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Abstract
We investigate the interaction between Rydberg atoms, whose electronic states
are dressed by multiple microwave fields. Numerical calculations are used for an
exact description of the microwave induced interactions, and employed to
benchmark a perturbative treatment that yields simple insights into the involved
mechanisms. Based on this theory, we demonstrate that microwave dressing
provides a powerful approach to control dipolar as well as van der Waals
interactions and even permits us to turn them off entirely. In addition, the
proposed scheme also opens up possibilities for engineering dominant three-
body interactions.

Keywords: Rydberg states, microwave dressing, van der Waals interaction,
dipole-dipole interaction, three-body interaction

1. Introduction

In recent years the physics of cold Rydberg atoms has attracted widespread interest due to its
diverse applications, ranging from quantum information science [1–4] and quantum simulations
of magnetism [5, 6] over precision measurements [7] to nonlinear quantum optics [8, 9]. Much
of these prospects stem from the exaggerated properties of Rydberg states and, in particular,
their strong mutual interactions. Due to the strong ∼C n6

11 scaling of the van der Waals
coefficient, C6, with the atomʼs principal quantum number, n, Rydberg–Rydberg atom
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interactions can exceed those of ground state atoms by many orders of magnitude [10–14].
Even at comparatively large distances of several μm the resulting interactions can exceed all
remaining energy scales in the system, and, e.g., lead to a strong excitation blockade that
inhibits simultaneous excitation of Rydberg atoms within a characteristic blockade radius Rbl.
In addition, the strong n-dependence provides a convenient way to tune the interactions and
study the transition between the weak and strong interaction regime via moderate changes of the
principal quantum number.

On the other hand, the ability to directly tune interactions in a state-selective manner
would open up new possibilities for controlling the properties and time evolution of strongly
correlated Rydberg systems and thereby add a valuable degree of flexibility to the
aforementioned applications. Here one can make use of the high susceptibility of Rydberg
states to electric and magnetic fields [15], which permits us to manipulate their interactions by
applying moderate external fields. Experiments have explored the effects of static magnetic
and electric [14, 16–19] fields, where the latter can be used to induce static dipole moments
or dipole-coupled pair resonances, both resulting in direct dipole–dipole interactions. Time-
varying, i.e. microwave fields, offer a more refined method of control, since they permit one
to couple different Rydberg levels in a state selective manner. This has been exploited in
theoretical studies of polar molecules [20–22], showing how the combination of a static
electric and a microwave field can be used to shape molecular interactions. For cold Rydberg
atoms resonant coupling to a single microwave field has been investigated theoretically [23]
and experimentally [24–28], demonstrating an enhanced excitation blockade due to field-
induced dipole–dipole interactions. Recent work demonstrates that microwave control of
Rydberg states provides a powerful tool, e.g., for manipulating the atomic sensitivity to
external fields [29], implementing quantum gates [28] or to probe and control Rydberg state
dynamics in atomic beam experiments [30].

In this article, we study far off resonant Rydberg state coupling by a combination of
several microwave fields, which is shown to permit versatile control of dipolar as well as
van der Waals potentials and to realize conditions with dominating three-body interactions.
Numerical calculations for two interacting atoms combined with a perturbative treatment of
many-body systems provide an exact description as well as an intuitive understanding of
the field induced interactions. We discuss several types of realizable interactions and
provide simple analytical formulae for the corresponding microwave parameters, including
conditions for which the long-distance tail of the interactions can be turned off entirely.

The paper is organized as follows. First (section 2), we describe the considered
system consisting of an ensemble of Rydberg atoms and introduce the different interaction
terms arising from microwave driving and dipole–dipole coupling of different Rydberg states.
In section 3 we describe our numerical procedure for calculating the dressing-induced
interaction between two atoms. Finally we present a perturbative many-body treatment of the
resulting interaction, which is compared to the exact calculations and used to identify the
required microwave parameters for obtaining different types of interactions in section 4.

