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We obtain solution representation formulae for some
linear initial boundary value problems posed on the
half space that involve mixed spatial derivative terms
via the unified transform method (UTM), also known
as the Fokas method. We first implement the method
on the second-order parabolic PDEs; in this case
one can alternatively eliminate the mixed derivatives
by a linear change of variables. Then, we employ
the method to biharmonic problems, where it is not
possible to eliminate the cross term via a linear change
of variables. A basic ingredient of the UTM is the
use of certain invariant maps. It is shown here that
these maps are well defined provided that certain
analyticity issues are appropriately addressed.

1. Introduction
The rigorous wellposedness analysis of solutions of
linear and nonlinear partial differential equations (PDEs)
in function spaces requires a suitable notion of solution.
This is especially important when a PDE is studied at
low regularity level where classical derivatives do not
exist. In other words, at low regularity level, one cannot
verify whether a given function satisfies the given PDE
in the pointwise sense. Nevertheless, there exist other
mathematically precise notions of solution which do not
require differentiability in the classical sense. These are
referred to as weak solutions. There are several well-
known ways to define such solutions. The most classical

2020 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 F

eb
ru

ar
y 

20
23

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2020.0076&domain=pdf&date_stamp=2020-07-29
mailto:tozsari@gmail.com
http://orcid.org/0000-0002-5881-802X
http://orcid.org/0000-0003-4240-5252


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200076

...........................................................

one is to consider a PDE in the distributional sense rather than pointwise sense, so that all the
derivatives can be transferred onto smooth test functions. In this way, the sought after solution,
which is a function or a generalized function, does not need to have derivatives itself in order to
satisfy the given PDE. Another approach that can be used for defining weak solutions to initial
boundary value problems (IBVPs) is to employ representation formulae. These formulae can either
be in an abstract functional analytic form, such as semigroup formulae, or can be explicit, such
as those obtained via transform methods. The explicit formulae are first obtained for smooth
solutions under the assumption that the sought after solution and the given data are smooth
and have sufficient decay properties. After an integral formula is obtained, it can then be used
as the definition of a generalized (weak) solution (indeed, the integral still makes sense under
much weaker assumptions regarding the smoothness and decay assumptions of the data). The
unified transform method [1–4] provides one of the most efficient and general ways to obtain such
integral formulae for defining solutions of IBVPs. Most importantly, the integral representations
obtained via unified transform method (UTM) have a very suitable space–time structure allowing
rigorous wellposedness analysis for linear and nonlinear initial boundary value problems; such
results are obtained, for example, in [5–8] for Schrödinger and biharmonic Schrödinger-type
equations, in [9] for Korteweg–de Vries equation, and in [10] for the ‘good’ Boussinesq equation.

The present paper implements the UTM on PDEs with mixed spatial derivatives in two
dimensions, and also shows that the analyticity issues arising from the appearance of square roots
can be resolved. Until now, the implementation of the UTM on equations involving mixed spatial
derivatives was limited to only a few papers, see [11,12]. Furthermore, the general application
of the UTM even in one dimension often involves the appearance of square roots. The related
analyticity issues must be handled with suitably chosen branch cuts. For instance in [1,13], the
authors chose branch cuts intersecting with the standard contour of integration of the UTM
which motivated them to deform this contour. In comparison with these papers, we show that
it is possible to choose a branch cut which is strictly away from the standard contour except at
branch points. This allows us to justify a solution formula given on the standard contour with no
deformation. In particular, details are presented for three canonical problems on the half space:
a second-order parabolic equation, a fourth-order heat equation and the biharmonic Schrödinger
equation, namely,

ut − uxx − 2uxy − uyy = 0, (1.1)

ut + �2u = 0 (1.2)

and iut + �2u = 0. (1.3)

If mixed derivatives are present, one may try to eliminate the cross terms via a linear change of
variables. One drawback of this approach is that for higher-order PDEs such as the fourth-order
heat equation and the biharmonic Schrödinger equation, there does not exist a linear change of
variables that allows the elimination of the cross term(s). Another drawback is that, depending
on the coefficients, the relevant change of variable may distort the simple geometry of the spatial
domain, making it more difficult to work in the new geometry. In this paper, we treat PDEs
with mixed spatial derivatives directly and present the details of the UTM for obtaining integral
representation for the three canonical problems (1.1)–(1.3).

The implementation of the UTM involves three main steps: (i) finding a global relation, which
is an identity involving the Fourier transform of the solution and of the initial data, as well as
suitable t-transforms of the unknown and known boundary values; (ii) finding maps which keep
the spectral inputs of the t-transforms of the boundary traces invariant; and (iii) performing
a subtle contour deformation. The second and the last steps require analyticity of various
integrands as well as analyticity of the associated invariance maps in some suitable regions in the
complex plane. It turns out that for some evolution equations, such as the biharmonic Schrödinger
equation, one encounters certain analyticity issues. For example, the invariance map defined
via the standard square root function is not analytic on open domains containing the standard
contour of integration constructed via the Fokas method. Furthermore, it is proven here that for
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the above equations it is not possible to find an invariance map which is analytic on the boundary
of this contour. We treat this issue by choosing a slightly rotated branch cut for the square root
function, proving that this moves the domain of non-analyticity of the invariance maps away from
the contour of integration. This issue is not present in the case of the fourth-order heat equation
because the domain of non-analyticity of the invariance maps is already away from the contour
of integration.

