DESIGN OF AN OFFLINE OTTOMAN
CHARACTER RECOGNITION SYSTEM FOR
TRANSLATING PRINTED DOCUMENTS TO

MODERN TURKISH

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Electronics and Communication Engineering

by
Naz KUCUKSAHIN

December 2019
IZMIiR

ACKNOWLEDGMENTS

First and above all, | would like to express my sincere gratitude to my thesis
supervisor Assist. Prof. Dr. Mehmet Ziibeyir UNLU for giving me the chance to work
under his guidance. His enthusiasm and immense knowledge have deeply inspired me.

Secondly, I owe my deepest gratitude to my beloved parents, Serife Nur
OZBATIR and Recep Semih OZBATIR. They have always been my biggest source of
motivation.

| am deeply grateful to my dear husband, Oguzhan KUCUKSAHIN who kept me
going with his encouragement and never-ending patience. | could never have completed
my thesis studies without his continuous support.

Finally, 1 must thank to my friends and my colleagues who motivate me

throughout my thesis studies.

ABSTRACT

DESIGN OF AN OFFLINE OTTOMAN CHARACTER RECOGNITION
SYSTEM FOR TRANSLATING PRINTED DOCUMENTS TO
MODERN TURKISH

Optical character recognition (OCR) is one of the most studied topics for many
years. As a result of these studies, systems developed especially for the Latin alphabet
have become more accurate even for handwritten texts. However, there are very limited
studies on Ottoman OCR systems in the literature and it is still a subject of interest due
to the complexity of the language in grammar, writing and spelling.

In this thesis, it is aimed to design an offline OCR system that recognizes Ottoman
characters using deep convolutional neural networks. The proposed work consists of
several steps such as image processing, image digitization and character segmentation,
adaptation of inputs to the network, training of the network, recognition and evaluation
of results.

Firstly, a character dataset was created by segmenting text images of different
lengths that was selected among scanned samples of various Ottoman literature from the
digital database of Turkish National Library. Two convolutional neural networks of
different complexity were trained with the created character dataset and the relationship
between recognition rates and network complexity was evaluated.

Secondly, using the Histogram of Oriented Gradients and Principal Component
Analysis, the features of the created dataset were extracted and the Ottoman characters
were classified with k-Nearest Neighbor Algorithm and Support Vector Machines which
are widely used classification methods in the literature.

The performed analyzes have shown that both networks provide acceptable
recognition rates compared to the conventional classifiers, however complex deep neural

network showed better accuracy and lower loss.

OZET

BASILI DOKUMANLARIN MODERN TURKCEYE CEVRILMESI
ICIN CEVRIMDISI OSMANLICA KARAKTER TANIMA SiSTEMI
TASARIMI

Optik karakter tanima yillardir lizerinde en ¢ok calisma yapilan konulardan bir
tanesidir. Bu ¢alismalarin sonucunda, 6zellikle Latin alfabesi i¢in gelistirilen sistemler el
yazist metinler ic¢in bile iyi tanima sonuglar1 gosterir hale gelmislerdir. Ancak
literatiirdeki Osmanlica optik karakter tanima sistemleri igin yapilan ¢alismalar oldukg¢a
sinirlidir. Gramer, yazma ve heceleme gibi konulardaki karmagsikligindan dolay1
Osmanlica, optik karakter tanima alaninda ilgi ¢ekiciligini hala korumaktadir.

Bu ¢alismada, derin evrisimsel sinir aglart kullanilarak Osmanlica igin ¢evrimdisi
karakter tanima sistemi tasarlanmasi amaglanmistir. Yapilan calisma, goriintii isleme,
taratilan metinlerin sayisallastirilarak karakter parcalarina ayrilmasi, Osmanlica karakter
veri setinin olusturularak sinir agina uyarlanmasi, sinir aginin egitilmesi, karakterlerin
taninmasi ve karakter tanima oranlarinin degerlendirilmesi adimlarindan olugmaktadir.

Bu amagla ilk olarak, Milli Kiitliphane’nin sayisal veritabanindan secilmis cesitli
Osmanlica eserlerden alinan farkli uzunluktaki taranmis metin gériintiileri boliitlenerek
karakter veri seti olusturulmustur. Farkli karmasikliktaki iki evrigimsel sinir agi,
Olusturulan karakter seti ile egitilmis ve tanima oranlar ile ag karmasiklig iliskisi
degerlendirilmistir.

Daha sonra Yonelimli Gradyanlarin Histogrami ve Temel Bilesen Analizi
kullanilarak olusturulan veri setinin 6znitelikleri ¢ikarilmis ve Osmanlica karakterler bu
oznitelikler kullanilarak literatiirde yaygin olarak uygulanan simiflandirma
yontemlerinden, K-En Yakin Komsu Algoritmasi ve Destek Vektor Makineleri ile
siniflandirilmastir.

Yapilan performans analizleri, her iki agin da geleneksel siniflandiricilara kiyasla
daha iyi tanima oranlarina sahip oldugunu géstermis, bununla beraber karmasik derin

evrisimsel sinir aginin en yiiksek tanima oranina sahip oldugunu ortaya koymustur.

TABLE OF CONTENTS

LIST OF FIGURES ..ot viii
LIST OF TABLES ...ttt ettt ne e Xi
CHAPTER 1. INTRODUCTION TO OPTICAL CHARACTER RECOGNITION 1
1.1. OCR Studies on the Ottoman Alphabet in the Literature 2

1.2. Deep Learning-Based Ottoman and Arabic Character
Recognition Approaches in the Literatureccccooceveevieiie e veeeenn, 4
1.3. The Aim Of the TheSIS......ccviiiiiee e 5
1.4. The Organization of the TheSIS.........ccccviiiiiiiiiie e, 6
CHAPTER 2. OTTOMAN ALPHABETooiiiiiiiiieieese et 7

CHAPTER 3. DEEP LEARNING AND CONVOLUTIONAL NEURAL

NETWORKS ...ttt 12
3.1. Introduction to Deep Learning........cccccvevveveevieeieieesesieseese e 12
3.2. Concept of Artificial NEUIONcccooeiiiiiiiieceee e 14
3.3. ACHIVAtiON FUNCHIONSoiieiiieic e 16

3.3.1. Threshold FUNCLION.........cccviieiieiee e 16

3.3.2. SigMOid FUNCLIONooiiiiiecicce e 17

3.3.3. Rectifier FUNCLIONccociiieee e 17

3.3.4. Hyperbolic Tangent FUNCLIONcccoeviiieiieiecc e 18
3.4. NetwOork ArChiteCtUIESoovveeeeieceee e 19

3.4.1. Feedforward Neural Networks ..o 19

3.4.2. Recurrent Neural NetwWOrKScccoeiieiiiiniieieeeseee e 19
3.5. Learning AIQOrithms ... 21

3.5.1. Supervised Learning........cccccvereeiieeiieiieesiesneesee e 21

3.5.2. Unsupervised Learning........cccccvueevuveiieiiieesie e sie e esiee e sine s 23

3.5.3. HYDIrid Learningccccvevveiieeiiie e esee e 24
3.6. Convolutional Neural NetWOrKSccccovieiiiiienieneiie e 24

Vi

3.6.1. CONVOIULION LAYETccveeecieieee e 24

3.6.2. RELU LAYEN ...eiiiiiiiciiie et 26

3.6.3. POONING LAYET ...t 27

3.6.4. FIattening LaYer........cooviiiieieieieese e 28

3.6.5. Fully ConNECted LAYcceiviiiiriiiiisieeieeeiee e 29

3.6.6. DIOPOUL.....ctiiiiiiiieice s 29

3.6.7. Data AUGMENtAtION.........cccveveirerieeeece e 30

CHAPTER 4. EXPERIMENTAL WORK AND RESULTScccooviiiiiiieeceieen, 32
4.1, Creating DataSet.........cccceiieiieeie e 32

4.1.1. Line Segmentationccccccevieieeieieese e 36

4.1.2. Character Segmentation..........ccccovvevveiieiisie e 40

4.1.3. Ottoman Alphabet Datasetcovrvriiiieieiene e 43

4.2. Building Deep Convolutional Neural Network Model........................ 46

4.2.1. CNN MOGEI-L.....coiiiiiiieiieee e 48

4.2.2. CNN MOEI-TT ..ot 54

4.2.3. Comparing CNN Models to Conventional OCR Methods............ 60

CHAPTER 5. CONCLUSIONS AND FUTURE WORK........cccooiiiiieciee e 68
REFERENGCES ..ottt sttt sttt st ene e 70

Vi

LIST OF FIGURES

Eigure Page
Figure 1. Types of Optical Character ReCOgnitionccccvvveieeieiiieieeie e 1
Figure 2. Example of Thuluth Writing Style ..o 10
Figure 3. A BIologiCal NEUIONcc.oiviiiiiiiiiieieee s 12
Figure 4. Relation between Al, Machine Learning and Deep Learning............c.c.coc...... 13
Figure 5. Artifical NEUIONc.ooieiice e 14
Figure 6. Layers of Deep Neural NEtWOrk ... 15
Figure 7. Threshold FUNCHION.......c.ooiiiiiiiiiceceee s 16
Figure 8. SIgmoid FUNCLIONccoeiiiiiece e 17
Figure 9. Rectifier FUNCLION.........c.oovii e 18
Figure 10. Hyperbolic Tangent FUNCEION..........ccoveiiiiiiiiicesceeeee s 18
Figure 11. Fully Connected Feed-Forward Neural Networkccooovveninininninnienn, 20
Figure 12. Recurrent Neural Networks with Hidden Neuronsccccccovveveeiieieennnn, 20
Figure 13. Representation of B&W and Colored IMages..........ccccevveveiiieieeieccieieeennan, 25
Figure 14. Example of Convolution OPerationcccceoevirineeieiene s 26
Figure 15. Rectifier Function as Activation FUNCEIONcocvviiiiini i 27
Figure 16. Example of Max Pooling Operation............ccccccevveveiiieieesie e 28
Figure 17. Example of Flattening Operationccccccviveiieiecie s 28
Figure 18. Example of Dropout OPErationccocerereririenisieeieiesie e 30
Figure 19. Example of a Convolutional Neural Networkcccoceveviiiniiininicienn, 30
Figure 20. Architecture of the Experimental Workccocoooviiiiininiiiecens 32
Figure 21. Example of Ottoman TeXE........ccoiieiiiieiiee e 33
Figure 22. Same Text in Grayscale FOMMccccovviiiiie i 34
Figure 23. Binarized FOrm of the TeXT ..o 35
Figure 24. Horizontal Projection of FIQUIe 23.........cccooiiiiiiiiiiieieese s 36
Figure 25. Lines Extracted from the Text in Figure 23 (CONL.) ...cooovvevieiiieiiieciie e 40
Figure 26. Vertical Projection of Line 1 in FIgure 25ccccooeiie i 41
Figure 27. Some of the Isolated Characters of Line 1ccccooviiiiiiniieniniseeeeiees 41
Figure 28. Some of the Interconnected Characters of Line 1........cccoocvvviiiiiineniniienn, 41
Figure 29. Segmentation Example of Interconnected Characters............cccccoevvevvveinenne. 42

viii

Figure
Figure 30.

Figure 31.
Figure 32.

Figure 33.
Figure 34.

Figure 35.
Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.
Figure 42,

Figure 43.
Figure 44.

Figure 45,
Figure 46.

Figure 47.

Figure 48.
Figure 49.
Figure 50.
Figure 51.

