13)
2\1 —1) Vv2\1 41 '

c-1 (2.14)

DO | —
e e
— | —

—_
| —_ =

—_

| | —_

—_ =

-1 -1 1
In general, Hadamard transform in N dimensions can be defined as follows:
1 [Hy-1 Hy-
Hy— L N-1 N-1 (2.15)
V2 \Hy oy —Hy

Where Hy = 1 and N > (. Agaian et al. (2011)
Two dimensional Hadamard coin in Dirac notation can be defined with the following

equation. (Venegas-Andraca (2012) )

_ {10y +11) 0) —[1) 0) +[1) 0) — 1)
o_( o5 0+ = <1|>®( 75 0+ <1\) (2.16)

0= 00 g (01 ) W (0410 )

e e V2 V2 o1
0) +11) 0) —11) 0) — 1) 0) — 1) '
7o () + B o (B )
C= %[(|00) +101) + |10) + |11)) (00| + (]00) + |01) — |10) — |11)) (10| + 2.18)
(100) = 101) +[10) — [11)) (01] + (J00) — [01) —[10) + |11)) (11]]
C = %[|00> (00| 4 01) (00| 4 |10) (00| + |11) (00|
+100) (10] + |01) (10| — |10) (10| — |11) (10| 2.19)
+100) (01| —|01) (01| + |10) (01| — |11) (O1]
+100) (11] — |01) (11| — [10) (11| + |11) (11]]
The state of the walker after one step later can be written as follows:
1) = U [tho) (2.20)

13



1

1) = S(C @ I ® I)(—=(100) + [11))erin @ [0),0),) (2.21)

Sl

2

2.1.2. Fourier Coin in 2-Dimensions

The second coin which is used in the simulations is Fourier coin. Fourier coin
can be defined as a DFT(Discrete Fourier Transform) matrix. DFT matrix is a unitary
transform, it preserves the total probability. The general formula of DFT matrix can be

given as follows:

1 1 1
1 w w’ w' !
1 _
Fprr = ﬁ 1w w' WY (2.22)
N-1 2(N-1) (N—1)(N—1)
1 w w oW

Where w = e V.
Unlike the Hadamard transform, the DFT matrix mixes the coins and also generates en-
tanglement at every step. The DFT matrix in 1-Dimension is the same with the Hadamard

Transform. DFT matrix in 2-Dimensions is defined as Fourier Coin as follows:

11 1 1

—_
—_
|
.
|
—
o~

F.= - . (2.23)

[\
—_ =
~ |
—_
I =
—_
| |
~ —

2.1.3. Measuring Entanglement

In this thesis we used Negativity to measure entanglement. It is based on positive
partial transpose(also known Peres-Horodecki criterion). [Horodecki et al. (1996)] A

density matrix p Negativity is defined as follows [Simon (2000)]

Ca || —
N(p) = w (2.24)

14



Where || p' ||= Tr|p'4| = Try/pFafpla. It can be described as the sum of the absolute
eigenvalues of p''4. [Simon (2000)] [Horodecki et al. (1996)]
N(p)=>_ MT_U (2.25)
;<0
Where o; are eigenvalues of p'4. Therefore negativity gives us a computable way to
measure entanglement of the density matrix which is constituted by the 2-D quantum

walk simulations.
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2.2. Simulations

1st Coin (A)

N)
((
i'jh'

2nd Coin (B)

>
> Y

Figure 2.1.: Entanglement Transfer

The first coin A is responsible of the walking on the X degree of freedom, and
the second coin B is responsible of the walking on the Y degree of freedom. The red
waved lines between A and B describe the initial entanglement. The other waved lines
describe the entanglement between different subsystems after t time later. Therefore after
t time later, we have a density matrix pspxy describing the total system ABXY. For
example if we want to measure entanglement between X and Y degree of freedom, we
trace out AB subsystems from the total density matrix and we obtain the reduced density
ABXY)

matrix pXY = Trp(p

(Machnes (2007)). The codes can be found at Appendix A.

. For numerical simulations we used Matlab with the QLib
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2.2.1. Hadamard Coin

Y position
o

20

25

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

-20

Hadamard coin

-15 -10 5 10 15

20
X position Probablllty Dlsturbltlon after 25 Steps)

Figure 2.2.: The probability distribution of the walker after 25 steps by using Hadamard

coin

12 Hadamard coin
~ -~ AX-BY
A-B
X-Y
1| A-X |
A-Y
A-XY
|
08f |
|
| — - —
| a /
- | AN / - . - -
G 06 | N -
§ [ | 0
= |
s |
£ L i
5 04 |
|
| i
| i
| i
02 ||
| i
i
x;
0Fr ¥
02 L L I I )
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Time

Figure 2.3.: Hadamard Coin - Entanglement Transfer in 2-D Quantum Walk with Initially

Entangled Coins. Lines with different colors represent different subsystems.
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2.2.2. Fourier Coin

Fourier coin

0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

-20 -15 -10 5 10 15 20
X position Probablllty Dlsturbltlon after 25 Steps)

Y position

Figure 2.4.: The probability distribution of the walker after 25 steps

4 Fourier coin
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Figure 2.5.: Fourier Coin - Entanglement Transfer in 2-D Quantum Walk with Initially
Entangled Coins. Lines with different colors represent different subsystems.




2.2.3. Discussion

The Figure 2.2 shows the probability distribution of the walker after 25 steps by
using Hadamard coin. The range goes from blue being the minimum probability to yellow
being the maximum. The variance is similar to the 1D quantum walk in both spatial
degrees of freedom. If we look at the Figure 2.3 It can be clearly seen that at the beginning
entanglement was between coins, after one step it transfers to the different subsystems.
Hadamard transform conserves the entanglement so we can measure that the entanglement
between AX and BY subsystems is 1. We measure more entanglement in the subsystem
that has more degrees of freedom.

Second simulation is done with the Fourier Coin. The Figure 2.4 shows the proba-
bility distribution of the walker after 25 steps by using Fourier coin. Due to the Figure 2.5,
we initially have entanglement between coins. After every step entanglement is created
by Fourier coin and transfers to the subsystem that with the most degrees of freedom.

According to the results of the simulations, it can be said that the entanglement
of the system always transfers to the subsystem which has more degrees of freedom.
The phenomenon of entanglement transfer might be explained analytically by quantum

topology.
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CHAPTER 3

INTERFERENCE IN MULTI-PHOTON WALKS

3.1. Beyond the Idea

In the 3" chapter of the thesis, the correlations of multi particle quantum walks
with different light sources on photonic systems is discussed. The main idea of this chap-
ter is to calculate the average photon number correlations on two arbitrary beam-splitters

by using probability amplitudes of 1-D quantum walk.

o —> th —> 122 —> 155

Figure 3.1.: Demonstration of Quantum Walk on Photonic Systems

The Figure 3.1 simply demonstrates quantum walk on a photonic systems . Ver-
tical axis shows spatial degree of freedom. Horizontal axis shows time evolutions. Red
rectangles represent 50/50 beamsplitters. Upwards and downwards arrows describe two
spins degree of freedoms, 0 = 0 and 0 = 1 respectively, the meaning direction of the
photon. Beamsplitter is the analog of the evolution operator, U = S(C' ® I), in 1-D
quantum walk. When a photon goes to the beamsplitter at x=0 and t=0, it reflects to the
beamsplitter at z = 1 or transmits to the beamsplitter at x = —1. The arrows before the

first beamsplitter are the analog of the initial coin state in 1-D quantum walk. The photons

20



going downwards have 0 = 1 spin state and the photons going upwards have o = 0 spin
state.
To better understand, let’s assume that a photon goes upward to the first beamsplit-

ter. The state of the photon can be defined in terms of the creation operator as follows:

Wz> = doo |O> 3.1

The first O of the lower indice of the creation operator represents the position of the photon
and the second 0 represents the direction(spin) of the photon. The state of the photon after

the first beamsplitter, meaning the state of the photon at t=1, can be written as follows:

1
|w1> = E <&Io + dT—n) |O> (3.2)

The state of the photon above is the analog of the state of a walker after 1-step later in 1-D
quantum walk with Hadamard coin. Now let’s assume that one photon goes downwards
and one photon goes upwards to the first beamsplitter. The total state of the photons at

the first beamsplitter can be written as follow:
1) = &(Tndgo 10) (3.3)

The total state of the photon after the first beamsplitter becomes:

lwhﬁ%@%%LJ%ﬂ%+ﬂQm> (3.4)

Similarly to the 1-D quantum walk,the Hadamard coin maps the state of the photon going
downward from &(Tn to \/% <CALJ{0 — dT_H) After the multiplication of the terms in the

parentheses, the equation above becomes:

2t A 12
<a10 + aIOaT_H - aT—11aJ{o - aT—n) 0) (3.5)

N | —

|¢1> =

lak, ar) = [af,al] =0 56
[ag, al,] = O

Due to the bosonic commutation relation below, dio and &111 operators commute thus

they can excange positions and cancel each others.

1
va) = 5 (als - %) 10) G3.7)
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The mathematical expression above describes two photons going either upwards or down-
wards. This is a well known phenomenon and it was found in 1987 by C. K. Hong, Z. Y.
Ou and L. Mandel Hong et al. (1987).

Hadamard coin definition is given in Eq. 3.8 However, the beamsplitter can not

represent Hadamard coin by itself.