2. Second-order parabolic PDEs
In this section, we implement the UTM on the second-order parabolic equation on the half space,
which involves a mixed spatial derivative term:

ut − uxx − 2uxy − uyy = 0, (x, y, t) ∈ R × R+ × (0, T), (2.1)

u(x, 0, t) = g0(x, t), (x, t) ∈ R × (0, T) (2.2)

and u(x, y, 0) = u0(x, y), (x, y) ∈ R × R+. (2.3)

We begin by defining the half space Fourier transform in the variables (x, y):

û(κ , λ, t) :=
∫∞

−∞

∫∞

0
exp(−ixκ − iyλ)u(x, y, t) dydx, κ ∈ R, Im λ ≤ 0. (2.4)

In what follows, we will assume that u is sufficiently smooth in ΩT = R × R+ × (0, T) up to the
boundary of ΩT, and also that u decays sufficiently fast as |(x, y)| → ∞. We treat the spectral
variables κ and λ as real and complex, respectively. Note that the condition Im λ ≤ 0 is essential
for (2.4) to make sense. Applying the half space Fourier transform to (2.1)–(2.3) and integrating
by parts, we obtain

ût(κ , λ, t) = −(κ + λ)2û(κ , λ, t) − ĝ1
x(κ , t) − i(λ + 2κ)ĝ0

x(κ , t), (2.5)

where g1(x, t) := uy(x, 0, t) (an unknown trace) and (̂·)x
denotes the classical Fourier transform in

the x variable, i.e.

ĝj
x(κ , t) :=

∫∞

−∞
exp(−ixκ)gj(x, t) dx. (2.6)

The solution of (2.5) together with the half space Fourier transform of (2.3), namely,

û(κ , λ, 0) = û0(κ , λ), (2.7)

yield the following equation:

û(κ , λ, t) exp((κ + λ)2t) = û0(κ , λ) − g̃1(κ , (κ + λ)2, t)

− i(λ + 2κ)g̃0(κ , (κ + λ)2, t), κ ∈ R, Im λ ≤ 0, (2.8)

where g̃j, j = 0, 1, denote the t-transforms of the known and unknown boundary values:

g̃j(κ , η, t) =
∫ t

0
exp(ητ )ĝj

x(κ , τ ) dτ , j = 0, 1. (2.9)

The identity (2.8), which relates the half space Fourier transform of the solution, the half space
Fourier transform of the initial datum, and the t-transforms of known and unknown boundary
traces, is referred to as a global relation.

Remark 2.1. An alternative way to obtain equation (2.8) directly is to use the divergence
theorem. Indeed, let v be a solution of the formal adjoint equation of equation (2.1), namely let v
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be a solution of the equation

vt + vxx + 2vxy + vyy = 0. (2.10)

Multiplying equations (2.8) and (2.10) by u and v, respectively, and then adding the resulting
equations we obtain an equation that can be written in divergence form:

(uv)t + (uvx − vux + uvy − vuy)x + (uvy − vuy + uvx − vux)y = 0. (2.11)

Choosing the particular solution v = e−iκx−iλy+(κ+λ)2t and employing the divergence theorem in
(x, y, τ ) ∈ R × R+ × (0, t), we get contributions only from the planes τ = 0, x ∈ R, y ∈ R+; τ = t, x ∈
R, y ∈ R+; x ∈ R, τ ∈ [0, t], y = 0. We find(∫∞

−∞

∫∞

0
e−iκx−iyλu(x, y, t) dxdy

)
e(κ+λ)2t =

∫∞

−∞

∫∞

0
e−iκx−iyλu(x, y, 0) dxdy

−
∫ t

0

∫∞

−∞
e−iκx+(κ+λ)2τ u(x, 0, τ ) dτdx − i(λ + 2κ)

∫ t

0

∫∞

−∞
e−iκx+(κ+λ)2τ uy(x, 0, τ ) dτdx, (2.12)

which is equation (2.8); the last two terms of the right-hand side of this equation arise from the
terms

uvy − vuy + uvx − vux = e−iκx−iλy+(κ+λ)2t[−i(λ + κ)u − uy − ux],

where the last term in the above bracket can be replaced with −iκu using integration by parts.

Inverting the global relation (2.8), we find that u must satisfy

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)(û0(κ , λ) − g̃(κ , λ; t)) dλdκ , (2.13)

where

E(κ , λ; x, y, t) := exp(−(κ + λ)2t + iκx + iλy)

and

g̃(κ , λ; t) := g̃1(κ , (κ + λ)2, t) + i(λ + 2κ)g̃0(κ , (κ + λ)2, t).