Page
Segmentation of Interconnected Characters..........ccovvvvevenieenieenesie e 43
Layer Structure of the CNN Model-1ccooviiiiiiiiice e, 48
Accuracy Results of the CNN Model-1 (Dataset Separated
DY 8096 10 2090)vevivieriieeiere et e 50
Loss Results of the CNN Model-I (Dataset Separated by 80% to 20%)....... 50
Accuracy Results of the CNN Model-1 (Dataset Separated
DY 75% 10 259%0)vevevieieiieieiesiesiee sttt 51
Loss Results of the CNN Model-I (Dataset Separated by 75% to 25%)....... 51
Accuracy Results of the CNN Model-1 (Dataset Separated
by 75% to 25%, EPOCh=100)ccoireiiiiieie e 52
Loss Results of the Proposed CNN (Dataset Separated
by 75% t0 25%, EPOCN=100)ccceririeiiieierieniese s 52
Confusion Matrix of the CNN Model-I (Dataset Separated
DY 8090 10 2090)vevvevieieiieieiesiesie st 53
Confusion Matrix of the CNN Model-1 (Dataset Separated
BY 75% 10 25%6)ccveveereereessesseeeisssessesssessesseessesssesss st 54
Confusion Matrix of the CNN Model-1 (Dataset Separated
by 75% to 25%, EPOCh=100)cccoiveiieiieie e 55
Layers of the CNN Model-11...........coooiiieiee e, 56
Accuracy Results of the CNN Model-11 (Dataset Separated
DY 809 10 2090)veveeieriieeiete sttt 58
Loss Results of the CNN Model-11 (Dataset Separated by 80% to 20%) 58
Accuracy Results of the CNN Model-11 (Dataset Separated
DY 75% 10 259%0)veieeieieiieieie ettt 59
Loss Results of the CNN Model-11 (Dataset Separated by 75% to 25%) 59
Confusion Matrix of the CNN Model-11 (Dataset Separated
DY 8090 10 2090)vevevieieiieieiecieiee et 60
Confusion Matrix of the CNN Model-11 (Dataset Separated
BY 75% 10 25%6)ccveveereereeeeseeesisseeseess st 61
Histogram of Oriented Gradients of Letter “D”........cccoeviiiiiiiiiiicii 62
Histogram of Oriented Gradients of Letter “I”...........cccooeiiiiiiiniiiiennn, 62
Histogram of Oriented Gradients of Letter “t”.........ccccovviiiiiiiiiiiiinicnnn, 63
Histogram of Oriented Gradients of Letter “y”.......ccccoeviiiiiiiiniiicneneen 63

Figure Page

Figure 52. PCA of Letter "b" when the variance is 95%, 90% and 50%........................ 64
Figure 53. PCA of Letter "I" when the variance is 95%, 90% and 50% 64
Figure 54. PCA of Letter "t" when the variance is 95%, 90% and 50% 64
Figure 55. PCA of Letter "y" when the variance is 95%, 90% and 50%...............c........ 65
Figure 56. Selection of Hyperplane Between Two Classes in SVMcccocvevvieinenn, 66

LIST OF TABLES

Table Page
Table 1. Representations of Numbers in Ottoman............ccceccveveiie i 8
Table 2. The Ottoman Alphabet and Its Equivalent in Latin............ccccoeveviieinicieecee, 8
Table 3. Characters Distributed to 24 Classes for the Presented Dataset....................... 44
Table 4. Architecture of the CNN Model-1........cccooiiiiiie e 49
Table 5. Architecture of the CNN Model-11........ccccoiiiiiiiiiii e 57
Table 6. Recognition Results of the k-NN and SVM CIasSifiersc.cccovvviveieinenen, 67
Table 7. Recognition Results of the CNN Model-1 and CNN Model-I1......................... 67

Xi

CHAPTER 1

INTRODUCTION TO OPTICAL CHARACTER
RECOGNITION

Optical character recognition (OCR) is the field of identifying characters that

belong to certain alphabet from its source media. Image of a document is the main source

of OCR systems and it may contain machine printed text, handwritten text or even text

written in cursive script. An OCR system aims to extract characters and convert them into

a form such that computers can understand text information within any document image.

As shown in Figure 1, there are two types of OCR systems in general, offline

systems and online systems.

OPTICAL CHARACTER RECOGNITION

Y

A 4

OFFLINE RECOGNITION

ONLINE RECOGNITION

PRINTED TEXT

HANDWRITTEN TEXT

.

HANDWRITTEN TEXT

Figure 1. Types of Optical Character Recognition

In online OCR systems, recognition is achieved in real time while character or

text is being written through an input device such as touch screen or gesture sensing pens.

However, in offline OCR systems, document image must be uploaded to a computer and

after the necessary operations are applied on the text, results are obtained after certain

amount of processing time.

OCR systems consist of multiple stages such as image acquisition, pre-processing,
segmentation and application of feature extraction and classification methods.

Font type, quality of a scanning device, and paper type are some of the factors that
influence the performance of an OCR system. In order to eliminate effects of such factors
and achieve better system performance, various image-processing operations are applied
In pre-processing stage. Segmentation process refers to extracting text in the document to
the smaller text pieces in the order of lines, words, and then to characters. After
segmentation stage is completed, feature extraction stage is conducted for finding
discriminative features that minimize variability within and maximize variability between
classes.

By using extracted features, segmented characters are mapped into different
classes in the classification stage (Islam, Islam, and Noor, 2016).

Many real life examples can be mentioned on OCR field such as separating letters
according to the postal codes written on them, recognition of banking checks for
automated account transactions, transferring libraries to digital databases, and recognition
of license plates for security purposes etc.

OCR is a well-studied area and there are excessive number of researches
conducted to date especially in Latin, Chinese and Arabic alphabets. For example,
(Sarfraz, Nawaz, and Al-Khuraidly, 2003) presented an offline Arabic text recognition
system which preprocesses text first by applying noise removal and drift correction, then
segments it into lines according to baselines and into characters using vertical projection
profiles. Moment invariant technique was used for feature extraction and about 73%
recognition rate was obtained by using radial basis function (RBF) network.

However, due to the complexity of the language in grammar, writing and spelling,
it is noteworthy that there were not enough OCR studies on the Ottoman alphabet, and
that the studies did not reach a satisfactory level of accuracy especially in handwritten

character recognition.

1.1. OCR Studies on the Ottoman Alphabet in the Literature

Noticeable studies on the Ottoman character recognition have been started in the

late 90s and continued to date.

In the study of (Oztiirk, Giines, and Ozbay, 2000), machine-printed Ottoman
characters were used to train the multilayer feedforward network with backpropagation
and classification accuracy of 95% was reported.

Approaches based on content search in Ottoman documents mainly focuses on
searching a small image in an entire document image. (Saykol et al., 2004) and (Ataer
and Duygulu, 2006) studied such systems and they aimed to identify segmented character
groups within a document image instead of identifying individual characters by using
matching technique based on word length similarity and vertical projection profiles.

(Onat, Yildiz, and Giindiiz, 2008) presented an OCR system for handwritten
Ottoman scripts that applies left-right Hidden Markov Models (HMM) for identification.
Proposed system showed 65% accuracy.

In the study conducted by (Kurt, Turkmen, and Karsligil, 2007), linear
discriminant analysis (LDA) was applied in order to emphasize distinctive features while
reducing dimensionality of the images. In classification step, test character was
considered to belong to the nearest class and distances between them were determined by
Euclidian Distance.

(Kilig et al., 2008) aimed to recognize machine printed Ottoman scripts by using
Support Vector Machines and trained it using linear, quadratic and Gaussian RBF kernels.
Study showed that quadratic kernel gives the best recognition rate with 87.32%.

(Yalniz et al., 2009) also represented content-based retrieval approach for digital
Ottoman archives. The proposed system allows character recognition directly from
digitized images and supports content query both by pieces of word images or by words
entered by user through a virtual keyboard. The system uses sliding-window and
histogram methods for segmentation and combines them with several recognition
approaches such as neural networks and graph-based model.

An online handwritten ottoman character recognition system was proposed by
(Nalbant, Burunkaya, and Eroglu, 2009) and they aimed to recognize characters drawn
by a mouse. A unique direction code was assigned to each movement in the coordinate
plane, and a code was derived from the movement of the mouse during writing. If there
is a match between original character codes and newly created character, it is said to be
recognized by the system.

(Can et al., 2010) proposed similar approach for an offline system however they
focused on Ottoman poetry in particular in order to detect repetitive words at the end of

each line which is known as “redif” in Ottoman literature.

(Arifoglu and Duygulu, 2011) calculated the word profiles, pixel transitions from
background to text and vertical projection of each word and used Dynamic Time Warping
in order to find these feature vector’s distance to each other. In addition, the study showed
that shape context descriptor could also be used for word matching.

Due to its interconnected characteristics, segmentation of Ottoman text is difficult
compared to others. (Adigiizel, Sahin, and Duygulu, 2012) presented an approach that
combines connected component based and projection based methods for line
segmentation. Further, Fourier Curve Fitting is applied on projections, in order to prevent
incorrect separation of lines.

(Sahin et al., 2012) proposed an end user interface for Ottoman documents rather
than an OCR system. With the help of this interface, new Ottoman documents can be
saved to the database, binarized and segmented into words. Also, through the same
interface, labeling processes that require expert knowledge can be realized, and word
search on tagged texts and image search on untagged texts can be performed.

The studies mentioned above are based on traditional machine learning
approaches. Although studies about deep learning have been continued for a while, easy
access to massive sets of labeled data and computing power achieved today makes it
possible to perform deep learning applications and it is started to be applied on optical
character recognition area also. Deep learning showed promising performance in optical
character recognition, handwriting recognition, object recognition, speech recognition,

Image recognition, text mining etc.

1.2. Deep Learning-Based Ottoman and Arabic Character Recognition

Approaches in the Literature

Although there are not enough studies about the application of deep learning in
Ottoman Turkish alphabet, there are studies in Arabic, which is similar to Ottoman
alphabet. Some of the prominent deep learning-based Arabic and Ottoman character
recognition studies are as follows.

(Aydemir et al., 2014) compared HMM and recurrent neural networks (RNN) by
applying both method to Turkish and Ottoman Turkish. Study showed that RNN method

showed 8% higher accuracy in both datasets.

(Ashiquzzaman and Tushar, 2017) also studied convolutional neural networks
(CNN) but they focused on Arabic numeral recognition. The proposed model showed
97.4% percent accuracy.

(Younis and Khateeb, 2017) presented a deep CNN for the handwritten Arabic
character recognition and applied batch gradient descent method for optimizing weights.
Proposed system was trained and tested with two different datasets (AIA9k, AHCD).
Accuracies of 94.8% and 97.6% were obtained respectively. In the study of (Elsawy, El-
Bakry, and Loey, 2017), a deep CNN was built from multiple convolutional layers that
were followed by linear rectifiers and pooling layers. 16800 of handwritten Arabic
characters were used to train and test the proposed network. 5.1% misclassification error
was reported in the study.

(Ahmed et al., 2017) studied convolutional neural networks in order to recognize
Arabic texts from natural scene images. 3x3 and 5x5 sized feature detectors were used in
the convolutional layer and network was trained with distinct learning rates.

(Ali, Pickering, and Shafi, 2018) also presented an OCR system based on CNNs
for recognizing isolated Urdu characters from natural scene images. They manually
created a dataset by cropping 14000 isolated Urdu characters and split them by 70% to
30% for training and testing. Study showed that best error rate, 11.32%, was achieved

when they mix filter sizes, use 2x2 pooling layer after and choose learning rate to 0.005.

1.3. The Aim of the Thesis

A great archive that contains billions of pages has been inherited from the
Ottoman Empire to the present day with great care, which involves history and culture of
23 present-day countries in Europe, North Africa and the Middle East.

Turkey has several institutions such as Turkish National Library, Istanbul
Metropolitan Municipality Atatiirk Library, Marmara University, Turkish State Archives,
and Research Center for Islamic History, Art and Culture etc. These institutions host
millions of literary work, official state documents, and newspapers written in Ottoman
Turkish. Most of these documents have already digitized with great care and are being
presented publicly. However, even if we assume that all currently available Ottoman

documents are somehow digitized, there is no way for a researcher or a student to be able

5

to access and search whatever he or she needs to find in some Ottoman literature because
the documents are digitized and kept in image format.