: A 1 (1 1
H = _Z'ewzﬂ'/Qezayﬂ'/ll - (38)
V2 \1 1

The beamsplitter operation on two inputs can be defined as follows:

U U,HU, Lt (3.9
SRRV P '
: : : 0

Where U, is the phase operator acting on one of the inputs, U, = . Therefore to

0 ¢
use the analytical solutions of the probability amplitudes of Hadamard coin, the probabil-

ity amplitudes should be changed as follows:

/! !/ 4 dk . !/
A7 (1) = (i)°+° / 4R e a7’ (1) (3.10)

2T
3.1.1. Average Photon Number Correlation

In this subsection, average photon number correlation for two arbitrary beam-
splitters will be defined in terms of the probability amplitudes in the Heisenberg Picture.
The state of the walker after t time later in 1-D quantum walk is described in Chapter 1.

It can also be written to describe the state of the photons after t time later.
W7y =DA% (t)]o,x) G.11)

Where 0 = 0 , 1 represents the photons going downward and upward photons, respec-
tively. Since the evolution of the probability amplitudes depends on the initial spin(direction)
state, o’ represents initial spin state, 0, 1 respectively downward and upward. A% (t) are
the probability amplitudes.

Average photon number correlation for two arbitrary beamsplitters is defined as

follow:

Cyy =< Tyhy > — <y >< iy > (3.12) .



To calculate the correlation between y** and y*" beamsplitters, the number operators 7,

and 7, can be written as follows:

fy =Y al,ay, (3.13)
Py = Yl lys (3.14)

Using 3.13 and 3.14, the expectation value of 7, can be written as follows:
<ty >= (Y] @l liye [0) (3.15)
< iy >= (Ui U (1)1l ayoU (t) 1) (3.16)
The identity operator UUT can be added between &Lg and a,,. Then the equation becomes:
< iy >= (Ui U (1) al, U)U (1) aye U (t) [¢:) (3.17)

To find the correlation, U (t)'a,,U (t) and U(t)"a!,U(t) should be written in terms of the

probability amplitudes.
3.1.2. Heisenberg Picture

As a general formula, the probability amplitude of a quantum walk after ¢ time

later which is started at arbitrary 3" beam splitter with o spin can be described as follows:
(xd'|U(t) |oy) = A7, (1) (3.18)

Where (z0’| describes the measurement at 2" beam splitter with ¢’ spin.

The evolution operator was described as follows:
Ut)=I[S(CeI (3.19)

U =[(ctenst (3.20)

Where CT = C~! and ST = S~! because of their unitarity. Thus the equation above can

be written as follows:

vt =[Cctens (3.21)

Ut =[(CeIDs]™ (3.22)
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U =U(-t)=[S(C®I)]" (3.23)

If we take time reversal of equation 3.18, the probability amplitude of a quantum walk
after ¢ time later which started at arbitrary z*" beam splitter with ¢’ spin can be written as

follows:
(yo|U(—t) |zo”) = AT, (1) (3.24)

To solve U(t)'a,,U(t) and U(t)'af ,U(t), we can start with writing the final state after t

time later.
W) = U(t) [¢:) (3.25)

if we describe |¢;) in terms of creation operator for a photon which is at y** beam-splitter

and o spin, Equation 3.25 becomes:

[y = U(t)a], |0) (3.26)

U(t)'U(t) can be added before |0).

[vy) = Ut)al,Ut)'U(t)]0) (3.27)

Appyling operator U(t) to vacuum state |0) gives vacuum state |0). Thus the equation

becomes:
[r) = U)ay,U () 10) (3.28)
From equation [¢;) = >__ A% (t) |o, z) , we can write U (t)al,U(t)" in terms of proba-

bility amplitudes as follows:

Uwal, U@ =3 A7, () (3.29)

The equation above describes the probability amplitude of the photon being at the x'"
beam-splitter with ¢’ spin after ¢ time later which starts the quantum walk at arbitrary

" beam splitter with o spin. The time reversal of the equation above describes the
probability amplitude of the photon being at the y'* beam-splitter with o sping after ¢

time later which starts the quantum walk at arbitrary 2" beam splitter with ¢’ spin.

Ut)al,U(t)y=> A7*, al, (3.30)
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The above formula is one of the formulas that we need to calculate expectation value of
n,. To simplfy, we will not write the time dependency of the probability amplitudes (t) at

each step. To find the second formula, we take the conjugate transpose of 3.30.

Ut) ay,Ut) =D A7, i (3.31)

Using 3.31 and 3.30, expectation value of n,, can be written as follows:

<ﬁ > Z <¢z’ Ay T O'ALO' Ay x! aax o |wz> (332)

The probability amplitudes can be written out of the bracket.

(y) = AT* AT (il agn |15) (3.33)

Similiar to (n,), (n,n,/) can be written as follows:

/

/>|< ﬁ/
S A A A

(W] s g 1)

(3.34)

To understand the general result, annihilation operator a,,~» should be moved to the right

of the creation operator dl,, - Using the Bosonic commutation relation, we can write
&JTIO'N&LHB/ = dluﬁrdaz’a” + 50”6’530”33’- (335)

<ﬁyﬁy’> = Z AZ *x O'AZ z’ O'A:[[j *z” ,BAg’fx”’,ﬁ

<¢Z| axo’ ( ”6’0%18 o —|— (5 //5/(535.//3j )ax”’ﬁ” ’77[)1>

(3.36)

3.2. Number State

Number state is also known as Fock state. Applying the annihilation operator a to

number states gives

aln) =+vnln—1) (3.37)
Number states should obey the normalization condition (n|n) = 1. Any number states
can be written as follows:

(@)™ |0) (3.38)

n) =

S
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Where \F is the normalization constant and (n/|n) = d,, . Thus the initial state of n
photons going upwards and m photons going downwards can be written as follows:
1 ~ noyo m
) = N (a&)) (agl) |0) (3.39)

Where \/ﬁ is the normalization. Clearly, the excitation only occurs at 0 point. Then

Equation 3.33 can be written as:
<Ry >= ZA‘;;AZU (il @b aoon |1hi) (3.40)

<y >= D AT |) (01 (tg0)" (fon ) "o (i)™ (8™ [0) (3.41)
To solve the equation above, the annihilation operator should be moved to the right by

using the commutation relations below.
[, an] = [af, dj] = 0
[ax, CAL;TCI] = Ok (3.42)
[an, f(@f)) = S (@)
Using the relations above, ag,~ can be moved to the right.
— dngn (ad)" (@)™ [0) (3.43)
The equation becomes

— (”(d$o)n_l5a/’0(d§)1)m + (&(T)o) aoo”(am) > 0) . (3.44)

a0 should be moved to the right again.After moving annihilation operator to the right,

the equation becomes
~T \n—1/~% m g AT n(AT m—lé A~ )n(AT ma ‘O) (3 45)
— (n(age)" (ag1)™ 800 + m(ag)" (ag) o1+ (go)" (ag1)™ oo : :
Using this relation a [n) = y/n |n — 1), the term below is equal to zero.
(ado)" (@)™ o [0) = 0 (3.46)
Equation 3.45 becomes as:
~T \n—1/A% mg AT \n(aT m—l(s 0 3.47
— (n(age)"™ (ag1)™doro + m(ag)" (ag) 1) 10) (3.47)

On the other hand, the creation operator can be moved to the right by using the same

method.
(0] ((doo)n_l(&m)mmsofo + (&oo)n(dm)m_lmdﬂ) — (3.48)
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Using 3.44 and 3.48, Equation 3.41 can be written as follows:

— (0] ([(@00)™ " (@01) ™ 1410 + (di00)™ (01)™ “md,n] (3.49)
[n(@do) " (@) "0 g0 + mlady)" (@b, )™ d5m]) 0)

Where —(right arrow) represents the probability amplitudes, normalization and the sum-

mation symbol before the formula. After multiplication, four terms can be written as:

—n® (0] (@00)" ™" (01)™ (o)™~ (@1)™ 10)
+
m (0] (do0)" ™" (@01)™ (afo)" (@)™ " [0)
+ (3.50)
n (0] (aoo)™ (@o1)™ (o)™ (af;)™ [0)
+
m® (0] (doo)" (do1)™ " (abo)" (aby)™ " |0)
The inner products of the states in the second and the third rows are orthogonal states thus

the second and the third terms are equal to zero. The inner products of the states in the

first and the last terms are equal to norm of themselves. The first term becomes:
So005r0m? (0] (00)™ " (Gor) ™ (@)™ (ady )™ [0) = n*(n — 1)! mldynodpry  (3.51)
And the last term becomes:
8r1051m? (0] (Go0)"™ (a01)™ H(ade)" (@)™ 110y = m*n! (m — 1)10,mdpn  (3.52)

Using Equation 3.51 and 3.52 the expectation value of 7,, can be written with amplitudes

and normalization as:

<y >= Y ATCAT (n(n — 1)1 m!S,uo0m0 +m*n! (m — 1)16n15,1)

oty ( nlml)
(3.53)
After simplification, the final equation for < n, > can be written as:
<y >= Y AT FAT (n6yn00600 + MO Tgn) (3.54)

The expectation value of 7,/ can be found by using the same steps with different raising

and lower indices. Similarly, < n,, > can be written as:

< Ny >= ZA?J B8 y/ﬁ n55//055/0 +m55//155/1) (3.55) .



