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ABSTRACT

ROBUSTNESS OF FINGERPRINT VERIFICATION ALGORITHMS

AGAINST SYNTHETIC DEFORMATIONS

Fingerprint recognition is one of the biometric techniques used for the identifi-

cation of humans. The developments and research about fingerprint recognition to date

are of great importance in advancing fingerprint recognition and verification scenarios.

The fact that fingerprint recognition systems are used almost everywhere and are easily

accessible is directly proportionate to a large amount of research in these areas.

During the acquisition of the fingerprint, there are many environmental factors

that may affect the quality of the print and eventually, its ability to be recognized. For a

fingerprint recognition algorithms, it is important to handle the difficulties that arise due

to those variations.

The aim of the thesis is to obtain and compare the results of not only an existing

feature-based fingerprint recognition techniques but a fingerprint recognition technique

that uses deep learning. The main focus is on how fingerprint verification algorithms

behave under the circumstances of synthetically distorted fingerprint images. After de-

veloping two different verification systems, the goal is to compare system results with

and without distorted images. The results of the two methods with and without externally

added deformations effect on the fingerprint image is compared. The first system has

a feature-based approach comparing the images via local features on the fingerprint. In

order to do this two different descriptors that are called ORB and SIFT are used. In the

feature-based approach, there is also a matching part and this part is tried with two dif-

ferent matching algorithms that are called Brute Force Matcher and Approximate Nearest

Neighbor (ANN) matcher.

The second algorithm makes the decision of match or non-match by feeding the

raw fingerprint images as an input to a deep neural network and comparing the feature

vectors calculated by the network. This study has revealed that deep neural network

approach has given more robust and faster results on both the original dataset and distorted

versions of the dataset.
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ÖZET

PARMAK İZİ EŞLEŞTİRME ALGORİTMALARININ SENTETİK

BOZULMALARA KARŞI DAYANIKLILIĞI

Parmak izi tanıma, insanların tanımlanmasında kullanılan biyometrik teknikler-

den biridir. Parmak izi tanıma konusundaki gelişmeler ve araştırmalar, parmak izi tanıma

ve doğrulama senaryolarının geliştirilmesinde büyük öneme sahiptir. Parmak izi tanıma

sistemlerinin hemen hemen her yerde kullanılması ve kolayca erişilebilir olması, bu alan-

larda yapılan araştırmalarla doğrudan orantılıdır.

Bir yüzey üzerinde parmak izi alırken, büyük olasılıkla bazı sorunlar olacaktır ve

bu durum parmak izi tanıma performansını etkiler. Güvenli bir tanıma sistemi için bu tür

sorunların sisteme nasıl tepki vereceği önemlidir.

Tezin amacı sadece mevcut özellik tabanlı parmak izi tanıma tekniklerinin değil

aynı zamanda derin öğrenme, görüntü işleme temeli alan parmak izi tanıma tekniklerinin

sonuçlarını elde etmek ve karşılaştırmaktır. Önemli olan, parmak izi doğrulama algo-

ritmalarının sentetik olarak bozulmuş parmak izi görüntülerinin koşulları altında nasıl

sonuçlar verdiğidir. İki farklı doğrulama sistemi geliştirdikten sonra, sistem sonuçlarını

çarpık görüntülerle ve düzgün görüntülerle karşılaştırmaktır. Parmak izi görüntüsü üzeri

harici olarak deformasyon etkisi olan ve olmayan iki yöntemin sonuçları karşılaştırılır.

İlk sistem, görüntüleri parmak izi üzerindeki özelliklerle karşılaştıran özellik tabanlı bir

tanıma sürümüdür. Bunu yapmak için ORB ve SIFT teknikleriyle iki farklı tanımlayıcı

kullanılır. Bu konvansiyonel yaklaşımda, eşleşen bir parça da vardır ve bu kısım Brute

Force Matcher ve Yaklaşık En Yakın Komşu (ANN) eşleştiricisi olarak adlandırılan iki

farklı eşleştirme algoritmasıyla denenir. İkinci algoritma, ham parmak izi görüntülerini

modele giriş olarak alarak parmak izi görüntülerini eşleştirmek için tamamen sinir ağı

modelinin sonucunu alarak eşleştirme sonuçlarını belirler. Bu çalışma, derin sinir ağı

yaklaşımının hem orijinal veri setinde hem de veri setinin çarpık versiyonlarında daha

sağlam ve daha hızlı sonuçlar verdiğini ortaya koydu.
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CHAPTER 1

INTRODUCTION

Each fingerprint is unique in its structure and is never the same as that of another

person. When the finger is pressed on a flat surface, the pattern structure at the finger

leaves a trace of the same pattern on the surface which is called a fingerprint (Adán et al.,

2008). Fingerprint has various characteristics, such as line patterns, line frequencies,

locations of reference points (i.e. core and delta points), locations of minutiae, and so on.

Minutiae refers to specific points in a fingerprint, and these points are the small details in a

fingerprint such as ridge ending, bifurcation, and dot (Solutions, 2016). All the distinctive

features supply the individuality and uniqueness of the fingerprint.

In the mid-1800s, scientific studies were carried out to determine the character-

istics of two fingerprints. These characteristics were that two fingerprints from different

fingers did not have the same line pattern, and fingerprint calligraphy patterns did not

change throughout life. These works led to the use of fingerprints for identification in

judicial cases, first in Argentina in 1896, second in Scotland Yard in 1901 and then in

other countries in the early 1900s. The computerization of the fingerprinting started with

the use of computer technologies in the early 1960s. Increasing of the computer hardware

capabilities improved the processing of these images. Since then, automatic fingerprint

identification systems have been widely used in judicial units worldwide. In the 1980s,

innovations in technology, such as personal computers and optical scanners, enabled fin-

gerprint detection to be practical in non-punitive applications. In the late 1990s, the intro-

duction of cheap fingerprint reader devices and the development of fast, reliable mapping

algorithms paved the way for tailoring fingerprints to personal use (Saleh, 2014). The

importance of fingerprint is that being always unique feature of human and easily obtain-

able.

In this thesis, two fingerprint verification methods, which are feature and deep

learning-based, are evaluated and tested with and without synthetically distorted images.