This study aims to propose an OCR method that transfers documents written in
Ottoman Turkish to the electronic world. In simple terms, the proposed method can be
used in a system that takes a document image as an input, and then converts it to a text
searchable word document in contemporary Turkish. Thus, institutions mentioned above
can transfer their Ottoman archive easily with this system and present a search database
for those who demand. The proposed system can be developed even further and serve as
a Google-like online search database for Ottoman contents. By this means, a language
that is no longer in use today but has great historic importance in our country will be

transferred to next generations.

1.4. The Organization of the Thesis

This thesis study is organized as follows; Chapter 2 introduces the Ottoman
Alphabet. The scientific and technical information about Deep Learning and
Convolutional Neural Networks, and applied approaches are presented in Chapter 3.
Experimental work and their results of all implemented methods in the study, and
performance analyses of the methods applied are given in Chapter 4. Finally, discussions
and conclusions are presented in Chapter 5.

CHAPTER 2

OTTOMAN ALPHABET

The Ottoman Empire had been covered an area of about 5.6 million square km
from 1300 to 1922. Ottoman Turkish is a written language that includes Arabic and
Persian elements and it is widely used in Anatolia and the places where the Ottoman
Empire reigned.

Even though Ottoman Turkish had not been actively used since the end of the
Empire, a great number of written document such as public records, state archives, land
certificates, gravestones and most importantly literatures were transferred to present day.
Therefore, Ottoman Turkish maintains its importance even today.

Along with the 28 letters in Arabic alphabet, the letters <, g and 3 from Persian
alphabet had also been added to the Ottoman alphabet. With other additions, there are 35
letters in total and while 34 of them can be at the end of a word, 25 of them can be in the
middle and only 25 of them can be at the beginning of a word. Other than letters, digits,
punctuation marks, spaces and special symbols are used. Some letters may have exactly
the same shape but they can be separated from one to another by the addition of
complementary characters like position and number of points integrated with the letter.

In Ottoman alphabet, letters vary with their body shape, number of dots they have
and position of these dots relative to main body. Dots can be located below the main shape
or they are located above. The dots may be in groups of one, two or three. Every dotted
letter also has a non-dotted one.

Similar to Arabic alphabet, Ottoman Turkish is written from right to the left.
Letters change shape regarding whether if they are at the beginning, in the middle or at
the end of a word. As opposed to letters, numbers are written from left to right and there
are no strict rules for punctuation marks. Numbers are shown in Table 1 and letter types
are shown in Table 2.

As can be seen from Table 2, vowels in the Ottoman alphabet is inadequate when

compared to the modern Turkish alphabet. For example, both “a” and “¢” vowels in

Turkish alphabet covered by letter ! in Ottoman alphabet and letter 5 covers for “u”,

99299 ¢¢ 9

1i”, “0” and “6” vowels.

Table 1. Representations of Numbers in Ottoman

ArabicForm | * | YIY[Y [&[0TV |VIA|Q

Number 01123 /4|5|6|7]8]9

Table 2. The Ottoman Alphabet and Its Equivalent in Latin
(Source: Ottoman Turkish, 2010)

Initial | Medial | Final | Isolated | Latin Form

‘ \. \. \ omitted

NN :
- - (G p
R R R

a
L 4

L+
L+

0.'
0.'

(%]

b
b

b

(=n

b

b |sb
i @ |]
L B (o

L | b
L | p-

(cont. on next page)

8

Table 2. (cont.)

NI

S

‘ (ayn)

C

V] |

\V .ot

@ | aa | e e
ia | sa ya | U
L L L L
L L] L L

Wi

(cont. on next page)

Table 2. (cont.)

3 3 3 3 v
Iy % Aaa | o3 h
= 2 s & y

Ottoman Turkish is written cursively and letters of the Ottoman alphabet can be
divided into two divisions as connected and unconnected letters. The connected letters
may be joined to the letters that follow them. The unconnected letters do not join with the
letter after. Such isolated letters are 2 33_ 5. When they occur the word is broken; that
is, the pen is taken up and the second part of the word is resumed unconnected. Thus, they
only appear at the end of the first sub word and next letter forms as the initial letter of the
second sub word (Harfler, 2019).

In addition, there are many writing styles in the Ottoman Turkish and Ruq’a,
Naskh, Thuluth and Taliq are the most common ones.

Ruq’a is the ordinary handwriting used in letters and in all kinds of civil and
official documents. It has been developed as a convenient writing for daily

correspondence.

Figure 2. Example of Thuluth Writing Style
(Source: Tulum, 2009)

10

Naskh is the common print and used mostly for religious books. It also includes
the auxiliary signs called Hareke. It was preferred when accurate and easy reading were
aimed.

Thuluth is the larger version of Naskh. It is an ornamental script mostly used in
mosques, tombs, inscriptions and plates, printed book covers, newspaper headlines etc.
Figure 2 shows an example of Thuluth writing style.

Taliq is the Persian model of Arabic characters. General place of use of Taliq was
the documents of the Ottoman courts and it was also used on stone inscriptions for art

purposes (Tulum, 2009).

11

CHAPTER 3

DEEP LEARNING AND CONVOLUTIONAL NEURAL
NETWORKS

3.1. Introduction to Deep Learning

Artificial intelligence is the ability of a computer to behave like a human brain. It
can be defined as a set of predetermined rules for a machine to complete a certain task.
Machine learning is a sub-branch of artificial intelligence and the main purpose of
machine learning algorithms is to make accurate predictions by learning on their own
according to the information coming to the system. The efficiency and accuracy of a
machine-learning algorithm depends on how well it is trained (Clearing the Confusion:
Al vs Machine Learning vs Deep Learning Differences, 2018).

Training computers to function like human brain is usually performed by using
artificial neural networks. They are modeled with the inspiration from human nervous

system.

Dendrites)/"/
- Synapse

L Axon
" Cell Body |

3

Nucleus

Figure 3. A Biological Neuron
(Source: Jain et al., 1996)

12

As shown in Figure 3, a biological neuron consists of a nucleus, branches that are
called dendrites, and a tail called axon. While dendrites receive signals into the neuron,
axon transmits them.

Moreover, synapse is the part that where the whole concept of signal transmission
from neuron to neuron occurs. The human brain consists of countless neurons and it
continually tries to process, interpret and categorize the new information it receives by

comparing it to information that has already known (Jain, Mao, and Mohiuddin, 1996).

Artificial
Intelligence (Al)

Machine
Learning (ML)

Figure 4. Relation between Al, Machine Learning and Deep Learning
(Source: Clearing the Confusion: Al vs. Machine Learning vs. Deep
Learning Differences, 2018)

Deep learning however, is a sub-branch of machine learning and it is sometimes
referred to as deep neural networks. Figure 4 shows the relationship between artificial
intelligence, machine learning and deep learning.

In deep learning, there is no need for predefined rules, any guidance or feature
extraction in order to classify new information. Unlike machine learning, this process is
done automatically when network is exposed to large amounts of data.

Furthermore, in order to process large datasets, computers with higher processing
power are needed in deep learning compared to machine learning (Clearing the

Confusion: Al vs. Machine Learning vs Deep Learning Differences, 2018).

13

3.2. Concept of Artificial Neuron

(Mcculloch and Pitts, 1990) introduced the concept of artificial neuron. In its very
basic form, a neural network only has a single binary threshold unit that is composed of

an input and an output layer.

output

Figure 5. Artifical Neuron
(Source: Karpathy, 2016)

Artificial neuron shown in Figure 5 has three inputs. The weighted sums of these
inputs plus the bias are fed to the unit, and then the output layer is calculated. The output
can be zero or one regarding to the weighted sum is less or greater than some threshold

value. The basic mathematical model can be written as:

0 if Z_Wixl- < threshold

output = l

1if Z w;x; > threshold
i

By using the bias and writing weighted sum as a dot product, artificial neuron

model can be rewritten as:

Oif w-x+b<0

tput =
outpu {1ifw-x+b>0

14

According to the weights, the network decides what information is important,

what is not, what information will be passed along, and what will not. The weights are

assigned randomly at the beginning. When the network is being trained, they are adjusted

by measuring how far the output is from the expected outcome.

Most of the time, even though it has many inputs, one neuron may not be

sufficient. Neurons operating in parallel are called as layer.

‘ NS S A
’ N\S<Z22477

A\\yNTaSoy
f NN

N

XX 7/

K

AT 777 RS

K) XA X
S RN Y RS SRS
NS 7 RN A XA XK

0 ‘
SR LS XX “wk ?':‘ ’Q‘O‘l- <X 0'“
IXSIKE, LA R OKRE K REE
N TS Sy UGS //»\’«)
X A (

X
0 0%

FREARIK L SISO ITEAIA S8 S EIR
"%‘A(}‘&A‘ 5 RO

X X XX

Y A FOGNIOR 7 FLESR
PN iy
250 LI RO
S T TR KSR
— < ///gr‘ﬂ'/,”ﬂ‘\

\\‘\ Q X
MY

\\\‘\\\\ U A, / ;
";II £ &\\}“‘

Figure 6. Layers of Deep Neural Network
(Source: Training Deep Neural Networks, 2018)

As can be seen in Figure 6, data is modelled by successive layers in a deep neural

network, and the number of these layers specifies the network’s “depth”. In a deep neural

network, output layer can be binary, continuous or categorical variable depending on the

application.

15

3.3. Activation Functions

In order for the network to measure its performance on the training data and to
steer the weights towards correct direction, an activation function is applied to the
weighted sum of the inputs. Activation function performs non-linear transformations over
the weighted sum and without it; a neural network will just behave as linear regression
with limited learning capability. Depending on the application, different types of

activation functions are used.

3.3.1. Threshold Function

x-axis is the weighted sum of inputs and the y-axis has values from 0 to 1. As
shown in Figure 7, threshold function will give the output O if the input value is less than
0. If it is more than 0 or equal to 0 then the output will be 1.

YA

- 2 Wixi
0 i=1

Figure 7. Threshold Function

Mathematical model for the threshold function is given below.

lifx =20

9 (x) ={oifx<o

16

3.3.2. Sigmoid Function

As shown in Figure 8, anything below 0 drops off in sigmoid function and above
0, it approximates towards 1. It is very useful in the final layer of the neural network when
there is prediction of probabilities. Mathematical formula for the sigmoid function is

given below.

() = 1+e™*

YA

Figure 8. Sigmoid Function

3.3.3. Rectifier Function

Rectifier function is one of the most commonly used activation functions. As
shown in Figure 9, it goes all the way to O until it reaches zero and then from there it
gradually progresses as the input value increases as well. Mathematical formula for the

rectifier function is given below.

@(x) = max(x,0)

17

Figure 9. Rectifier Function

3.3.4. Hyperbolic Tangent Function

It is very similar to the sigmoid function but the hyperbolic tangent function
(tanh) has negative values below zero. In Figure 10, values go from zero to one and go
from zero to minus one on the other side. Mathematical formula for the hyperbolic tangent

function is given below.

1— e—2x

R

YA

[E5Y

Figure 10. Hyperbolic Tangent Function

18

3.4. Network Architectures

Neural networks can be grouped as feed-forward networks and recurrent networks
based on the number of layers and their connection pattern (Jain, Mao, and Mohiuddin,
1996).

3.4.1. Feedforward Neural Networks

Networks where the output of one layer is used as the input to the following layer
are called feedforward neural networks. These networks are divided as single layer or
multi-layer feedforward network. Adding more hidden layers to a network increases its
capability to higher-order statistics. Each layer generates output to be used as input in the
next layer and final layer generates response of the overall network. Such networks are
memory-less because the response to any new input data is not related to network’s
previous state.

Figure 11 shows the structure of a fully connected feed-forward neural network.
A network is referred to as fully-connected in case that each node in a layer is connected
to every node in the following layer.

On the other hand, if there are missing links between some of the nodes, network
is said to be partially connected (Haykin, 1999).

3.4.2. Recurrent Neural Networks

Dynamic networks are called recurrent neural networks. Every time when the
outputs are computed, the inputs to each neuron are modified because of the feedback
loop, which yields the network to enter a new state. Figure 12 shows the structure of a

recurrent neural network.