2. Microwave dressing of Rydberg states

We consider an ensemble of cold atoms at positions Ri, = …i N1, , . We focus on ns-
Rydberg states ( 〉r| ) of alkaline atoms, which can be excited from the atomic ground state
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( 〉g| ) by two-photon coupling via an intermediate p-state ( 〉e| ) with Rabi frequencies Ωp and
Ωc (see figure 1(a)). For alkaline atoms the van der Waals interaction between two nS1 2

-Rydberg states is repulsive and predominantly originates from off-resonant dipole–dipole
coupling to ( −np n p, ( 1) ) pair states [31, 32]. Four different microwave fields couple the
atomic ns state to these two p-states. As shown in figure 1(b), we consider two pairs with
linear and circular polarization fields, which have a frequency of ω and ω′, but different
amplitudes πF , ′πF and σF , ′σF , respectively. The two microwave frequencies for each pair of
fields are chosen near-resonant with the transition between the 〉ns| -Rydberg state and
the two adjacent 〉p| -states. In particular, ω is assumed to be close to the 〉 → 〉ns np| |
transition energy, while ω′ is assumed to be close to the 〉 → − 〉ns n p| | ( 1) transition
energy, such that we can define two detunings Δ and Δ′ for the upper and lower
transitions, respectively. With the radial matrix elements μ and μ′ of the ↔ns np and

↔ −ns n p( 1) transitions, the field amplitudes define the corresponding the Rabi
frequencies Ω μ=π πF 2, Ω μ′ = ′ ′π πF 2, Ω μ=σ σF 2 and Ω μ′ = ′ ′σ σF 2, as indicated in
figure 1(b). In what follows, we will assume the detunings to be larger than the respective
Rabi frequencies, i.e. that the atoms are weakly dressed instead of driven resonantly by the
microwave fields.

The total Hamiltonian of the system can be split into three parts

= + +H H H Hˆ ˆ ˆ ˆ . (1)A AF AA

The first term denotes the sum of single-atom Hamiltonians, and yields the unperturbed energy
spectrum for each of the N atoms. Following the preceding discussion the atom–microwave
coupling is given by

Figure 1. (a) Two-photon excitation scheme for a three-level system. States are
resonantly coupled by Rabi frequencies Ωp and Ωc where γ stands for spontaneous
decay from the intermediate state. (b) Microwave dressing of Rydberg states. Two
linearly polarized and two circularly polarized fields couple the 〉ns| state to the

〉 = 〉p npm| |m and ′ 〉 = − 〉p n pm| | ( 1)m states with Rabi frequencies Ω Ωσ,p and Ω Ω′ ′σ,p ;
detunings Δ and Δ′, respectively.
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where the field amplitudes and frequencies have been defined above. Finally, the dipole–dipole
interaction between the Rydberg atoms is given by

∑= −
<

( )( )
H

R R

r r r R r R
ˆ 3 , (3)

i j

i j

ij

i ij j ij

ij
AA 3 5

where = −R R Rij j i denotes the distance vector between two Rydberg atoms at positions Ri

and R j.
For a description of ns–ns interactions we may approximately neglect spin–orbit coupling,

e.g. the fine structure of the Rydberg states [33, 34], such that each atomic state is characterized
by the three quantum numbers, n, l and m. Denoting the relevant Rydberg states by

〉 ≡ =s n l| | , 0, = 〉 〉 ≡ = = ± 〉±m p n l m0 , | | , 1, 0, 10, and ′ 〉 ≡ −±p n| | 1,0,

= = ± 〉l m1, 0, 1 , we can write the isolated-atom Hamiltonian in our reduced basis as

∑ ∑σ σ σ σ σ σ= + + + + +′ ′ ′ ′ ′ ′ ′− − + + − − + +( )( )H E Eˆ ˆ ˆ ˆ ˆ ˆ ˆ , (4)p

i
p p
i

p p
i

p p
i

p

i
p p
i

p p
i

p p
i

A
( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

where σ α α= 〉〈ααˆ | |i i i( ) ( ) ( ) denote single-atom projection operators of the ith atom onto a given
state α〉 = 〉l m n| | , , . The energies Ep and ′Ep are the energies of the np-states and −n p( 1)
states relative to the ns-Rydberg state, respectively, and define the microwave detunings
Δ ω= − E| |p and Δ ω′ = ′ − ′E| |p .