Data augmentation technique is used both for increasing the number of training data and

for testing models with synthetically distorted data. Based on these methods presented,

the motivation of the thesis is to compare the results of these two methods according to

experimental setup that is explained in Chapter 4.
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The thesis consists of five chapters and its outline is given as follows:

• Chapter 1 serves as an introduction to explain the definition, the history and the

importance of fingerprint. In addition, a brief summary of the thesis is provided.

• Chapter 2 concentrates on the background of biometric recognition, fingerprint

recognition and problems of fingerprint degradation. This chapter also gives the

related works about the three main topics.

• Chapter 3 gives general information about the two techniques that are used for

fingerprint verification. Additionally, another important contribution of this thesis,

namely, synthetic distortion generation is included in this chapter.

• Chapter 4 present the experiments and results of the two different fingerprint veri-

fication algorithms that are feature-based method and a fully convolutional neural

network (CNN) model. In this chapter, database that is used for the experiments per-

formance evaluations and comparisons of these algorithms are explained for both

non-distorted images and distorted images.

• Chapter 5 summarizes the two different ways of fingerprint recognition and gives

the final remarks.
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CHAPTER 2

BACKGROUND

2.1. Biometric Recognition

Biometric data should have measurable and unique features. For instance, phys-

ical characteristics of people such as signature, sound, keystrokes are used for biometric

systems. Biometric systems can be defined as automated systems that process this bio-

metric data, identify and match identities. There are many biometric systems that can

be utilized to recognize and identify people’s characteristics. The most common among

those systems are fingerprint recognition, face recognition, iris recognition, finger vein

pattern recognition, palm vein pattern recognition (Recogtech, 2019).

With the increase of computation power of computers and electronic technologies,

the popularity of biometric systems, which are powerful in terms of security, have become

popular (Pato and Millett, 2010).

Biometric recognition gives reliable results because human specific individual bio-

metric properties are used. Methods such as password, pin number and so on are much

weaker than biometric identification methods since they can be easily stolen. Users do

not need to have a card or password in biometric systems. Each person is the key of his

or her own security system. It is safe against risks such as stealing and copying. There-

fore, biometric systems are secure and convenient to use (Jain et al., 2004). Based on the

application context, a biometric system may operate either in verification mode or iden-

tification mode Jain et al. (2004). Figure 2.1 demonstrates the procedure of verification

and identification processes.

• Verification Mode: It validates a person’s identity by comparing the acquired bio-

metric data with the biometric patterns stored in the gallery. That is, it verifies

whether this data belongs to that person or not. The system makes a one-to-one

comparison to determine whether the claim is true or not Wayman (2001).

• Identification Mode: This mode identifies who biometric data belongs to. Identifi-

cation needs a one-to-many comparison to find an induvidual’s indentity Wayman

(2001).
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Figure 2.1. Block diagrams of enrollment, verification, and identification tasks are

shown using the four main modules of a biometric system, i.e., sensor,

feature extraction, matcher, and system database Jain et al. (2004).

Performance Metrics for Verification: Comparison of two different fingerprints gives

match or non-match result. The metrics for successful and erroneous results are listed

below:

• False Acceptance Rate (FAR): The ratio of the ”match” result for two different

fingers. It is also known as False Match Rate (FMR).

• False Rejection Rate (FRR): The ratio of the ”not match” result for two same fin-

gers. It is also known as False Non Match Rate (FNMR).

• Half Total Error Rate (HTER): (FAR + FRR) / 2

• Equal Error Rate (EER): This is used for determine the threshold value for the

decision of FAR and FRR. The lower EER value means the higher accuracy of the

biometric system. At this point FAR and FRR values are equal.

4



The Figure 2.2 explains the relationship between False Match Rate (FMR) and

False Non-Match Rate (FNMR) over genuine and imposter score distribution. Two prob-

ability distributions of genuine and impostor pairs are shown in a joint way. Matching

score close to 1 indicates that the images are from the same finger. The areas under the

graphs give the FNMR and FMR values.

Figure 2.2. FMR and FNMR for a given threshold t are displayed over the genuine and

impostor score distributions (Maltoni et al., 2009).

There is a real trade-off between FMR and FNMR. Figure 2.3 roughly demon-

strates this tradeoff. The system can give different results depending on the threshold

value of t. Changing the value of threshold increases or decreases the values of FMR and

FNMR. It can be seen that EER point is where FMR and FNMR values are the same. Cri-

teria for threshold selection will be based on this EER point in the fingerprint recognition

algorithms.

In this thesis FAR, FRR, HTER and EER metrics will be evaluated.

2.2. Fingerprint Recognition

Fingerprint recognition consists of algorithms for extracting salient features from

fingerprints and matching them. A crucial problem is that fingerprint images may be in

poor quality, because of dirty/damaged sensor surfaces, wet/dry fingertips, uncooperative

users, etc. Even though fingerprint matching problem has been studied for almost four

decades, large intra-class variability due this problem is still a challenge.
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Figure 2.3. A demonstration of FMR(t) and FNMR(t) curves, the points corresponding

to EER, ZeroFMR, ZeroFNMR (Maltoni et al., 2009).

2.2.1. Methods

This section will be discussed in three main topics. The first is the human approach

that explains how forensic experts recognize fingerprints. The second topic explains how

feature-based method works and the last one focuses on deep learning method.

2.2.1.1. Human Approach

A fingerprint is the result of the regeneration of the fingertip epidermis, which

forms lines and valleys (M. Bolle et al., 2002). In fingerprint images, lines and valleys

are represented by dark and bright areas respectively. Lines increase friction between the

surfaces of the fingers and other objects that they are useful for gripping and maximizing

the ability to recognize different textures.

In the human approach, acquisition can be conducted both offline or live scan.

Then, a good representation of fingerprint is obtained by means of extracting the salient

features properly.

The fingerprints are categorized at the global level according to the general line or

valley pattern that provides the separator configuration. This classification leads to three

general classes; they are a loop, arch, and whorl. These classes can be further divided into

the right loop, left the loop, arch, tented arch, whorl. These can be observed in Figure 2.4.
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Figure 2.4. Images of basic fingerprint classes, right loop, left loop, arch, tended arch,

whorl

Next, the core and minutiae points of the compared fingerprints are manually la-

belled and compared by fingerprint experts. The decision is usually is made based on the

total number of matched minutiae points.