19

Y

Y

Figure 11. Fully Connected Feed-Forward Neural Network
(Source: Haykin, 1999)

Outputs

Unit-delay
operators

Inputs

Figure 12. Recurrent Neural Networks with Hidden Neurons
(Source: Haykin, 1999)

20

3.5. Learning Algorithms

Learning algorithms define procedures expressed by prescribed set of rules for
tuning network weights. They are categorized as supervised, unsupervised, and hybrid

learning algorithms (Jain, Mao, and Mohiuddin, 1996).
3.5.1. Supervised Learning

In supervised learning, a network is provided with the desired response for every
input. Weights are adjusted in the direction that minimizes difference between actual
response and expected outcome. This measurement of learning performance is called as
the cost function. Formula given below belongs to the quadratic cost function, which is
one of the most commonly used function type, and it is also referred to as the mean

squared error.
COw,b) =5 Y llyGo) —al?
W) = LW A
X

Here, w corresponds to the network’s weights, b is for all the biases, n is the
number of inputs of a single observation and a is the vector of desired outputs. The

purpose of learning algorithms is to minimize C as a function of weights and biases.
Backpropagation Algorithm

Minimizing a function refers to finding where it reaches its global minimum. This
can be achieved by using derivatives to find function’s extremum points. However, this
kind of approach is only useful if such function has one or few variables. In the case of

deep neural networks, cost functions depend on tons of weights and biases.

21

The backpropagation algorithm is one of the most popular learning algorithm that
seeks for the minimum of the cost function in weight space using the gradient descent
method where gradient VC is repeatedly computed until global minimum is reached.

For any function C(v) where v = v1,v2, ..., the gradient of C relates changes in

v and as a result changes in C.

AC = VC .Av

Assuming that,

Av = —nVC

Here, n is the learning rate. Then AC becomes,

AC ~ —qVC -VC =—-n I VC || 2

Knowing the fact that || VC || 2 = 0, AC will always be less than or equal to 0.
This means error will always decrease if v is changed according to Av = —nVC. After
Av is computed, v is updated to v’ and it is repeated over and over until it reaches a

value that results global minimum of function C.

vV =v-—nVC

This procedure is known as the gradient descent algorithm (Baydar, 2018).
Gradient descent algorithm is also referred to as stochastic gradient descent or mini batch
gradient or full gradient descent according to the number of samples that fed into the
network in each iteration.

In stochastic gradient descent approach, samples are fed to the network one by
one and new weights are calculated at every step. However, the disadvantage of this
method is that it can stuck on a local minimum instead of global minimum.

By contrast, all training samples are fed into the network and weights are updated
at once in full gradient descent method. This method, however, is computationally
expensive since all samples are applied to the network together and this can cause

memory insufficiency.

22

The most common method is mini batch gradient descent method. It combines
advantages of both methods and only certain number of samples are fed to the network
in each iteration. In this way, training time may take longer time than stochastic gradient
descent but it can discriminate local minimum problem.

Choosing the right learning rate is also an important issue in gradient descent
algorithms. In practical implementations, » is often varied (Using Neural Nets to
Recognize Handwritten Digits, 2019).

Adaptive Moment Estimation, which is commonly known as the Adam Optimizer,
Is an improved stochastic gradient descent method that uses adaptive learning rate
method. It optimizes a function from the gradient and the squared gradient which are the

estimates of first and second moments (Kingma and Ba, 2014).

my = Bime_q + (1 — B g:

vy = BoVeor + (1 = B2)g”

Here, m; and v, are moving averages, g is gradient, and B; € [0,1) and S5, €
[0,1) are hyper-parameters which control the exponential decay rates of m, and v;. In
most cases, S, is taken as 0.9 and £, is taken as 0.99 (Kingma and Ba, 2014).

In order to update learning step, learning rate is multiplied by average of the
gradient then divided by the root mean square of the exponential average of v, which is
the square of gradients. Epsilon (¢) is a very small number and it is used to prevent any
division by zero in the implementation.

nm;

-~

Uy + €

Ot41 = 0¢ —

3.5.2. Unsupervised Learning

In unsupervised learning, desired outputs corresponding to each input set are not

provided to the network. The weights and biases are determined in response to network

23

inputs only. Such networks learn to categorize input patterns by examining their data
structures or correlations between them (Jain, Mao, and Mohiuddin, 1996).

3.5.3. Hybrid Learning

Hybrid learning is a combination of both supervised and unsupervised learning.
While majority of the weights are obtained through supervised learning, the rest of them

are determined by unsupervised learning.
3.6. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a special type of feedforward
networks known as the multilayer perceptron that are trained with backpropagation. Main
purpose of CNNs is to identify visual patterns directly from images (Kuo, 2016). Inputs
of CNNs are processed through several steps referred to as layers. First layer of a CNN is
the convolutional layer, which can be followed by layers called ReLU layer, pooling

layer, normalization (flattening) layer and fully connected layer.
3.6.1. Convolution Layer

A convolution is a mathematical way of combining two continuous-time signals
x(t) and h(t) in order to form a third signal y(t) and it is denoted by integration operation

as in the formula given below. (Hsu, 2011)

(x*h)(t) = foox(r)h(t —1)dt

24

Convolution is an important operation because the output of any continuous-time
linear time-invariant system can be described by the convolution of the input x(t) with
the impulse response h(t) of the system.

The convolution operation is also a fundamental component of CNNSs. It is applied
to the input image by the feature detector, which is often referred to as kernel or filter.
Input image can be black and white (B&W) or colored image. B&W images are two-
dimensional matrices and each pixel is represented on a scale from 0 to 255 in general.
Colored images are three-dimensional and again, each pixel inside a colored image is
represented on a scale from 0 to 255 but on three levels as red, green, and blue.

Representation of B&W and colored images are given in Figure 13.

]
Pixel 1 | Pixel 2 : —
Pixel 1 | Pixel 2
0< pixel 0< pixel
value<255 value<255 0< pixel 0< pixel
value<255 value<255
Pixel 3 | Pixel 4 Pixel 3 | Pixel 4
O< pixel 0s pixel 0< pixel 0< pixel
value<255 value<255 value<255 value<255

Figure 13. Representation of B&W and Colored Images

On the other hand, filters have small sizes like 3x3 or 5x5 and their depth differs
depending on whether input is B&W or colored image.

Figure 14 shows an example of convolution operation in 2D. Initially, filter is
placed on top left of the input matrix, then the number of matching cells are counted. This
number is inserted into a new matrix called the feature map. As feature detector is shifted
to the right and moved down until it reaches the downright border of the input matrix,
number of matching cells are counted and inserted into the feature map respectively.
Collection of these feature maps that are developed by multiple feature detectors are

referred to as convolutional layers. Feature detectors are useful for reducing the size of

25

the input image. They eliminate the unnecessary parts in the image while still
emphasizing certain features.

Another important concept in convolution is the stride; S. It specifies the number
of steps to shift the feature detector at each movement. If s > 1, feature detector will skip
s — 1 pixel in every shift and the convolution will be performed once every s pixels (Wu,

2017). Output size of a convolutional layer can be expressed by:

W —K - 2P

Output Size = 5

Here W is the size of the input, K is size of kernel and P and S are the padding

value and stride respectively.

3.6.2. ReLLU Layer

The rectified linear unit (ReLU) is not a separate component; it is more like a
supplementary step to the convolution operation. Rectifier function is linear for all
positive values, and zero for all negative values. Therefore it converts each negative pixel

into zero in a feature map and keeps each positive pixel (Wu, 2017).

Convolution
Operation
0 0 0 0 0 0 0
o(1|/o0o|o0f|0|1]|0 o(1[0|0|0
0 0 0 0 0 0 0 0 0 ! 0 1 1 1 0
0 0 0 1 0 0 0 ® 1 0 0 - 1 [} 1 2 1
1 a4 2 1 0

o(1|/o0o|0f|0|1]|0 o 1)
0 0 1 1 1 0 0 0 0 1 2 1
0 0 0 0 0 0 0

Input Feature Feature

Image Detector Map

Figure 14. Example of Convolution Operation
(Source: The Ultimate Guide to Convolutional Neural Networks (CNN), 2018))

26

\

Convolutional

Rectifier
Layer

Figure 15. Rectifier Function as Activation Function

There are many non-linear features in an image e.g. the transition between pixels,
borders, colors, etc. Since convolution is a linear operation, ReLU is often preferred
between the convolutional layers in order to increase non-linearity because it is the

simplest non-linear function and it’s efficient for computation.

3.6.3. Pooling Layer

Pooling process provides network a capability to detect specific patterns within
the image. Features obtained from convolutional layer can be high in number and training
on too many features can cause overfitting. Therefore, a pooling process is usually applied
to reduce dimensions. There are different types of pooling operators such as mean
pooling, sum pooling and max pooling which is the most commonly used operator. In
max pooling, the pooling operator is shifted throughout the entire input image similar to
a feature detector however, instead of summing matching pixels; it takes the maximum
value of the sub region in each shift.

The purpose of pooling layers is to dispose of unnecessary information or features
in an image for a simpler output. It provides the convolutional neural network with the

spatial variance capability (Stenroos, 2017).

27

Figure 16 shows an example of max pooling operation where pooling size is 3x3
and stride is 1.

Max Pooling
-
Pooled
Feature Feature
Map Map

Figure 16. Example of Max Pooling Operation

3.6.4. Flattening Layer

In this step, pooled feature maps are flattened into a vector of input data to be
passed through the fully connected layer. Figure 17 shows an example of the flattening

operation.

Flattening
o

Pooled
Feature
Map

Figure 17. Example of Flattening Operation

28

3.6.5. Fully Connected Layer

A fully connected layer refers to a layer where convolutional neural network is
evolved into an artificial neural network. All neurons are connected to this layer. By the
end of this layer, network outcomes a prediction, then cost function, which is referred to
as loss function in convolutional neural networks, is calculated.

Loss function is the measure of how accurate the network is and in order to
increase effectiveness of the network, weights and the feature detectors are adjusted as
discussed in Section 3.4.1.

Generally, a special activation function is used at the last fully connected layer,
which will generate a probabilistic result for each class. For multi-class problems, mostly

Softmax function is preferred.

Softmax Function

Softmax function calculates the probability of each class. In other words, it shows
which class the input is more likely to match and since it outputs the probabilities, the

sum of all values equals to 1. Softmax function can be expressed as:

XK

softmax(x,) = ———
i=1 €™

Here, C is the number of classes.

3.6.6. Dropout

Overfitting is one of the most common problems in convolutional neural networks

and it occurs when the network memorizes the training set. In order to prevent network

29

from overfitting, dropout method randomly eliminates a certain percentage of the neurons

intentionally during training by setting activations to 0. This makes the system not too

dependent on a single neuron or connection. Generally, dropout is applied in the fully

connected layers of convolutional neural networks. Figure 18 shows an example of

dropout operation.

Figure 18. Example of Dropout Operation
(Source: Dropout Neural Network Layer In Keras Explained, 2019))

3.6.7. Data Augmentation

Data augmentation is another method for preventing overfitting. When it is not

possible to acquire more training data, data augmentation is used to artificially increase

the size of the training set by producing data by altering actual inputs. The most common

data augmentation methods are flipping, scaling, rotation etc.

=
1 I
Input Convolutional
Layer Layer

Pooling
Layer

Convolutional
Layer

Pooling
Layer

Fully
Connected
Layers

Figure 19. Example of a Convolutional Neural Network

(Source: Stenroos, 2017)

} Output

30

In a typical convolutional neural network, layers explained above are stacked
consecutively as shown in Figure 19. For example, the outputs of the first convolution-
pooling layer can be used as an input to a similar convolution-pooling layer. This multi-
layer approach increases complexity of the network as it can learn more and more
complicated structures through higher layers.

