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ABSTRACT

NUMERICAL AND EXPERIMENTAL INVESTIGATIONS FOR 
IMPROVING DIELECTRIC MEASUREMENTS WITH MICROWAVE 

CAVITIES

In this thesis, by utilising the inverse scattering problems approach, it was 

tried to improve the sensitivity in measuring the dielectric constants of the materials with 

microwave resonator cavities. The direct problem involves measurement of frequency 

shift and electric field/power values. The inverse problem aims to calculate the dielectric 

constant with the data obtained from the direct problem. First of all, the accuracy 

of the rectangular and cylindrical cavities operating in the S-band in the material 

perturbation method was compared with simulations, and how their sensitivity changes 

depending on the increasing frequency and dielectric constant was observed. 

Afterwards, dielectric constants were calculated by measuring the frequency shifts in 

the scope of the direct problem with a rectangular aluminium cavity for 3 different 

materials at the frequency of 1.254 GHz. However, this traditional method has a high 

error rate especially for samples with large dielectric constant or volume. For this 

reason, a measurement method based on Newton-Raphson iteration approach has been 

proposed. This proposed method uses power or electric field measurements at a 

particular frequency regardless of which mode is excited in the cavity. With the help of 

iterations based on an initial guess, the dielectric constant could be determined more 

precisely. Within the scope of this thesis, the results of the simulations performed with 

the Newton-Raphson method were given and the effect of the change of 3 different 

parameters of the method on the results was observed. In these simulations, iterations 

were carried out using electric field values at a certain number of points around the 

material. Finally, with the help of the spectrum analyzer, power mea-surements were 

taken from the 7-port aluminium cavity for the direct problem and the inverse 

scattering problem, which aims to recalculate the dielectric constant, was solved. More 

accurate results were obtained with the Newton-Raphson method.
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ÖZET

MİKRODALGA KAVİTELER İLE DİELEKTRİK ÖLÇÜMLERİNİN 
GELİŞTİRİLMESİ İÇİN NÜMERİK VE DENEYSEL ARAŞTIRMALAR

Bu tezde, ters saçılma problemleri yaklaşımından faydalanarak mikrodalga re-

zonatör kavitelerle materyallerin dielektrik katsayılarının ölçümünde hassasiyet iyileşti-

rilmeye çalışılmıştır. Düz problem frekanstaki kayma ve elektrik alan/güç değerlerinin 

ölçülmesini kapsar. Ters problem ise düz problemden elde edilen verilerle dielektrik sabi-

tini hesaplamayı amaçlar. Öncelikle, simülasyon ortamında S bandında çalışan dikdört-

gen ve silindirik kavitelerin materyal pertürbasyon yöntemindeki doğrulukları kıyaslan-

mış, artan frekans ve dielektrik sabitine bağlı olarak hassasiyetlerinin ne yönde değiştiği 

gözlemlenmiştir. Ardından, dikdörtgen bir alüminyum kavite ile 1.254 GHz frekan-

sında 3 farklı malzeme için aynı yöntemle düz problem kapsamında frekanstaki kaymalar 

ölçülerek dielektrik sabitleri hesaplanmıştır. Ancak özellikle dielektrik sabiti veya hacmi 

büyük olan maddeler için bu geleneksel yöntem yüksek hata oranına sahiptir. Bu ne-

denle Newton-Raphson iterasyon yaklaşımına dayanan bir ölçüm yöntemi önerilmiştir. 

Önerilen bu yöntemde, kavite içinde hangi modun uyarıldığına bakmaksızın belirli bir 

frekanstaki güç veya elektrik alan ölçümlerinden faydalanılmaktadır. Bir başlangıç tah-

mininden yola çıkarak yapılan iterasyonlar yardımıyla dielektrik sabiti daha hassas bir 

şekilde belirlenebilmiştir. Bu tez kapsamında, Newton-Raphson yöntemi ile yapılan simü-

lasyonların sonuçları paylaşılmış ve yönteme ait 3 farklı parametrenin değişiminin sonuç-

lar üzerindeki etkisi gözlemlenmiştir. Bu simülasyonlarda materyalin çevresindeki belirli 

sayıda noktadaki elektrik alan değerleri kullanılarak iterasyonlar gerçekleştirilmiştir. Son 

olarak, spektrum analizör yardımıyla 7 portlu alüminyum kaviteden düz problem için 

güç ölçümleri alınmış ve dielektrik sabitini yeniden hesaplamayı amaçlayan ters saçılma 

problemi çözülmüştür. Newton-Raphson yöntemiyle daha doğru sonuçlar elde edilmiştir.
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CHAPTER 1

INTRODUCTION

The electrical properties of each material are different depending on their dielec-

tric characteristics. Determination of dielectric characteristics is related to dipolar and

atomic polarizations. The earliest investigations on polarizability and dielectric materials

belong to Debye (1929). Von Hippel has analyzed the dielectrics more comprehensively

(1954b) and has studied on dielectric measurements and applications (1954a).

Since the dielectric constant was related to the temperature and the amount of wa-

ter contained in the fruits and vegetables, dielectric measurements of foodstuffs have been

performed for storage and feasibility information (Dunlap and Makower, 1945). Mea-

surements became the most valuable agricultural practice when first used to determine

the moisture content of grains (Nelson, 1965). Through the development of microwave

heating applications, the efficiency of dielectric measurements was noticed in determin-

ing and improving the heating time and amount of heat. Today, researches in the food

industry are still carried out (Clerjon and Damez, 2009).

Dielectric measurements take place in a wide variety of areas, such as calculating

the water hardness in cooling systems (Teng et al., 2017) or designing high-frequency

electronic circuits (Riedell et al., 1990). To develop radiation-absorbing materials in the

defence industry, the dielectric characterizations of materials must be known. Another

example is radars that can detect objects behind obstacles. The dielectric property infor-

mation of the obstacle is used to increase accuracy, as reflected and lost signals will be

affected. So we can say that understanding the response of materials to electromagnetic

(EM) fields is significant for many research and development projects.

1.1. Permittivity Measurement Techniques

As technology improves, the variety of permittivity measurement methods has

increased over the years. Baker-Jarvis et al. (2010) prepared a classification system

to choose an appropriate measurement method according to sample preparation, mea-

surement accuracy, frequency band, sample characterization etc. In the microwave fre-

quency range, we can examine these measurement techniques under two main titles as

1



non-resonant and resonant methods (Jilani, 2012).

1.1.1. Non-Resonant Methods

Non-resonant methods can also be called transmission-reflection methods. The

electromagnetic wave is transmitted over the material and the power of the wave reflected

from the material is measured. It is sufficient to find the reflection coefficient (S11) and

the transmission coefficient (S21) to determine the complex permittivity. Non-resonant

methods can be performed in closed conditions such as coaxial and waveguides, or in

free-space with one or two antennas. (Krupka, 2006)

(a) (b) (c)

Figure 1.1. Non-resonant measurement methods (a) Transmission line method
(Source: Krupka, 2006) (b) Open-ended probe method (Source: Jilani,
2012) (c) Free space method (Source: Krupka, 2006)

Coaxial cables and waveguides are used in the transmission line method as shown

in Figure 1.1.a. The material of unknown permittivity is placed into the transmission

line and the rate of change in power is calculated. Liquids give more precise results than

solids due to their air-gap structures. This method generally works in broadband but the

waveguide gives more sensitive results compared to the coaxial line while remaining in

the narrower band (Ogunlade et al., 2006 ; Jiqing Hu et al., 2006).

In Figure 1.1.b, the open-ended probe method is shown. This non-destructive

method is utilised especially on foods (Nelson and Bartley, 2002) and biological tissues

(R. Zajicek, 2006). By measuring only the reflection coefficient (S11), the complex per-

mittivity is achieved. Although it is the fastest and easiest method, it is one of the least

sensitive and difficult to calibrate methods.

In the free space method, two antennas can be used as shown in Figure 1.1.c, or a

single antenna can be used. It is an uncomplicated and quick method that can be selected

2



when it is not desired to damage the material (Wee et al., 2009). The most critical problem

to consider is the necessity to use a focused beam to avoid diffraction at the edges of the

sample. The distance between the antennas and the distance of the sample to the antennas

should be calculated correctly. As in transmission line methods, permittivity is calculated

with reflection and transmission coefficients (Ghodgaonkar et al., 1990).

1.1.2. Resonant Methods

In the resonant methods, as shown in Figure 1.2, open resonators and different

cavities such as rectangular (Jha and Akhtar, 2014), cylindrical (Shihe Li et al., 1981),

re-entrant cavities (Kaczkowski and Milewski, 1980) can be used as well as the material

itself can form a dielectric resonator (Hakki and Coleman, 1960; Shu and Wong, 1995).

The least error rate in permittivity measurements is in the resonant methods.