2.2.1.2. Feature-Based Approach

Fingerprint Image Enhancement : The accuracy rate of the recognition and verifica-

tion systems used for fingerprints highly depends on the quality of fingerprint images and

the ability to extract details. The quality of embossed structures is an important charac-

teristic and contain the characteristic detail information required for detail extraction. A

line structure must first be obtained in order to extract details from the fingerprint image

obtained by digitizing an inked fingerprint or scanning directly from the sensor. The line

structures in the fingerprint may not always be well defined. Therefore, preprocessing the

image, is necessary to obtain more reliable detail extraction.

If the captured fingerprint image contains various noises, matching results may de-

teriorate. Pre-processing is highly important for detecting minutiae and extracting fatures.

Commonly used enhancement technics are histogram equalization, binarization, thinning

and Gabor filtering. In Figure 2.5, an original fingerprint is shown with its binarized and

thinned versions.

Fingerprint Feature Extraction : Many studies have been done in the area of feature

extraction. Using image processing techniques, such as convolving a specific type of filter

on images, fingerprint features can be extracted in an enhanced image. Among the variety
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Figure 2.5. Demonstrations of some preprocessing steps

of minutiae types, the most significant ones are bifurcations, ridge endings, islands, dots,

bridges and ridge closings.

In Figure 2.6, features of a fingerprint are shown.

Figure 2.6. Mostly used features of fingerprint (Source: Elmouhtadi et al. (2018))

Convolving 3x3 filters on the fingerprint image can help us to extract some fea-

tures. In Figure 2.7, 3x3 filters to detect ridge endings and bifuractions are given.

Minutiae Matching : A fingerprint is made of a series of ridges and valleys on the

surface of the finger. The uniqueness of a fingerprint can be determined by the pattern of

ridges and valleys as well as the minutiae points.
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Figure 2.7. 3x3 windowing for feature extraction to detect ending and bifurication

points (Maltoni et al., 2009).

Minutiae points are local ridge characteristics that occur at either a ridge bifurca-

tion or a ridge ending. The minutiae-based matching algorithm determines whether the

two minutiae sets are from the same finger or not. After image processing and feature

extracting stages, following three stages are applied to image for fingerprint verification:

• Alignment stage: Given two fingerprint images to be matched, minutiae are trans-

formed into a new coordinate system according to the similarity of ridges.

• Matching stage: After obtaining two sets of minutia points, the Brute-Force match-

ing algorithm is used to count the matched minutiae pairs.

• Decision stage: The calculated matching similarity between two fingerprint images

is applied to a thresholding stage. Based on this threshold value, images are being

said if they match or not.

Related Works : In the work of (Aguilar et al., 2007), a good matching performance

for fingerprints with high variation is obtained by using minutiae codes (MC). Firstly,

minutiae points are extracted from a fingerprint image. The proposed MC is invariant to

rotation of the fingerprint image. Adjustment factor is introduced to handle the problem

due to differences. Different images of the same fingerprint or different inking or pressure

can be addressed by this approach. The adjustment factor is calculated from the minutiae

code of the two fingerprints being matched. There are two stage fingerprint matching

processes. In the first stage, only a few minutiae codes are checked to decide if the

second stage of the matching process is required. This matching technique creates a

faster process.

The authors propose a very sophisticated and powerful method to recognize fin-

gerprint images in the paper (Jain et al., 2000). Some missing parts on the traditional
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ways of fingerprint recognition are mentioned by the authors. One of them is that minu-

tiae based structure cannot cover the whole information about the fingerprint. The method

developed against these problems is a filter-based approach. It mainly uses Gabor filters

to take both local and global structures. That information is stored as finger code. Eu-

clidean distance is used in matching phase due to its speed. In this approach, the false

acceptance rate is very row.

2.2.1.3. Deep Learning Approach

For fingerprint recognition, developing neural network-based solutions is another

option instead of using conventional image processing methods. The following sections

give a brief explanation of techniques and environments to set up a model for fingerprint

verification.

Deep learning has become the hot topic of the tech environment during recent

years. Deep learning is an advanced machine learning method that takes input and gives

the predicted output. Deep learning models are created and developed based on Artificial

Neural Network (ANN) techniques that were inspired by neural connections in hte brain.

It includes lots of artificially created neurons connected to each other. These neurons

are connected to each other with synapses which are called ’weights’ in ANN literature.

This kind of models can perform tasks such as classification, pattern recognition, feature

extraction, and clustering. Given an input to the model, the process of learning a given

task can happen with a forward and backpropagation to update the weights. This is also

known as the training of a model.

During the learning period, weights are updated according to the input data and

backpropagation errors. Weight changes refer to learning. If there are no weight changes

in the ANN, the learning process stops. Initially, these weight values are randomly as-

signed. ANNs change these weight values as input samples are fed into the network. The

aim is to find the weight values that will produce the correct outputs for the samples given

to the network. If the network reaches the correct weight values, it means that the model

have the ability to make generalizations of the samples for test cases.

Convolutional Neural Network (CNN) : Convolutional Neural Network is an Artifi-

cial Neural Network that is most popularly used for analyzing images. CNN’s can also

be used for other data analysis or classification problems as well. Most generally, we

can think of CNN as an artificial neural network that has some type of specialization for
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being able to detect patterns. This pattern detection is what makes CNN useful for image

analysis.

CNN has hidden layers called convolutional layers and these layers are precisely

what makes it special for complex problems. Hidden layers make network to capture the

complex relationships between features in the input. Layers usually have non-convolutional

layers as well but the basis of a CNN is the convolutional layers. Just like the other layers,

the convolutional layer receives input, propagates the input in some way and then outputs

the transformation to the next layer. With a convolutional layer, this transformation is a

convolution operation.

While simple CNN model is able to detect and classify simple shapes, edges or

objects in an input image, in a deeper network, these filters can detect specific objects

like eyes, ears, hairs or further features scales and even deeper layers the filters are able

to detect even more sophisticated features like biometric objects in fingerprint images

MathWorks (2019).

Here is listed basic explanation of CNN layers:

• Convolutional Layer: Core of the CNN models. Convolutional layers apply filtering

process to extract features in an image and outputs feature maps as a result of this

filtering.

• Non-Linearity Layer: This layer consists of activation function taking feature maps

and outputs activation map.

• Rectification Layer: Performs element-wise operations on the volume.

• Pooling Layer: Used to downsample the number of weights for reducing the size of

maps.