31

CHAPTER 4

EXPERIMENTAL WORK AND RESULTS

Experimental work of this study is divided into several steps as shown in Figure
20 and it can be summarized as follows in general:

Ottoman alphabet character dataset was created in the first two steps. In the third
step, a deep convolutional network model was created and the model was trained with the
dataset prepared. Then, by modifying the layers, effects of network complexity to the

recognition results were examined.

Pre-processing

AcLT?s?t?on > Binarization » CNN Training/Testing
Line

Segmentation

:

Character Y
Segmentation

Recognition

Figure 20. Architecture of the Experimental Work

4.1. Creating Dataset

Since Ottoman alphabet has lost its validity, it is not possible to find a ready
Ottoman alphabet character dataset easily today. Therefore, in this study, scanned

samples of various Ottoman literature works were collected from the digital database of

32

Turkish National Library for creating dataset by randomly selecting texts of different
lengths from selected documents. Collected documents are machine printed and non-text
contents were avoided during selection. 130 images of different lengths were selected.

Figure 21 shows one of the selected documents as an example.

ke N gad 5303580 A gk yF f_)\'— wop O sl il (I ase
215, BANS siimaFay 53555 5 s paeaddsles i &l 15 U5k i
G €397 IpE e b xS a5 Al Ll g bg Wy 249
ki i 7 o LI W W R [N L RPN S R S PN
& pae Boii ool « gty AT gansCa ol ol e & 200 e 354!
Cade Gl as-losl aluyols 6..!-\.(&\ «.J,: ¢ odand oyl al Sy £
S sl ¢ 4 o g JEC ¢ andil T lany SB2 B2y Al Allonie
o Yy 2 Jd 5 One Goadth Ol o d“-*:j‘ D P S T O o) ol
Wl 355 55y 018 oS Guadab la) genl. sl sy Kl 3K
s g gn Lant 0adB2 sy S5k 2548 6b 0b) wolad) O3S 46 audsbe
O s w53 e Sy Uinmd ¢ atlfls aiSspm Sy ¢ o fmi Slol by e
Tamze CIo0lb St) izt dznioly SAE o episl adsl @y 58 0 e b
G5 b 8 gy g Q.\.ﬁ.\(;s“‘"\ S S \E J—a,..- A TREL C]
o k. sovslall Soo e s \S..\ A sy 9,885 gy ,_)u\- ali-ly Saa
Cardr ey pus b gl S ;,:b,) M&Lhwol.;
d:"‘ s oud b) b \::\;..\ _UA._-),i oYl u"’.““" 3T b oo abyl
445)F o35\ Ak gese OM D2 Dbosly sl 3T ol ety s D ody, S
.;_.'.J I e e g Jabioh oY) ety Boal dile el Jold e
iz 5 by STl b s Dy Ja sy ph9 ‘,tf_.ub_\ J:C‘_\ Qhesy el meal
RESY I\ Ji..\._\ s A G ek sade Oloein) u:.:,:'fdx«_,”g s A2l
g & il] 40l 2olag 765 059 8 ol Ol sy mly 8,
Doy ¢ Mo o 465 K& Guiliy pe 03002 £, 8 wolmtly o4l € Ay
o615 359y oS Ayl il sy 0ady) ae Sl € GE) 0ol £y 2 s

Figure 21. Example of Ottoman Text
(Source: Sirat-1 Miistakim, 1908)

Binarization is the initial step for the segmentation. At first, all images were
converted to the grayscale images. Figure 22 shows the grayscale version of the above
text.

In order to convert pixel values from shades of gray, to 1’s and 0’s, a threshold

value is used.

33

Threshold binarization method can be described as:

oGy) = {1, if foy) 2T

0, otherwise

where T is the global threshold value (Converting a Grayscale Image to Binary
Image Using Thresholding, n.d.).
Figure 23 shows the binary image of Figure 22.

skimay Mand Bama058) St e sF E.)L- Aesp Oy alaayd)l 8 e

sl AAS e sniiea L tay s ‘:; & paead-dlos Jai 2k 15 o N ak jdey
d-,.lc‘,,-:J-f .ngJa)JkL»\JLJ\ SN ba,ujo
sirfi o2 ge PLIPRR O W et R5 RL N Y R HpPe RS- F
‘5,‘;«...} g AN) u..J..-T,,,l‘_;-l_f..dL.nl \Uch ¢ u""\ J_.l: S4s
Cads Gl bl aslis) acagsl JJ_A.{J-‘ A\.J,: ¢ shencd aagbadl Gy S
oGSl ¢ o L s K ¢ il Tt c_.\n, :...LG.J_,G/, «.L.UJ.JL-L-
.)'r'\"g,' JJ—;‘)-A. J)&.L—Lgd‘au \.&.J J\‘J.-)lﬁ.,_,),.; .),,
W 335 55y a8 8 e el sl dsba Baly e 3K
.;t:,-.-_ &g pn Law o0 Sy Uk 25a8 €b 0) wslad] SA3F 58 wiadlsle
ol s asy 4 Ny L ¢ sl aaipe Jef) € stmr Sl by paf
Taoze 2edl) o) ezl oy DAL g wsind il dly 58 o) o
G s o gl J.bﬁ.\ff \;B\.K.V¢GF&L,JMJ
._,v:n_c.lz ookl Zos g yes Sl J\u.o,;y 3,585 Al g g\-‘w Halosly s
Camd s o tlag e pad b SAE A o el Fao sy &) &lg.gl o goles
G55 e ok @l L sy oY) b o T ¢ o)
iS5 ol A gese 031 82 Dalpsls Aatie sl T AU c a0 2y S
i P 233 (g JE S oty OV rathy Dl il e Syl e
il 03 L3 ol 2k ns 5y s ytes Kbl WS Guasy Sl etz
SEPTI b.‘.:'..\._l - A SOy etis anie Slseie) d‘.a,:_fdiu-),g o3 125
ey T 4l Soliay 465 05 8 G| D) Clissles dy 8y,
D sp ¢ W o A5 K& by p eatis® iy 8 cobmtly o6l ¢ Sy
s gy o5 4yl OV 57 0yl e S ¢ g G a2) £ s

Figure 22. Same Text in Grayscale Form

34

Segmentation of the text images into lines, words and finally to characters is one
of the most critical steps in an OCR system. Texts that are written in Latin alphabet are
interconnected only if they are handwritten, however the Ottoman documents contain
interconnected scripts even in machine printed texts. Therefore, segmentation of each
character in an Ottoman script is a challenging problem and any segmentation error

affects overall system recognition success adversely.

JRCER) PR PETNTST U P g o ST S P ELSY T INC Ee L
2V, IS kit fng 555 5 6 paeaddsles jai b 1r5 L U5k Jdes
e 8973 S G 8 a8 o5 Lot GLIL g by by iy
i fi 13 o LI VO WL O U [P TS R U R ST - U
,.4:.«....1 0243y oyt d..LlJﬂ ENTC R W ..)\‘,_}C o J...l, Sl
Sude Gt paimlosl wugals @S Juel iy ¢ it oagh e Ay B
AT W PR V- SR - IV U PR T P W JO R
o> Yy 2l a5 Dome oAkt St A Sl ¢ e S B G 0s 8
o 335§ 50 a8 o it ol s doba Ly Sl 35504
Doy ghge e okl sy 5b a8 ol ob b wslaiil S35 46 Codisa
b s sy ey L ¢ patldls wkle Sy ¢ lar Dol by 2o
Tama SISl Gt Db Jiis) diiaby 208 g e3p) sl gy 086 o s b
S o 8 pll S J.»J(&;er\ SEA G Jb_,..- G= by GSs
ow k. eoladl oo g ges Sl fagsy g a5 Al gy Qu\. Galzly Saa
Corga g elad s 0ad b G Lt oa ey (Jao by b plesl e Bl
d:iJ: sl Jab) >t Ul sy oVl ol u..ﬁ...ll? 3T o ¢ byt
0S5 0307 A gagn S0 D2 D3lygly Hlrashie 3T b e afdn Aydy, f
eiad 3N anr &N e g P Ol GV reshy sal dile ot il e
il ges Ll G b las Oay Hasyy gips éf_.ulc_\ J.(‘.‘.n Qamsy Sl pasy
oot ol o E G ekt st Sl @) RS Sy 030808
ey b] 4 lny o5 05T 8 o] Ol) lisles puly Sy
Dy ¢ Mo o s SE Gl o ot gy, 6 anelontly Ol € CAUSE
o615 @iy oK Ayl il s Ol pae Sl € GFN 02) £ pme 2 las

Figure 23. Binarized Form of the Text

In this study, segmentation is performed in two sections as line segmentation and

character segmentation.

35

4.1.1. Line Segmentation

In order to segment lines from the binary image, horizontal projections are created

first, by summing pixels of each row. Horizontal projection of Figure 23 is shown below.

1800 N

1600 7

1400

-
]
o
o

Row Number
>
L]
{an]

o]
o
o

D
o
o

400

200

0 | | 1 | | 1 |
0 100 200 300 400 500 600 700 800

Projection Amplitude

Figure 24. Horizontal Projection of Figure 23

If the white pixels are expressed as 0, and black pixels are expressed as 1 in the
binary image, higher peaks show that, numbers of black pixels along that row are high
and numbers of white pixels along that row are low. According to these peak points, it
can be seen from the Figure 24, the text shown in Figure 23 has 23 lines.

36

Assume that B [i,j] is a binary image whose horizontal projection can be

described as:

HIi) =) Blij

J

C(LifH[i] >=T)
LTil = {0, otherwise

Each row that contains text is categorized as 1 and each non-text row

is

categorized as 0 by comparing H[i] with a threshold T. Then, the transitions from 0 to 1

and transitions from 1 to 0 of the value of each element of L [i] are marked. As a result,

lines are extracted from the original image according to marked rows.

shouay Mok G 90850l KL gk oF @\: iy Oodglaa ol JF e
(@) Line 1

Ao A ety 5 155 5 5 pmedidslos 5 2h Vo Usk Jdr s
(b) Line 2

G €395 0 By e b S s oot QLY ey B0 Wy 2Hs
(c) Line 3

U ER T OO B W B s < R [T R R P P e e
(d) Line 4

Figure 25. (cont. on next page)

37

6 s i o3tasy sty STl oSl Gt ple 46 ¢ AR b G4
(e) Line 5

e Foad sl amlisl alugobs PR adp ¢ sdant oagl aab Sy
(f) Line 6

ISy el ¢ 4 A S e S ¢ il Tl atlosy Bl 0y ke o
(9) Line 7

o Yy o b $ S Goad2l Dadle o A Gl 2 (i o M Gy 5y
(h) Line 8

ol o ;,.i)&;y o-L:(u_rL,-.A)L‘-L olal el dala by O} P ﬂ,ﬁn
(i) Line 9

oy g ge Lam a2 glug S5k 2505 b b b wobadil D37 b Gdsbee
() Line 10

h s ooy 4r 5y L ¢ 2etldls enlsge Sy ¢ (g ar Sl by Shers
(k) Line 11

Figure 25. (cont. on next page)

38

S5 b o @l 85 S5 .)/) A KL u"'@)—:-' PR TREL]
(m) Line 13

o o sesbadl Lasgmses SNl Ragsy 9,205 Al yrs Gl Sy S
(n) Line 14

Comdr g clad o 0ud b o Lt e eille) (Fas by B bl gl
(o) Line 15

338 b aib $ e b Ul sy oVl Ao panb e T e ab
(p) Line 16

68,8 0ol A g se Ol 2 Dbl 2l 3T g cafy s 2y, §
(g) Line 17

oyiad N 023 O kg JuE P Sl SV rat)y Soal sl add Jplud e
(r) Line 18

ik ges B3 o b s Oy By gtes GKad) JSE Gavsy Sl aksl
(s) Line 19

Figure 25. (cont. on next page)

39

oot Gl g S ekt eante Sk iyl e iy 0 502
(t) Line 20

I c'J'_,'r*-aJ.T Wil Lolag 405 05y s bl oad gl il audy S8
(u) Line 21

D jansg ¢ Ko A S Guiliy ar 030t g 8 wiolomtly ol ¢ NS
(w) Line 22

o\ BN gy olSE Ayl il sy 0 e S 6 G 02 Bl 2 pe ks
(v) Line 23

Figure 25. Lines Extracted from the Text in Figure 23 (cont.)
4.1.2. Character Segmentation

After line segmentation, character segmentation is applied to the extracted lines.