To find < nyn, >, we can start with writing the general form of < n,n,, > which

is given in Eq. 3.36.

o' B//
gty =S AT A g A .
<¢Z| (lxo_ ( “,B'am ol —+ 50’”6’51”I/)a&?"’ﬂ” |¢Z>
After writing initial state, 3.88 becomes:
/* B//
soa YA A oAy S g Ay am
< NyNyr >= Z -

(nlm!) (3.57)

(O] (@00)™(@01) ™k 0 (@110t + O S )tam g (@)™ (@)™ [0)
To better understand, the summation symbol, the normalization and the probability am-

plitudes will be represented by an arrow ”—".
= (0] (@00)" (@01)" @ (10107 + DG )03 (@) (@)™ 0) - (3.58)

The annihilation operators should be moved to the right and the creation operators should
be moved to the left. To simplify the calculations, the result of Equation 3.43 can be used

here with different raising and lower indices.

(0] (aoo)™ (Gor)™ad,

(3.59)
— dogr (ady)" (ahy)™ 10)
After putting the results of above equation to 3.58, Equation 3.58 becomes:
— (0] ([(@i00)™ ™ (@01) ™10 + (@00)" (@01)™ " 118er1] (@l 51 Garor + G Orar) (3.60)

(@)™ (@)™ gm0 + m(ady)™ (@4,)™65m1)) [0)
Equation 3.60 can be written as follows:
— (0] ((doo)n_l(&m)mmsafo + (doo)n<d01)m_1m5a’l) (Gorpr O )
(nl@do) = @2)"dm0 + m(@lo)" (@)™ 39 ) 10)
+ (3.61)
(01 ((a00)" " (@01) "m0 + (i0n)" (d0n)" " mlpn) (fya0 )
(nl@do) @) dm0 + m(@lo)"(@h)™ 3 ) 10)

The first terms can be written easily by using the result of < 7, > as:

(naﬁnoéalo + m(sﬁ”l60’1) (50”5’533”:2’) (362)
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To solve the second term of Equation 3.61, the annihilation operator and the creation

operator should be moved to the right and left, respectively. Since the steps for moving to

the left are the same with the steps for moving to the right, only the steps for ag,~ will be

shown.
— [néogn ()" (a1) 60 + Mmoo (aby)" (@)™ 85m][0)
After moving ag,~ to the right, Equation 3.63 becomes:
—(n(n = 1)(aby)" " (@hy)"851005m0 + nm(ady)" " (ahy)™ ' 6r00m
+n(afo)" " (a51)" oo 0)
-
(mn(&go)n_l(dgl)m_l%”l‘sa”o +m(m — 1)(dgo)n(dgl)m_%ﬁ”lfso”l
+m(ag)" (@)™ oo ) [0)
The terms before |0) give zero. Equation 3.64 becomes:
—(n(n = 1)(ago)" (@) " dgro8ero + nm(agy)" " (ahy)™ 6gm005m1) 0)
-
(mn(afo)™" (@)™ 65 8pm0 + m(m — 1)(aby)" (@)™ 65118,m) |0)

Similarly, the left part of the equation can be written by using the same steps.
(0] ((a00)™ " (éio1)™nder0 + (Go0)™ (Go1)™ " mier1) i
Since the steps are shown, Equation 3.66 can be written as follows:

<0| [(dog)n_Q(d()l)m(n — 1)7150/0(55/0 + (doo)”_l(d01)m_1nm5(,/055/1

—+ (doo)n_l(&Ql)m_lmn(5011(55/0 + (&00)”(&01)m_2m(m - 1)5011(55/1] <—

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

After multiplication of Equations 3.67 and 3.65, only six terms remain because of the

orthonormality. Thus:
n?(n — 1)* (0] (d00)" > (ao1)™ (ady)" (@)™ 0) +
n®m? (0] (@oo)"™ ™ (ao1)™ " (afo)" " (ady)™ " |0) +
n®m? (0] (@oo)™ ™ (ao1)™ " (afo)" " (ady)™ " |0) +
m®n” (0] (éoo)™ " (Go1)™ " (ade)" " (afy)™ " [0) +

m?n? (0 (aoo)™ " (ao1)™ (@)™ (@)™ 10) +
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m®(m — 1) (0] (do0)™ > (do1)" (o)™ (@hy)" 0) (3.68)

All terms above are equal to their norms. It can be written explicitly as follows:

—)(TLZ(?”L — 1)2(7”& — 2)' m)! 50/055/055//050//0

+ n2m2 (TL — 1)'(771 1)' 50/055/155//050//1
+ n2m2(n — 1)'(m ].)' (50./05/3/15/3//1(50-//0
(3.69)
-+ n2m2 (n — 1)'(m 1)' 50'166'056”050”1
+ n2m2(n — 1)'(m 1)' 50/156/056//150//0
+ mz(m — 1)2(m — 2)' ’n,' 0, /155/155//16 //1)
If we multiply Equation 3.69 with normalization —. Equation 3.69 becomes:
—>(TL(TL — 1) 60105g/05g11060110
+ nm 50-/05/3/15/3//050.//1
+ nm(sglo(sﬁ/léﬁ//l(sgno
(3.70)

+ nméoflégfoéguoéo,,l
+nm 60/1(55/0(55//1(501/0
+ m(m — 1) 50/1(5,3/15,3//150.//1)

Summing Equation 3.70 with Equation 3.62, (ndz¢ds10 + md110411) (95750547 ), the ex-
pectation value of < n,n,, > can be written with the probability amplitudes as:

<y =y ATTAT L ADE L AD

(n(n —1) 6500800570050 + 1M 410651105700611

+nm 951108003710070 + MIe100510571050 (3.71)
+ nMdy10p005100,71 + m(m — 1) §51105105710571) 020000

+ (7’},65//060/0 + méﬁ//ldo/l) (50/’5/5x”1’)]

Now we have all the resuts to write the correlation function.< n, >, < n,, > and
< nyh, > are calculated in terms of the probability amplitudes. To better see, we can
write the result of < 71, >< n,, > explicitly.

<Ny >< Ny >=

) (3.72)
Z A%* A A’B by AB (nég//oég/o + m(SU//l(SUq) (négl/gég/g + m§5//1§5/1)

y,0° y,0t Yy BTy B
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Therefore the correlation function is described as:
Cyy =< Nyl > — < Ny >< Ny > (3.73)

Finally the correlation function C, , can be written using Equations 3.71 and 3.72 as

follows:

1

_ a'x ga” B'* B
Cyay/ - Z AyyﬂAy*I'7UAy’—J»‘"w3Ay'aﬁ[
(n(n — ].) (50./0(55/0(55//0(50.//0 —'— nm (501056/156//0(50//1
+ nm (50./1(5 10(5 //1(50.//0 +nm§a’/05 /1(5 //1(50.//0
o e (3.74)
+ nmég/l(sglg(sguo(sg/q + m(m — 1) 50’15,3’15,3”150”1)550”0595’0
—I— (TL(SB//()(SO./O + m55//150/1) (60'”6’5$”x’) —

((ndg00010 + Mgr1061) (10050 + MEpr10411))dgr00.r0]

3.2.1. Results For Number States

We used Matlab to plot the correlation functions. The code which is used for

plotting the function at Equation 3.74 can be found at the appendix.

Number State: t=1, n=1, m=1

Figure 3.2.: The figure above shows the correlations for n=1 and m=1

Figure 3.2 shows us the correlation result of number state(with n=1, m=1) after one step
later. The negative correlation can be seenaty = landy = —lory = —1landy' = —1.
It can be said that the result is coherent to Hong-Ou-Mandel effect.

Figure 3.3 show us the correlation result of number state(with n=1, m=1) after 10

steps later. We have maximum correlations at y = 6 and ¢y’ = 6 ory = —6 and ¢/ =
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Number State t=10, n=1, m=1
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Figure 3.3.: The figure shows the correlations for n=1 and m=1 after 10 steps later

—6. Correlations at these points(y = y’ mean variance of the walk. Thus the maximum
correlations are coherent to 1-D quantum walk variance in the introduction part. It can be

seen as follows:

Cyy =< yhy > — < Ny >< My > (3.75)

Cyy =< 2 > — < iy >? (3.76)
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Number State t=10, n=1, m=1
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Figure 3.4.: The figure shows the correlations for n=1 and m=1 after 10 steps later

Number State t=10, n=1, m=0
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Figure 3.5.: The figure shows the correlations for n=1 and m=0 after 10 steps later
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Number State t=10, n=0, m=1
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Figure 3.6.: The figure shows the correlations for n=1 and m=0 after 10 steps later

Number of Photons-Fock (10 steps later)
T T T T T T
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sum(Number)=2

# of photons
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-10 -8 -6 -4 -2 0 2 4 6 8 10
xth beamsplitter

Figure 3.7.: The figure shows < n, > distribution for n=1 and m=1 after 10 steps later. It
can be clearly seen that total number of photons is conserved.




3.3. Coherent States

Coherent states (also known as Glauber states) can be defined in phase space as

circular symmetric uncertainty and displaced from the origin with |a|?. When a = 0, it
defines vacuum states.

X5 A
1 1
:AXQ = —
v 2
=3
2
|| AXy =3
0
X1

Figure 3.8.: Coherent states in phase space. The circle describes the uncertainty of the
states.