• Dropout Layer: This layer has a function for reducing overfitting problem by ran-

domly ignoring selected neurons during training process.

• Fully-Connected Layer: This layer aims to map a class probability distribution for

classification tasks.

An example CNN model and its layers can be shown in Figure 2.8.

DenseNet : For an advanced image classification and processing tasks, CNN models

are getting deeper and deeper through the years. When the neural networks get deeper the

problem of vanishing gradient starts to play more and more important role in developing
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Figure 2.8. Layers of a CNN model (Source: MathWorks (2019))

CNN models. To overcome this problem, DenseNet model simplifies the connectivity

pattern through layers by connecting every layer to the subsequent layer. This also means

that every layer has the information of the feature maps of the preceding layers (Huang

et al., 2017).

Figure 2.9 shows the layers and feedforward connections between each layer for

the DenseNet model.

DenseNet model has a dense block which includes convolutional layers. These

convolutional layers have batch normalization, rectified linear unit (RELU) and convolu-

tion operations, respectively.

DenseNet offer a varied number of models differs on a number of dense layers

which also means the parameter size. In this thesis, DenseNet121 is trained and applied

in the developed algorithm. The total number of trainable parameters in this model is 7M.

Figure 2.10 shows the layer structure of DenseNet121.

Keras : Keras is one of the most important packages about deep learning (Chollet et al.,

2015). In fact, Keras itself is not a deep learning library. Keras offers a high-level API that

you can use in Google Tensorflow, Microsoft CNTK, and Theano deep learning libraries.

In this way, you can train your deep learning architecture using different packages.

Keras is also coming one step more with being user-friendly via implementing

easily, modularity especially in neural layers, cost functions, optimizers, initialization

schemes, activation functions, and regularization schemes. These are all standalone mod-

ules that you can combine to create new models. It provides easy access to extensive dif-

ferent models and the other advantage is that it works with Python that doesn’t need sep-

arate models configuration files in a declarative format. Models are described in Python
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Figure 2.9. Feed Forward Connections in DenseNet (Source: (Huang et al., 2017))

code, which is compact, easier to debug, and allows for ease of extensibility.

The algorithm developed within this thesis is fully CNN model and this model is

created using Keras.

OpenCV : OpenCV is a library of computer vision techniques. In order to do that it

has several algorithms for image processing and machine learning. With numerous func-

tions of OpenCV, many applications such as face recognition, object classification, detect-

ing human movements, plate recognition, processing in three-dimensional images, image

comparison using this libraryis possible. OpenCV also supports Deep Neural Network

libraries such as Tensorflow, Torch/Pytorch, Caffe, Keras (team, 2000).

Detecting intrusions from the surveillance video, monitoring of mining equip-

ment, detection of drowning in swimming pools, events such as the interpretation of im-

ages from many sources, from professional devices to mobile phones carried by everyone,

can be given as examples of OpenCV’s daily applications.

Related Works : A new fingerprint matching method based on Convolutional Neural

Networks (ConvNets) has been proposed in (Zhu et al., 2018). The method is basically
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Figure 2.10. Layer Structure Demonstration in DenseNet121

designed as a classification problem that decides as match of non-match for each finger-

print comparison. The most important feature of this method is to learn the relational

features directly and to decide the similarities at the pixel level. Due to the robustness of

the algorithm during feature extraction on fingerprint images, the proposed method can

be applied to partial fingerprint matching.

In (Lu Jiang et al., 2016), authors focus on minutiae for fingerprint recognition.

Minutiaes are usually extracted after some image processing methods like thinning bi-

narization and some other enhancement techniques. Nevertheless these operations are

not very reliable. This work mainly focuses on using deep learning for minutiae extrac-

tion. The algorithm can be applied directly to the raw fingerprint images. Moreover, the

accuracy is higher than the other methods for extracting minutiae and some techniques

are used for both to avoid overfitting and to improve the robustness. Thanks to this ap-

proach system can achieve good performance as it not only makes all use of information

in fingerprint images but also learns the minutiae patterns from large amounts of data.

Another paper (Wang Yani et al., 2016) proposed a robust damaged fingerprint

recognition algorithm, which is based on the CNN. It not only has a high resistance to

abnormal degeneration, but the recognition process is also simpler than the feature points

matching algorithm. The recognition rate based on deep learning is compared with the

fingerprint identification algorithm based on Kernel Principal Component Analysis. Ex-

periments results show that fingerprint recognition based on deep learning has higher

robustness.

Both (Peralta et al., 2017) and (Ruxin Wang et al., 2016) mainly focus on using

deep learning techniques which is CNN for fingerprint classification to identify the finger-

prints in large datasets. These methods avoid the necessity of an explicit feature extraction

process by incorporating the image processing within the training of the classifier. More-

over, these approaches are also good for low-quality images and gives better results for
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extracting features and higher success rate on classification.

In (Liu et al., 2018) authors mainly focus on extracting singular points via Region

based CNN (R-CNN) method with an orientation constraint. The specialty of this work

is that it can extract singular points from the image directly and there is no need for image

preprocessing before recognition. The proposed algorithm achieves 96.03% detection rate

for core points and 98.33% for delta points which outperforms other algorithms.

2.2.2. Fingerprint Degradation

Lack of robustness against image-quality degradation is one of the biggest prob-

lems in fingerprint verification. Poor quality images give bad results most of times. The

quality of fingerprint images have great impact on the results. Biometric sample quality

is categorized in three points: 1)Physical characteristic features of the subject 2)Fidelity,

which is the degree of similarity between a biometric sample and its source, attributable

to each step through which the sample is processed 3)Utility, which refers to the impact

of the individual biometric sample on the overall performance of a biometric system,

where the concept of sample quality is a scalar quantity that is related monotonically to

the performance of the system.(Grother and Tabassi, 2007)

Besides the characteristic of fingerprint, the environmental factors such as humid-

ity, temperature has bad effects the acquired fingerprint samples.

Related Works Poor-quality images result in spurious and missing features, thus de-

grading the performance of the overall system. Therefore, it is important for a fingerprint

recognition system to estimate the quality and validity of the captured fingerprint images.

Existing approaches for fingerprint image quality estimation are (Alonso-Fernandez et al.,

2007).
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CHAPTER 3

METHODOLOGY

This chapter mainly focuses on the evaluation of two different fingerprint verifi-

cation techiques give the technical background of the developed algorithms. Many stud-

ies have been done so far, and many new technologies have been used and developed.