(a) (b)

(c) (d)

Figure 1.2. Resonant measurement methods (a) Cylindrical cavity (b) Rectangular
cavity (c) Re-entrant cavity (d) Open resonator

As shown in Figure 1.2, closed cavity structures can be formed in different shapes.

The aim at closed cavity structures is to confine electromagnetic energy. Thus, electro-

magnetic patterns called mode occur inside the cavity. In the open resonator method, as

in the free space method, the material must be sufficiently big so that the diffraction at

3



the edges of the material does not cause the radiation loss. Dielectric measurement with

cavities is based on the perturbation theory. The reference values are obtained when the

cavity is empty and then, the measured values after the sample is placed are used to find

the permittivity. The energy stored in the resonator cavity is greater than the energy on

the sample, whereas, in dielectric resonators, almost total of the energy is stored on the

material. In the dielectric resonator method, the sample is placed between two conductive

metal shields or inside the metal cavity to reduce the radiation loss as much as possible.

The measurement of complex permittivity in the dielectric resonators gives more accurate

results than the cavity perturbation method (Sheen, 2007).

1.2. Motivation

Resonator cavity method in the dielectric measurements is widely used since it

gives high accuracy results. However, the perturbation technique has limitations on the

operating frequency and the size and shape of the material under test(Ozkal and Yaman,

2019). The amount of sample volume in the perturbation approach is effective on the error

rate of the reconstructed dielectric constant (Ozkal and Yaman, 2018). The ratio of the

maximum material volume to the cavity volume with limited frequency shift and the effect

of the material geometry (rod, disk and sphere) on the measurement results have been

tested for the most precise results (Peng et al., 2014). Investigations have been carried

out on different cavity structures such as a cavity formed with a double ridged waveguide

to enhance the operating frequency (Kik, 2016). There are also examinations where a

filling hole has been added to the cover of the cavity to make applicability more practical

(Kilic et al., 2013; Nishikata, 2009). In these studies, it was observed that the effect of

the hole cannot be neglected and this effect was calculated for the cavity structures in the

examinations. The assumptions of the perturbation theory are not always adequate for

dielectric measurements in the development of the resonator methods (Carter, 2001a).

Santra and Limaye (2005) used the Newton-Raphson iteration method instead of

the perturbation approach in measuring the dielectric constant with resonator cavities. The

iteration method has been confirmed to be successful in materials with arbitrary shape and

high loss in determining the dielectric constant. This proposed approach removed the de-

pendence on the volume of the material while providing reliable results in materials with

high dielectric constant. This method is very beneficial as it can operate on all frequency

bands. In their study, 3 different modes were excited and therefore took measurements

for 3 different frequencies.
4



In this thesis, it is mentioned that the dielectric constant of a material can be

detected in the cavity without the need for a particular mode excitation. By choosing

a frequency without considering a certain mode, the Newton-Raphson iteration technique

is implemented by analysing the electric field or power distribution in the cavity with the

contribution of neighbouring modes of that frequency. Measured values obtained from

a material whose dielectric constant is known are used as the initial point. From the

difference between the initial point and the measurement results obtained with the sample

whose dielectric constant is unknown, the result is approached by the iteration method.

Thus, no matter how high the dielectric constant is, the parameter indicating the electrical

property of the material can be determined. The absence of dependence on resonance

frequency and sample volume in this technique provides a prominent advantage in the

application of the approach.
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CHAPTER 2

THEORETICAL BACKGROUND

This section is devoted to some necessary information about the dielectric constant

and the complex permittivity. The section will continue by giving mathematical back-

ground information of the material perturbation method and the proposed Newton-type

approach, and by explaining the applications of the methods to dielectric measurements.

2.1. Permittivity and Dielectric Constant

When specifying on the scopes where electromagnetic materials are used in mi-

crowave frequencies, the responses of the materials to electromagnetic fields are consid-

ered. Non-metallic materials with high insulation resistance to the electric field and used

to store electrical charges are classified as dielectrics. Fundamentally non-metallic ma-

terials that provide electrical insulation are called insulators. Non-metal materials whose

function is to store electrical charges are dielectric. When dielectrics are exposed to an

electric field, instead of current flowing through them like metals, electric polarization

that reduces the electric field occurs. (Chen et al., 2004)

Permittivity ε determines the dielectric characterization of the material and is a

complex expression. The relationship between the real and imaginary parts of the com-

plex permittivity gives us information about its resistance to electricity. If the real part

of the permittivity ε′ is larger, it can be said that the material is included in the dielectric

type, while the imaginary part ε′′ is higher, it can be said that the material is metal.

εr =
ε

ε0
=
ε′ − jε′′

ε0
= ε′r − jε′′r (2.1)

The dielectric constant εr is the ratio of the complex permittivity to the free-space

permittivity ε0 as seen in Equation (2.1) and is also called the relative complex permittivity

due to be frequency-dependent for time-varying electromagnetic fields. While the unit of

the complex permittivity is Farad/meter, the dielectric constant is unitless.
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When the dielectric sample is exposed to an electric field, four types of polar-

ization occur. These are electronic, ionic, orientational and space charge polarizations.

All polarizations occur at low frequencies so that total polarization is high. But as the

frequency increases, total polarization decreases. Thus, the dielectric constant becomes

frequency-dependent. Within the scope of this thesis, chose samples under test have the

same dielectric constant value at the operating frequency range.

Besides the frequency, the temperature also affects the dielectric constant. Ori-

entational and space charge polarizations are affected by temperature, so the dielectric

constant of material also changes with temperature. In this thesis, experiments were car-

ried out at room temperature.

2.2. Material Perturbation Theory

The cavity perturbation method utilised the material perturbation theory and is an

approximate technique for the measurement of electromagnetic properties of a material in

microwave frequencies. When a small amount of dielectric or magnetic material that has

arbitrary shape is inserted into a microwave resonator cavity, the electric and magnetic

fields are perturbed, and this causes a shift in the resonant frequency and a change of the

quality factor (Pozar, 2012 ; Carter, 2001b).

Figure 2.1. Material perturbation of an arbitrarily shaped cavity
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Material perturbation in a resonator cavity is based on the difference in the permit-

tivity (∆ε) or the permeability (∆µ) of an introduced material as shown in Figure 2.1. ~E0

and ~H0 represent the electric and magnetic fields of the unperturbed cavity and they be-

come ~E1 and ~H1 after the small-sample perturbation. According to Maxwell’s equations,

fields can be expressed as

∇× ~E0 = −jω0µ ~H0 (2.2)

∇× ~H0 = jω0ε ~E0 (2.3)

∇× ~E1 = −jω1(µ+ ∆µ) ~H1 (2.4)

∇× ~H1 = jω1(ε+ ∆ε) ~E1 (2.5)

where ω0 is the angular resonant frequency of the unperturbed cavity and ω1 shows the

angular resonant frequency of the perturbed cavity. If a lossy material is used, then the

change in frequency will be a complex value. When the complex conjugate of Equation

(2.2) is multiplied by ~H1 and Equation (2.5) is multiplied by ~E∗0 , Equations (2.6) and (2.7)

are obtained.

~H1 · ∇ × ~E∗0 = jω0µ ~H1 · ~H∗0 (2.6)

~E∗0 · ∇ × ~H1 = jω1(ε+ ∆ε) ~E∗0 · ~E1 (2.7)

Using the vector identity in Equation (2.8), when the Equations (2.6) and (2.7) are

subtracted from each other, the Equation (2.9) is achieved.
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∇ · ( ~A× ~B) = ~B · ∇ × ~A− ~A · ∇ × ~B (2.8)

∇ · ( ~E∗0 × ~H1) = jω0µ ~H1 · ~H∗0 − jω1(ε+ ∆ε) ~E∗0 · ~E1 (2.9)

By repeating similar operations, the complex conjugate of Equation (2.3) is mul-

tiplied by ~E1 and Equation (2.4) is multiplied by ~H∗0 . Subtracting Equations (2.10) and

(2.11) by using the vector identity in Equation (2.8) gives Equation (2.12).

~E1 · ∇ × ~H∗0 = −jω0ε ~E1 · ~E∗0 (2.10)

~H∗0 · ∇ × ~E1 = −jω1(µ+ ∆µ) ~H∗0 · ~H1 (2.11)

∇ · ( ~E1 × ~H∗0 ) = −jω1(µ+ ∆µ) ~H∗0 · ~H1 + jω0ε ~E1 · ~E∗0 (2.12)

Equations (2.9) and (2.12) are added and integrated over the volume of the cavity

V0. Gauss’ theorem provides that the integral over the volume transform to the integral

over the enclosed surface. When the cavity material is perfectly conducting, the electric

field is normal and the magnetic field is tangential to the surface. Thus, the Equation

(2.13) becomes equal to zero. The integral expression can be rewritten as in Equation

(2.14).