Note that only the Dirichlet boundary value is prescribed in the canonical model (2.1)–(2.3). Thus,
the t-transform g̃1 of g1, which appears at the right-hand side of (2.13), is unknown.

In order to eliminate this unknown function from (2.13), we will first deform the contour of
integration for the λ variable from the real line to a more suitable contour denoted ∂D+

κ in the
upper half complex λ-plane. More precisely, we first define the family of complex domains

Dκ := {λ ∈ C | Re(κ + λ)2 < 0} (figure 1),

parametrized with respect to κ ∈ R. The part of Dκ in the upper half complex λ-plane will be
referred to as D+

κ , i.e. D+
κ := Dκ ∩ C+. The definition of Dκ is motivated by the fact that in C \ Dκ ,

the term exp(−(κ + λ)2(t − τ )) is bounded. Therefore, the integrand Eg̃ is analytic and decays as
λ → ∞ for λ ∈ C \ D+

κ . By the standard complex analytic arguments used in the Fokas method,
namely by appealing to Cauchy’s theorem and Jordan’s lemma, the integral

∫∞
−∞ Eg̃ dλ can be

replaced with
∫

∂D+
κ

Eg̃dλ. Therefore, we can rewrite (2.13) in the form

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

− 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)g̃(κ , λ, t) dλdκ . (2.14)

The orientation of the contour ∂D+
κ is taken in such a way that D+

κ is to the left of ∂D+
κ .

The second step is to eliminate the unknown t-transform g̃1 by using the Dirichlet-to-
Neumann-like map given below: replacing in the global relation (2.8) λ with −λ − 2κ , we
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D+
κ

–κ

Figure 1. The shaded region shows Dκ while the shaded region in the upper complex half plane shows D+
κ . (Online version in

colour.)

find

g̃1(κ , (κ + λ)2, t) = −û(κ , −(λ + 2κ), t) exp((κ + λ)2t)

+ û0(κ , −(λ + 2κ)) + iλg̃0(κ , (κ + λ)2, t), κ ∈ R, Im λ ≥ 0. (2.15)

Note that (2.15) is valid in the upper half complex plane because the condition Im λ ≤ 0 in
the global relation (2.8) gives rise to the condition Im λ ≥ 0 under the mapping λ �→ −λ − 2κ .
This mapping is obtained by analysing the invariance properties of the secondary spectral
input (κ + λ)2 of the t-transforms of the Fourier transform of boundary values. Remarkably,
Cauchy’s theorem and Jordan’s lemma imply that the contribution of the term that involves
û(κ , −(λ + 2κ), t) to the integral over ∂D+

κ vanishes. Therefore, one obtains the following solution
representation formula, whose right-hand side involves only the given initial and boundary
values:

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

− 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)û0(κ , −(λ + 2κ)) dλdκ

− i
2π2

∫∞

−∞

∫
∂D+

κ

(λ + κ)E(κ , λ; x, y, t)g̃0(κ , (κ + λ)2, t) dλdκ . (2.16)

As usual g̃0(κ , (κ + λ)2, t) in (2.16) can be replaced with g̃0(κ , (κ + λ)2, T) because the contribution
of

(λ + κ)E(κ , λ; x, y, t)
∫T

t
exp((κ + λ)2τ )ĝ0

x(κ , τ ) dτ

to the integral over ∂D+
κ vanishes.

3. Fourth-order heat equation
In this section, we obtain the representation formula for the solution of the initial boundary value
problem for the fourth-order heat equation posed on the half space. In particular, we consider the
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following canonical model with Dirichlet–Neumann boundary conditions:

ut + �2u = 0, (x, y, t) ∈ R × R+ × (0, T), (3.1)

u(x, 0, t) = g0(x, t), (x, t) ∈ R × (0, T), (3.2)

uy(x, 0, t) = g1(x, t), (x, t) ∈ R × (0, T), (3.3)

and u(x, y, 0) = u0(x, y), (x, y) ∈ R × R+. (3.4)

In (3.1), the differential operator �2 is given by

�2u = ∂4
x u + 2∂2

x ∂2
y u + ∂4

y u. (3.5)

Sometimes, we will write �x,y to emphasize the fact that derivatives are taken with respect to
variables x and y.

We first note that there is no linear change of variables which eliminates the cross term 2uxxyy

from the definition of �2.

Lemma 3.1. There is no linear change of variables in the form x̃ = ax + by, ỹ = cx + dy with ad − bc 	=
0 for which �2

x,yu = (∂4
x̃ + ∂4

ỹ )u.

Proof. Assume the contrary, namely that a linear change of variables as in the statement of the
lemma does exist. Then, after some calculations it follows that

�2
x,yu = (a2 + b2)2∂4

x̃ u + 4(ac + bd)(a2 + b2)∂3
x̃ ∂ỹu

+ 2(3a2c2 + 3b2d2 + a2d2 + b2c2 + 4abcd)∂2
x̃ ∂2

ỹ u

+ 4(ac + bd)(c2 + d2)∂x̃∂
3
ỹ u + (c2 + d2)2∂4

ỹ u.