Recognition algorithms applied with advanced technology have given speed and capacity

to fingerprint recognition systems. Some information about the fingerprint systems and

technical features that have been developed from the past will be explained.

In this thesis, two different fingerprint verification algorithms are analyzed con-

sidering both feature-based method and deep neural network method. Performance of the

algorithms is evaluated on the MCYT-100-Fingerprint dataset.

3.1. Feature-Based System

A fingerprint identification system is developed that is based on the method of

finding features of fingerprint. Then, these features are used to find the formal descriptors

of the region around them that identifies the fingerprint itself. The system is tested on a

subset of the MCYT-100 Fingerprint dataset. General flowchart of the system can be seen

in Figure 3.1.

Figure 3.1. Fingerprint Recognition General Flowchart
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3.1.1. Image Preprocessing

Some preprocessing techniques are required to be applied to the fingerprint im-

age before the verification or identification steps. In this section, used image processing

techniques are explained.

3.1.1.1. Histogram Equalization

The first process to be applied on a fingerprint image is local histogram equaliza-

tion to the image. By equalizing the histogram of an image, pixel intensities are streched

out in histogram range. As a result of histogram equalization, image contrast is enhanced.

By applying local histogram equalization, image becomes enhanced using small windows

instead of global histogram equalization.

3.1.1.2. Normalization

The second process to be applied on a fingerprint image is normalization of the

image. Normalization is a pixel-wise operation and that does not change the clarity of

the ridge and valley structures. The purpose of the process is to reduce the variations in

gray-level values along ridges and valleys, that makes the subsequent processing steps

easier (Lin Hong et al., 1998).

3.1.1.3. Binarization

Binarization of an image allows us to clear the image from unnecessary noise like

”wrinkled” surface. The Otsu threshold is used to automatically select the best generic

threshold for the image to get a good contrast between foreground and background in-

formation. After this process, the image is converted to binary form and have only two

different values.
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3.1.2. Detecting and Comparing Feature Points

The features of fingerprints are detected with two different algorithms called Ori-

ented FAST and Rotated BRIEF (ORB) and Scale-Invariant Feature Transform (SIFT).

The ORB descriptor is mainly based on BRIEF, that is not only rotation invariant but

also resistant to noise. SIFT is the mostly used well known feature detection-description

algorithm. Sift detector is based on Difference of Gaussians (DoG). Feature points are

detected by DoG by using local maxima of various image scales. Once the features are

detected in an image, vectors of descriptors are obtained and matched. The simple and

efficient ways to compare these descriptors are with the so-called Brute-Force matching

and Approximate Nearest Neighbour (ANN). Brute-Force matching simply calculates the

hamming distance between the descriptors. The technique of matching tries all possibili-

ties. With these ways, we will get an estimate indicating how similar are two fingerprints.

This type of matching is the most used and well-known matching technique. Figure 3.2

shows the matches of the two fingerprints of a identical finger. ANN tries to find approx-

imate nearest neighbor features. By doing this, the number of mathing decrease but this

is not mean that it will find the best matching. Parameters of ANN can change according

to demand of application.

Figure 3.2. Brute Force Matching of two images belongs to same finger
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3.2. Deep Neural Network System

In the CNN method, which is based on Densenet121 model, the neural network is

trained to verify two fingerprint input images if they match or not. CNN model takes raw

fingerprint input images as inputs.

3.2.1. Data Augmentation

In order to train a CNN model properly, a large number of training data is required

for input classes. For this purpose, each fingerprint sample is generated 5 times with

different zoom and rotation values. Training dataset also includes the distorted version of

the original fingerprints.

Keras library has a function to generate images with random zoom, shear and

rotation values. In Figure 3.3, the original and two images generated with the help of

Keras is shown.

Figure 3.3. MCYT-100 database with two different transformation
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3.2.2. Training of neural network model and Feature extraction

During the training process of the CNN model, the first half of the dataset images

are selected for training and the rest of the images in dataset are used for testing of the

model. In this case of MCYT-100 dataset, the total number of training class is 100. After

the augmentation of original and distorted training data, each class has 240 number of

samples.

The network is trained using Adagrad optimizer. With this optimizer, parameters

have specific learning rates depending on how frequently they get updated during training

(Duchi et al., 2011).The simulation parameters of the algorithm are listed in Table 3.2.2.

Densenet121 model is trained to classify half of the classes in dataset. After the

training process, this pre-trained model is used for feature extraction. Figure 2.10 shows

the overall architecture of Densenet121 model. The feature vector is extracted after the

global average pooling layer which is before the last layer of the model, (fully connected

layer).

Table 3.1. Simulation and Network Model Parameters

Parameter Value

Number of Epoch 10

Batch size 4

Number of training class 100

Number of training data 24000

Number of testing class 50

Validation Split 0.20

Graphics Card NVIDIA GeForce 1050Ti

Extracted feature vectors have a shape of 1x1024. They are used for verification

of test images. Figure 3.4 shows two different fingerprint images given as input to the

network.

As a result of each image, model gives a feature vector and Euclidian distance

between these two vectors, δ, are calculated as:
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Figure 3.4. Two input images to the model

δ =

√√√√1024∑
i=1

(xi − yi)2 (3.1)

where xi and yi are the feature vector values.

According to a predetermined threshold value thr that are calculated for each ex-

periment as explained in Section 4.2, the fingerprints are decided to match or not.

X =

⎧⎪⎪⎨
⎪⎪⎩
NotMatch, if thr > δ

Match, otherwise

(3.2)

3.3. Applied Distortions

Noise in an image is any degradation caused naturally or by external disturbance.

The goal of generating synthetic distortions is evaluating the robustness of fingerprint

recognition systems for two developed algorithms. Adding distortions can make images

hard to recognize. As a result, it will show the robustness of the two algorithms against

the external effects.

Three types of distortions are applied synthetically. These are gaussian, concave

effect and salt and pepper noise on the fingerprint images. In Figure 3.5, the original im-

age, and its noisy variants can be seen.
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Gaussian noise has the statistical properties of a normal distribution which is also

known as Gaussian distribution. The probability density function of a Gaussian random

variable is given by:

P (x) =
1

σ
√
2π

e−(x−μ)2/2σ2

(3.3)

where σ is a standard deviation and μ is the mean value of the Gaussian distribution.