We can describe coherent states as initial state:

Wi) = \0400;0401> = |O7>

(3.77)
As a specific example of a coherent state o going upwards to the first beams splitter can
be written as:

Q00 % \n
o) = 3 e 3tF =Ea)” 10) (3.78)

On the other hand, a coherent state o going downwards to the first beams splitter can be
written as:

_1 agy .
lovgr) = Ze 2|0401|2\/%(a$1)n 0)
- !

(3.79)
Applying annihilation operator a to |«) state gives the relation below.

iz |G) = G |G0) (3.80)
ro = <&| &;U

(3.81)
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Where @/(0) = g and @(1) = ap;. To calculate the correlation function of |@) state, we

will use the relation 3.80.
Cyy =< Nyl > — < Ny >< Ny > (3.82)

Similarly to the number state, first we will find the expectation values of 7, and 7, by

using the formula below.

< ny > Z AO— *AO' 1/]2| aoglaoo_// |/l/]2> (3.83)
<y >=Y  ATTAT (4]af e |d) (3.84)

Using Equations 3.80 and 3.81, we can simply find the result of < n,, > and < n,, >

. At s .
=< Ny >= Z A7 ;AZU (& g, Goor |G) (3.55)
=<y >= Y ATTAT G

Y,0° Y0

The expectation value of 7,/ can be written by using same steps with different indices.

= AP AP (@] s |d) (3.86)

l

=< ny >= ZA5 B y B Oélaoﬁ,a05//|_)>

=<y >=Y AUCAY L dyds

To find the expectation value of n,n,/, we can start by writing the following formula.

(3.87)

/ /!

B B
< nyny >= ZAy z,0 y 2/ o’Ay m”,BAy’—ac”’,ﬁ

<CY| &i’a’<dl”ﬂ’&x/0” + 50//6/550//55/)&93"//3" |a>

(3.88)

"

- ZAU *AO’ A,B/ " Aﬁlg ot /CYBN <O[| (a ,,ﬁ,ax o +4 //6/5 " /) |&> (3.89)

y,0y—al oty — Yy,

To better see, we will write just the following part of the equation above.
= &5 A (] (0 5a00m + Opngr0umar) | ) (3.90)

= &21&5// <<0_2| &55,&00// |62> + <62| 50///3/535//35/ |O?>) (3.91)

Using Equations 3.80 and 3.81, the expectation value of 7,7, can be written as follows:

1

"% B’* ﬂ

(3.92)
(c_f:;, &U// 622/ 626// 51”0 533/0 —|— 0_22_, 0_25” (SJ//B/ 5:)3”$’ )
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Finally using the results of 3.85, 3.87 and 3.92 and after simplification, the correlation

function can be written as follows:

=) ATAT L ADT L AL (A O Oan) (3.93)

3.3.1. Results For Coherent States

The figure 3.9 shows us the result of coherent states (o« = 1 and o/ = 1) after
one step and after 10 steps, respectively. The figure 3.5 shows that there are no negative
correlations compared to the result of the number state(n=1,m=1). If we look at the figure
3.6, it shows the correlations after ten steps later, the variance satisfies the quantum walk
variance and there are still no negative correlations. It can be said that the correlation

analysis gives clear differences due to different kind of photon sources.

Coherent State t=1, o =1, o =1

Figure 3.9.: Coherent State: t=1, g =1 a3 =1
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Coherent State t=10, "‘n=1' a1=1
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Figure 3.10.: Coherent State: t=10, ago = 1 ap; = 1

Coherent State t=10, =1, o 1=0
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Figure 3.11.: Coherent State: t=10, ago = 1 ag; = 0
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Coherent State t=10, a0=0, a=1
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Figure 3.12.: Coherent State: t=10, agg = 0 ap; = 1

# of photons
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0.4

03

02

0.1

Number of Photons-Coherent (10 steps later)
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rr0:1 Loy =1

sum(Number)=2
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xth beamsplitter

Figure 3.13.: The figure shows < n, > distribution for ap = 1 and o; = 1 after 10 steps

later. It can be clearly seen that total number of photons is conserved.
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3.4. Vacuum Squeezed State

Squeezed states of light can be defined as one of the non-classical light. Unlike

the coherent states, the uncertainty of squeezed states is not circularly symmetric.

X
Squeezed vacuum state.
(Squeezing is in the X2 quadrature)

T
A

\
<----1 ————>
1
AXl = —eT
2
Xo
Squeezed vacuum state.
(Squeezing is in the X quadrature)
AX2 = —eT ,1\
: X1
v
<----7 e3>
1
AX|=—=e"
2

Figure 3.14.: Squeezed vacuum states in phase space. The ellipses describe uncertanity
of the states.

Vacuum squueezed states can be described by the following formula.
[€) = 5(£)10) (3.94)

where ¢ = re?. The relation between squeezed operators and annihilation/creation oper-

ators can be defined as follows:

SHE) ggr S(€) = aogr coshroen — af €% sinh 7ggn (3.95)
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SH(€) al,, S(€) = a), coshroy — dgere™ 0 sinh 7o, (3.96)

To find the expectation value of 7, and n,, we will take the initial state as follows:

[ibi) = 1€,€) =1€'€) (3.97)
Where ¢ = re®.
<hy>=Y ATEAT (€ ¢ ab oo [€€) (3.98)

where |€) = S(£)]0) and |£') = S(&’) |0). The initial state can be written as S(£)S(&’) |0).
<y >= Y ATFAT (01 S(€)1S(€) A, h00S(E)S(€) |0) (3.99)
S(£')S(€) can be taken as one S operator.

<y >=Y AT AT (0] 5Tab,a0,05 |0) (3.100)

Y,0°Y,0

Tince S is unitary we can insert S, between @, _, and dg,».

<y >=Y ATFAT (0] STal,, 88 ag.n S |0) (3.101)

Y,0°"Y,0

Thus we can use the relations 3.95 and 3.96 to represent the equation above in terms of

the annihilation and the creation operators.
(ST&OUII S) — Qg cosh rogrn — dgg,, ¢’ ginh Too" (3.102)

(5' Td(T)(,/ S ) — &(T)a, cosh 7oy — Goore” %0 sinh gy (3.103)
If we write Equation 3.101 using the relations above. Equation 3.101 becomes as follows:

< Ny >= g AT A" (0] (dgg, cosh 1o, — Gggre %o’ sinh rogl)

pene (3.104)

T 7:6’00//

(dog// cosh Tog" — dOJ,,e sinh Tog! ‘0>

After the multiplication of the terms above, only the terms aa’ will remain.

<y >=Y ATrAT (0| (agg,ago,,e—“’ow sinh r,res” sinh TOU,,> 0)  (3.105)

Y,0° 7Y, 0

After taking the inner product, the expectation value of n, becomes:

< ny >= Z AJ *AJ 1900’ Sinh 0o’ eZpOfr" Sinh TOO.//) 50./0.// (3106)

Y,0 ZIU

To find the expectation value of n,/, we can follow the same steps for the expectation

value of 7.

<y >= Y AL AY (7% sinhrog e sinh rogn) G (3.107)
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To find the expectation value of n,n,, we will follow the same steps. First we write the
< Ty >.

1

B
< nyny >= ZAy z,0 y .Z/ UAy x”ﬁAy/—x”’,ﬁ

) (3.108)
<0| ST T /<A //5/61@/0// + 5 NB/5 /)dm///B//S |0>
~ A - o' % o /* /3//
< Ty >_2Ay o AT UAy Can g A 5100

<O| S’Td;rco”dl”ﬂ’dI/U//dl’m/BHS ‘O) + <O’ ST&lo—/é‘U"ﬁ’5x/’x’&x//’[3’/‘§ ‘O)

The identity operator S.ST can be written between all annihilation and creation operators.
<O| STCLO /SS CALEL)/B/SSTCALOUNSS CL()BHS |0> <0’ S‘J[CALLU/(Sgllglfsm//x/&m///ﬂug |O> (3110)

Using the relations 3.95 and 3.96 we can write the following transformations in terms of

the annihilation and the creation operators.

= <3 Tflgﬁ// 5’) — Ggpr cosh rogr — dg g e'%s” sinh Tog" (3.111)
= (Sngﬁ/S’) — dgﬁ, coshrog — &ggfe’iaoﬂ/ sinh rog (3.112)
= (S Tdogng ) — Qoo COSh T, — dgo,,ew%” sinh rgg (3.113)
= (ST%G S) — aga/ cosh 7o, — Gggre %" sinh g, (3.114)

To simplify, we will not write the summation symbol and the probability amplitudes until

the final result.
(0] [(dga, cosh 79y — Aggre™ 007" sinh 77g,/)

(&2-] ’ COSh TOBI — doﬁ/G_wOB, SiIlh TOﬁ’)
’ (3.115)

10,1

(&OG” cosh Tog! — dl];o“’e sinh 7”00//)

(&0/3// cosh Topr — &gﬁ,,eieoﬂ” sinh TO,B”)] ‘O)
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After the multiplication of the all terms, only the following terms will remain.