Since ad − bc 	= 0, we must have ac = −bd, but then

3a2c2 + 3b2d2 + a2d2 + b2c2 + 4abcd = 2b2d2 + a2d2 + b2c2 = 0.

Hence ad = bc = 0, which is a contradiction. Therefore, there is no linear change of variables with
non-zero determinant as in the statement of the lemma. �

Taking the half space Fourier transform of (3.1), after some calculations we obtain

ût(κ , λ, t) = −(κ2 + λ2)2û(κ , λ, t) + ĝ3
x(κ , t) + iλĝ2

x(κ , t)

− (2κ2 + λ2)ĝ1
x(κ , t) − iλ(2κ2 + λ2)ĝ0

x(κ , t), κ ∈ R, Im λ ≤ 0, (3.6)

where gj(x, t) := ∂
j
yu(x, 0, t) and ĝj

x is the classical Fourier transform of gj with respect to the x
variable (see (2.6)). Integrating (3.6) and using the condition û(κ , λ, 0) = û0(κ , λ), we find the global
relation

û(κ , λ, t) exp((κ2 + λ2)2t) = û0(κ , λ) + g̃3(κ , (κ2 + λ2)2, t) + iλg̃2(κ , (κ2 + λ2)2, t)

− (2κ2 + λ2)g̃1(κ , (κ2 + λ2)2, t) − iλ(2κ2 + λ2)g̃0(κ , (κ2 + λ2)2, t), κ ∈ R, Im λ ≤ 0. (3.7)

Remark 3.2. In analogy with equation (2.12), the global relation (3.7) can also be obtained by
considering the adjoint to (3.1), namely the equation

vt − �2v = 0. (3.8)

Multiplying equation (3.1) and (3.8) by u and v, respectively, and then adding the resulting
equations we find an equation that can be written in the divergence form:

(uv)t + (vuxxx − uvxxx + vuxyy − uvxyy + uxvxx − vxuxx + uyvxy − vyuxy)x

+ (vuyyy − uvyyy + vuyxx − uvyxx + uyvyy − vyuyy + uxvxy − vxuxy)y = 0. (3.9)
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D+
κ

i÷
–
2|κ|

i|κ|

Figure 2. The shaded region shows D+
κ and the red line segment shows the branch cut of νκ . (Online version in colour.)

Choosing the particular solution v = exp(−iκx − iλy + (κ + λ)2t) and using integration by parts,
the second parenthesis of the above equation gives rise to the term

e−iκx−iλy+(κ+λ)2t[uyyy − (−iλ)3u + (−iκ)2uy − (−iλ)(−iκ)2u + (−iλ)2uy

− (−iλ)uyy − (−iλ)(−iκ)2u + (−iκ)2uy]

= e−iκx−iλy+(κ+λ)2t[uyyy + iλuyy − (2κ2 + λ2)uy − iλ(2κ2 + λ2)u].

Hence, following the same steps as those used for the derivation of (2.12) we find (3.6).

Inverting the global relation (3.7), we find that u must satisfy

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)(û0(κ , λ) + g̃(κ , λ; t)) dλdκ , (3.10)

where
E(κ , λ; x, y, t) := exp(−(κ2 + λ2)2t + iκx + iλy)

and

g̃(κ , λ; t) := g̃3(κ , (κ2 + λ2)2, t) + iλg̃2(κ , (κ2 + λ2)2, t)

− (2κ2 + λ2)g̃1(κ , (κ2 + λ2)2, t) − iλ(2κ2 + λ2)g̃0(κ , (κ2 + λ2)2, t), (3.11)

where g̃j is defined in (2.9). Note that for the canonical problem defined by (3.1)–(3.4) the second-
and third-order boundary traces, that is g2 and g3, are unknown functions. In order to eliminate
the t-transforms of g2 and g3 from the right-hand side of (3.10), we again consider a family of
complex regions Dκ in the complex λ-plane parametrized by κ ∈ R. We define

Dκ := {λ ∈ C | Re(κ2 + λ2)2 < 0}, D+
κ = Dκ ∩ C+.

The shaded region in figure 2 is an illustration of Dκ . The graph of Dκ cuts the imaginary axis at
the points ∓iκ .