While generating Gaussian distributed noisy images, σ is chosen as 1.5 and the mean

value μ is chosen as 0.

The other type of noise is called salt and pepper noise and also known as impulse

noise and caused by sudden disturbances in the image. Noise has an effect of randomly

distributed black or white pixels on the image.

While generating salt and pepper noise, a fixed ratio of noise is added over the

image. This ratio is selected as 5% of the total number of image pixels.

The last type of distortion is called concave effect and it can affect both in x and

y-axis of the image. It has an effect like a concave mirror by offsetting the image pixels

sinusoidally.

Figure 3.5. Original image and synthetically distorted versions
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1. Database

Dataset used in the development of biometric recognition systems is of great im-

portance for any supervised learning. Since biometric systems play a critical role in vital

cases, its databases should be large and various for testing of recognition systems in actual

working conditions.

In the thesis, the dataset that is used for performance evaluation is the MCYT

bimodal database. This dataset was acquired by four Spanish academic institutions in

2001 (Ortega-Garcia et al., 2003). It consists of both fingerprint and online signatures.

Collecting the fingerprint images was handled with two types of devices.

The name of the first device is CMOS-based capacitive capture device, model

100SC from Precise Biometrics, with a resolution of 500 dpi and the second device is an

optical capture device, model UareU from Digital Persona also with a resolution of 500

dpi. While the capacitive device is 89 kB and the resolution of images is 300x300, the

case of the optical device’s size is 102 kB and its resolution is 256x400 pixels.

In order to estimate recognition performances under different acquisition condi-

tions, the MCYT Fingerprint has 12 different samples for each finger of a person and there

is the same number of data for two different sensors. Briefly, each individual provides a

total number of 240 (10x12x2) fingerprint images to the database. The dataset has 100

individual people in total.

Figure 4.1 shows the example fingerprint images captured with CMOS-based ca-

pacitive and UareU devices in MCYT database.
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Figure 4.1. MCYT-100: Images of the same finger collected with two devices

4.1.1. Existing Results of MCYT Dataset

MCYT dataset is created for testing of levels of image quality. In the view of that,

some experiments are done in (Ortega-Garcia et al., 2003). 4 different quality of groups.

The quality of images increase from group 1 to 4. And as a result while the least quality

group has 2.1% of EER, the highest quality group has 5.5% EER.

4.2. Experimental Setup

MCYT-100 dataset has twelve images of all 10 fingerprints of 100 people. But in

this thesis, only two randomly selected fingerprints of each person is utilized. In other

words, 200 fingerprints with 12 acquisitions are included in this study. For each experi-

ment, this subset is further divided into training (50%), validation (25%) and test (25%)

partitions randomly. This random division is applied 5 times, creating 5 folds for the ex-

periments. In this way, the algorithms could be tested for their generalization capabilities.

From training and validation folders, same fingerprint pairs (intra-class pairs) and dif-

ferent fingerprint pairs (inter-class pairs) are generated to determining the most accurate

equal error rate (EER) value. To find the EER point all possibilities are calculated and

ROC curve is plotted. The crossing value of FAR and FRR is taken as a threshold value
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that is called EER.

Training and validation datasets for each trial contains both non-distorted and dis-

torted image types. By doing this, ROC values will be chosen considering both image

types and algorithms are expected to be more robust against the external noises.

In order to prepare a fair experimental set-up, the same sets of fingerprint pairs

that are generated as intra-class and inter-class pairs, used for testing for all algorithms.

• For Feature-Based Model: There is no training procedure because of that reason

the training folder is not used for the feature-based model. In each set, there is 25%

randomly initialized validation folder. From the folder, same and different finger

pairs are generated for determining the most accurate equal error rate value. To

find the EER point, all possibilities are calculated and ROC curve is plotted. Only

the curves of the feature-based algorithm with ORB and BF Matcher is shown for

group 1 are shown and the plots and the decision criteria are the same for the rest

algorithms.

• For CNN Model: Training folder for every other group of dataset covers randomly

chosen %50 of MCYT-Dataset. In each group, there is %25 randomly initialized

validation folder. From the folder, intra-class and inter-class pairs are generated

for determining the most accurate equal error rate value. To find the EER point all

possibilities are calculated and ROC curve is plotted. The system is tested for each

randomly initialized test data for every group. Test folders cover %25 of MCYT-

Dataset.

4.3. Results with Feature-Based Approach

Performance results for feature-based approaches are obtained for both original

and distorted images. The chosen threshold values are determined as discussed in the

previous part. According to the threshold values, the test data is used for with and without

distortion. There are total 4 different feature-based algorithms and results.

This section will cover the results of individual algorithms for all groups of data.

The detailed and generalized comments on results will be explained in the Section 4.5.

The results for the algorithm with ORB descriptor and Brute Force matcher are

written in the Table 4.1.

This algorithm gives close results for each of the groups. While the best result is

obtained for the non-distorted dataset, worst result is obtained for Gaussian noise dataset.
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Table 4.1. ORB Descriptor with Brute Force Matcher

ORB With BFMatcher Results

Datasets Mean Variance

Non-Distorted Dataset
FAR 0.28 0.02
FRR 0.30 0.03

HTER 0.29 0.01

Gaussian Noise
FAR 0.18 0.04
FRR 0.53 0.09

HTER 0.35 0.03

Concave Noise
FAR 0.27 0.07
FRR 0.25 0.04

HTER 0.26 0.05

Salt and Pepper Noise
FAR 0.23 0.09
FRR 0.44 0.10

HTER 0.34 0.09

While FAR and FFR results are close to each other for non-distorted dataset, the dif-

ference is higher for noisy datasets. The threshold values differ from set to set. ROC

curves for nondistorted and distorted data of ORB with Brute Force Matcher algorithm is

demonstrated in Figure 4.2.

The results for the algorithm with ORB descriptor and ANN matcher are written

in the Table 4.2.