∫
V0

∇ · ( ~E∗0 × ~H1 + ~E1 × ~H∗0 )dv =

∮
S0

( ~E∗0 × ~H1 + ~E1 × ~H∗0 ) · d~s = 0 (2.13)

j

∫
V0

(
(ω0ε− ω1[ε+ ∆ε]) ~E∗0 · ~E1 + (ω0µ− ω1[µ+ ∆µ] ~H∗0 · ~H1)

)
dv = 0 (2.14)
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If the cavity is perfect conductive, Equation (2.15) is the fundamental equation for

the deduction of the electromagnetic properties of the sample by material perturbation.

ω0 − ω1

ω1

=

∫
V0

(∆ε ~E1 · ~E∗0 + ∆µ ~H1 · ~H∗0 )dv∫
V0

(ε ~E1 · ~E∗0 + µ ~H1 · ~H∗0 )dv
(2.15)

The fundamental equation of the material perturbation is not calculable because of

expressions of perturbed cavity fields. However, even if a sample with high permittivity

or permeability is used, the total perturbation will be weak since the sample volume will

be small. In this case, since the change in the system is small to not disturb the mode

distribution, the unperturbed and perturbed field expressions are close to each other, and
~E0 and ~H0 can be written directly instead of ~E1 and ~H1 as in Equation (2.16).

ω0 − ω1

ω0

≈
∫
V0

(∆ε| ~E0|2 + ∆µ| ~H0|2)dv∫
V0

(ε| ~E0|2 + µ| ~H0|2)dv
(2.16)

Equation (2.16) gives the information that an increase in permittivity or perme-

ability will cause a decrease in resonant frequency. The angular resonant frequency is a

complex value, ω = ωr + jωi. The resonant frequency is expressed as f = ωr/2π, and

the quality factor is calculated from Q = ωr/2ωi. Since the quality factor is very high in

perfectly conducting structures, the imaginary part can be ignored.

In permittivity measurements, the sample used is non-magnetic, so the permeabil-

ity difference (∆µ) goes to zero. The integral expression in the numerator of Equation

(2.16) can be calculated over the sample volume since the permittivity does not change

outside the sample. Equation (2.17) is reached with the assumption that the sample vol-

ume is too small where Vs represents the volume of the sample.

ω0 − ω1

ω0

≈
∫
Vs

∆ε| ~E0|2dv
2
∫
V0
ε| ~E0|2dv

(2.17)

The sample is put in the centre where the electric field is maximum. Electric

field expressions are calculated by substituting in Equation (2.17) for rectangular and
10



cylindrical cavities and a dielectric constant equation is obtained. The general expression

of the dielectric constant equation is stated as

∆ε

ε
= ξ

Vc
Vs

ω0 − ω1

ω0

(2.18)

where ξ is 0.5 for TE101 mode of a rectangular cavity and 0.539 for TM010 mode of a

cylindrical cavity. Vc and Vs indicate the cavity and the sample volumes respectively.

∆ε shows the dielectric constant difference between the empty cavity and the dielectric-

loaded cavity.

2.3. Newton-Raphson Method

The Newton-Raphson method is a technique of finding the roots of a given func-

tion. The idea belongs to Newton, and Raphson writes the equation in the final form so

the method is called by the two. In other root-finding methods such as secant and bisec-

tion, at least two points and their outputs are required, while in Newton method one point

and its output, and the derivative value with the tangent line passing through that point are

sufficient. It is one of the most used methods for optimization in science and engineering

because it is simple and easily applicable (Ostrowski, 1966).

Figure 2.2. Geometrical representation of the Newton-Raphson method
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The Newton method is based on solving the scalar equation f(x) = 0, where f is

a continuous function. A tangent line is drawn using the known point (xn, f(xn)) on the

graph of f(x). After the derivative of f(xn), f ′(xn) from the tangent line is achieved, the

equation is written as Taylor polynomial as in Equation (2.19).

f(xn) + (xn+1 − xn)f ′(xn) = 0 (2.19)

In Figure 2.2, f ′(xn) can be written as f ′(xn) = f(xn)/(xn−xn+1) since it means

the slope of the tangent line. Thus, xn+1 is assigned at the intersection point between the

tangent line and the x-axis and can be written as in Equation (2.20).

xn+1 = xn −
f(xn)

f ′(xn)
(2.20)

The sequence of xn values is obtained consequently, and this sequence becomes

the linear interpolation of f(x). xn sequence produces an iterative solution and the point

where the iteration converges, gives the root of f(x).

When the Newton-Raphson method is applied to dielectric measurements, the

electric field or power values of a material whose dielectric constant is known are de-

termined at the first step. The known dielectric constant forms the initial guess. If the ini-

tial guess value is not close to the root of the function sufficiently, the Newton-Raphson

technique may not converge or may converge to the false root. Then, the initial point

is approached by iterations from the electric field or power measurements of the sample

whose dielectric properties are indefinite. Thus, unknown dielectric constant information

is obtained. The steps to be followed are described in the flow chart in Figure 2.3.

This part of the problem can be considered as a direct scattering problem for an

object located inside of a bounded domain and the solution of the problem is finding the

electric field/power on a certain line inside the domain. Accordingly, the inverse problem

can be imagined as reaching the unknown dielectric parameter of the material from the

data obtained in the direct problem. In this thesis, the direct problem is calculated with two

approaches, by Finite Element Method which is implemented in the 3D electromagnetic

field solver, i.e. CST-MWS and by measurements via Spectrum Analyser. For the solution

of the inverse problem, we used a Newton iterative type algorithm.
12



Within the scope of this thesis, in order to find the dielectric constant of an un-

known material we first excite the cavity at the frequency which does not correspond to

any of its resonant frequencies. Afterwards, we achieve the magnitude of the electric

fields or powers inside the cavity at certain points on a circle around the material.

Figure 2.3. Flowchart of Newton-Raphson method in dielectric measurements

The main equation to be solved iteratively is given in Equation (2.21). εx denotes

the dielectric constant of the sample whose electrical properties are unknown. F (εx) indi-

cates the magnitude of the measured electric field or power expression when the dielectric

constant is εx. ε1 shows the known dielectric constant as the initial guess while F (ε1)

gives the magnitude of the measured electric field or power values. Measuring from more

points makes the result more precise. The points to be measured are optimally adjusted

according to the way the sample is placed in the cavity.
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|F (εx)| = |F (ε1)|+ |F ′(ε1)|h (2.21)

F ′(ε1) represents the numerical derivative of F (ε1) and can be calculated from

Equation (2.22) with ∆ value as the difference quotient. ∆ value should be chosen so that

the numerical derivative does not go to zero. Accordingly, in the numerical implemen-

tation, we check the related derivative if it is sufficiently large at each iteration step. h

parameter is achieved by Newton-Raphson iteration technique and is provided to update

the initial guess of the dielectric constant ε1.

|F ′(ε1)| =
|F (ε1 + ∆)| − |F (ε1)|

∆
(2.22)

After the first iteration, the new guess value ε2 is obtained from ε2 = h + ε1, and

is substituted instead of ε1 in Equation (2.21). As a result of the nth iteration, Equation

(2.23) is obtained similar to Equation (2.20).

εn+1 = εn −
F (εn)

F ′(εn)
(2.23)

The stopping criterion is determined depending on the desired sensitivity and is

checked whether the new obtained dielectric constant satisfies this criterion. Unless the

stopping criterion is satisfied, iteration is continued. As soon as the criterion is satisfied,

the result has been reached and an unknown dielectric constant has been obtained.

It was explained how to do iteration when measuring from one point. For the

one point measurement, the update parameter can be calculate at one step easily. If the

measurement is taken from k points to increase the sensitivity, the number of equations

is higher than the number of unknown variables. Thus, the Least Squares Method is

implemented since it is desired to get one update parameter using all measurement points

(Bickel and Doksum, 2007). So the equation we need to solve becomes;

[A]T [A] [h] = [A]T [b] (2.24)
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where

A =



|F ′(ε1)|(1)

|F ′(ε1)|(2)

. . .

. . .

|F ′(ε1)|(k)


k×1

b =



|F (εx)|(1) − |F (ε1)|(1)

|F (εx)|(2) − |F (ε1)|(2)

. . .

. . .

|F (εx)|(k) − |F (ε1)|(k)


k×1

(2.25)

The matrixA contains the derivatives and the matrix b consists of differences. [A]T

denotes the transpose of the matrix A. The h parameter is attained from these equations

and the new dielectric constant to be used is decided and the next iteration is carried out.

2.4. Finite Element Method

Analytical analysis of complicated structures is often not possible. For this rea-

son, numerical methods are used to solve many electromagnetic problems. In this thesis,

it is planned to excite the cavity, observe the S-parameters, and read the electric field and

power values using the CST-MWS program. There are many options such as finite ele-

ment method (FEM), finite integration technique (FIT) offered by this program to users.