Using the same complex analytic arguments as in the previous section, we can rewrite (3.10)
in the form

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

+ 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)g̃(κ , λ, t) dλdκ . (3.12)

In order to implement the next step of the UTM we must find, for given κ ∈ R, non-trivial maps
λ �→ νκ (λ) which keep the spectral input (κ2 + λ2)2 invariant. Thus

(κ2 + λ2)2 = (κ2 + ν2
κ (λ))2 : (i) νκ (λ) = −λ or (ii) ν2

κ (λ) = −λ2 − 2κ2. (3.13)
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The transformation λ �→ −λ yields the following global relation, which is valid in the upper half
complex λ-plane for any κ ∈ R:

û(κ , −λ, t) exp((κ2 + λ2)2t) = û0(κ , −λ) + g̃3(κ , (κ2 + λ2)2, t) − iλg̃2(κ , (κ2 + λ2)2, t)

− (2κ2 + λ2)g̃1(κ , (κ2 + λ2)2, t) + iλ(2κ2 + λ2)g̃0(κ , (κ2 + λ2)2, t), κ ∈ R, Im λ ≥ 0. (3.14)

If νκ is an invariance map satisfying (3.13)-(ii), then using (3.14) we also find the global relation

û(κ , −νκ (λ), t) exp((κ2 + λ2)2t) = û0(κ , −νκ (λ)) + g̃3(κ , (κ2 + λ2)2, t)

− iνκ (λ)g̃2(κ , (κ2 + λ2)2, t) + λ2g̃1(κ , (κ2 + λ2)2, t) − i2νκ (λ)g̃0(κ , (κ2 + λ2)2, t),

κ ∈ R, Im νκ (λ) ≥ 0. (3.15)

For Im λ ≥ 0 and Im νκ (λ) ≥ 0, both (3.14) and (3.15) are valid, and therefore we can use (3.14)
and (3.15) to eliminate the unknown t-transforms in the second integral of the right-hand side of
(3.12). Solving (3.14) and (3.15) for the unknowns g̃3 and g̃2, we obtain the following equations,
which are valid for κ ∈ R, Im λ ≥ 0, Im νκ (λ) ≥ 0 and νκ (λ) 	= λ:

g̃2(κ , (κ2 + λ2)2, t) = − i
λ − νκ (λ)

[û0(κ , −λ) − û0(κ , −νκ (λ))]

+ i
λ − νκ (λ)

exp((κ2 + λ2)2t)
[
û(κ , −λ, t) − û(κ , −νκ (λ), t)

]
+ i(νκ (λ) + λ)g̃1(κ , (κ2 + λ2)2, t) + λνκ (λ)g̃0(κ , (κ2 + λ2)2, t) (3.16)

and

g̃3(κ , (κ2 + λ2)2, t) = − 1
νκ (λ) − λ

[νκ (λ)û0(κ , −λ) − λû0(κ , −νκ (λ))]

− 1
νκ (λ) − λ

exp((κ2 + λ2)2t)
[
λû(κ , −νκ (λ), t) − νκ (λ)û(κ , −λ, t)

]
− (λ2 + λνκ (λ) + ν2

κ (λ))g̃1(κ , (κ2 + λ2)2, t)

+ iλνk(λ)(νk + λ)g̃0(κ , (κ2 + λ2)2, t). (3.17)

Using (3.16) and (3.17) in (3.11), we find that in the upper half complex λ-plane, g̃ takes the form

g̃(κ , λ; t) := −
[

νκ (λ) + λ

νκ (λ) − λ

]
û0(κ , −λ) + 2λ

νκ (λ) − λ
û0(κ , −νκ (λ))

+
[

νκ (λ) + λ

νκ (λ) − λ

]
exp((κ2 + λ2)2t)û(κ , −λ, t) − 2λ

νκ (λ) − λ
exp((κ2 + λ2)2t)û(κ , −νκ (λ), t)

− 2λ[λ + νκ (λ)]g̃1(κ , (κ2 + λ2)2, t) + 2iλνκ (λ)[νκ (λ) + λ]g̃0(κ , (κ2 + λ2)2, t). (3.18)

Given κ ∈ R, the condition νκ (λ) = λ holds in the upper half complex λ-plane if λ = i|κ|. However,
it is clear from the above form of g̃ that λ = i|κ| is a removable singularity.

In order that νκ has the desired properties needed in the above derivations, it is necessary to
choose an appropriate branch of the square root. This branch is given by νκ (λ) =

√
−λ2 − 2κ2,

where for z ∈ C, we define
√

z = |z|
1
2 ei(arg z/2) with arg z ∈ [0, 2π ). This function is analytic in the

complement of the set Sκ = {λ ∈ C | Re λ = 0, | Im λ| ≥ √
2|κ|}, hence νκ is indeed analytic since the

set Sκ is outside and strictly away from D+
κ (figure 2). Therefore, the contribution of the terms

involving û(κ , −λ, t) and û(κ , −νκ (λ), t) to the integral (3.12) vanish on ∂D+
κ . Thus, the solution of

(3.1)–(3.4) can be represented in the form

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

+ 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)G(κ , λ, t) dλ κ , (3.19)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 F

eb
ru

ar
y 

20
23

 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200076

...........................................................

D+
κ

∂D+
κ

D+
κ

i|κ|

Figure 3. The shaded region shows D+
κ . (Online version in colour.)

where

G(κ , λ; t) := −
[

νκ (λ) + λ

νκ (λ) − λ

]
û0(κ , −λ) + 2λ

νκ (λ) − λ
û0(κ , −νκ (λ))

− 2λ[λ + νκ (λ)]g̃1(κ , (κ2 + λ2)2, t) + 2iλνκ (λ)[νκ (λ) + λ]g̃0(κ , (κ2 + λ2)2, t) (3.20)

and νκ (λ) =
√

−λ2 − 2κ2.