Table 4.2. ORB Descriptor with Approximate Nearest Neighbor Approaches

ORB With ANN Results

Datasets Mean Variance

Non-Distorted Dataset
FAR 0.30 0.05
FRR 0.32 0.06

HTER 0.31 0.03

Gaussian Noise
FAR 0.22 0.03
FRR 0.37 0.40

HTER 0.30 0.21

Concave Noise
FAR 0.36 0.05
FRR 0.28 0.03

HTER 0.32 0.03

Salt and Pepper Noise
FAR 0.25 0.04
FRR 0.47 0.14

HTER 0.36 0.10

This algorithm, which contains ORB descriptor with ANN matching technique,
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Figure 4.2. ROC Curves of all datasets for ORB with BFMatcher

gives similar results with the algorithm with ORB descriptor and Brute Force matcher for

all distorted and non-distorted data types. ROC curves for nondistorted and distorted sets

of data for ORB with ANN algorithm is demonstrated in Figure 4.3.

The results for the algorithm with SIFT descriptor and Brute Force matcher are

written in the Table 4.3.

This algorithm gives far better results for both distorted and non-distorted datasets

with the previous algorithms which use ORB descriptor in common. ROC curves for

nondistorted and distorted sets of data for SIFT with Brute-Force matcher algorithm is

demonstrated in Figure 4.4.

The results for the algorithm with SIFT descriptor and ANN matcher are written

in the Table 4.4.

This algorithm, which contains SIFT as a feature extractor and ANN as a matcher,

gives similar results with the previous algorithm. These last two tables show the signif-

icance of SIFT descriptor on FAR and FFR results. The detailed and generalized results

will be explained in the following sections. ROC curves for nondistorted and distorted
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Figure 4.3. ROC Curves of all datasets for ORB with ANN

sets of SIFT with ANN algorithm is demonstrated in Figure 4.5.

4.4. Results with Deep Learning Approach

Performance results for Deep Learning Approach are obtained from both original

and distorted images. According to the threshold values for every groups, the test results

for with and without distortion datasets are written in the Table 4.5.

The end-to-end CNN algorithm has similar results with the algorithms using SIFT

as a descriptor. ROC curves for nondistorted and distorted sets of CNN algorithm is

demonstrated in Figure 4.6.
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Table 4.3. Sift Descriptor with Brute Force Matcher

Sift with BF-Matcher Results

Datasets Mean Variance

Non-Distorted Dataset
FAR 0.01 0.01

FRR 0.05 0.03

HTER 0.03 0.01

Gaussian Noise
FAR 0 0

FRR 0.46 0.05

HTER 0.23 0.03

Concave Noise
FAR 0 0

FRR 0.09 0.04

HTER 0.04 0.02

Salt and Pepper Noise
FAR 0 0

FRR 0.35 0.34

HTER 0.17 0.17

4.5. Comparing Test Results

This section covers the results of all algorithms by looking at the mean and vari-

ance values of all group of datasets. The mean and variance of acquired FRR, FAR and

HTER results for non-distorted dataset are given in the Table 4.6.

Figures 4.7 shows ROC curves of all algorithms for nondistorted dataset.

The results show that, feature-based algorithm SIFT with BF matcher has slightly

better HTER values for non-distorted dataset. The best accuracy is obtained with the

algorithm containing SIFT and BF methods with 1% FAR, 4% FRR and 3% in HTER.

If we look at the variance values, again, feature-based SIFT with BF matcher give more

stable results than others.

For all groups with gaussian noise, mean and variance of acquired FRR, FAR and

HTER results are given in the Table 4.7.

Figures 4.8 shows ROC curves of all algorithms for Gaussian noisy dataset.

The results show that as a best result, CNN approach gives 13% in HTER value.

While the FAR value is 8%, the FRR value is 18%. The second best algorithm is the

feature-based SIFT with BF matcher method with a 19% error rate. By looking at the
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Figure 4.4. ROC Curves of all datasets for SIFT with BF-Matcher

variance values of algorithms in Gaussian noisy distorted dataset, the CNN and feature-

based SIFT with BF matcher has similar values. These two algorithms are more reliable

for Gaussian noisy datasets rather than the other algorithms. The less variance values of

these algorithms shows the robustness and reliabilities of these algorithms against Gaus-

sian noise type.

For all groups with concave distortion, mean and variance of acquired FRR, FAR

and HTER results are given in the Table 4.8.

Figures 4.9 shows ROC curves of all algorithms for concaved dataset.

The results show that, feature-based SIFT with BF matcher approach gives slightly

better value in HTER by 6%. CNN method has also close results in HTER values by 8%.

By looking at the variance values of algorithms in concave distorted dataset, the feature-

based SIFT with BF matcher has best value. These mean and variance values make this

algorithm best for concaved distorted datasets.
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Table 4.4. Sift Descriptor with Approximate Nearest Neighbor Approaches

Sift With ANN results

Datasets Mean Variance

Non-Distorted Dataset
FAR 0.06 0

FRR 0.09 0.03

HTER 0.07 0.02

Gaussian Noise
FAR 0.02 0.03

FRR 0.59 0.65

HTER 0.30 0.31

Concave Noise
FAR 0.05 0.03

FRR 0.14 0.03

HTER 0.09 0

Salt and Pepper Noise
FAR 0.15 0.23

FRR 0.25 0.29

HTER 0.12 0.1

For the last type of distortion, salt and pepper noise, mean and variance of acquired

FRR, FAR and HTER results are given in the Table 4.9.

Figures 4.10 shows ROC curves of all algorithms for Salt and Pepper noisy dataset.

The results show that, feature-based SIFT with BF matcher approach gives lowest

error rate in HTER by 13%. CNN method and feature-based SIFT with ANN have also

close results in HTER values by 18%. By looking at the variance values of algorithms,

the CNN method has best value.

Table 4.10 list the required times for a single test comparison test for all algo-

rithms.

The feature-based verification algorithm and end-to-end CNN model output re-

sults are almost the same for both models. However, CNN model turns the processing

work of graphical card to the advantage, CNN model has advantages over the time to take

a verification test. While a test for CNN model takes only 0.14 seconds, the feature-based

methods, which gives approximate results, require more time in general.
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Figure 4.5. ROC Curves of all datasets for SIFT with ANN

If we examine the feature extracting and matching algorithms, we can say that

ORB works faster than SIFT algorithm. And Brute Force matcher works faster than ANN

algorithm.