However, due to the characteristics of the Ottoman alphabet, some characters are
written interconnected even if the texts are machine printed. Therefore, character
segmentation is not straightforward as it is in line segmentation.

At first, by applying the same method used in line segmentation but using vertical
projections this time, a line is segmented into the isolated characters and interconnected

character groups. Vertical projection can be described as:

Vil = Blij
J

40

Figure 26 shows the projection of Figure 25 (a), Figure 27 and Figure 28 shows

some of the isolated and interconnected character groups that are segmented by vertical

projection.

Vertical Projection of Columns

=~
o

[o%]
4]
T

(o8]
o
T

]
(&)
T

M
o
T

-
(&)}

-
o

&3]

0 200 400 600 800 1000 1200
Column Number

1400

Figure 26. Vertical Projection of Line 1 in Figure 25

J}_}J\

Figure 27. Some of the Isolated Characters of Line 1

A A8 9]

Figure 28. Some of the Interconnected Characters of Line 1

41

In order to segment interconnected characters, skeletonization is applied to the
binary image first. The purpose of this step is to extract the shape feature representing the
general form of the characters.

As it is seen from the skeletonized image in Figure 29 (b), two characters are
connected with a thin line and this line corresponds to the columns whose values are 1 in
the vertical projection shown in Figure 29 (c).

Then, intersections of the columns whose values are 1 to the local minimum points
of the vertical projection plot are found. Connection point of two characters in the image
will correspond to one of these intersection points. Therefore, the image is divided into
parts from the intersection points then the meaningful segmentation is selected. As an
example, a connected character set shown in Figure 29 is segmented out from the second

intersection point as shown in Figure 30.

(@) (b)

(©)

Figure 29. Segmentation Example of Interconnected Characters (a) Original Image
(b) Skeletonized Image (c) Vertical Projection of Skeletonized Image

42

(b)

[
v 5
(c) (d)

Figure 30. Segmentation of Interconnected Characters (a) Vertical Projection of
Skeletonized Image (b) Original Image (c) Segmented Character 1
(d) Segmented Character 2

4.1.3. Ottoman Alphabet Dataset

By using methods explained in section 4.1.1 and 4.1.2, Ottoman texts that are
collected from the database of Turkish National Library have been segmented into 24

categories. For each category, 400 character images were obtained and a dataset is made

43

of 9600 images in total. Table 3 shows examples of each segmented character in the
dataset.

Table 3. Characters Distributed to 24 Classes for the Presented Dataset

Ay
A

»
»-
(o

(cont. on next page)

44

Table 3. (cont.)

3 ’ 4
& 2}

J

b

¢ * -
J

P

o < S
—~ &g

(cont. on next page)

45

Table 3. (cont.)

t»
S

N]

F

4.2. Building Deep Convolutional Neural Network Model

Similar to libraries in computer programming, a framework contains predefined
functions for specific tasks. There are many frameworks in the field of deep learning such

as Pytorch, Theano, and Tensorflow. In this work, a high-level neural network API called

46

Keras was preferred for the implementation. Keras is an open source library that runs on
top of Tensorflow framework (Keras: The Python Deep Learning Library, 2019).

The time required to train a deep convolutional network may vary depending on
the size of the dataset and available processing power. CPU based computation or GPU
based computation can be chosen depending on the needs of the application.

CPU based computation options are simpler and more available but it takes longer
time to train a network because tasks are computed in serial configuration in a CPU. By
contrast, GPU based computation is a time saving option since tasks are handled in
parallel configuration. A CUDA based NVIDIA GPU with a minimum of 3.0
computation capability is required for this purpose.

In this study, a desktop computer with an AMD FX-8320 Eight-Core CPU, 8 GBs
of RAM, NVIDIA GeForce GTX 760 GPU and Windows 10 operating system was used
as an implementation setup. Graphical processer used in this study is CUDA-enabled and
it has 3.0 computing capability (CUDA GPUs Computing Capabilities, 2019). Hence,
implementation is carried out with GPU version of Tensorflow.

Furthermore, Anaconda Spyder (3.3.3), the scientific python development
environment was used for programming purposes.

To measure the network performance, dataset was split into train and test sub
datasets. The training set is used to train the model with the known output and purpose of
test set is to check the final model performance after training. For splitting dataset, 80%
to 20% is commonly used ratio and often referred to as Pareto principle. This means that
80% of the data is used to train the network, and 20% to validate the network.

In this study, in order to classify Ottoman alphabet, dataset was split by 80% to
20% at first, that is, 320 images were used for training and 80 images were used for testing
for each character type. In addition, model performance is also tested again with the same
dataset divided by 75% for training and 25% for testing. Image selection was made
randomly in both experiments.

The best approach to define a deep neural network configuration is to trial and
error method since there is no rule of thumb for correct layer configuration. Since the
main purpose of this study is to classify the given input into 24 classes, different layer
configurations were evaluated with the created dataset in order to achieve better test

results.

47

4.2.1. CNN Model-1

Initially, a simple convolutional neural network was built which has a convolution
layer with a filter size of 3x3 in the first layer. This layer creates 32 feature detectors that
is convolved with the input layers to produce a tensor of outputs. In this case, input layer
is binarized character images.

Then, each output in the convolution layer were activated by using the rectified
linear unit as an activation function.

The output of this layer was embedded with the max pooling layer that has a pool
size of 2x2. Finally, pooled feature maps were flattened and the fully connected layer of
128 neurons at the end classified the given input to one of 24 neurons of the output layer.
Layer structure of the proposed model is shown in Figure 31.

Input Layer

Classification

Figure 31. Layer Structure of the CNN Model-1

48

Softmax activation function was used to output probabilities of each class in order
to represent which class is more likely to match to the given input. Because of this is a
multi-class problem, categorical cross-entropy was chosen as a cost function for updating
the weights during training.

Adam optimizer with adaptive learning rate was used in order to find the minimum
point of the cost function.

Network was trained by using 7680 images while data set was split by 80% to
20%. Epoch number was selected 25 while batch size was 32. This means weights were
updated in every 32 samples and this process was repeated 25 times.

As can be seen in Figure 32, accuracy of test set was reached to 84.84% while
accuracy of training set was reached to 94.93%. On the other hand, validation loss
decreased to 64.74% as the model learned.

Same model was trained and evaluated again by splitting dataset as %75 training
data and %25 test data. 7200 images were used in training and trained model was tested
with 2400 images.

Training and test results were shown in Figure 34 and 35. Accuracy of 85.25%

was obtained on the test set while loss was dropped to 53.62% at the end of the training.

Table 4. Architecture of the CNN Model-I

Layer No (Type) Output Shape Parameter
Conv2D 148, 148, 32 320
MaxPooling2D 74,74, 32 0

Flatten 175232 0

Dense 128 22429824
Dense 24 3096
Total Parameters: 22433240

Trainable Parameters: 22433240

Non-trainable Parameters: 0

49

Training and validation accuracy

accuracy

o
U

I
i
1

—— Training acc
—— Validation acc

o
w

0 5 10 15 20 25
epoch

Figure 32. Accuracy Results of the CNN Model-1 (Dataset Separated by 80% to 20%)

Training and validation loss

—— Training loss

4 —— Validation loss

3 4
7]
3
o,

1_

0_ T

0 5 10 15 20 25
epoch

Figure 33. Loss Results of the CNN Model-I (Dataset Separated by 80% to 20%)

Then, number of epochs was increased to 100 and model was trained and

evaluated again by using the same dataset. As seen in Figure 36 and 37, model accuracies

and losses were reached to 94.46% and 34.58% respectively.

50

Training and validation accuracy

accuracy
© = o o =
[=)] ~d oW l=] o
1 1 1 1

o
Ln
I

—— Training acc
—— Validation acc

o
=
1

0 5 10 15 20 25
epoch

Figure 34. Accuracy Results of the CNN Model-I (Dataset Separated by 75% to 25%)

Training and validation loss

3.5 —— Training loss
— Validation loss
3.0 1
2.5 A
w 2.0 1
1]
2
1.54
1.0
0.5 1
— -
0.0 A T T T T T T
0 5 10 15 20 25

epoch

Figure 35. Loss Results of the CNN Model-1 (Dataset Separated by 75% to 25%)

51

Training and validation accuracy

accuracy
o = o o =
()] -] [os] =] o
i i i i i

o
Ln
I

—— Training acc
—— Validation acc

e
'S
i

0 20 40 60 80 100
epoch

Figure 36. Accuracy Results of the CNN Model-I (Dataset Separated by 75% to 25%,

Epoch=100)
Training and validation loss
5_
—— Training loss
—— Validation loss
4_
3_
%]
%]
o
2_
11\
0_
0 20 40 60 80 100
epoch

Figure 37. Loss Results of the Proposed CNN (Dataset Separated by 75% to 25%,
Epoch=100)

52

In order to measure the performance and evaluate misclassified data confusion
matrices were created for every case. The diagonal cells in Figures 38, 39 and 40 show
the number of correct classifications of each individual classes, which are the characters
of Ottoman alphabet in this case. Moreover, values in the non-diagonal cells indicate the

number of incorrectly classified observations.

Confusion matrix

0 0 0 0 6 4 1 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ayin-gayin
pepe{ O © o 0o 0o 0o 0 0 0 0 4 0 0O 0 0 1 O 0O O O 0 0 O
Gmcm-{ ¢ OofkgM o o o 2 o o0 0 0 0 0 ©0O ©0 1 0 0 0O 0O 0 0 0 O
dalq 3 0
eifq 00
=lz 0

ha-hi 4 1 0
he A
kaf4 0 0
kef4 0 0
lam o
lamelif 4

mim

True Label

nun -

re
sad-dad{ 1 O
sin

sinz

tese 4 0 0

bz 4 0 0
vav o o
ve 0 0
ze-je + o o
=4 0 V] o o V] 8 V] o 2 V] V] V] o 2 V] 4 V] 9 1 3 V] V] o
T T
o & > S e P S 3 S & & & T S e G Y
'a‘\\ q,'Q Q@ L <& R s \b@ ,@z} & & ¢ & T .@:{9 A £ Al -&\ ®
i & ‘;p
& °

Predicted Label

Figure 38. Confusion Matrix of the CNN Model-1 (Dataset Separated by 80% to 20%)

53

Confusion matrix

1] 1 0 7 2 3 2 0 0 0 0 0 1] 0 0 2 0 0 0 0 0 0]

ayin-gayin
be-pe
cim-gim o
dal { ©
elif 4 0
wd 2
ha-hi 4 3
hed 3
kaf { 0
kef-{ O
lam
lamelif o
mim -

nun -

True Label

re
sad-dad { 1
sin o
sinZ o
tese 4 0
t-z1
vav -

ye -

ze-je o

w]1 © 0 1 0o 7 0 0 0 0 0O 0 O

T T T T T
>
S F S e S E @ @
& . &

Predicted Label

,
e

% |

5,

,)(ﬂ,) 4 o
‘&

%,

%

R P g

2,
%,
&
%
&

&

%

Figure 39. Confusion Matrix of the CNN Model-1 (Dataset Separated by 75% to 25%)

4.2.2. CNN Model-11

In order to achieve better accuracy and loss performances, more complex network
was built by adding more hidden layers this time. Similar to the previous network, layer
1 and 2 were also a convolutional layer with a filter size of 3x3 and they are followed by

max pooling layer that has a pool size of 2x2 respectively.