4. Fourth-order Schrödinger equation
We consider the fourth-order Schrödinger equation:

iut + �2u = 0, (x, y, t) ∈ R × R+ × (0, T), (4.1)

u(x, 0, t) = g0(x, t), (x, t) ∈ R × (0, T), (4.2)

uy(x, 0, t) = g1(x, t), (x, t) ∈ R × (0, T), (4.3)

u(x, y, 0) = u0(x, y), (x, y) ∈ R × R+, (4.4)

where u is a complex valued function and �2 is as in (3.5).

(a) Global relations
We take the half space Fourier transform of (4.1) and obtain the global relation

û(κ , λ, t) exp(−i(κ2 + λ2)2t) = û0(κ , λ) + g̃(κ , λ; t), κ ∈ R, Im λ ≤ 0, (4.5)

where

g̃(κ , λ; t) := −ig̃3(κ , −i(κ2 + λ2)2, t) + λg̃2(κ , −i(κ2 + λ2)2, t)

+ i(λ2 + 2κ2)g̃1(κ , −i(κ2 + λ2)2, t) − λ(λ2 + 2κ2)g̃0(κ , −i(κ2 + λ2)2, t).

Remark 4.1. An alternative derivation is based on the function

v = exp(−iκx − iλy − i(κ2 + λ2)2t),

which is particular solution of the adjoint equation

ivt − �2v = 0.
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We define

Dκ := {λ ∈ C | Re[i(κ2 + λ2)2] > 0}, D+
κ = Dκ ∩ C+.

The shaded region in figure 3 is an illustration of D+
κ . The graph of D+

κ cuts the imaginary axis at
the point i|κ|. Taking the inverse Fourier transform in (4.5) and deforming the contour of λ from
the real line to the boundary of D+

κ , we obtain

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

× 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)g̃(κ , λ; t) dλdκ , (4.6)

where

E(κ , λ; x, y, t) := exp(i(κ2 + λ2)2t + iκx + iλy).

Replacing λ with −λ in (4.5), we find a global relation which is valid for Im λ ≥ 0:

û(κ , −λ, t) exp(−i(κ2 + λ2)2t) = û0(κ , −λ)

− ig̃3(κ , −i(κ2 + λ2)2, t) − λg̃2(κ , −i(κ2 + λ2)2, t)

+ i(λ2 + 2κ2)g̃1(κ , −i(κ2 + λ2)2, t) + λ(λ2 + 2κ2)g̃0(κ , −i(κ2 + λ2)2, t). (4.7)

Furthermore, if we change λ in (4.7) with νκ satisfying

ν2
κ = −λ2 − 2κ2, (4.8)

we obtain a new global relation which is valid for Im λ ≥ 0 and Im νκ ≥ 0:

û(κ , −νκ , t) exp(−i(κ2 + λ2)2t) = û0(κ , −νκ )

− ig̃3(κ , −i(κ2 + λ2)2, t) − νκ g̃2(κ , −i(κ2 + λ2)2, t)

− iλ2g̃1(κ , −i(κ2 + λ2)2, t) − νκλ2g̃0(κ , −i(κ2 + λ2)2, t). (4.9)

Solving (4.7) and (4.9) for g̃2 and g̃3, we find

g̃2(κ , −i(κ2 + λ2)2, t) = λνκ g̃0(κ , −i(κ2 + λ2)2, t) + i(λ + νκ )g̃1(κ , −i(κ2 + λ2)2, t)

+ û0(κ , −νκ ) − û0(κ , −λ)
νκ − λ

+ û(κ , −λ, t) − û(κ , −νκ , t)
νκ − λ

exp(−i(κ2 + λ2)2t)

(4.10)

and

g̃3(κ , −i(κ2 + λ2)2, t) = iλνκ (λ + νκ )g̃0(κ , −i(κ2 + λ2)2, t)

− (ν2
κ + νκλ + λ2)g̃1(κ , −i(κ2 + λ2)2, t) + iλû0(κ , −νκ ) − iνκ û0(κ , −λ, t)

νκ − λ

+ iνκ û(κ , −λ, t) − iλû(κ , −νκ , t)
νκ − λ

exp(−i(κ2 + λ2)2t). (4.11)

Using the above identities in (4.6), we obtain

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

+ 1
(2π )2

∫∞

−∞

∫
∂D+

κ

E(κ , λ; x, y, t)G(κ , λ, t) dλdκ

+ 1
(2π )2

∫∞

−∞
exp(iκx)

∫
∂D+

κ

H(λ; κ , y, t) dλdκ , (4.12)
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where

G(κ , λ, t) :=
[

2λ

νκ − λ
û0(κ , −νκ ) − λ + νκ

νκ − λ
û0(κ , −λ)

]
+ [2(λ2νκ + λν2

κ )g̃0 + 2i(λ2 + λνκ )g̃1]

and

H(λ; κ , y, t) :=
[

λ + νκ

νκ − λ
û(κ , −λ, t) − 2λ

νκ − λ
û(κ , −νκ , t)

]
exp(iλy).