3. Numerical description

In addition to an analytical perturbative treatment of the microwave-induced interactions, we also
performed numerical calculations that account for all possible Rydberg state couplings due to
microwave driving and dipole interactions. To this end, we use a Floquet representation [35] of
the Hamiltonian, which allows us to eliminate the time-dependence in (2) and yields a time-
independent Floquet matrix eigenvalue problem. For two atoms the corresponding Hilbert space
is spanned by the basis states α α ν νπ σ| , , ,(1) (2) , ν ν′ ′ 〉π σ, where α i( ) refers to the atomic states of
each of the two atoms and the quantum numbers νπ , ν′π , νσ and ν′σ correspond to the number of
microwave photons with the respective polarization and frequency. Since the chosen Rabi
frequencies are considerably smaller than the respective transition energies it suffices to consider
three adjacent photon numbers ν = −1, 0, 1 for each microwave mode, which makes for a total
of 3969 pair states. Upon diagonalizing the resulting 3969 × 3969 Floquet matrix, we obtain the
microwave-dressed interaction potentials and corresponding molecular eigenstates, among which
we are interested in the ( −ns ns)-asymptote, i.e. the molecular potential curves that
asymptotically converges to 〉s s| , , 0, 0, 0, 0 upon decreasing the microwave amplitudes.

4. Perturbative approach

In order to develop an analytical description we first transform into a frame of reference that
rotates with the applied fields at the frequencies ω and ω′, by transforming the N-atom
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The transformed Hamiltonian contains time dependent terms that vary proportional to ωe t2i ,
ω′e t2i and ω ω± − ′e ti( ) . If the difference between ω and ω′ is sufficiently large we can neglect all of

these fast oscillating terms to obtain a time-independent Hamiltonian within the rotating wave
approximation. The single atom contribution is of the familiar form

∑ ∑Δ σ σ σ Δ σ σ σ= − + + + ′ + +′ ′ ′ ′ ′ ′− − + + − − + +( )( )Ĥ ˆ ˆ ˆ ˆ ˆ ˆ , (6)A
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and the atom field coupling is given by

∑ ∑
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The resulting expression for the Rydberg–Rydberg atom interaction Hamiltonian (3) is given in
appendix A.

In the limit where both the Rabi frequencies as well as the dipole–dipole couplings are
smaller than the microwave detunings we can apply perturbation theory to calculate the long-
range part of the dressing-induced interactions. The first order contribution vanishes. In the
laboratory frame, the second order energy correction yields the standard van der Waals
interaction [36, 37]

∑=
<

E
C

R
, (8)

i j ij
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(2) 6

6

with μ μ= − +′
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just yields the combined light shift of the applied microwave fields. Atomic interactions arise
from the microwave dressing in third order
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and fourth order
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3

perturbation theory. The last term in (11) corresponds to microwave-induced three-body
interactions (see appendix B), that cannot be written in terms of binary potentials. The
interactions of the third order contribution have dipolar character, which arises from a single
excitation exchange between (s p, )-pairs that are virtually populated by the off-resonant
microwave fields (see figure 2(a)). As illustrated in figure 2(b) the next order binary terms
correspond to two consecutive exchange processes between an atom pair and therefore results
in a van der Waals type interaction ∼ Rij

6 (see 11). In a similar fashion, the three-body terms also
involve two pair-exchange processes but between three atoms, as illustrated in figure 2(c).
Specific choices of the microwave parameters significantly simplify the derived expressions
(10) and (11), and allow us to realize qualitatively different types of interactions, which will be
discussed in the following.