Within the scope of this study, frequency domain solver using FEM is utilised.

(a) (b)

Figure 2.4. FEM mesh structure (a) Without mesh (b) With mesh

15



FEM, which is used in modules such as eigenmode solver and frequency domain

solver in CST-MWS software, has an important role in electromagnetics as in many other

areas. In the finite element method, the problem region is divided into sub-sections called

finite elements, and the electromagnetic problem is handled in this way. A problem can

be solved with FEM in 4 main steps. First of all, the region must be divided into elements,

that is discretization, see Figure 2.4 (Sadiku, 2000). Secondly, an appropriate interpola-

tion function must be selected, then the formulation for the problem must be created and

the corresponding equation system must be solved as the last step.

Discretization step is one of the most important steps of FEM. In this step, dividing

the solution region into finite elements is performed. Finite elements can be tetrahedral

or hexahedral according to the shape and dimensions of the structure, see Figure 2.5

(Sadiku, 2000). At this stage, discretization should be done very precisely. Therefore, in

many problems that are handled by finite element method, meshing takes more time than

the sum of all remaining processes.

Figure 2.5. FEM mesh types for various 2D and 3D

In the second step, an approximation is selected for the solution of the electro-

magnetic problem. This approximation can be a polynomial or a sinusoidal function. If

the selected function is a polynomial, the degree of the polynomial is directly related to

the sensitivity of the solution.

In the third and fourth steps, the system of equations is created and solved, respec-

tively. When creating the system of equations, defining boundary conditions appropriately
16



is an important part of the solution of the system. This system of equations can be solved

with 2 different methods: iterative method or band matrix method (Sadiku, 2000). After

the equation system is solved, the corresponding impedance values and S-parameters can

be obtained easily.

Figure 2.6. Tetrahedral mesh view in frequency domain solver of CST-MWS

As an example, the tetrahedral mesh structure of the CST-MWS software can be

seen in Figure 2.6. The mesh structure in this figure corresponds to four-node tetrahe-

drons. As the number of mesh increases, precision is expected to improve. After reach-

ing the particular number of mesh, the change in results converges to zero. In addition,

with the adaptive mesh algorithm used by the CST-MWS program, regions with sudden

changes will have smaller meshes.
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CHAPTER 3

RESULTS OF MATERIAL PERTURBATION METHOD

This chapter is dedicated to the material perturbation approach in dielectric mea-

surements. Rectangular and cylindrical cavities, which are frequently used in resonant

methods, are compared with CST-MWS simulations. After that, dielectric constants of

different materials are measured using a real cavity.

3.1. Rectangular and Cylindrical Cavity Comparison

The effect of the parameters in the dielectric constant equations and cavity shapes

on dielectric measurements is studied numerically using the material perturbation method

that emphasized the inverse problem analogy. The direct problem involves taking the

measurement from the dielectric-loaded cavity and finding the resonant frequency for a

defined dielectric constant. The idea of the inverse problem is to find the reconstructed

dielectric constant value by recalculating the dielectric constant with the help of Equation

(2.18) from the obtained frequency shift.

Microwave cavities resonate at a particular frequency corresponding to the certain

mode. The resonant frequencies of the modes employed (TE101 and TM010) are given

for the rectangular and cylindrical cavity, respectively, in Equations (3.1) and (3.2). In the

first equation, a and d shows the width and the length dimensions of the rectangular cavity.

R stands for the radius of the cylindrical cavity in the other equation. χ01 demonstrates

additionally the root of the Bessel function for TM010 mode.

fTE
101 =

1

2
√
εµ

√
1

a2
+

1

d2
(3.1)

fTM
010 =

1

2π
√
εµ

χ01

R
(3.2)
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The resonant frequency of the desired mode for the empty cavity, f0 is determined

as the reference value using the full-wave electromagnetic simulator CST-MWS and the

previously mentioned Equation (2.18) is rewritten;

εr = 1 + ξ
Vc
Vs

f0 − fs
f0

(3.3)

where εr indicates the relative dielectric constant. As mentioned before, ξ is 0.5 for the

rectangular cavity and 0.539 for the cylindrical cavity. Vc and Vs represent the volumes of

the cavity and the sample respectively.

(a) (b)

Figure 3.1. E-field distributions (a) Rectangular cavity for TE101 mode (b) Cylindrical
cavity for TM010 mode

Two investigations based on the comparison between rectangular and cylindrical

cavities were performed (Ozkal and Yaman, 2019). In both cavities, the material under

test is placed in the centre of the cavities. In accordance with this design, the TE101 mode

in the rectangular cavity and the TM010 mode in the cylindrical cavity are excited. E-field

distributions of the mentioned modes can be examined in Figure 3.1. The colour bars at

the right of the figures belong to specific input power, and their numerical values change

depending on the variation of the default power accepted to be transmitted to the system.

The first investigation focuses on how accuracy is disrupted by the increase in di-

electric constant value for rectangular and cylindrical cavity shapes. Cavities are designed

such that their volumes are approximately equal and also their chosen modes operate at

the frequency of 3 GHz. Similarly, sample volumes keep the same value at each step, the

ratios of cavity volumes to sample volumes are kept constant in this way. As a result, the
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variables in Equation (3.3) are just frequency shift and relative dielectric constant. While

the exact dielectric constant defined within the direct problem increases from 2 to 20, the

error rate is calculated as follows;

error rate % =
|εexact − εreconstructed|

εexact
× 100 (3.4)

where εreconstructed shows the dielectric constant recalculated in the inverse problem.

Figure 3.2 demonstrates reconstructed dielectric constant values and error rates at

each step while exact dielectric constant values rise. The Y data inside the boxes over the

curves indicate outcomes for the rectangular cavity, while the boxes under the curves give

the results of the cylindrical cavity.

Figure 3.2. Reconstructed dielectric constant and error rate comparison at 3 GHz

The accuracy decreases with the increment in the dielectric constant value since

the material perturbation method works for the minor changes. Observing the error rate

graph to consider the difference between rectangular and cylindrical cavities more clearly,

it is seen that the error rate of the rectangular cavity reaches to greater values.

The second investigation examines how the reconstructed dielectric constant value

is affected if the resonant frequency for the empty cavity and the sample volume, which

was held constant in the previous case, changes. The volumes of the cavities are reduced
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to increase the resonant frequencies of the cavities, but the rectangular and cylindrical

cavities for each step are designed so that their volumes are almost the same. The inves-

tigation is carried out for 2 different dielectric constants, 5 and 10. Sample volumes are

decided for 3 cases; 50, 200 and 800 mm3 and S-band is preferred as the frequency range.

While the resonant frequency of the TM010 mode of the cylindrical cavity is determined

only by the radius of the cylinder, there are limitations for the rectangular cavity, since 2

dimensions are required for the TE101 mode. For these reasons, analyzes are carried out

in 2 consecutive frequency ranges, 2-3 GHz and 3-4 GHz.

(a) (b)

(c) (d)

Figure 3.3. Cavity dimensions for comparison (a) Rectangular cavity for 4-3 GHz (b)
Rectangular cavity for 3-2 GHz (c) Cylindrical cavity for 4-3 GHz (d)
Cylindrical cavity for 3-2 GHz

As seen in Figure 3.3, the cavities’ dimensions are risen to decline the frequency

for two frequency range. In accordance with the modes, the samples are located where

the electric field has the highest magnitude at each time.

Figure 3.4 presents the comparison results for the rectangular cavity (3.4.a and

3.4.c) and the cylindrical cavity (3.4.b and 3.4.d) using the sample with dielectric con-

stant 5 via material perturbation theory. The frequency range of 2-3 GHz is stated in

Figure 3.4.a and 3.4.b, while the frequency range of 3-4 GHz is expressed in Figure 3.4.c
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and 3.4.d. As the frequency increases, the error rate decreases in the rectangular cavity

simulations, whereas the cylindrical cavity has the contrary behaviour and its inaccuracy

rises. When the sample volume is very small, the error rate is around 1%. As expected,

the error grows quickly as the sample volume is at its greatest value, since the perturba-

tion approach is not satisfied. Looking at the results of the rectangular cavity, a sudden

increment is noticed at around 3 GHz in the transitions of the frequency range because

the dimensions modify.

(a) (b)

(c) (d)

Figure 3.4. Reconstructed dielectric constant comparison for varying volume of sam-
ple with εr = 5 (a) Rectangular cavity for 2-3 GHz (b) Cylindrical cavity
for 2-3 GHz (c) Rectangular cavity for 3-4 GHz (d) Cylindrical cavity for
3-4 GHz

When the dielectric constant 10 is selected, the cavities present the same be-

haviour; however, as it will be deducted from the first investigation, the precision de-

creases due to the increase in the dielectric constant value as shown in Figure 3.5. When

Figure 3.5.c is examined for the rectangular cavity, it is determined that the error rate at
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the frequency of 3.1 GHz rises to 40%, and this is the worst case of the rectangular cavity.