(b) Analyticity issues
The point λ = i|κ| is a removable singularity, thus if νκ was an analytic function then H(λ; κ , y, t)
would be analytic in D+

κ , and its contribution to the integral on ∂D+
κ would be zero. However, it is

not clear whether there exists a map λ �→ νκ (λ) which both satisfies the invariance property (4.8)
and the property (P) given below.

(P) νκ is analytic on a finite family of open sets, each of which contains one connected
component of D+

κ .
We prove below in lemma 4.2 that such a map does not exist for our problem.

Lemma 4.2. A function which satisfies the invariance property (4.8) cannot be analytic in the
neighbourhood of λ = ±i

√
2|κ| for κ 	= 0.

Proof. Assume that κ 	= 0. We give the proof only for λ = i
√

2|κ|; λ = −i
√

2|κ| can be treated
analogously. Let S+

κ be the intersection of Sκ , whose definition is given in §3, with the upper half
complex λ-plane. Suppose that there is a function λ �→ νκ (λ) which is analytic in a neighbourhood
of i

√
2|κ| denoted by Bε̃(i

√
2|κ|) which also satisfies the invariance property (4.8). Let λ0 be such

that S+
κ ∩ Bε̃(i

√
2|κ|) � λ0 	= i

√
2|κ|. Let Bε(λ0) be an open ball of radius ε centred at λ0, and further

ε is sufficiently small so that i
√

2|κ| /∈ Bε(λ0). Consider the restriction map νκ |Bε (λ0). This function
must be either of the form

νκ |Bε (λ0) =
{

ν1
κ (λ) Reλ > 0

−ν1
κ (λ) Reλ ≤ 0

or its negative, where ν1
κ (λ) =

√
−λ2 − 2κ2. We take a path in Bε̃(i

√
2|κ|) starting from a point A

at the left side of Bε(λ0) and arriving at a point B at the right side of Bε(λ0) while avoiding S+
κ

(figure 4). Then we apply analytic continuation to νκ |Bε (λ0) starting from A through the path. This

would imply that νκ is equal to both ν1
κ (λ) and −ν1

κ (λ) at the point B, which is a contradiction. �

Lemma 4.2 shows that ±i
√

2|κ| are two branch points of any function νκ which satisfies (4.8).
Therefore, there is no map νκ which satisfies both (4.8) and the property (P). However, property (P)
is not a necessary condition to say that the contribution of H to the integral representation (4.12) is
zero. Indeed, it would be enough that νκ were analytic on D+

κ \ {i√2|κ|} (see (4.16)). Fortunately,
we can construct a single-valued function νκ which is analytic on Dκ \ {±i

√
2|κ|} by taking an

arbitrary branch cut consisting of disjoint curves starting from branch points i
√

2|κ| and −i
√

2|κ|,
and extending to infinity avoiding Dκ (except at the branch points). In order to be able to compute
νκ (λ) for given λ and make sure that it also satisfies Im νκ ≥ 0 on D+

κ , we will fix a suitable branch
cut for it in the following way.

Let s denote a (branch of the) square root function, g(λ) = −λ2 − 2κ2, and νκ = s ◦ g. Denoting
the set of elements of the branch cut of a function f by Wf , it is clear that

Wνκ
= g−1(Ws) =

√
−Ws − 2κ2 ∪ −

√
−Ws − 2κ2,

where √ is the standard square root function. Then

W+
νκ

:= Wνκ
∩ C

+ =
√

−Ws − 2κ2. (4.13)
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i÷
–
2|κ|

l0

Figure 4. The (black) path is used for the analytic continuation argument in the proof of lemma 4.2. (Online version in colour.)

D+
κ

D+
κ

W+
vκ

i÷
–
2|κ|

i|κ|

Figure 5. The shaded region shows D+
κ and the dashed red curve shows the branch cut. (Online version in colour.)

Note that if s is the standard square root function √ , then

Ws = {z ∈ C | Re z ≥ 0, Im z = 0},

and νκ (λ) =
√

−λ2 − 2κ2 satisfies the condition Im νκ (λ) ≥ 0. However from (4.13) we see that with
this choice of s, upper part W+

νκ
of the corresponding branch cut, where νκ is not analytic, equals

S+
κ , which is a subset of ∂D+

κ . Therefore, the standard square root is not the right branch to use for
eliminating the integral of H in (4.12).

In order to deal with this issue, we rotate the branch cut of the standard square root function a

little bit. Namely, we fix a square root function s as the map z �→ √
z∗, where

√
z∗ := |z|

1
2 ei(arg z/2)

with arg z ∈ [ε, 2π + ε) for some fixed and sufficiently small ε > 0. Note that, now we have

Ws = {z ∈ C | Re z ≥ 0, Im z = tan(ε) Re z},

and from (4.13) it is easy to see that W+
νκ

stays in the second quadrant. Moreover, as we show in the

following lemma, for ε > 0 small enough, it is certain that W+
νκ

stays away from all λ ∈ D+
κ \ {i√2κ}

and Im νκ (λ) ≥ 0 for λ ∈ D+
κ (figure 5).