(0] dOJ,&I) ﬁ,do(,u&z) g |0) e~ %o 05" sinh rq,, sinh rq gn cosh 1o,y coshrog, +

(0] @oyrag ﬂ/dgg,, dg g |0) e~ Woo’ 100 e =105’ 0195 ginh 1, sinh rg,,, sinh 7o 3 sinh g+

—i00 1 61900//

(& sinh Toor sinh 7’05,/(50//5/ (5015// (quzl

(3.116)
The third term can be easily solved by using number operator unlike the first term. We
will use the commutation relation to move the annihilation a,~ operator to the right of the

creation operator dg - After using the commutation relations, Equation 3.117 becomes:

(001105 57) e~ oo o%0s" ginh T00s Sinh 7o, cosh 7o, cosh rog, +

((SUIO.// 6/3/5// —+ (50/5/1 50”[3’) 6—19001 6190‘7// e_zeoﬁ, 6200*3// sinh Toor sinh Toon sinh Topr sinh 7“0/3//—1—

6—@9001 61900// sinh T0o1 sinh 7”0,6’//50”,6” 50'5" 5w”1”

(3.117)

Thus the expectation value of n,n,, can be written as:

< ﬁyﬁy/ >=
§ o' Ao’ B/* ﬁ”
Ay’gAyfxlﬂjAy/_xlcﬁAy/nB[
(0011051 57) e~ %0a’ %5 sinh 10, sinh 7081 COsh 1oy, cosh g +

(0701083 + 0130 37) e~ 000" o000 o =005 o005 ginh 00+ Sinh 7¢4, sinh rog, sinh rog,+

e—iQOL,/ eie()g// sinh T007 sinh roﬁlléa//ﬁ’ 50'/5" (SIIIII]
(3.118)

Finally, the correlation function of the squeezed state can be written.

Cyy =
o'x po’ B'* B
Z Ay,ﬂAyfx’,UAy’—w”,,BAyOB[
(50.15/ (50.//BII> 6_1900/ 62‘905// Slnh Toor Slnh TOB/, COSh Toon COSh TO,B/ +
—i0y,1 .16

((50./0.// (5[3/5// —+ (50.//5// 60’”ﬁ/) e 00’ 00" 67190’8/ 6100[3// sinh T0oo1 sinh Toon sinh Topr sinh TOB//"‘

—i0,7 62000//

€ sinh Toor sinh 7“05,,60//5/ 50/5// 51”’x’ —

e~ oo’ 00 e =105 o105 ginh Too Sinh ro,~ sinh Tos sinh Tog ((5010// 5{3/5// )]

(3.119)

After simplifying the cancelling terms, we have the following formula for the correlation
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function of the squeezed state.

1

* ’* B
Cyy = ZAZGAZ iy y w”,ﬁAy’,ﬂ[

(05751 0gm5:) € ~00' 000" 0 =W0p' 1905 ginh 1, sinh 79, sinh o sinh rog,+
(3.120)

(00050 1) e~ os’ %5 sinh 1o, sinh 7081 COsh 705 cosh 1o+

6_1/000/ 6IiGOC‘.//

sinh T0o1 sinh TOB/’(SO'HB,(SO'/[?”(;%”:C’]

3.4.1. Results For Vacuum Squeezed States

Figure 3.15 shows us the result of vacuum squeezed state results(rg = 0.2 7r; = 0.2

602061:71')

Squeezed State: t=10, r°=0.2, r1=0.2, 00=1r/3, 0. 1=7r/3
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Figure 3.15.: Squeezed State: t=1079 = 0.2 7, = 0.2 6y = ’” 0, =
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Number of Photons-Squeezed States (10 steps later)
T T T T T T T

0.025 T

0.02 -

0.015 |- sum(Number)=0.08

# of photons

r,=0-2, I‘?D:rr/S, r,=0.2,90, =n/3

0.01
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Figure 3.16.: The figure < n, > distribution for ro = 0.2 and r; = 0.2 after 10 steps later
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3.5. Squeezed Coherent States

Squeezed coherent states (also called displaced squeezed states) can be defined as

displaced squeezed vacuum states with |«|? in phase space.

1
AXy==e "
273

<----->

1
|of? AXy = e

X

Squeezed coherent state.
(Squeezing is in the X9 quadrature)

Figure 3.17.: Squeezed coherent states in phase space. The ellipse describes the uncer-
tainty of the states

1) = D()S(€) |0) (3.121)
The relation between displacement operators and annihilation/creation operators can be

defined as follows:

D(a)lay e D(Q) = Gpp + Qp g (3.122)
D(e)'al ,D(a) =al , + o, (3.123)

To find the expectation value of n,),

<y >= Y ATFAT (01 S(€)'D(a)ia),éoon D(a)S(€) |0) (3.124)

Y,0°7Y,0

The displacement operator is unitary operator thus D DT is an identity operator.
— (0| StDtal_,DDtag,n DS |0) (3.125)

— (0] ST(@},  + 0§ o) (éi0,07 + ctg,0)S |0 (3.126)
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Only the following terms will remain.

— (0] ST(@] 0,07 + Ay 5100075 |0) (3.127)

— (0] 5%}, 10,075 |0) + (0] ST 400,575 10) (3.128)

The first term of the equation above was solved in Section ??. The second part gives us

one. Then the expectation value of n,, becomes
< Ny >= Z A” *A” e~ %0’ sinh 79, e sinh Togu) Ogron + 04(’;70,040’0//) (3.129)
Similar to 7, the expectation values of 7,/ can be written as follows:
<y >= Z Aﬁ * Aﬁ” e~ s sinh Toﬁleieoﬁ” sinh 7“0/3") Sprpn + 04375/610,/3”) (3.130)

To calculate < n,n,, >, we can write the general form of the < n,n, >.

1

PN _ B/ B
< nyny/ >= Z Ag * U A v ﬁA g

y—x,0 y:va

(3.131)
<¢’L| axa’ ( ,,B,aa; o —|— 5 //51(5 " ’)al‘"'ﬂ” |’¢,L>

After writing the initial state as squeezed coherent state, < n,n,, > becomes

1

o B g8
< nyny/ >—ZAU* AG ’ A z, Ay/ix///”g[

y—z,0% y—a',o

(0 5(€)' D(@)!al Lo D()SE) 0) + (3.132)
(0] S(€)' D(@)1a itsrr D(@)S(E) [0) BB

The second term can be easily calculated unlike the first term. We will apply D D' oper-

ator between all annihilation and creator operators.

— (01 S(&) (), + 0 ) (@) g + 0 5) (0,07 + 0. 0) (0,57 + t0,57) S (€) |0) (3.133)

(e sinh 70/ Sinh Fog Sy + 0 100,155 a0
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Only the following terms survive.

A A _ o_/* O_/I 5/* /8//
< nyny/ >= E Ay,O'Ay—CC’,O'Ay'—I”,ﬂAy’,ﬂ[
(0730573 e~ %o ¢%05" sinh rqy, sinh rq g cosh roqy cosh rog+

(0576170831 + 0513105 37) e~ Woa’ %057 o =905 015" ginh 1, sinh rogy sinh o sinh gy,

i@OBII i@oﬁu

- CYaU/OéS’B/@ sinh ran cosh T’U//(Sguﬁw + 048’5, Qg 6_2000' e sinh rar sinh Tt 50'5”
+ 068 /3/060,5//67100"/ e'%q" ginh Tor SINN 751 O g gt — 040’0//040”3//6*’900’ sinh r, cosh 7’5/50/5/
+ a; o 040,5//67190‘3/ 6190"” sinh g sinh 7”0//(55/0//

+ CMS o O./O,J//G_Zeoﬁl 61005" sinh ra sinh Tﬁ//éﬁ/ﬁ//

+ 058’0/ aag/ao,a”aﬂ,ﬁ” + (e—iQOJ/ sinh Toa,ewoﬁu sinh Tog" 50’B” + 063,0/040,,8”)50”B’5z”x’]
(3.134)
The multiplication of < 7, > and < 7,/ > can be written
~ ~ _ o'x qo” AB'* 4B
<y >< Ry >= Y ATIAT AL AT
( e~ o0 ginh 1o €00 sinh rogrSyrgn + 05870_/0[070—//) (3.135)

(e 07" sinh oz e’ sinh rosndg5m + g g0, )

Therefore the correlation function can be written as follows:

y—a’,0y' =z .8 y’ﬁ[

! 1" 4 17
Cpyp =Y ATZAT AL S A)
(50'/ﬁ/50'”,8”) 6774000’ 61’90/3" Slnh T0o1 Slnh 7’05// COSh Toon COSh 7/'05/"‘
(5 6 —ioog/ iech” —ieOB/ i@oﬁu : h : h : h : h

o' 0g131) € €Yo’ ¢ e sinh rg,, sinh 7., sinh g sinh 7o,

— Ozg 01043 g 05" sinh Tg cosh Tgllaa//,g// — Oz(),UHOéO”gNG_ZGO"' sinh r, cosh 7’5/50/5/
+af g gre” P08 s sinh g sinh i 051
—i0,7 e’igoﬁ//

+ 053”3/6(070//6 sinh rgn sinh 74 (50/51/

+ (e—ieocl sinh Too—leiaoﬁ” sinh TOB”(SO",B” + aé,o" aO,ﬁ”)éa”ﬁ’éx”x’]
(3.136)

For rp = 0 and r; = 0, the correlation function becomes only for coherent state, thus
it is obvious that we have the same results with Equation 3.93. Moreover, for ap = 0
and a; = 0 we have the correlation function for the vacuum squeezed state calculated in

Equation 3.120
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3.5.1. Results for Squeezed Coherent States

Squeezed Coherent State: t=10, r0=0, r =0, ag=1, a,=1

0.5
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Figure 3.18.: When the squeezed parameters are chosen zero and « ; = 1, the correlation
figure has no off-diagonal entries. The graph is the same with the correlation
graph of coherent states.