To sum up all results, while looking at the FRR, FAR and HTER results, it is seen

that for all noise types, accuracy is worse than the results of non-distorted images. The

feature-based algorithm with SIFT and BF matcher has the best mean and variance results

for non-distorted dataset. We can say that the CNN model is more robust and reliable to

external effects and still preferable due to its robustness and better results on accuracies.
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Table 4.5. Results for CNN approach

CNN results

Datasets Mean Variance

Non-Distorted Dataset
FAR 0.03 0.05

FRR 0.07 0.06

HTER 0.04 0.01

Gaussian Noise
FAR 0.04 0.10

FRR 0.26 0.31

HTER 0.15 0.12

Concave Noise
FAR 0.01 0.0123

FRR 0.10 0.08

HTER 0.04 0.02

Salt and Pepper Noise
FAR 0.13 0.17

FRR 0.13 0.08

HTER 0.16 0.09

Figure 4.6. ROC Curves of all datasets for CNN Algorithm
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Table 4.6. Test Results for both Feature-Based Method and CNN Method with Non-

Distorted images

Mean and Variance Results for Non-Distorted Dataset

Mean Variance

Feature-Based ORB with BF Matcher Method

FAR 0.28 0.05

FRR 0.29 0.04

HTER 0.28 0.2

Feature-Based ORB with ANN Method

FAR 0.29 0.06

FRR 0.38 0.47

HTER 0.31 0.23

Feature-Based SIFT with BF Matcher Method

FAR 0.01 0.01

FRR 0.04 0.04

HTER 0.03 0.01

Feature-Based SIFT with ANN Method

FAR 0.06 0.02

FRR 0.09 0.05

HTER 0.07 0.04

CNN Method
FAR 0.06 0.11

FRR 0.08 0.07

HTER 0.07 0.1

Figure 4.7. ROC Curves of all algorithms for nondistorted dataset
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Table 4.7. Test Results for both Feature-Based Method and CNN Method with Dis-

torted (Gaussian noisy) images

Mean and Variance Results for Gaussian noisy Dataset

Mean Variance

Feature-Based ORB with BF Matcher Method

FAR 0.14 0.16

FRR 0.49 0.14

HTER 0.31 0.12

Feature-Based ORB with ANN Method

FAR 0.24 0.07

FRR 0.38 0.47

HTER 0.31 0.23

Feature-Based SIFT with BF Matcher Method

FAR 0.02 0.08

FRR 0.44 0.07

HTER 0.19 0.14

Feature-Based SIFT with ANN Method

FAR 0.01 0.04

FRR 0.72 0.73

HTER 0.35 0.34

CNN Method
FAR 0.08 0.19

FRR 0.18 0.37

HTER 0.13 0.17

Figure 4.8. ROC Curves of all algorithms for Gaussian noisy dataset
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Table 4.8. Test Results for both Feature-Based Method and CNN Method with Dis-

torted (Concaved) images

Mean and Variance Results for Concaved Dataset

Mean Variance

Feature-Based ORB with BF Matcher Method

FAR 0.29 0.15

FRR 0.25 0.04

HTER 0.27 0.07

Feature-Based ORB with ANN Method

FAR 0.32 0.10

FRR 0.27 0.07

HTER 0.29 0.07

Feature-Based SIFT with BF Matcher Method

FAR 0.03 0.12

FRR 0.08 0.06

HTER 0.06 0.03

Feature-Based SIFT with ANN Method

FAR 0.12 0.31

FRR 0.16 0.06

HTER 0.14 0.08

CNN Method
FAR 0.05 0.14

FRR 0.1 0.09

HTER 0.08 0.11

Figure 4.9. ROC Curves of all algorithms for concaved dataset
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Table 4.9. Test Results for both Feature-Based Method and CNN Method with Dis-

torted (Salt and Pepper noisy) images

Mean and Variance Results for Salt and Pepper noisy Dataset

Mean Variance

Feature-Based ORB with BF Matcher Method

FAR 0.2 0.15

FRR 0.36 0.37

HTER 0.28 0.26

Feature-Based ORB with ANN Method

FAR 0.21 0.14

FRR 0.01 0.02

HTER 0.31 0.53

Feature-Based SIFT with BF Matcher Method

FAR 0.01 0.01

FRR 0.26 0.41

HTER 0.13 0.20

Feature-Based SIFT with ANN Method

FAR 0.13 0.24

FRR 0.21 0.34

HTER 0.18 0.24

CNN Method
FAR 0.16 0.18

FRR 0.1 0.12

HTER 0.18 0.1

Figure 4.10. ROC Curves of all algorithms for Salt and Pepper noisy dataset
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Table 4.10. Required time for testing a image for both models

Model Name Feature Extracting Feature Matching Total time

Feature-Based ORB

with BF Matcher
0.005 s 0.002 s 0.01 s

Feature-Based ORB

with ANN
0.005 s 0.007 s 0.02 s

Feature-Based SIFT

with BF Matcher
0.09s 0.08 s 0.28 s

Feature-Based SIFT

with ANN
0.09 s 0.32 s 0.5s

End-to-end CNN Model - - 0.14 s
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CHAPTER 5

CONCLUSION

Since the need for identity verification is increasing day by day, the robustness

of one of the most used features of biometry that is fingerprint recognition has a critical

importance.

This thesis mainly focuses on the verification of human identity with a fingerprint.

To do this, two different approaches for fingerprint verification are taken into considera-

tion. The first one is the feature-based method, based on basic and advanced image pro-

cessing techniques, uses ORB and SIFT algorithms as feature detectors and Brute Force

and ANN methods as feature matcher. The second approach is the popular end-to-end

convolutional neural network-based model. These models are implemented and evalu-

ated with the MCYT-100 dataset. For the training of the CNN model, fingerprint images

are augmented with random zoom and orientation values. For testing the robustness of

the algorithms against the synthetic distortions, three types of distortions are applied to

generate synthetically distorted fingerprint images.

Performance results of the algorithms are obtained in four different scenarios that

are without distortion and with three different distortion types. The performance evalua-

tions show that feature-based methods with the SIFT algorithm give better results than the

ORB algorithm. The feature-based algorithm with SIFT and BF matcher and end-to-end

CNN method became prominent for all types of datasets and gave better results. For the

robustness and consistency of the algorithms, CNN model is better to external noises due

to its low variations for different types of dataset results. Besides, this study has shown

that significantly less time is required for the ORB descriptor algorithms. And low testing

duration of end-to-end CNN model makes it greatly suitable for real-time applications.
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