54

Confusion matrix

ayin-gayin 1 0 o 2 1 1 2 0 0 O O © O 0 0O 0O ©O 0 O 0 1 2

be-pe - v] 98 o o] v] o 0 v] o o o] 0 o 0 v] o 2 o] 0 o 0 v] o o
cm-cim o
dal 4 0

elif { ©

kaf{ O
kef{ O
lam
lamelif
mim -

nun -

True Label

re o
sad-dad { 2
sin

sin2 o
te-se { O
h-z1 A

vav -

0 0 0 0 1] 0 0] 1] 1 0 0 0

[=]
[~
o
[=]
[=]
o
[=]
[=]
o
o
[=]

ze-je o

o4 1 o o 1 u] o] u] 1 o o] o o] v] o o 1 o 1] u]

T T

& o S S - i & & @ Lo a2 @ \ 3 P>

&5 o ,Q@ &« R G \Qg\‘ é\?} @6\ & 0 ;T & LT S 8 & 43"\ #
S L& o & <&

Predicted Label

Figure 40. Confusion Matrix of the CNN Model-1 (Dataset Separated by 75% to 25%,
Epoch=100)

Three consecutive convolutional and max pooling layers followed the output of
the first two layers. Then the output was flattened into an array and passed through a fully
connected dense layer with 64 hidden units and was connected with 60% dropout layer.
Dropout layer was used to prevent overfitting by randomly setting some of the input units
to O at each update during training. Same step was repeated again with a dense layer and
30% dropout layer. Finally, it was connected with a fully connected dense layer with 24
nodes, which was also the output layer for the model. Figure 41 shows the layers of the
CNN Model-II.

55

Input Layer

> Flatten
\ 4
Conv2D
\ 4
Dense
\ 4
MaxPooling2D
\ 4
Dropout
\ 4
Conv2D
\ 4
Dense
\ 4
MaxPooling2D
\ 4
Dense
\ 4
Conv2D
\ 4
Dropout
\ 4
MaxPooling2D
\ 4
Dense
\ 4
Conv2D
\ 4
Classification
\ 4

MaxPooling2D

Figure 41. Layers of the CNN Model-II

This model was also trained with the same dataset while it was split by 80% to
20%. As can be seen in the Figure 42 and 43, the accuracy was increased to 95.94% and
loss showed significant drop to 16.02%.

Lastly, training was repeated by using 75% of the dataset as training set and 25%
as test set. As can be seen from the following Figure 44 and 45, CNN Model-11 showed
better results for both accuracy and loss. Accuracy of 97.58% was obtained and loss
dropped to 9.54%.

56

Table 5. Architecture of the CNN Model-II

Layer No (Type) Output Shape Parameter
Conv2D 150, 150, 32 320
MaxPooling2D 75,75, 32 0
Conv2D 75,75, 32 9248
MaxPooling2D 37,37, 32 0
Conv2D 37,37, 64 18496
MaxPooling2D 18, 18, 64 0
Conv2D 18, 18, 64 36928
MaxPooling2D 9,9, 064 0
Flatten 5184 0
Dense 64 331840
Dropout 64 0
Dense 64 4160
Dense 64 4160
Dropout 64 0
Dense 24 1560

Total Parameters: 406712
Trainable Parameters: 406712

Non-trainable Parameters: O

Figure 46 and Figure 47 show confusion matrices of the CNN Model-Il. Figure

47 shows the confusion matrix where the model showed the best recognition

performance. It can be seen from the figure, most of the diagonal cells are very close to

one hundred that is the number of each character in the test set.

57

Training and validation accuracy

1.0
0.8
2 0.6 -
g
=1
(=
@
0.4 -
0.2 1
—— Training acc
—— Validation acc
0 20 a0 60 80 100

Figure 42. Accuracy Results of the CNN Model-1I (Dataset Separated by 80% to 20%)

Training and validation loss

3.0 —— Training loss
—— Validation loss

2.5 A

2.0

loss

1.5 1

1.0

0.5 1

0.0 - T T T T T

Figure 43. Loss Results of the CNN Model-11 (Dataset Separated by 80% to 20%)

58

Training and validation accuracy

1.0
0.8 4
3 0.6 -
©
3
=)
(=]
[is]
0.4
0.2 1 —— Training acc
—— Validation acc
0 20 40 60 30 100

Figure 44. Accuracy Results of the CNN Model-1l (Dataset Separated by 75% to 25%)

Training and validation loss

3.0 4 —— Training loss
—— Validation loss
2.5 1

2.0~

loss

1.5 1

1.0

0.5 -

0.0

0 20 40 60 80 100

Figure 45. Loss Results of the CNN Model-11 (Dataset Separated by 75% to 25%)

59

Confusion matrix

ayin-gayin o 0o o0 0 0 1 2 0 0 0 0 0O 0
bepe 4 O o 0o 0 1 0o 0 O O 0 0 0 0
gmcm- 0 O o o 0o 9 0 0 0 0O O 0 D
dal{ 0 O
eifq 0 0
el o

ha-hi 4 1 0
he 4 1 0
kaf4 0 0
kef4 0 0
lam

lamelif 4
mirm o

nun -

True Label

re
sad-dad{ 0 0
sin

sin2 o

tese { O 0

tz 4 O 0
vawv - 0 0
wedo o
wje{0 0 0 0 0o 0o o0 0 0o 0 0 0 0 1
wJ0 © 0o B 0 0 0 @ 0 0 0O 0 0 O

T T T T T T T T T T T T T T

} 5
S S S e S @ & &
& & « & &
& &

Predicted Label

Figure 46. Confusion Matrix of the CNN Model-11 (Dataset Separated by 80% to 20%)

4.2.3. Comparing CNN Models to Conventional OCR Methods

In order to interpret the results of proposed CNN models, same dataset was tested
with the methods that have proven themselves in the OCR field. For this purpose, two

different feature descriptors were selected.

60

Confusion matrix

ayin-gayin o o o 2 © 0 O O O O 1 ©0O O O ©o0 0 0 0 0 O 0 0
beped O o o o o © 0 © 1 ©0 O O O O O 1 ©0 0 0 0 O 0 0
cim-gim - 0 0 0
dal { 0 0o 0
elit{ 0 0 0
el 1 0 0
ha-hi { © o o
hed O 0o 0
kaf { O 1 0
kef{ O 0o 0
lam4 0 0o 0
_8 lamelif { 0 Y
(¢]
-t mimd © 0 0
()
E nun 4 0 0 0
= ed O 0 0
sad-dad { 0 o 0
sind 0 0o 0
sinz4 O o o
tese 4 0 0 0
e d 0 0 0
vavd 0 0 0
eJ0 o © 0 © o 0o o 0o o 0o 1 0 0o 0 1 1 o o o ofE 0 0
zje{® © ©o 0 0 0o 0 © ©0 0 0 0 0 1 0 0 0 0O 0 0 O
/0O O 0o 1 0o 0O ©0 0O ©O O O O O O O 0O O 0O 0O 0 0
T T
Qefoz.oe’ .@‘Q@ & & e &S‘\ ® @ @ Q{\@‘\ & & @ pr;;b"’ & & P & &
& & i

Predicted Label

Figure 47. Confusion Matrix of the CNN Model-11 (Dataset Separated by 75% to 25%)

Histogram of Oriented Gradients

The distributions of gradient directions are used as features in the histogram of
oriented gradients (HOG). It is implemented with a block which is similar to a sliding
window that can be considered as a pixel grid. Horizontal and vertical gradients are
calculated for each pixel within this pixel grid. After gradients are constituted, gradient
magnitude and gradient angle that form the gradient vectors are calculated and they are

compressed into 9 directions that are separated by 20°.

61

Figures from 48 to 51 show HOG distributions of some letters that belong to
Ottoman character dataset created in this study when block size was chosen as 2x2, 4x4
and 8x8 pixels. When the chosen pixel grid sweeps the entire image, HOG features are
extracted. Thus, character structure is retained while eliminating insignificant

information.

(-

L]

CellSize = [2 2] CellSize = [4 4] CellSize = [8 8]
Length = 86436 Length = 20736 Length = 4356

Figure 48. Histogram of Oriented Gradients of Letter “b”

J

CellSize = [22] CellSize = [4 4] CellSize = [8 8]
Length = 20736 Length = 4356

Length = 86436

Figure 49. Histogram of Oriented Gradients of Letter “1”

62

b

CellSize = [2 2] CellSize = [4 4] CellSize = [8 8]
Leng 6436 Length = 20736 Length = 4356

Figure 50. Histogram of Oriented Gradients of Letter “t”

¢

CellSize =[2 2] CellSize = [4 4] CellSize = [8 8]
Length = 86436 Length = 20736 Length = 4356

Figure 51. Histogram of Oriented Gradients of Letter “y”

Principal Component Analysis

Principal component analysis (PCA) is one of the most commonly used feature
extraction technique and it is based on projection of the data to a lower dimensional space
in order the retain the information while eliminating insignificant information (Bishop,
2006). PCA is achieved by transforming the data to uncorrelated components that retain
most of the variation exist in the original data. Thus, if amount of variance is high, the
information carried by that feature will be high (Jolliffe, 2002).

63

Original Image 95% of Variance 90% of Variance 50% of Variance
0 0

0 0
201 201 204 201
40 4 404 40 4 40
L] 14
60 ‘ , 604 ‘ , 60 ‘ ’ 60 v
80 [] 80 » 80 » 80
0 0 40 60 80 0 20 4 60 80 0 20 4 60 80 0 20 40 60 80
630 components 312 components 29 components
H " mn H H
Figure 52. PCA of Letter "b" when the variance is 95%, 90% and 50%
Original Image 95% of Variance 90% of Variance 50% of Variance
0 0 0 0
201 20 201 20
40 A 404 40 A 404
60 - 60 60 - 60
80 80 80 80
o] ZID 4‘0 Sb Eb 0 Eb 4‘0 6‘0 E‘D o] 2‘0 4‘0 Sb Eb 0 2‘0 4‘0 6‘0 EID
630 components 312 components 29 components
H mjn H H
Figure 53. PCA of Letter "I" when the variance is 95%, 90% and 50%
Original Image 95% of Variance 90% of Variance 50% of Variance
o 0 o 0
20 201 204 204
40 1 40 1 40 1 40 1
60 1 607 601 60+ ‘
80 - 80 80 80
0 4 60 80 0 0 @ 60 80 0 20 40 6 80 o 20 4 60 80
630 components 312 components 29 components

Figure 54. PCA of Letter "t" when the variance is 95%, 90% and 50%

64

Original Image 95% of Variance 90% of Variance 50% of Variance
0

201 201 2041 204

40 4 404 40 1 404

80 804 804 80

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
630 components 312 components 29 components

Figure 55. PCA of Letter "y" when the variance is 95%, 90% and 50%

Figures from 52 to 55 show plots of the same characters as in Figure 48 to 51
when the variance is 95%, 90% and 50% respectively. Results showed that 95% of the
information is contained in 630 dimensions, 90% of the information is contained in 312
components and 50% of the information is contained in 29 dimensions.

After features were extracted, Ottoman character images were mapped into 24
classes by using two different classifiers called as Support Vector Machines and k-

Nearest Neighbors.

Support Vector Machines (SVM)

The objective of the support vector machine algorithm is to find a hyperplane that
separates the data points of classes. Performance of the SVM classifier depends on
choosing the correct hyperplane that maximizes the margin between classes. Figure 56
illustrates the optimal hyperplane that separates two classes from the maximum distance
that is possible (Duda, Hart, and Stork, 2000).

65

Figure 56. Selection of Hyperplane Between Two Classes in SVM
(Source: Duda, Hart, and Stork, 2000)

k-Nearest Neighbors (k-NN)

In k-NN algorithm, it is assumed that a data is similar to the data that is in the
close proximity. It classifies test data by measuring its distance to each training data by
using distance functions such as Euclidian, Manhattan, Minkowski etc. Euclidian distance

is the most commonly used distance function and its mathematical model is given below.

In this study, k is chosen as 3 and Euclidian distance is chosen as the distance
function.