Squeezed Coherent State: t=10, r0=-0.5, r =-0.5, 001=0 a0=1, a, =1
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Figure 3.19.: When the squeezed parameters are chosen negative and the ¢ ; = 0 and and
ap, = 1, the off-diagonal entries appear with positive values.
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Squeezed Coherent State: t=10, r0=0.5, r =0.5, 901=0 a0=1, a, =1
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Figure 3.20.: When the squeezed parameters are chosen negative and the ¢ ; = 0 and and
ap1 = 1, the off-diagonal entries appear with negative values.

Squeezed Coherent State: t=10, r0=3, r =3, 90=0, 91 =, a0=1, a, =1
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Figure 3.21.: When the squeezed parameters are chosen ro; = 3 and the 0p; =
0, m(respectively) and ap; = 1. The correlations increases dramatically
due to r value.




3.6. Thermal States

The correlation function of the thermal states can be written by using the correla-

tion function of the number states.

—nhw —mhw

e *5T ¢ kpT’

Cyy (Thermal) = 7 TC’yy/(Number State) (3.137)
n,m=0
7 = ! 3.138
1 —exp (—hw/kgT) (3-138)
1
A (3.139)

T 11— exp (—hw/kgT")
Where Z and Z’ are the partition functions. Gerry and Knight (2004) % is reduced Planck
constant. w is the angular frequency. T is temperature in terms of Kelvin and kp is the

Boltzmann constant.

3.6.1. Results For Thermal States

Figure 3.22 shows us the correlations of the thermal state for W is close to 1 where

W is defined as kBMT

Thermal State t=10, W ~1, W ~1 «1073
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Figure 3.22.: The figure above shows the correlations for Wy = 0.99 and W; = 0.99 after
10 steps later
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Figure 3.23.: The figure < n, > distribution for W, = 0.99 and W; = 0.99 after 10 steps

later
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3.7. Second Order Quantum Coherence Function

Second order quantum coherence function at a fixed position can be defined with

the following equation. Armstrong and Rohrlich (1966)

(ECVBEO(t+ 1) ED(t + 1)ED(t))

92(7) = o = -
EO ) ED) (EO(t+ 1) EO(t + 7))

(3.140)

Where 7 = t, — t, is the time difference. When 7 — 0, g (7) of a mode £ field can be

reduced to the following form. (Gerry and Knight, 2004, p. 435)

(afalaar) _ (R(R —1)

(2 -
g7 (r—0) = - (3.141)
(afar)’ ()
n?y — (n
g (r —0) < zﬁ>2< ) (3.142)
An)? 2 -
¢ (r = 0) = (An)” + <”2> (n) (3.143)
(n)
An)? —
O 50y =14 B (3.144)
(n)
(An)? for different light sources can be calculated as follows:
(An)? for number state = 0
(An)? for coherent state = (n) (3.145)
(An)?* for thermal state = (n*) + (n)
Thus the g (7 — 0) value can be calculated as
1
g(2) (T — O)fornumber state — 1—-—
n
9(2) (7— — O)for coherent state — 1 (3146)

9(2)<T — O)forthermal state — 2

It can be clearly seen that for n = 1, g® (7 — 0) is zero. For coherent states ¢ (7 — 0)
is always one and independent from 7. Figure 3.24 shows ¢'?)(7) graphs of two different

light sources. Gerry and Knight (2004)
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thermal state
—_ bunching

coherent state

number state n=1
anti bunching

Delay

Figure 3.24.: ¢® (1) measurement of different light sources. Blue, red and green lines
represent coherent, number and thermal states, respectively.

In the second chapter we already calculated (a] al ayay) and (a ay). Thus we can

calculate ¢ (0) values for different light sources in terms of the probability amplitudes

of 1-D quantum walk with Hadamard coin.

=1, =0 =0, ary=1

v

G2-Correlation_
G2-Correlation_

(@ayp=1landa; =0 b ag=0and a1 =1

Figure 3.25.: ¢'®(0) analysis of coherent states for different initial conditions. ¢‘?(0) is
always one as expected.
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Figure 3.26.: ¢'®(0) analysis of coherent states for different initial conditions. ¢g(?(0) is
always one as expected.
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Figure 3.27.: ¢®(0) analysis of the number states for different initial conditions of n
and m. a) shows g?(0) for n=1 and m=0. b) shows ¢'*(0) for n=0 and
m=1. The both initial conditions satisfy the result of g (0) measurement
for single photon sources.
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Figure 3.28.: ¢'®(0) analysis of the number states for different initial conditions of n

and m. a) The figure shows ¢(*(0) for n = 1 and m = 1. This spe-
cial initial condition is known as two-photon interference effect in quantum
optics(Hong-Ou-Mandel Effect). According to the Hong—Ou—Mandel Ef-
fect, Hong et al. (1987) g2 (0) value should be zero for the measurement at
the beamsplitters at y = 1 and ¢y’ = —1 at the time ¢ = 1 or vice versa. Thus
our results satisfy the Hong-Ou-Mandel Effect. b)The figure shows ¢(* (0)
for n = 2 and m = 0. This initial condition can be thought as a number
state source with two photons. According to Equation 3.146, g (0) values
should be 0.5 for the measurement at the beamsplitters aty = 1 andy’ = —1
at the time ¢ = 1. Thus our results satisfy the ¢(®(0) value.
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(@n=1landm=1 b)yn=2and m = 2

Figure 3.29.: ¢'®(0) analysis of the number states at time ¢ = 2 for different initial con-

ditions of n and m. a) g (0) values between different beamsplitters are
shown. We can observe the Hong-Ou-Mandel Effect at the beamsplitters
y = 2and y = —2 at the time ¢ = 2. ¢®(0) value is 0.5 at the beamsplit-
tersy = 2andy = 0ory = —2andy’ = 0. b) Forn = 2and m = 2
g®(0) value is 0.25 at the beamsplitters y = 2 and v/ = —2 at the time
t = 2 and 0.75 at the beamsplitters y = 2 and y’ = 0ory = —2and y/ = 0
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t=2, n=2, m=0 t=2, n=0, m=3
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(@n=2andm =20 b)yn=0andm =3

Figure 3.30.: ¢®(0) analysis of the number states at time ¢ = 2 for different initial con-
ditions, n = 2,m = 0(left) and n = 0,m = 3(right). In both cases g‘* (0)
values satisfy Equation 3.146.
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Figure 3.31.: ¢®(0) analysis of the coherent states at time ¢ = 2 for different initial
conditions of ag and a;. ¢ (0) values of all different scenarios are always
one. This result is expected because, ¢(*(0) value for any coherent states is
always one and independent from the 7.
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Figure 3.32.: ¢®(0) analysis of the vacuum squeezed states at time ¢ = 2 for different
initial conditions of 7 and 6y ;. a) The figure shows us the result of a

specific initial condition of vacuum squeezed states. When r, = —ry and
o1 = 0orrg =7y and 6, — 0y = m, g (0) value is calculated one at the
beamsplitters y = 1 and ¢y’ = —1 or vice versa. b) The figure shows us the

result of a arbitrary r, and ; with the same 6 ;.
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3.8. Discussion

According to the results of this thesis, we can say that in a photonic quantum walk
system, the statistics of the initial photons can be defined by the correlation analysis which
is calculated by using the analytical solution of the 1-D quantum walk with Hadamard
coin. Besides, we explained the second order quantum coherence function in terms of
the probability amplitudes of the 1-D quantum walk with Hadamard coin. It can be say
that the ¢(?)(0) measurement can be the experimental approach of the correlation function

Cyy'-
Oy =< Nyl > — < Ny >< My >

/O 5 0) = (afa)aray) (3.147)
.2
(ajan)
If we consider ¢(®(0) value of the coherent states
9(2) (T — 0)for coherent state — 1 (3148)
At At A
GGG
1= M (3.149)
(@, an)
2
(afar)” = (ajafayar)
’ o (3.150)

For the different beamsplitters(y # 1/ ) the correlation function becomes ¢ (0) measure-
ment. If we look the Figures 3.10, 3.11 and 3.12, it can be clearly seen that the values are
zero for different y and ¢ values. However, the correlation function can give us informa-

tion about the variance of the walk. For y = v/ the correlation function becomes
Cyy = Var(y) =< i, > — <, >* (3.151)

Therefore we can see the variance of the walk and it satisfies the ballistic behaviour
of the 1-D quantum walk. In the classical case, the standart deviation of the walk is o(t) =
V/t but in the quantum case the standart deviation is about o(t) = 0.54¢ Portugal (2013)
Venegas-Andraca (2012). The Figure 3.33 shows us the comparison of the probability
distribution of 1-D quantum walk with initial coin state is zero and the correlation function
of the coherent state with oy = 1 and oy = 0. If we look the correlation function of the

coherent state with oy = 1 and a; = 0, the maximum value of the variance is about \/%
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Coherent State t=10, a=1, o, =0
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(b) The correlation function of the coherent state
with the values agg = 1 a7 = 0 at the time
t=10,

(a) Probability distribution of 1-D quantum walk
(with initial coin state is zero)