Figure 2. Schematic explanation of various exchange mechanisms between the pairs,
which is controlled by microwave fields, result in different types of interactions. A
single excitation exchange between the pairs gives rise to (a) dipolar interactions which
are manifested in the third-order perturbation theory. Similarly, two exchange processes
yield (b) van der Waals and (c) three-body interactions in the fourth order contribution
between two and three atoms, respectively.
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4.1. Dipole–dipole interaction

We start by considering only the two linearly polarized fields, i.e. Ω Ω= ′ =σ σ 0. In this most
simple case, the interactions (10) and (11) greatly simplify and depend on the molecular
orientation only through the Z-component of the inter-particle distance. If we further require for
the microwave parameters

Ω μ Δ Ω
μ Δ

Δ μ Δ
μ

′ =
′

′
′ =

′
, , (12)

2

2

the fourth order contribution vanishes, =E 0(4) , and the third order term yields pure
dipole–dipole interactions

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ Ω

Δ
μ= −

<

E
R

Z

R

4
1 3 . (13)

i j ij

ij

ij

(3)
2

2

4

3

2

2

The only remaining free parameter that controls the strength of the microwave induced
interactions is the ratio of the Rabi frequency and the detuning, Ω Δ.

To obtain the total atomic interaction we add both contributions in the laboratory frame (8)
and rotating frame of reference (13). Figure 3 shows the resulting interaction potential between
two rubidium atoms in s55 Rydberg states, microwave dressed according to (12) for
Ω Δ =| | 0.08 and Δ = −150 MHz. A comparison to the numerical result demonstrates that this
procedure indeed yields a proper description of the total interactions. Here we assumed that the
internuclear axis is aligned with the polarization axis of the microwave, such that (13) is
attractive. A crossover between van der Waals interactions and dipole–dipole interactions due to
the microwave appears at a critical distance Δ μ Ω∼ C( (8 ))6

2 4 2 1 3. Hence, the combination of the
attractive dipole–dipole interaction with the repulsive van der Waals term gives rise to a

Figure 3. Perturbative potential (dashed red line) compared to exact Floquet
calculations (blue line) where the assumptions in (12) are made for n = 55 and
Ω Δ =| | 0.08 and Δ = −150 MHz. The dotted black line shows the bare vdW
interaction.
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pronounced potential well around this distance, whose depth and position can be widely tuned
by the microwave parameters. Since the total potential turns isotropically repulsive for
perpendicular orientation of the internuclear axis this type of potential can be used to create
long-range bound molecules [38, 40] which can be aligned with the polarization direction and
whose properties can be well controlled by the external microwave fields and tuned
dynamically. Similar interaction potentials have also been considered for microwave-dressed
polar molecules [21, 39] and were shown to enable superfluid p-wave pairing in ultracold
fermionic ensembles [39].

4.2. van der Waals interaction

Another important case can be realized by applying both linearly and circularly polarized fields.
In order to simplify the discussion we will set the Rabi frequencies to

Ω Ω Ω
Ω Ω Ω

= =
′ = ′ = ′
σ π

σ π . (14)

If one further requires a slightly different relation between the parameters for the driving fields
of the upper and lower transition

Ω μ Δ Ω
μ Δ

Δ μ Δ
μ

′ =
′

′
′ = −

′
, , (15)

2

2

one can cancel the third order contribution =E 0(3) , i.e. realize vanishing dipole–dipole
interactions in the presence of microwave driving. However, (11) remains finite and yields
isotropic van der Waals type interactions. Hence the total interaction in the rotating and
laboratory frame can be expressed in terms of an effective van der Waals interaction

∑=
′

<

E
C

R
, (16)

i j ij

6
6

with a van der Waals coefficient

κ μ
Δ

′ = +C C 24 , (17)6 6

4

that can be tuned by the external fields. Again the dressing-induced contribution is suppressed
by the ratio κ Ω Δ= 2 2, which corresponds to the small fraction of admixed p-states. However,
the microwave detuning, Δ, which enters in the denominator of (17), can be made much smaller
than the energy mismatch between the different pair states in the laboratory frame. The latter
determines the strength of the bare van der Waals interaction, such that the magnitude of the
microwave-induced van der Waals coefficient can be on the same order as the bare coefficient.
However, the additional potential can be made attractive or repulsive depending on the sign of
the microwave detuning. In particular, one can thus use the microwave fields to cancel the
binary van der Waals interactions entirely by setting