The reason for the error rate to behave differently when using a cylindrical cavity in case

the sample volume is 800 mm3 is that the ratio of the cavity volume to the sample volume

is very low.

(a) (b)

(c) (d)

Figure 3.5. Reconstructed dielectric constant comparison for varying volume of sam-
ple with εr = 10 (a) Rectangular cavity for 2-3 GHz (b) Cylindrical cavity
for 2-3 GHz (c) Rectangular cavity for 3-4 GHz (d) Cylindrical cavity for
3-4 GHz

In general, high frequencies in rectangular cavities and low frequencies in cylin-

drical cavities should be preferred. High sample volume causes higher errors in material

perturbation theory for almost all cases. Although the error rate in the cylindrical cavity

is low, it either tends to increase continuously or decrease continuously, giving remark-

ably unstable results. However, as the frequency increases in the rectangular cavity, more

stable results are obtained.
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3.2. Measurement Results of the Perturbation Method

The material perturbation approach was implemented using a real cavity with dif-

ferent materials. An aluminum rectangular box was bought and turned into a cavity by

providing suitable connector holes. The bought cavity (see Figure 3.6) was drawn identi-

cally in CST-MWS.

(a) (b)

Figure 3.6. Cavity Design (a) Real Cavity (b) Drawn cavity in CST-MWS

Figure 3.7. Coupling loop exciting the cavity
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In previous studies (Ozkal and Yaman, 2018), we presented that measurements

were taken only when one connector was attached to the cavity. In this thesis, six connec-

tors were placed on the cover of the cavity and the measurement was taken again. Since

the same conditions were provided in the reference and sample measurements, the results

were determined to be compatible with each other. Six connectors placed on the top of

the cavity will be utilised in the section of the results of the Newton-Raphson method.

Reflection parameter (S11) was examined by using only the connector on the sidewall in

the material perturbation method.

The cavities must be coupled with the transmission lines to transfer power. Cou-

pling is generally provided in three ways as hole, probe and loop (Balanis, 2012). If the

waveguide will be used as the transmission line, the hole is utilised. When the coaxial

line is preferred as the transmission line, the probe is employed for excitation from the

electric field region and the loop from the magnetic field region (Pozar, 2012). In the case

of magnetic coupling, the inner conductor of the coaxial line is terminated with the short

circuit to the cavity wall. The current flowing through the magnetic loop induces a mag-

netic field perpendicular to the plane of the loop. As seen in Figure 3.7, the coupling loop

was utilised for this study. A connector and a loop antenna were put to transfer power into

the cavity from the narrower sidewall of the cavity.

Figure 3.8. Filled glass tube and screw holes of the cavity

For the measurement of liquid samples, the tube which the sample was filled was

selected from the glass. The glass tube was pasted to the bottom of the cavity with hot
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silicone (see Figure 3.8). The dielectric constant of the glass is about 4.8, and that of the

silicon is about 11.9 at room temperature in the literature (CST MICROWAVE STUDIO,

2018). However, the measurement results were not affected, since the contribution of

glass and silicon was at every measurement and empty glass tube condition was decided

as the initial reference value. Screw holes used to fix the cavity cover can be also seen

from Figure 3.8.

The measurement setup where the material perturbation approach was performed

is displayed in Figure 3.9. After the one-port calibration of the VNA was done in the

appropriate frequency range, the reflection parameter S11 of the cavity was measured and

the data collected were plotted through the PC.

Figure 3.9. Material perturbation method measurement setup

The reference value needed to determine the frequency shift for the material per-

turbation approach was obtained in the case of the empty glass tube inside the cavity. The

same condition was simulated in CST-MWS and the S11 matching seen in Figure 3.10 was

obtained. The dotted blue line shows the measurement result with VNA, and the dashed

red line gives the CST-MWS simulation result.
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Figure 3.10. S11 results of the empty cavity

Within the scope of this thesis, measurements were performed for 3 samples with

low, medium and high dielectric constant values. Firstly, the frequency in the case of

an empty glass tube inside the cavity was determined as the reference value. Then mea-

surements were carried out for hexane, ethanol and drinking water, which were easily

available. The ethanol used in the experiments contains 4% water and is expressed as

ethanol 96%.

Figure 3.11. Material perturbation measurement results
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The results obtained from VNA with frequency shift when hexane, ethanol-water

mixture and drinking water are filled into the glass tube are given in Figure 3.11. The blue

line is the result of the empty case given in Figure 3.10 from the VNA.

Since the hexane’s dielectric constant is small, the frequency shift is more invisi-

ble. However, the dielectric constant of drinking water is high, so there has been a greater

shift in frequency.

Table 3.1. Material perturbation approach for various liquid samples

Hexane Ethanol 96% Water

εreconstructed 1.71 13.73 52.21
εliterature 1.89 16.64 71.7
error rate 9.52% 17.49% 27.18%

Reconstructed dielectric constant results given in Table 3.1 were obtained by in-

cluding cavity and sample volumes in Equation (3.3) as in the comparison of cavities.

Also, dielectric constant values in the literature for hexane, ethanol 96% and drinking

water were written (Hayakawa and Sawa, 1997 ; Abdelgwad and Said, 2015). However,

since the ethanol used in the experiment is water-added, the dielectric constant is calcu-

lated according to the water content after it is obtained from the literature according to

the operating frequency (Sato and Buchner, 2004 ; Puvvadi et al., 2008). The error rate

for hexane is around 9.52% and for ethanol is almost 17.49%. For drinking water, around

27.18% error occurred. Perturbation approach fails at the high dielectric constant of the

water, as it is responsive to minor changes. Due to the fact that the dielectric constant

of the water is the divergence from the perturbation approach, it is an expected situation

with the results in the comparison of the cavities. The error rate increased as the dielectric

constant raised.

Measurements were also performed for different concentration levels of ethanol.

Half of the glass tube was filled with ethanol 96% and the other half with distilled water.

Because of equal volumes, ethanol was 48%, the dielectric constant was calculated as

48.32. Ethanol 96% and distilled water were mixed with the ratio 2:1 to obtain ethanol

64%. The dielectric constant of the new mixture was calculated as 37.76.

As the amount of ethanol increases in the mixtures, the dielectric constant is lower.

Table 3.2 represents the reconstructed dielectric constants with various concentration lev-
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els of ethanol. As with previous measurements, the error rate increases as the dielectric

constant becomes higher.

Figure 3.12. Material perturbation results for different concentration of ethanol

Table 3.2. Material perturbation approach for various ethanol concentrations

Ethanol 96% Ethanol 64% Ethanol 48%

εreconstructed 13.73 30.003 37.92
εliterature 16.64 37.76 48.32
error rate 17.49% 20.54% 21.52%

The reasons for the inaccurate results for low dielectric constants may be the

roughness on the inner surface of the cavity and the material of the cavity being lower

conductivity aluminium. In addition, dielectric and cable losses during measurement can

cause erroneous results. The Newton-Raphson approach will be presented in the next

chapter to obtain more accurate results for materials with a higher dielectric constant.
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CHAPTER 4

RESULTS OF NEWTON-RAPHSON METHOD

The applicability of the Newton-Raphson method to the dielectric measurements

with a rectangular cavity has been demonstrated by simulation via CST-MWS using elec-

tric field values. Then, the power values were measured using a spectrum analyzer and

the method was verified by measurements.

4.1. Simulation Results of the Newton-Raphson Method

The aluminium rectangular cavity was designed in CST-MWS, which can be seen

in Figure 4.1. Power was supplied to the cavity with a loop antenna. A glass tube was

placed in the middle of the cavity and is filled with the material under test. The electric

field values were examined on the curve drawn around it.

Figure 4.1. Cavity design in CST-MWS with a curve around the sample

The process was performed by selecting 32 values at certain intervals from the

electric field values. Since any mode is not excited, the electric field values are at low

levels, and the electric field distributions for the cavity with empty glass tube are presented

in Figure 4.2. As the mode of a particular frequency is not produced, the effect of the

modes near the frequency used can be seen. The curve drawn around the tube is shown
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with red colour and also the electric field amplitudes are normalized by 50 to become the

field distribution more understandable.

Figure 4.2. Electric field distributions in 3D with empty glass tube at 2.6 GHz

The distribution of the modes near the frequency of 2.6 GHz can be seen in Figure

4.4 when there is a sample with dielectric constants of 10, 20, 30, 40 and 50. The 3D

distribution of the electric field can also be examined from Figure 4.3 for two materials

with the dielectric constants of 10 and 50.