Figure 3.33.: Comparison of the variances
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APPENDIX A

CODES FOR 2ND CHAPTER

A.1. Simulations

tic

clear

close all

up = anyS(0,2);

dn = anyS(1,2);

Nstart = 7;

Nstep = 6;
coin = 'Grover';
initCoinState = Bell (0);

tMax = 2;

initCoinPure = isvector (initCoinState);
pureness of initial coin state
switch coin
case 'Hadamard'
csco = hadamard (4)/2;

case 'Kempe'

csco = kron([1 1i; 1i 1],[1 1i;
case 'Grover'
csco = .5« ( ones(4,4) - 2+diag(ones(4,1))

case 'Fourier'
csco = dftmtx(4)/2;

otherwise

error ('Coin operator can be Hadamard, Grover or Fourier');

end

figure

1Text = {'AX-BY', 'A - B', 'X - Y', 'A -

slt = size (1lText);

tText = ' step ';

flag indicating

11 11)/2;



29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

for tt = 1l:s1t (2)

tText = sprintf ('%$s%$9s ',tText, 1Text{tt});
end
fprintf ('$s\n', tText) ;

eMax = slt(2);

vl = zeros (4,tMax);

vc = zeros(4,4,tMax);
E = zeros (tMax,eMax) ;
Ccs = zeros (tMax,1);

N = Nstart;
initPositionState = kron( anyS (round(N/2)-1,N),
anyS (round (N/2)-1,N) );
if initCoinPure
icDM = initCoinStatexinitCoinState’';
ps = kron( initCoinState, initPositionState );
else
icDM = initCoinState;
end
ipDM = initPositionStatexinitPositionState’;

rhoABXY = kron( icDM, ipDM );

C = kron3( csco, eye(N), eye(N));
WL = diag(ones(1l,N-1),-1);
WL(1,N) = 1;

WD = WL;

WR = diag(ones(1,N-1),1);

WR(N,1) = 1;

WU = WR;

W = kron3( kron (up,up)*kron(up,up)', WU, WR )...
+ kron3( kron(dn,dn) *kron(dn,dn) "', WD, WL )...
+ kron3 ( kron (up,dn)*kron(up,dn)', WU, WL )...
+ kron3( kron (dn,up) *kron(dn,up) ', WD, WR );

U=W * C;

for tt = 1:tMax

rhoAB = partial_trace( rhoABXY , [ 1 1 0 0],
rhoAX = partial_trace( rhoABXY , [ 1 0 1 0],
rhoAY = partial_trace( rhoABXY , [ 1 0 0 17,

[
[
[

2 2NN
2 2NN

2 2 NN

]
]
]

)7
)i
)i
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67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

rhoXyY = partial_trace( rhoABXY , [ 0 0 1 1], [ 2 2 N N

rhoAXY = partial_trace( rhoABXY , [ 1 0 1 1], [ 2 2 N N

[ ve(:,:,tt), v1l(:,tt) 1 = eig(rhoAB, 'vector');

E(tt,1) = S_Von_Neumann (rhoXY);

Ccs (tt) = concurrence (rhoAB);

E(tt,2) = logarithmic_negativity (rhoAB, [1 0], 2 2

E(tt,3) = logarithmic_negativity (rhoXYy, [1 0], N N

E(tt,4) = logarithmic_negativity (rhoAX, [1 0], 2 N

E(tt,5) = logarithmic_negativity (rhoAY, [1 0], 2 N

E(tt,6) = logarithmic_negativity (rhoAXY, [1 0], 2 NxN

pDist = reshape(diag(rhoXY),N,N)"';

imagesc ([-N/2 N/2], [+N/2 -N/2], pDist);

xlabel ('X position (Probability Disturbition after 25
Steps) ');

ylabel ('Y po
title(sp

drawnow;

disp( [

if initC

ps =

sition');

rintf ('%$s coin',coin));

tt, E(tt, )] )i

oinPure

Uxps;

rhoABXY = psxps';

else
rhoA

end

if tt >

if i

else

end

a =

BXY = UxrhoABXYxU';

(N-1)/2
nitCoinPure

t0ld

pure2tensor(ps, [ 2 2 N N ]

told

dm2tensor (rhoABXY, [ 2 2 N N

N + Nstep;

Nstep/2 + 1;

)i

]

)i

]
]

)i
)i
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105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

b = N - Nstep/2;

if initCoinPure
tNew = zeros(2,2,N,N);
tNew(:,:,a:b,a:b) = t0ld;
pPs = tensor2pure (tNew) ;
rhoABXY = ps*ps';

else
tNew = zeros(2,2,2,2,N,N,N,N);
tNew(:,:,:,:,a:b,a:b,a:b,a:b) = t0ld;
rhoABXY = tensor2dm (tNew) ;

end

C = kron3( csco, eye(N), eye(N));
WL = diag(ones(1,N-1),-1);
WL(1l,N) = 1;

WD = WL;

WR = diag(ones(l1,N-1),1);

WR(N,1) = 1;

WU = WR;

W

kron3 ( kron (up,up) *kron(up,up) ', WU, WR )...
+ kron3( kron(dn,dn)*kron(dn,dn)"', WD, WL )...
+ kron3( kron (up,dn) xkron (up,dn) "', WU, WL )...

+ kron3( kron (dn,up)+xkron(dn,up)', WD, WR );

Uug=Wx* C;
end
end
figstyleSZ {'77'1‘7'I'7'I'7-‘I'7*'I'7-‘};
figure
hold on

for tt = l:eMax
plot (l:tMax,E(:,tt), figStyles{tt});
end
hold off
title(sprintf('%$s coin',coin));
xlabel ('Time') ;
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145

146

ylabel ('"Entanglement') ;
legend (1Text, 'Location',

toc

'northwest');
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APPENDIX B

CODES FOR 3RD CHAPTER

B.1. Number States

tic

clear

close all

t=1; %number of steps, meaning time.
x = linspace (-t,t,2+t+1);

Plx_t = zeros(length(x));

POx_t

zeros (length(x));

Psi0O0

Il
—_
—
~

PsiO1l

Il
—_
—
~.

PsilO

Il
—
—
~.

Psill

I
—_
-
~.

TotalO =0; %calculate total probability of probablity amplitude
Totall =0; %calculate total probability of probablity amplitude

Total2 =0; %calculate total probability of probablity amplitude

funcminus = @(kk) (1/2)* (1 + cos(kk)/ (sqgrt (1l+(cos(kk))"2)));

funccplus @(kk) (1/2)*(1 - cos(kk)/(sgrt(l+(cos(kk))"2)));

Sthe probability amplitudes in momentum space

A00 = @ (kk,tt,xx,wk) (1/(2+pi))=*(l + cos(kk)/(sqrt (1+(cos(kk))"2)))...
xexp (~1ix (wkxtt — kk*xx));

A0l = @ (kk,tt,xx,wk) (1/(2+pi))~*(exp(lixkk)/ (sqrt (1+ (cos(kk)) 2)))...
xexp (-1lix (wkxtt — kk*xx));

A10 = @(kk,tt,xx,wk) (1/(2xpi))* (exp(li*xkk*xx))* ((funcminus (kk)*...
((sqrt (2) xexp (-lixwk* (tt-1)-1ixkk))-exp(-lixwk*tt)) +

(funccplus (kk) ...

xexp (lixpixtt+lirwkxtt-1ixkk) x (-sqgrt (2) xexp (-1li*wk)-exp(lixkk)))));

All = @ (kk,tt,xx,wk) (1/(2+pi))« (exp(lixkk+xx))* ((funcminus (kk)...

*exp (—lixwk*tt) «(sqrt(2) ...
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*exp (lixwk)-—exp (1lixkk) )~ (sgrt (2) xexp (-1lixwk) ...
—exp (-1ixkk))) + (funccplus (kk)*exp (li*xpi*stt+lisxwk*tt)x(-sgqrt(2)...

xexp (-lixwk) —exp (lixkk))x (-sqrt (2) xexp (lixwk)-exp (-1lixkk))));

A=zeros (2,2, length(x));
for 7 = 1:2:1length(x)
$inverse fourier transforms of the results in momentum space
A_00_x = integral
(@(k)AOO (k,t,x(73),w_k(k)),-pi,pi, 'ArrayValued', true);
A_0l1_x = integral
(@(k)AOL (k,t,x(]J),w_k(k)),-pi,pl, 'ArrayValued', true);
Psi00(3j)= A_00_x;
PsiOl(j)= A_01_x;
POx_t (j) = (abs(A_00_x)) "2 + (abs(A_01_x))"2;

TotalO = TotalO + POx_t (J);

A_10_x = integral
(@(k)A10(k,t,x(]J),w_k(k)),-pi,pi, 'ArrayValued', true);

A_11_x = integral
(@(k)A11(k,t,x(]J),w_k(k)),-pi,pi, 'ArrayValued', true);

PsilO(3j)= A_10_x;

Psill(j)= A_11_x;

Plx_t(j) = (abs(A_10_x)) "2 + (abs(A_11_x))"2;

Totall = Totall + Plx_t(3);
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A(1l,1,1:end)=Psi00; %mapping probability amplitudes to the 3D
A(l,2,1:end)=PsiO1;

A(2,1,1:end)=PsilO;

A(2,2,1l:end)=Psill;

$Number States Parameters

C=zeros (length (x), length (x
-t:t
-t:t
for j= max(i,l)-t:min(i, 1)+t

for s=1:2
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101
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for b=1:2
for sp=1:2
for spp=1:2
for bp=1:2

for bpp=1:2

fi=i+t+1;

fl=1+t+1;

C
con’ (A(bp,b, £_i(1,7,t)))*A(bpp, b, £1) % ((11) " (sp-1) * (-1i) " (spp-1) ...
x(14) ~ (bp-1) % (-11) °

( n*x(n—-1) % (sp==1) * (spp==1) » (bp==1) * (bpp==

nxmx ( (sp==1) * (bp==

* (bpp==1) )

( (n* (sp==1) * (spp==1) +m* (sp==2) * (spp==2) ) * (n* (bp==1) * (bpp==1) +m. . .