Table 6 and Table 7 show the overall recognition results for all methods applied
in this study. SVM method showed good performance when histogram of oriented
gradients were used to extract features. However CNN Model-I1 has the best score among

them with the accuracy of 97.58%.

66

Table 6. Recognition Results of the k-NN and SVM Classifiers

Feature Detector

k-NN Classifier

SVM Classifier

HOG [4x4]

93.26%

96.13%

PCA

91.12% (90% of variance)

86.62% (95% of variance)

Table 7. Recognition Results of the CNN Model-1 and CNN Model-I1

80%-20%

75%-25%

85.25% (25 epochs)
CNN Model-I 84.84% (25 epochs)

94.46% (100 epochs)
CNN Model-I1 95.94% (100 epochs) 97.58% (100 epochs)

67

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this study, deep neural networks were used to recognize printed Ottoman
letters. In order to recognize the letters, the deep neural network was trained with
character dataset obtained from the segmentation of texts of different lengths selected
from various Ottoman documents collected from the Turkish National Library. While
creating this dataset, horizontal and vertical projections were used and thus, isolated
characters were fragmented. However, a new method has been developed for separating
the combined letters due to the adjacent structure of the Ottoman texts. Segmented
characters were divided into 24 classes and a total of 9600 images were obtained with
400 images for each class.

After the dataset is obtained, it was divided by 75% to 25% as training and test
sets. Then, a CNN model which only has a single convolution layer was built to recognize
24 classes. The network was trained with 7200 images and tested with 2400 images. The
same process was repeated by dividing dataset with 80-20%. The results showed that
CNN performed better for both training and test sets when dataset is divided by 80% to
20%.

A second multilayer CNN was then created to observe the effect of system depth
on recognition performance. This network was also trained by separating the dataset by
75% -25% first and the procedure was repeated for 80% -20% again. It has been observed
that the best recognition result of the system was obtained when dataset is divided by 80%
to 20% and the network is multi layered.

This study focused only on printed Ottoman documents however it can be
expanded by creating new dataset for handwriting samples and proposed CNN models
can be evaluated for handwritten Ottoman scripts.

Deep learning models can also be utilized for the recognition of the non-writing
objects in the documents in order to fully automate translation of the scanned Ottoman

documents.

68

Finally, recognition of Ottoman characters can be combined with grammar
knowledge in order to build an automated system that translates Ottoman text image to

the contemporary Turkish.

69

REFERENCES

“Harfler” 2019. 2019.
https://osmanlicaogren.com/harfler#1561411751942-cc8c8071-aadf.

Adigiizel, Hande, Emre Sahin, and Pinar Duygulu. 2012. “A Hybrid Approach for Line
Segmentation in Handwritten Documents.” In Proceedings - International
Workshop on Frontiers in Handwriting Recognition, IWFHR, 503-8.
https://doi.org/10.1109/ICFHR.2012.156.

Ahmed, Saad Bin, Saeeda Naz, Muhammad Imran Razzak, and Rubiyah Yousaf. 2017.
“Deep Learning Based Isolated Arabic Scene Character Recognition.” In IEEE
International Workshop on Arabic Script Analysis and Recognition (ASAR), 46-51.
https://doi.org/10.1109/asar.2017.8067758.

Ali, Asghar, Mark Pickering, and Kamran Shafi. 2018. “Urdu Natural Scene Character
Recognition Using Convolutional Neural Networks.” In 2nd IEEE International
Workshop on Arabic and Derived Script Analysis and Recognition, ASAR 2018,
29-34. IEEE. https://doi.org/10.1109/ASAR.2018.8480202.

Arifoglu, Damla, and Pinar Duygulu. 2011. “Word Retrieval In Ottoman Documents.”
In 19th Signal Processing and Communications Applications Conference. Antalya.
https://doi.org/10.1109/S1U.2011.5929703.

Ashiquzzaman, Akm, and Abdul Kawsar Tushar. 2017. “Handwritten Arabic Numeral
Recognition Using Deep Learning Neural Networks.” In IEEE International
Conference on Imaging, Vision and Pattern Recognition, 1-4. IEEE.
https://doi.org/10.1109/ICIVPR.2017.7890866.

Ataer, Esra, and Pinar Duygulu. 2006. “Retrieval of Ottoman Documents.” Proceedings
of the ACM International Multimedia Conference and Exhibition, no. January
2006: 155-62. https://doi.org/10.1145/1178677.1178700.

70

Aydemir, M. Said, Burak Aydin, Hamza Kaya, Ibrahim Karliaga, and Cemil Demir.
2014. “TUBITAK Tiirkge - Osmanlica El Yazis1 Tanima Sistemi.” In 22nd Signall
Processing and Communications Applications Conference, 1918-21. IEEE.
https://doi.org/10.1109/S1U.2014.6830630.

Baydar, B. 2018. “Convolutional Neural Network Based Brain MRI Segmentation.”
Middle East Technical University.
http://etd.lib.metu.edu.tr/upload/12622216/index.pdf.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.

Can, Ethem F., Pinar Duygulu, Fazli Can, and Mehmet Kalpakli. 2010. “Redif
Extraction in Handwritten Ottoman Literary Texts.” In Proceedings - International
Conference on Pattern Recognition, 1941-44.
https://doi.org/10.1109/ICPR.2010.478.

“Clearing the Confusion: Al vs Machine Learning vs Deep Learning Differences.”
2018. 2018. https://towardsdatascience.com/clearing-the-confusion-ai-vs-machine-

learning-vs-deep-learning-differences-fce69b21d5eb.

“Converting a Grayscale Image to Binary Image Using Thresholding.” n.d.
https://www.geeksforgeeks.org/matlab-converting-a-grayscale-image-to-

binary-image-using-thresholding/.

“CUDA GPUs Computing Capabilities.” 2019. 2019.
https://developer.nvidia.com/cuda-gpus.

“Dropout Neural Network Layer In Keras Explained.” 2019. 2019.
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-

layers-explained-8c9f6dc4c9ab.

Duda, Richard O., Peter E. Hart, and David G. Stork. 2000. Pattern Classification. 2nd
ed. Wiley.

71

Elsawy, Ahmed, Hazem M. El-Bakry, and Mohamed Loey. 2017. “Arabic Handwritten
Characters Recognition Using Convolutional Neural Network.” WSEAS

Transactions on Computer Research, no. January 2017.

Haykin, S. 1999. Neural Networks A Comprehensive Foundation. 2nd ed. Pearson

Education, Inc.

Hsu, Hwei P. (Hwei Piao). 2011. Schaum’s Outlines: Signals and Systems.

Islam, Noman, Zeeshan Islam, and Nazia Noor. 2016. “A Survey on Optical Character
Recognition System.” ITB Journal of Information and Communication
Technology, no. December 2016. https://doi.org/10.3850/978-981-09-5346-1 cse-

024.

Jain, Anil K., Jianchang Mao, and K. M. Mohiuddin. 1996. “Artificial Neural
Networks: A Tutorial.” Computer 29 (3): 31-44. https://doi.org/10.1109/2.485891.

Jolliffe, I.T. 2002. Principal Component Analysis. 2nd ed. Springer.

Karpathy, A. 2016. “Convolutional Neural Networks for Visual Recognition.” Stanford
University CS231n Lecture Notes. 2016. http://cs231n.github.io/.

“Keras: The Python Deep Learning Library.” 2019. 2019. https://keras.io/.

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic
Optimization.” ICLR, 1-15. http://arxiv.org/abs/1412.6980.

Kilig, Niyazi, Pelin Gorgel, Osman N. U¢an, and Ahmet Kala. 2008. “Multifont
Ottoman Character Recognition Using Support VVector Machine.” In 3rd
International Symposium on Communications, Control and Signal Processing,
328-33. St Julians, Malta: IEEE. https://doi.org/10.1109/ISCCSP.2008.4537244.

72

Kuo, C. C.Jay. 2016. “Understanding Convolutional Neural Networks with a
Mathematical Model.” Journal of Visual Communication and Image
Representation 41: 406-13. https://doi.org/10.1016/j.jvcir.2016.11.003.

Kurt, Zeyneb, H. Irem Turkmen, and M. Elif Karsligil. 2007. “Ottoman Alphabet
Character Recognition by LDA.” IEEE 15th Signal Processing and
Communications Applications, 1-4. https://doi.org/10.1109/S1U.2007.4298685.

Mcculloch, W., and W. Pitts. 1990. “A Logical Calculus of the Ideas Immanent in
Nerous Activity.” Bulletin of Mathematical Biology 52 (1/2): 99-115.

Nalbant, Muammer, Mustafa Burunkaya, and Yilmaz Eroglu. 2009. “Osmanlica
Elyazisi Harfleri Cevrimi¢i Tanima.” E-Journal of New World Sciences Academy 4
(2): 148-64.

Onat, Ayse, Ferruh Yildiz, and Mesut Giindiiz. 2008. “Ottoman Script Recognition
Using Hidden Markov Model.” World Academy of Science, Engineering and
Technology International Journal of Computer and Information Engineering 2 (2):
462-64. https://doi.org/10.5281/zenodo.1059657.

“Ottoman Turkish.” 2010. 2010.
https://www.loc.gov/catdir/cpso/romanization/ottoman.doc.

Oztiirk, Ali, Salih Giines, and Yiiksel Ozbay. 2000. “Multifont Ottoman Character
Recognition.” Proceedings of the IEEE International Conference on Electronics,
Circuits, and Systems 2: 945-49. https://doi.org/10.1109/ICECS.2000.913032.

Sahin, Emre, Hande Adigiizel, Piinar Duygulu, and Mehmet Kalpakli. 2012. “OTAP
Osmanlica Metinleri Internet Arayiizii.” In 20th Signal Processing and
Communications Applications Conference.
https://doi.org/10.1109/S1U.2012.6204792.

73

Sarfraz, M., S. N. Nawaz, and A. Al-Khuraidly. 2003. “Offline Arabic Text Recognition
System.” Proceedings - 2003 International Conference on Geometric Modeling
and Graphics, GMAG 2003, 30-35. https://doi.org/10.1109/GMAG.2003.1219662.

Saykol, Ediz, Ali Kemal Sinop, Ugur Giidiikbay, Ozgiir Ulusoy, and A. Enis Cetin.
2004. “Content-Based Retrieval of Historical Ottoman Documents Stored as
Textual Images.” IEEE Transactions on Image Processing 13 (3): 314-25.
https://doi.org/10.1109/T1P.2003.821114.

“Sirat-1 Mistakim.” 1908. Sirat-1 Miistakim.

Stenroos, Olavi. 2017. “Object Detection from Images Using Convolutional Neural

Networks.” Aalto University.

“The Ultimate Guide to Convolutional Neural Networks (CNN).” 2018. 2018.
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-

neural-networks-cnn.

“Training Deep Neural Networks.” 2018. 2018.
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964.

Tulum, Mertol. 2009. Osmani: Tiirkgesine Giris. Edited by Albdiilkadir Giirer. 4. Baski.

T.C. Anadolu Universitesi.

“Using Neural Nets to Recognize Handwritten Digits.” 2019. 2019.
http://neuralnetworksanddeeplearning.com/chapl.html.

Wu, J. 2017. “Introduction to Convolutional Neural Networks.” National Key Lab for
Novel Software Technology, 1-31. https://doi.org/10.1007/978-3-642-28661-2-5.

Yalniz, Ismet Zeki, Ismail Sengér Altingdvde, Ugur Giidiikbay, and Ozgiir Ulusoy.
2009. “Ottoman Archives Explorer: A Retrieval System for Digital Ottoman
Archives.” Journal on Computing and Cultural Heritage 2 (3).
https://doi.org/10.1145/1658346.1658348.

74

Younis, Khaled, and Abdullah Khateeb. 2017. “Arabic Hand-Written Character
Recognition Based on Deep Convolutional Neural Networks.” Jordanian Journal
of Computers and Information Technology 3 (3): 186.
https://doi.org/10.5455/jjcit.71-1498142206.

75