(a) (b)

Figure 4.3. Electric field distributions in 3D inside the cavity at 2.6 GHz (a) Dielectric
constant of 10 (b) Dielectric constant of 50
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Figure 4.4. Electric field distributions in 1D on the curve

Let’s give an example calculation in the application of the Newton-Raphson method

to the dielectric measurements. If the dielectric constant of the sample whose electrical

properties are not known is εx (εx is unknown), then the magnitude of the measured elec-

tric field values of that sample are shown with E(εx). In other words, if our εx value is

equal to 50, then the point of 50 is tried to reach with the iteration approach. Let’s assume

that we have another material that can be used as an initial point whose dielectric constant

is 20 (ε1 = 20) and E(ε1 = 20) indicates the obtained electric field magnitude values of

the reference material. Our main aim is to approach the dielectric constant of the unknown

material by starting the iteration from 20. If our ∆ value is 1, which indicates the steps,

we also need the electric field values obtained from the simulation and occurred when the

dielectric constant is 21. The next iteration value ε2 is calculated as specified in Equation

(4.1). Thus, εx values are achieved by using ε2,3...(x−1) values, as explained before, with

stopping criterion.

ε2 = 20− E(ε = 20)∆

E(ε = 21)− E(ε = 20)
where ε2 = ε1 + h (4.1)

Newton-Raphson method simulations were analysed in terms of 3 different vari-

ables as the difference quotient ∆, the initial guess ε1 and the desired value to be reached

εx. Iteration was stopped when the h value reached 10−3, which is the stopping criterion.

The first examination was started with a material with the dielectric constant of
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45, in other words, initial guess 45 was accepted. The sample with a dielectric constant

of 50 is considered to be the material under test and it is assumed that the electric field

values are measured. Iterations were performed by determining the difference quotient ∆

as 0.1, 0.5, 1 and 3. The obtained results ε1,2...x and update parameter h, is given in Table

4.1 and shown graphically in Figure 4.5.

Table 4.1. Newton-Raphson simulations from 45 to 50 with various ∆ values

# εr h εr h εr h εr h
∆=0.1 ∆=0.1 ∆=0.5 ∆=0.5 ∆=1 ∆=1 ∆=3 ∆=3

0 45 2.577 45 3.744 45 4.9579 45 4.9567
1 47.577 1.7523 48.744 0.732 49.9579 0.1166 49.9567 0.1146
2 49.3293 0.4581 49.476 0.4086 50.0745 0.0202 50.0713 0.0026
3 49.7874 0.1888 49.8846 0.0893 50.0947 -0.0159 - -
4 49.9762 0.0711 49.9739 0.068 50.0788 -0.0098 - -
5 50.0473 -0.0305 50.0419 -0.0167 50.069 -0.0011 - -
6 50.0168 0.0118 50.0252 0.0019 - - - -
7 50.0286 -0.0034 - - - - - -

As the ∆ value increased, the desired value was reached faster because the step

interval is wider. For the same reason, as iteration continues with tiny oscillations in

narrower steps, final points closer to εx are achieved. Thus, the error rate is lower in small

∆ values.

Figure 4.5. Simulations graphics of εr and h with various ∆ values
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In the second analysis, the effect of initial guess was observed. The desired value

to be reached was decided 50 again and the ∆ value was fixed to 0,1. Initial guess values

were determined to be 10 and 30, thus attempting to reach from 10 and 30 to 50.

The h and εx values received in the iteration steps are given in Table 4.2 and Fig-

ure 4.6. The distance of the initial guess value from the final point does not have a major

impact on accuracy. At this point, we note that the Newton-Raphson provides accurate

numerical results based on good initial guesses. No matter how high the dielectric con-

stant is, according to the observed parameters, it is clear that the Newton-type approach

works.

Table 4.2. Newton-Raphson simulations with various initial points at ∆ = 0.1

# εr (ε1 = 10) h (ε1 = 10) εr (ε1 = 30) h (ε1 = 30)

0 10 33.2781 30 12.3062
1 43.2781 4.4065 42.3062 4.5906
2 47.6846 1.5294 46.8968 1.8528
3 49.214 0.5002 48.7496 0.8018
4 49.7142 0.245 49.5514 0.3057
5 49.9592 0.061 49.8571 0.1316
6 50.0202 0.0523 49.9887 0.0774
7 50.0725 0.0104 50.0661 -0.0286
8 50.0829 0.0033 50.0375 0.0173
9 - - 50.0548 -0.0027

Figure 4.6. Simulations graphics of εr and h with various initial point values
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In the last study, the ∆ value was chosen as 1 and the initial guess was accepted

as 10. The final point was determined as 3 different values and the method was applied to

reach from 10 to 20, 30 and 40. Thus, while there is a material that we know the dielectric

constant, the applicability of this method was examined in order to define the dielectric

parameter of all other samples.

Table 4.3. Newton-Raphson simulations with various dielectric constants at∆=1

# εr (εx=20) h (εx=20) εr (εx=30) h (εx=30) εr (εx=40) h (εx=40)

0 10 14.6981 10 31.9349 10 48.167
1 24.6981 -4.7293 41.9349 -12.2866 58.167 -18.5988
2 19.9688 0.0762 29.6483 0.3351 39.5682 0.3784
3 20.045 0.0243 29.9834 0.0462 39.9466 -0.0055
4 20.0693 -0.0083 30.0296 0.0027 - -
5 20.061 -0.0052 - - - -

Figure 4.7. Simulations graphics of εr and h with various dielectric constant values

The results are written in Table 4.3 and shown in Figure 4.7. The reason for the

sudden changes in the first iteration seen from the graphics is the high ∆ value. The
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dielectric constants of other samples could be reached with a single reference value, and

the large ∆ value provided a low number of iterations.

4.2. Measurement Results of the Newton-Raphson Method

The utilisation of the Newton-Raphson method in the dielectric measurements

was performed using an aluminium rectangular cavity as shown in Figure 3.6.a after the

simulation examination. Electric field values were obtained at 32 points in the simulation,

and the power values were measured at 6 points in this investigation due to the size of the

cavities and connectors. In the previous section, the design of the cavity in CST-MWS

and the S11 matching (see Figure 3.10) for the empty cavity were mentioned.

Figure 4.8. The illustration of the Newton-Raphson method measurement setup

The setup used in dielectric measurements with the Newton-Raphson method is

presented in Figure 4.8. Power is transferred from the signal generator to the cavity at

the specified frequency. The magnitude of the output power versus the same frequency is

measured separately from the spectrum analyzer for each port. Iteration is performed on

the simulation with the received power values.
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The photo of the connectors from inside the cover of the cavity is given in Figure

4.9. No additional antennas were placed to ends of the connectors to form a probe antenna

because the proximity of the antennas would cause them to be coupled to each other. For

this reason, the inner conductors of the connectors, which extend out, were left to act as

antennas.

Figure 4.9. Photo of the cavity cover from the inside

Figure 4.10. Newton-Raphson method measurement setup
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Power measurement was carried out in the laboratory with the setup shown in

Figure 4.10. 10 dBm of power was transferred to the cavity at a frequency of 1.5 GHz

with the signal generator. The screenshot of the signal generator can be observed in Figure

4.11. The power value corresponding to the same frequency from the spectrum analyzer

was measured individually for each port. Cables were chosen as short as possible to

reduce cable loss.

Figure 4.11. Signal generator screen

The system was calibrated with the empty cavity before proceeding to measure

with the samples. The measurement results of the empty cavity at the spectrum analyzer

and the power values received from CST-MWS were compared in Table 4.4 and normal-

ization constants were calculated. These constants were added to the measurement results

of the samples.

Table 4.4. Power measurements of the empty cavity case

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

Power at CST-MWS (dBm) -49.25 -47.46 -38.95 -36.83 -42.01 -58.19

Power at SA (dBm) -48.83 -44.5 -37 -35.17 -40.33 -53.33

Normalization constant (dB) 0.42 2.96 1.95 1.66 1.68 4.86

38



Calibration was necessary since the original cavity have the rough inner surface

and screw holes for the cover. The normalization constant was caused by the fact that

there were millimetre position differences between the locations where the connectors

were attached and the measurements points from the designed cavity in CST-MWS. Also,

in real measurements, the connectors were pasted to the cavity with hot silicone so that

some minor shifts at positions of the connectors occurred. For this reason, each port was

calibrated with its own normalization constant.