Lemma 4.3. For ε > 0 small enough, the function νκ (λ) :=
√

−λ2 − 2κ2∗
is analytic on Dκ \

{±i
√

2|κ|}. Moreover, Im νκ (λ) ≥ 0 for λ ∈ Dκ .
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Proof. Let Wνκ
be the set of points in the λ-plane where νκ is discontinuous. These are the points

which satisfy −λ2 − 2κ2 = rλeiε for some rλ ≥ 0. For such points, we have

Re λ2 − Im λ2 = −rλ cos ε − 2κ2 (4.14)

and

2 Re λ Im λ = −rλ sin ε. (4.15)

Suppose Wνκ
� λ 	= ±i

√
2|κ|, i.e. rλ 	= 0. Set αλ := Re λ/Im λ and βε,λ := 2 cot(ε) + 4κ2/rλ sin ε. Note

that αλ < 0 by (4.15) and αλ − 1/αλ = βε,λ > 0. This implies αλ > −1/βε,λ > −tan(ε)/2. Therefore,
we can make |αλ| very small by taking ε > 0 small enough so that elements of Wνκ

are strictly
away from λ ∈ Dκ \ {±i

√
2|κ|}.

Moreover Im
√

z∗
< 0 only if 2π < arg z < 2π + ε. This translates into the region between Wνκ

and Sκ for νκ in complex λ-plane . Therefore, the last statement of the lemma follows. �

The next step in view of lemma 4.3 is to take care of the branch point λ = i
√

2|κ|. This can be
achieved by deforming the contour to a small half circle around this point. More precisely, given
r > 0, let Br be the half disc defined by

Br ≡ {λ ∈ C | |λ − i
√

2κ| < r, Re λ > 0}.
Then, the integral

∫
∂D+ Hdλ can be written as

∫
∂D+

H dλ =
∫
∂Br

H dλ +
∫
∂(D+\Br)

H dλ. (4.16)

Since H is analytic and bounded in D+\Br , using Cauchy’s theorem and Jordan’s lemma we
find that the integral on ∂(D+\Br) is zero. The function νκ (λ) is bounded even if it is not analytic
about the point i

√
2|κ|. H is continuous with respect to λ and νκ (λ), thus H is also bounded on

Br. Therefore, the integral of H on ∂Br goes to zero as r goes to zero. Hence,
∫

∂D+ H dλ = 0. Thus,
using (4.12), we obtain

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

+ 1
(2π )2

∫∞

−∞

∫
∂D+

E(κ , λ; x, y, t)G(κ , λ, t) dλdκ . (4.17)

Remark 4.4 (Asymptotic form). The wellposedness analysis is generally easier if the solution
formula is given on the boundary of the asymptotic form of D+

κ , namely on ∂D+
R , where D+

R =
Dκ ,R ∩ C+ and

DR :=
{
λ | arg λ ∈

(π

4
,
π

2

)
+ mπ

2
, m = 0, 1, 2, 3

}
,

for the biharmonic Schrödinger equation (figure 6). The deformation from D+
κ to D+

R is possible
as the two regions DR and D approach each other as |λ| → ∞. Hence, the following asymptotic
form of the integral representation is valid:

u(x, y, t) = 1
(2π )2

∫∞

−∞

∫∞

−∞
E(κ , λ; x, y, t)û0(κ , λ) dλdκ

+ 1
(2π )2

∫∞

−∞

∫
∂D+

R

E(κ , λ; x, y, t)G(κ , λ, t) dλdκ . (4.18)

Remark 4.5. The rigorous analysis of solutions of corresponding nonlinear IBVPs can be done
in two standard stages: (i) prove space and time estimates for the linear IBVP in function spaces
(Sobolev, Bourgain, etc.) (ii) use a fixed point argument on the solution operator defined by the
representation formula in which the non-homogeneous terms are replaced by given nonlinear
sources. The first stage can be carried out via a decompose-and-reunify approach, see for instance
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∂D+
R

Figure 6. Asymptotic form of ∂D+
k (Online version in colour.)

[5,8]. In this approach, one first decomposes the given linear IBVP into a homogeneous Cauchy
problem, a non-homogeneous Cauchy problem, and an inhomogeneous boundary value problem
with zero initial datum and zero interior source. The integral representing the solution obtained
via the UTM is very suitable for using tools from the oscillatory integral theory, Fourier and
harmonic analysis to handle the inhomogeneous boundary value problem. In fact, the explicit
exponential terms in the UTM formula allows one to perform the associated wellposedness
analysis in fractional function spaces and prove Strichartz type estimates. See for instance
[8, Section 3.2] for a proof of a Strichartz estimate for the biharmonic Schrödinger equation that is
based on an application of the Van der Corput lemma to the UTM formula.
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