Δ κμ= − C24 . (18)4
6

Figure 4 shows the resulting interaction potentials for microwave dressed Rb( s55 ) atoms with
Ω Δ =| | 0.15, 0.2 and Δ = −150 MHz. A comparison to the numerical results and the bare van
der Waals interaction demonstrates that the long-range tail of the latter can indeed be
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suppressed to vanishingly small values. However, below a critical distance the dipole–dipole
coupling between the Rydberg states exceeds the microwave detuning, causing a breakdown of
the perturbation theory. As a result, the interaction starts to increase again for distances within
this critical radius (see figure 4(b)).

Figure 4. Perturbative potential (dashed red line) compared to the bare vdW interaction
(dotted black line) and the nonperturbative Floquet calculations (blue line). We have
chosen n = 55 and Ω Δ =| | 0.15 (a), 0.2 (b) for Δ = −150 MHz, while the remaining
parameters are chosen according to (15) to cancel the long-range interaction.

Figure 5. Interaction energies relative to bare vdW interaction =V C R6
6 at different

interatomic distances and for different ratios of Ω Δ =| | 0.1 (a), 0.15 (b), 0.2 (c) and for
n = 55. The solid line shows the perturbative result.
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To further analyse the possibility of cancelling interactions, we show in figure 5 the Δ-
dependence of the numerically obtained interaction energies for different interatomic distances
relative to the bare interaction energy (8). With a decreasing ratio Ω Δ the data points tend to
collapse onto a single curve that approaches the analytical prediction (16) and (17) for large
distances. Despite showing significant deviations from the perturbative results, comparatively
large ratios still yield detunings for which the interactions are strongly suppressed down to
comparably small distances of a few micrometers. For given microwave intensities one can
hence find an optimal detuning for which interactions are strongly suppressed over a broad
range of distances. One such case is shown in figure 6, corresponding to Ω Δ =| | 0.2 and
Δ = −170 MHz.

The found modification of the interaction potential can have significant consequences for
the Rydberg blockade effect. For example, for Rydberg excitation with a typical Rabi frequency
∼200 kHz and the interaction curves of figure 6, microwave dressing decreases the
corresponding blockade radius by about a factor of two. This implies a significant change of
the excitation dynamics, which for the bare van der Waals interaction would require a ∼4000-
fold increase of the intensity of the laser that drives the Rydberg transition. Such a reduction of
the blockade radius implies an eightfold decrease of the fraction of blockaded atoms, a quantity
which has been thoroughly studied in a number of previous measurements and thereby provides
a sensitive and well established experimental approach to study the effects of the microwave
dressing and to identify optimal field parameters for maximum interaction control.

4.3. Three-body interactions

Three-body interactions that appear in the fourth order energy correction (see (11)) become
significant under conditions where binary interactions are minimized. The general expression
for U3b is rather lengthy and given in appendix B. However, if we choose the parameters such

Figure 6. Perturbative potential (dashed red line) compared to the bare vdW interaction
(dotted black line) and the nonperturbative Floquet calculations (blue line) for
optimized detuning Δ = −170 MHz, Ω Δ =| | 0.2 and for n = 55.
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that the long-range tail of the binary interactions vanishes (conditions (14), (15) and (18)) the
potential takes on a particularly simple form
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·
. (19)i j k

i j k ij jk

ij jk
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2

3
4

3 3

2

2 2

In figure 7, we show the interaction potential scaled by the bare van der Waals potential
C r6 12

6 for three particles at positions ri ( =i 1, 2, 3), fixing r1 and r2 and varying the position r3

of the third atom. The interaction potential exhibits a dipolar pattern, independent of the
orientation of the three particle compound. Such genuine three-body interactions have attracted
great theoretical interest, as they give rise to a wealth of exotic phenomena in condensed matter
systems [41, 42]. While systems with dominating multi-body interactions are typically scarce in
nature, lattices of ultracold polar molecules have been proposed for realizing such conditions
[20]. Recent experiments have demonstrated the implementation of elementary spin models via
Rydberg excitation of atomic lattices [43], such that the combination with the present
microwave control scheme may offer a viable approach to artificial quantum magnets with
dominating three-body interactions.