Table 4.5. Power measurements of samples with the spectrum analyzer

Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

Hexane -48.5 -44.67 -37.17 -35.33 -40.5 -54

Ethanol 96% -43.67 -47.67 -39 -37.17 -42.5 -55

Ethanol 64% -41.33 -61.83 -41.33 -39.17 -46.17 -44.67

Ethanol 48% -40 -64 -43.17 -40.5 -49 -46.17

Drinking Water -37.67 -58.17 -49.17 -45.83 -60.17 -48.5

In the implementation of the Newton-Raphson method with measurement, the

empty cavity case was assumed as the initial guess and the value of ε1 is 1 as the dielectric

constant of the air. Hexane, water-added ethanol and drinking water which were measured

in the material perturbation method were decided to be tested samples, and the desired

points εx were the dielectric constants of these samples. In addition, the before mentioned

samples with different dielectric constants obtained with various concentration levels of

ethanol were also used in the measurements. Iterations were performed for two values

of ∆ as 1 and 0.1. The power measurement values for hexane, water-added ethanols

and drinking water were presented in Table 4.5. Newton-Raphson iterations started with

measurement results and continued on CST-MWS simulations.

To be an example of the measurements taken from the spectrum analyzer, the

photo of the device screen is shared in Figure 4.12. In Figure 4.12.a and 4.12.b, in the

case of the empty glass tube, power values received from ports 3 and 4 are displayed. The

power values at port 3 and 4 can be read from Figure 4.12.c and 4.12.d when the glass

tube is filled with water.
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(a) (b)

(c) (d)

Figure 4.12. Power measurements on the spectrum analyzer screen (a) Empty cavity -
port 3 (b) Empty cavity - port 4 (c) Water measurement - port 3 (d) Water
measurement - port 4

In Table 4.6 and Figure 4.13, Newton-Raphson iteration results for hexane from

the initial point of 1 can be seen. The reconstructed dielectric constant and the change of

the update parameters were both plotted and tabulated. After each update parameter was

calculated, it was added to the previous reconstructed dielectric constant as mentioned

previously, and the new value was obtained and iteration continued.

The dielectric constant of hexane in the literature is 1.89, and 1.71 was detected

by the material perturbation method. In the Newton-Raphson method, the reconstructed

value approximates to 1.8653 for the step size of 1 and to 1.8691 when the step size is

0.1. The error rate is calculated as 1.31% approximately for the step size 1 and 1.11% for

0.1 from the Equation (3.4).

40



Table 4.6. Newton-Raphson iteration for hexane with ∆ = 1 and ∆ = 0.1

Iteration εr (∆ = 1) h (∆ = 1) εr (∆ = 0.1) h (∆ = 0.1)

0 1 0.8423 1 0.5827
1 1.8423 0.0355 1.5827 0.2445
2 1.8778 -0.0137 1.8272 0.0312
3 1.864 0.0031 1.8584 0.008
4 1.8671 0.0175 1.8664 0.0152
5 1.8846 -0.0537 1.8816 -0.0626
6 1.831 0.051 1.819 0.0832
7 1.882 -0.0655 1.9022 -0.119
8 1.8165 0.1186 1.7832 0.0663
9 1.9351 -0.0446 1.8495 0.0363

10 1.8905 -0.0802 1.8858 -0.0437
11 1.8103 0.1402 1.8421 0.0256
12 1.9505 -0.0613 1.8677 -0.0018
13 1.8892 -0.0081 1.8659 0.0032
14 1.8811 -0.0478 1.8691 -0.000578
15 1.8333 0.0191
16 1.8524 0.0158
17 1.8682 0.0207
18 1.8889 -0.0028
19 1.8861 -0.007
20 1.8791 -0.0138
21 1.8653 0.000605

Figure 4.13. Reconstructed dielectric constants and update parameters for hexane
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Processing the Newton-Raphson approach, a significant decrease in the error rate

is detected. As in the previous simulation test, when the ∆ value is high, the desired value

is reached faster. Although the number of iterations for the step size 1 is over than of the

step size 0.1, the result closer to the desired value is achieved in the first iteration.

Same iterations are repeated for water-added ethanol (see Figure 4.14 and Table

4.7) and drinking water (see Figure 4.16 and Table 4.9) with the same initial point and

the same step sizes. In addition, for ethanol samples produced at different water levels,

iteration was applied while the step size was 1 as can be examined from Figure 4.15

and Table 4.8. The stopping criterion is determined as 10−3, and if the update parameter

become less than 10−3 the iteration is completed.

Table 4.7. Newton-Raphson iteration for ethanol 96% with ∆ = 1 and ∆ = 0.1

Iteration εr (∆ = 1) h (∆ = 1) εr (∆ = 0.1) h (∆ = 0.1)

0 1 14.329 1 6.8515
1 15.329 1.398 7.8515 8.7562
2 16.727 -0.1607 16.6077 0.1559
3 16.5663 0.0206 16.7636 -0.1531
4 16.5869 -0.068 16.6105 -0.0537
5 16.5189 -0.0047 16.5568 0.1174
6 16.5142 -0.0824 16.6742 -0.2608
7 16.4318 0.1278 16.4134 0.2381
8 16.5596 -0.1175 16.6515 -0.2062
9 16.4421 0.0357 16.4453 0.167

10 16.4778 0.0442 16.6123 -0.0665
11 16.522 -0.0332 16.5458 -0.0194
12 16.4888 -0.00091 16.5264 0.0069
13 16.5333 -0.0568
14 16.4765 0.0831
15 16.5596 0.0554
16 16.615 -0.0067
17 16.6083 0.0156
18 16.6239 -0.1155
19 16.5084 0.0663
20 16.5747 -0.0122
21 16.5625 -0.000106

In ethanol 96% measurements, if the step size is 1 the reconstructed value reaches

about 16.49, and it is 16.56 while the step size is 0.1. The dielectric constant of ethanol

96% is calculated as 16.64 by considering the amount of water it contains. It can be

deduced that the error rate decreases from 17.5% to less than 1% compared to the material
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perturbation result. The change of the reconstructed dielectric constant and the update

parameter can also be considered from Figure 4.14.

Figure 4.14. Reconstructed dielectric constants and update parameters for ethanol 96%

By adding different levels of distilled water into the ethanol, 2 samples between

dielectric constants of ethanol and drinking water were obtained. In addition to the ma-

terial perturbation method, dielectric constants of these samples were obtained with the

Newton-type approach. The results were reached as expected, and although the dielectric

constant increased, the Newton-type technique was observed to provide correct results.

Figure 4.15. Reconstructed dielectric constants and update parameters for ethanol 64%
and ethanol 48%
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The reconstructed dielectric constants for ethanol 64% and ethanol 48% can be

examined from Figure 4.15 and Table 4.8. For ethanol 64%, the calculated real dielectric

constant is 37.76 and the reconstructed dielectric constant was obtained as 37.3. The error

rate is approximately 1.22%. For ethanol 48%, the reconstructed dielectric constant was

obtained as 47.8 and the error rate is calculated as 1.08% according to the exact dielectric

constant value 48.32.

Table 4.8. Newton-Raphson iteration for ethanol 64% and 48% with ∆ = 1

Iteration εr,64% (∆ = 1) h64% (∆ = 1) εr,48% (∆ = 1) h48% (∆ = 1)

0 1 37.4574 1 44.7735
1 38.4574 -0.9377 45.7735 1.7912
2 37.5197 -0.2179 47.5647 0.1896
3 37.3018 0.0189 47.7543 0.0151
4 37.3207 -0.0181 47.7694 0.0059
5 37.3026 -0.0399 47.7753 -0.0088
6 37.2627 0.0446 47.7665 0.008
7 37.3073 -0.0097 47.7745 0.0024
8 37.2976 -0.0018 47.7769 0.0041
9 37.2958 0.0069 47.781 0.0165

10 37.3027 -0.0089 47.7975 -0.000703
11 37.2938 0.0078
12 37.3016 -0.00054

Figure 4.16. Reconstructed dielectric constants and update parameters for water

The Newton method is considered to be beneficial especially in samples with high

dielectric constant. The dielectric constant of drinking water in the literature is denoted
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as 71.7 at room temperature. In the material perturbation technique, the reconstructed

value is detected ∼52 and the error rate is calculated 27.18%. The error rate of ∼1% is

observed relating to the dielectric constant approximated to 71 with the Newton-Raphson

approach.