* (bp==2) » (bpp==2)) )
( nx (sp==1) * (bpp==
end
end
end
end

end
end
end
end

end

TotalO

Totall

figure

bar3 (real (C));
colormap summer;
xlabel y;

ylabel y~\prime;
zlabel C_{yy"\prime};
xticklabels ({'-1" ,

lOV,

(bpp-1)

) = (3==0)

) * (spp==bp)

1))

correlation—number state

) x (...

) + (sp==2) % (bp==1) ) % (

+mx (m—1) * (sp==2) x (spp==2) * (bp==2) * (bpp==

+...

+ mx* (sp==

conj(A(sp,s,fi))*A(spp,s,f_1(i,J,t)) ...

) ...

(spp==1) » (bpp==2) + (spp==2) . ..

) —...

) * (bpp==2) * (spp==Dbp)

)

)

4
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104

yticklabels ({'-1"

toc

4

IOV,

1))
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B.2. Coherent States

The codes for the probability amplitudes are same with number states. Therefore

only correlation function part will be shown.

$Coherent States Parameters

alpha (1)=1;

alpha (2

)

:1;

C=zeros (length(x),length(x));

for

for

i =

1 =

-t:t

-t:t

for j= max(i,l)-t:min (i, 1)+t

for s=1:2

for b=1:2

((11) " (sp=1) % (=1i) " (spp-1) * (11) " (bp-1) % (-11) "

for sp=1:2

for spp=1:2

for bp=1:2

for bpp=1:2

correlation-coherent states

*conj(A(sp,s,fi))*A(spp,s,f_1i(i,j,t))...

xconj (A (bp,b, £_1(1,3,t))) *A (bpp,b, £1) ...

*

end
end

end

conj(alpha(sp)) * alpha (bpp)* (spp==bp));

end

end

end
end
end

end
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B.3. Squeezed States and Squeezed Coherent States

The codes for the probability amplitudes are same with number states. Therefore

only correlation function part will be shown.

Q

1 % Squeezed Coherent States Parameters
2 theta(l)= 0 ;

3 theta(2)= pi/3 ;

4 r(1)=0.2;

5 ¥r(2)=0.2;

6 alpha(l)=1;

7 alpha(2)=1;

8 C=zeros (length(x),length(x));

9 for 1 = -t:t

o for 1 = —-t:t

i for j= max(i,l)-t:min(i, 1)+t

12 for s=1:2

13 for b=1:2

14 for sp=1:2
15 for spp=1l:2
16 for bp=1:2
17 for bpp=1:2

19 fi=i+t+1;
20 fl=1+t+1;
21 %$%%%———— correlation-vacuum squeezed states ———-%%%%

» C(fi,fl)=C(fi,fl)+

23 conj(A(sp,s,fi))*A(spp,s,f_i(i,j,t))...

# *xconj (A(bp,b,f_i(1,3,t)))*A(bpp,b,fl)*...

35 (=11) " (sp~1) x (11) " (spp-1) » (=11) " (bp-1) % (11) " (bpp-1) x (. ..

% (exp(lixtheta (bpp))rexp(-lixtheta(sp))rexp(-lixtheta(bp))*...

27 exp(lixtheta(spp))*sinh(r(sp))...

28 *sinh (r (bpp)) *sinh (r (spp)) *sinh (r (bp) ) *. ..

2 (sp==bpp) * (spp==bp) * (j==0)) +...

30 (exp(lixtheta (bpp))rexp(—-lixtheta(sp))*sinh(r(sp))*sinh(r (bpp))*...
31 cosh (r (spp))*xcosh (r(bp))* (sp==bp) * (spp==bpp) * (j==0)) +...

2 (exp(-lixtheta (sp))rexp(lixtheta (bpp))*sinh(r(sp)) *sinh(r (bpp))*...

33 (sp==bpp) * (spp==bp) ) );



34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

conj(A(sp,s, fi))*A(spp,s, f_i(i,3,t))...

xconj (A (bp,b, £_i(1,3,t))) *A(bpp, b, £1) *. ..

(-11) " (sp—1) * (11) " (spp—1) * (-11) " (bp—-1) * (11i) " (bpp-1) * (. ..
(exp (lixtheta (bpp)) xexp (-lixtheta(sp)) ...

xexp (-lixtheta (bp)) rexp (lixtheta(spp)) ...

*sinh (r (sp)) *sinh (r (bpp)) *sinh (r (spp)) ...
xsinh (r (bp))* (sp==bpp) * (spp==bp) * (j==0)) +...
(exp (lixtheta (bpp)) xexp (-lixtheta(sp)) ...

*sinh (r (sp)) *sinh (r (bpp) ) *cosh(r (spp)) . . .
xcosh (r (bp))* (sp==bp) * (spp==bpp) * (3==0)) +...
(exp (-lixtheta (sp))xexp(lixtheta (bpp)) ...

*sinh (r (sp)) *sinh (r (bpp)) * (sp==bpp) *. . .

(spp==bp) + conj(alpha (sp)) +alpha (bpp) * (spp==bp)) ...
- alpha (spp) *alpha (bpp) xcosh (r (bp)) . . .

*sinh (r (sp)) *exp (-lixtheta (sp)) * (sp==bp) * (j==0)
+ conj(alpha (sp)) *alpha (bpp) ...

xsinh (r (bp) ) *sinh (r (spp) ) xexp (~lixtheta (bp))*. ..
exp (lixtheta (spp)) » (bp==spp) * (j==0) . ..

—conij (alpha (sp)) *conj (alpha (bp)) ...

*cosh (r (spp) ) *sinh (r (bpp) ) xexp (1ixtheta (bpp)) . . .
* (spp==bpp) * (J==0) . ..

+ conj(alpha (bp)) *alpha(spp) ...

*sinh (r (sp)) *sinh (r (bpp)) xexp (-lixtheta(sp)) *. ..

exp (lixtheta (bpp)) * (sp==bpp) * (j==0) );

end
end
end
end
end
end
end
end

end
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B.4. Thermal States

The codes for the probability amplitudes are same with number states. Therefore

only correlation function part will be shown.

1 % Thermal States Parameters

2 T

5000;

3 Tl= 5000;

4 w=2+pix1.042%10" (14);

5 wl=2%pi*x600000x10~(9);

6 k = physconst ('Boltzmann');
7 h_ b =1.054571%10" (-34);

s beta=1/ (k*T);

9 betal=1/(kxT1);

10 W=(h_bxw)/ (kxT);

1 Wl=(h_bx*w) / (kxT);

2 % W =0.99;

B3 % W1=0.99;

11 Z=exp(l/ (l-exp (-1*W)));

15 Zl=exp ((1)/ (l-exp (-1*W1)));

17 for nn=0:20
18 for mm=0:20
19 for i = —-t:t
20 for 1 = -t:t

21 for j= max(i,l)-t:min(i, 1)+t

2 for s=1:2
23 for b=1:2
24 for sp=1:2
25 for spp=1:2
26 for bp=1:2
27 for bpp=1:2

28
29 fi=i+t+1;

30 fl=1+t+1;

31 %%%%———— Thermal State ————-%%%%
2 C(fi,fl)=C(fi, fl)+

33 ( (exp(-Wxnn)/Z)* (exp (-Wl*mm)/Z1))



*COl’lj (A(Sp/ s, f1i)) *A (spp, s, f_i(i, j/t>) ...
xconj (A(bp,b,f_i(1,3,t)))*A(bpp,b, fl) ...
* (=11) " (sp-1) * (11) " (spp—1) » (=11) " (bp—1) * (1i) " (bpp-1) *. ..

( ( nnxmmx* (sp==1) % (spp==1) x (bp==2) » (bpp==2) . ..
+ nn*mm* (sp==2) * (spp==2) * (bp==1) * (bpp==1) ...
+ nnxmmx (sp==1) » (spp==2) » (bp==2) * (bpp==1)
+ nnsmm* (sp==2)  (spp==1) * (bp==1) * (bpp==2) . . .
— nnxmmx (sp==1) x (spp==1) * (bp==2) x (bpp==2) . ..
-~ nnxmmx (sp==2) * (spp==2) * (bp==1) % (bpp==1) . . .
— nnx (sp==1) * (spp==1) * (bp==1) % (bpp==1) . ..
- mmx (sp==2) x (spp==2) » (bp==2) » (bpp==2) ) * (j==0)

+ (nnx (sp==1) * (bpp==1) * (spp==Dbp) . . .

+ mm* (sp==2) * (bpp==2) * (spp==Dbp) ) )

end
end
end
end
end
end

end
end
end
end

end