5. Conclusion

In summary, we have shown that off resonant dressing of Rydberg states by multiple
microwave fields provides a versatile approach to control Rydberg–Rydberg atom interactions.
In addition to inducing familiar dipole–dipole interactions, the presented scheme enables us to
induce isotropic interactions and effective van der Waals potentials, allowing us to turn off the
long-range tail of the field-free interactions entirely, and for proper parameters realizes

Figure 7. Three-body interaction scaled with C r6 12
6 for a three-body compound. The

positions of two particles are fixed and are shown by red circles at r1 and r2 in the figure.
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conditions with dominating three-body interactions. For simplicity, we have neglected the fine
structure splitting of the Rydberg states, which is well justified for describing the van der Waals
interaction between (ns ns, ) pairs [36, 37]. Including fine structure for the microwave dressing
one obtains identical microwave-induced potentials, upon adding two dressing fields with
circular polarisation opposite to that of the σ- and σ′-fields (see figure 1) in order to assure
symmetric dressing for the = ±m 1 2J states of the nS1 2 Rydberg manifold.

Such control capabilities may find direct applications in ongoing experiments towards
quantum simulations of magnetism using ultracold Rydberg ensembles. For example, the
demonstrated reduction of the Rydberg blockade radius suggests a promising approach to
significantly increase the number of excitable atoms to high lying, and thus long lived states in
finite atomic lattices, as studied in recent experiments. The ability to tune the long-distance
behaviour of atomic interactions may also be important for experimental studies of
nonequilibrium phase transitions in driven, dissipative Rydberg gases and lattices [44] for
which the power-law tail of the van der Waals potential where recently shown to play an
important role [45].

Precise measurements of van der Waals Rydberg–Rydberg atom interactions have been
recently demonstrated in experiments with two or three atoms confined in separate dipole traps
at well controllable distances [46]. Such settings appear to be ideally suited to explore the
effects of microwave dressing, optimize the control parameters and study the emergence of
exotic genuine multi-body interactions due to microwave dressing.

Another important application of Rydberg-state interactions is the realization of large
optical nonlinearities in cold atomic gases under electromagnetically induced transparency
(EIT) conditions, which has been explored in recent theoretical and experimental studies
[27, 28, 47–51]. It is proposed that interactions between atoms in the Rydberg states diminish
the EIT effect and thereby lead to highly nonlinear absorption and refraction, corresponding to
dissipative and unitary effective photon interactions[47, 48, 52–54]. Microwave control of the
atomic interactions can therefore be employed to control photonic interactions in such Rydberg-
EIT media as shown in a recent experiment [55].
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Appendix A. Rydberg–Rydberg atom interaction in rotating frame

The Rydberg–Rydberg atom interaction Hamiltonian in the rotating frame of reference can be
conveniently written as a sum of two terms

∑= +
<

H A Bˆ ˆ ˆ (A.1)
i j

ij ijAA

where = +A A Aˆ ˆ ˆ
ij x x y yi j i j

+ + ′A Aˆ ˆ
z z x xi j i j

+ ′ + ′A Aˆ ˆ
y y z zi j i j

, = +B B Bˆ ˆ ˆij x y x zi j i j
+ + ′ + ′B B Bˆ ˆ ˆy z x y x zi j i j i j

+ ′B̂y zi j
and
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The operators ′Â and ′B̂ are obtained by replacing μ μ→ ′ and → ′± ±p p0, 0, .

Appendix B. Three-Body interaction terms

Similarly we write the three-body interaction in (11) as U R R R( , , )i j k3b = + +E E Eijk kij jki,
where

= − ′E G G , (B.1)ijk ijk ijk

and
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2
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The contribution from the lower transition ′Gijk is obtained by replacing μ μ→ ′, Ω Ω→ ′π π and
Ω Ω→ ′σ σ. Ekij and Ejki are written in the same form.
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