Table 4.9. Newton-Raphson iteration for water with ∆ = 1 and ∆ = 0.1

Iteration εr (∆ = 1) h (∆ = 1) εr (∆ = 0.1) h (∆ = 0.1)

0 1 41.9324 1 20.034
1 42.9324 35.4561 21.034 47.7871
2 78.3885 -6.2933 68.8211 1.9732
3 72.0952 -1.0061 70.7943 0.2829
4 71.0891 -0.0513 71.0772 -0.4331
5 71.0378 0.0339 70.6441 0.1517
6 71.0717 -0.0224 70.7958 0.1603
7 71.0493 0.0282 70.9561 0.2045
8 71.0775 0.0062 71.1606 -0.1275
9 71.0837 -0.0298 71.0331 0.0245

10 71.0539 -0.0267 71.0576 0.3182
11 71.0272 -0.00031 71.3758 -0.2344
12 71.1414 -0.318
13 70.8234 0.3553
14 71.1787 -0.1632
15 71.0155 0.0921
16 71.1076 -0.3044
17 70.8032 0.2422
18 71.0454 -0.1146
19 70.9308 -0.000988

Determination of the dielectric constant of drinking water was examined again by

choosing the initial point to 50 (see Figure 4.17 and Table 4.10). In the CST program, a

sample with a dielectric constant of 50 was defined and iteration was started with simu-

lation data. Similar results were obtained in iterations with the Newton-type approach in

the case of the initial point was air. The dielectric constant of water was found to be 71

approximately, similar to the previous case.

The most dominant error reason for the dielectric constant determination with

power measurement is the sensitivity of the spectrum analyzer. Displaying power values

in 0.17 unit intervals obstructs to assign some values correctly. In addition, there are

conditions that cannot be made exactly the same during measurements, such as fixing the

glass tube with silicone and the cover of the cavity.
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Figure 4.17. Reconstructed dielectric constants and update parameters for water while
the initial point ε1 = 50

Table 4.10. Newton-Raphson iteration for water while the initial point ε1 = 50

Iteration εr (∆ = 1) h (∆ = 1) εr (∆ = 0.1) h (∆ = 0.1)

0 50 24.2925 50 7.1308
1 74.2925 -2.9293 57.1308 13.5983
2 71.3632 -0.2945 70.7291 0.1794
3 71.0687 -0.0172 70.9085 0.1686
4 71.0515 0.0092 71.0771 -0.004
5 71.0607 0.0076 71.0731 0.0242
6 71.0683 -0.0172 71.0973 -0.0472
7 71.0511 0.0178 71.0501 -0.0134
8 71.0689 -0.0024 71.0367 -0.0533
9 71.0665 -0.0384 70.9834 0.0382

10 71.0281 -0.000312 71.0216 0.0167
11 71.0383 0.0043
12 71.0426 0.0125
13 71.0551 0.0042
14 71.0593 -0.0144
15 71.0449 -0.00024
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CHAPTER 5

CONCLUSION

In this thesis, an iterative approach was proposed to improve sensitivity in dielec-

tric measurements. The applicability of this proposed method was tested with experi-

mental data obtained from microwave cavity measurements. The technique was com-

pared with the conventional method in terms of error rate and the typical convergence

behaviours of Newton-type methods was illustrated. The accuracy of the results of the

cylindrical and rectangular cavities, which can be utilised with the material perturbation

method that is commonly used in dielectric measurements, were evaluated depending on

the frequency and dielectric constant. The advantages and disadvantages of the methods

were revealed by taking measurements of particular samples both with the conventional

technique and with the iterative approach.

Before using the material perturbation method, the results of the cavities were

compared. First of all, rectangular and cylindrical cavities with the same volumes at 3

GHz frequency were designed in CST-MWS program. It was observed that as the dielec-

tric constant raised, there was an increment in the error rate for both cavities proportion-

ally, so the perturbation approach is not a convenient technique for the large dielectric

constants. The cylindrical cavity yielded more accurate results than the rectangular cavity

at high dielectric constant values. When the comparison was considered as the frequency

increments throughout the S-band, it was noticed that the rectangular cavity gives more

stable results with the increase in frequency. Concluded that in cases where the ratio of

cavity volume to the sample volume is low, it is recommended to choose a rectangular cav-

ity for dielectric measurements using perturbation method to obtain more accurate results.

Accordingly, dielectric measurements with the material perturbation theory were carried

out with 3 different samples as hexane, ethanol and drinking water using a metallic rect-

angular cavity. Samples of three different water concentration levels were produced for

ethanol. The materials were filled in the glass tube and placed in the centre of the cavity.

The cavity was excited with a loop antenna and S11 parameters were measured with VNA.

The necessary reference frequency was chosen from the frequency of the empty cavity.

Although the dielectric constant of hexane in the literature is 1.89, it was detected as 1.71.

Since there was 4% water in ethanol, the dielectric constant was calculated as 16.64, and

13.73 was achieved by the perturbation method. The calculated exact dielectric constant
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values were 37.76 for ethanol 64% and 48.32 for ethanol 64%. The reconstructed dielec-

tric constants were achieved as 30.003 and 37.92 respectively. The dielectric constant

of drinking water at room temperature is 71.7, but it was obtained as 52.21. Error rates

were calculated as 9.52%, 17.49%, 20.54%, 21.52% and 27.18%, respectively. In this

way, the increment in the error rate was verified experimentally as the dielectric constant

increased.

An alternative approach was necessary to treat the high error rate in the traditional

material perturbation method. For this reason, the Newton-Raphson based dielectric mea-

surement technique was proposed. The effect of three variables as the initial guess, step

size and the desired value to be reached was examined with simulations. Simulations

were performed for the direct problem whose aim is to obtain the electric field magni-

tudes of the unknown dielectric parameter. Field values were taken from the curve drawn

around the material placed in the middle of the cavity at a particular distance. For finding

the unknown dielectric constant which corresponds to the aim of our inverse problem,

the Newton-Raphson iterations were used. We started iterations with an initially guessed

dielectric constant value and updated at each step. The updated values were found from

the solution of an overdetermined system which relates the electric field values to the di-

electric constant. Iterations were made for different step size values. While the big step

size value provided to reach the final value quickly, the small step size increased the sen-

sitivity. Furthermore, the reconstructions of different dielectric constants by considering

various initial guesses were analyzed. Convergence to the desired value was achieved in

all simulations carried out with our approach, and the error rate was always below 1%.

Iterations were stopped when the update parameter approached to 10−3. In this method,

the sensitivity can be increased by reducing the stopping criterion.

Power measurements were carried out with a spectrum analyzer to obtain the elec-

tric field strengths inside the cavity. The same cavity and the same samples in the material

perturbation method were employed. Firstly, the empty cavity was measured and the sys-

tem was calibrated with the simulation results received in CST-MWS. The normalization

constants obtained by the calibration were utilised to ensure compatibility between power

measurements from the spectrum analyzer and simulations. Measurements were individ-

ually taken from six ports placed on the cover of the cavity for three different samples.

For finding the dielectric constants using the iterative algorithm, the step size was deter-

mined two different values as 1 and 0.1, and the stopping criterion was defined as 10−3.

The initial guess was considered as 1 which corresponds to the relative dielectric constant

of air. Afterwards, we could start iterations by using the measured electric field values for
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the first iteration. For the next iterations, we solved the direct problem whose aim is to

find electric field values inside the cavity, for the updated dielectric constant with the help

of CST simulation which models the measurement setup. For hexane, dielectric constant

values approached to 1.87. The final value for ethanol 96% converged to about 16.5. For

ethanol 64% and ethanol 48%, the reconstructed dielectric constant values were reached

37.3 and 47.8. The dielectric constant of water was obtained at about 71. While the step

size was 1, error rates were 1.31%, 0.91%, 1.22%, 1.08% and 0.98%, respectively. When

the step size was 0.1, the error rates were calculated as 1.11%, 0.47% and 1.07%, respec-

tively. When all results were evaluated, the Newton-Raphson approach gave more precise

results. For ethanol samples produced with different water concentrations, the reason for

the higher error rate is volumetric errors. The spectrum analyzer used had a sensitivity of

0.17 dB. More accurate results could be achieved with more sensitive measuring devices.

Although the proposed procedure gives more accurate results, it needs a solution

to the directive problem at each iteration step. Depending on the computational sources

the solution of the direct problem with a full Maxwell solver might be time-consuming.

Furthermore, the direct problems should be computed sufficiently accurate otherwise the

results might not converge to the searched exact dielectric constant value. On the other

hand, our approach cancels out fundamental limitations of classical perturbation method,

i.e. with the iterative method it is possible to find large dielectric constant, one does not

need to excite a certain mode inside the cavity. The proposed approach has more precise

results and the error rate for high dielectric constants is quite low. In addition, while the

sample volumes should be small in the perturbation technique, there is no dependence

on the material volume in this method. The dielectric constant is a frequency-dependent

variable. When measuring a sample whose dielectric constant is unexplored by using

the material perturbation approach, how much shifting frequency will occur cannot be

predicted. However, in the proposed process, all measurements are taken at a certain

frequency. Thus, frequency dependence was also eliminated. The cavity does not need

to be excited by any mode therefore the coupling conditions of the excitation are more

relaxed. This is the only point to be considered in frequency selection.

The advantages of the proposed technique consequently dominate its disadvan-

tages in a major way. In this thesis, the iterative Newton-Raphson based approach is com-

pared with traditional methods, and its applicability with simulations and measurements

is presented.
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