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ABSTRACT
Macroscopic modeling of ferroelectric properties refers usually to
Landau-Ginzburg-Devonshire theory. This paper questions the mean-
ingfulness of this term, discussing contributions of the three authors
in the title to what is supposed to be a theory. The limitations of
every contribution are analysed. In the main text and, to more
extent in the Supplementary Material, the Landau theory is pre-
sented from an unusual perspective starting from simple mechanical
models of spontaneous symmetry breaking and finishing by the
Ising model. The aim of the presentation is to emphasize along with
the qualitative breakthroughs the approximate character of macro-
scopic modeling associated with the above three authors.
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1. Introduction

The names of Landau and Devonshire are often mentioned in papers on ferroelectrics.
Quite often one also mentions Landau-Ginzburg-Devonshire (LGD) which is more cor-
rect: it was Ginzburg [1] who, in 1945, first applied the Landau theory [2, 3] to ferro-
electrics.1 But how has this group formed? Were they doing the same though at
different times? This is not a question from the point of science history only. There are
conceptional differences between the approaches by Landau and Devonshire [4] which
are useful to recall when both approaches are referred to in attempts to explain or
describe experimental data. It is helpful to realize their limitations in order to not to be
taken by surprise when the observed disagreements between the experiment and theory
has a natural explanation: that the experimental conditions are beyond what the theory
was designed for and not due to some imperfections in either the experiment or
the theory.
An illustrative example is provided by the history of the findings by Minaeva et al.

[5] in their study of sound propagation in uniaxial ferroelectric triglycinsulfate. The
authors, inspired by theoretical results of Ref. [6], were investigating dependence of
sound attenuation on the angle between the polar axis and the sound propagation
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1We realize that usually when people mention LGD, they mean considering of gradients of polarization. This is
unfortunate because Ginzburg was far from being the first to take into account this gradient term.
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direction. They found that the predictions made with the use of Landau theory were
qualitatively correct but in strong quantitative disagreement with the experiment.
Within this paper the explanation is simple: an account for a nearly homogeneous
depolarizing field excited by the acoustic wave, which was predicted to be the reason of
angular dependence of the attenuation is beyond the Landau theory. This was over-
looked both by the authoritative authors of Ref. [6] and by their readers. This was
seemingly also the case of the author of a proposal to explain this disagreement [7].
Being both qualitatively meaningful and pioneering, such an attempt was equivalent to
moving beyond the Landau theory while neither acknowledging the move nor analyzing
such an important consequence that the theory stopped to be consistent [8]. As a result,
a presumably new material constant has been introduced, the so-called ‘base dielectric
constant’ which produced a lot of confusion including addition of this constant to the
tables of material constants of ferroelectric materials. In effect, this ‘constant’ is nothing
more than a parameter of a qualitative phenomenological model [8]. This parameter
has a diffuse physical meaning and should be used with reservations and care though
its order of magnitude can be, probably, realistically guessed. Anyway, it is not a mater-
ial constant with a measurable numerical value as many people erroneously believed.
This unfortunate story shows that old theories, because of being old and, therefore,

respected and convenient, are often used almost automatically without understanding
their limitations. For this very reason, it is useful to reconsider such theories along with
their conceptualities. In the same context, proposing new ways to teach them is cer-
tainly helpful for a sound development of science. The golden anniversary of the
Ferroelectrics seems to be an appropriate occasion for such an undertaking, which is
mainly pedagogical but also historical and methodological.
In the next section, the Landau theory is exposed from a different angle than by

Landau himself. It is argued that, conceptually, this theory is closer to classical mechan-
ics than to thermodynamics. This section is the longest in the paper and could be even
longer if not being accompanied by the Supplementary Material. It is recommended to
be read before and to be consulted during the reading of the main text if some of its
statements look non-evident. All the figures are in the Supplementary Material where
they are numerated from 1 to 16. Reference (Sn) is to Section n of the Supplementary
Material. In Sections 3 and 4, Ginzburg’s and Devonshire’s approaches are critically pre-
sented. In Section 5, we comment on the role of the Landau theory in the macroscopic
modeling of properties of ferroelectrics.

2. Landau

The Landau theory has been shown to be wrong in 1944 when Onsager published his
exact solution of two-dimensional Ising model (see, e.g., [3]). A legend says that Landau
spent a whole week trying hard to understand the Onsager paper and to check it, but
the Onsager treatment was so complicated that he failed and stopped trying. During
many years the contradiction between Onsager and Landau was a mystery for many sci-
entists and motivation for others to understand its reason and to put forward a new
theory equally general as the Landau one but without contradictions. Landau partici-
pated in these efforts since 1958 (see Ref. [3], Sec. 147) though he published nothing.
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Huge collective efforts resulted about 1970 in construction of a modern theory of
second order phase transitions (key words: critical indices, renormalization) which had
some features common with the original Landau theory (see, e.g., [9]). They are: (i) to
relate the second order phase transitions to spontaneous symmetry breaking with soft
stability loss, (ii) to go beyond the standard thermodynamics by introducing what is
called now the order parameter, (iii) to reveal universality of asymptotic behavior of a
system close to the second order transition: this behavior is governed by the symmetry
only, not by the physical meaning of the quantities involved. The modern theory of
second order transitions is, practically, not referred to in the present-day ferroelectric
studies. What people mean when mentioning Landau’s name is his original, old theory.
This is natural and we will comment in a proper place why it is so. Here we only men-
tion that it is this theory which is of main interest in this paper. The main difficulty in
exposing it is that, as it became clear as a result of development of the modern theory
[9], the old one is not valid at the point of second order phase transition due to some
thermal or quantum fluctuations. At the same time, this point is a reference point in
the logic of the Landau theory. So that, to discuss its logic, it is better to begin with
second order phase transitions without any fluctuations. Such transitions are possible in
classical systems at zero temperature. For ferroelectric and other non-diffusional transi-
tions this is a convenient starting point. To be illustrative we will consider mechanical
models of crystals of the type often presented in textbooks: balls for atoms/ions con-
nected by springs with whatever else that mimics interatomic/interionic forces. Since we
will consider equilibrium structures only, the only branch of classical mechanics which
we will refer to is statics. We will also emphasize the same Landau’s achievements
which were appreciated by the modern theory people. It will be argued that they are
worth to be remembered in the studies on ferroelectric crystals also.

2.1. Spontaneous symmetry breaking

A symmetry ‘breaks’ when the structure loses some of its symmetry elements (opera-
tions) and converts into a structure with a smaller set of the symmetry elements (non-
symmetrical structure, to be short). This is the so-called ‘group-subgroup’ transitions,
meaning the groups of the symmetry elements. In mechanics this may happen even in a
system with one degree of freedom (S1, Fig. 1). The term ‘spontaneous’ means that the
loss of symmetry elements occurs due to change of a symmetry conserving control par-
ameter, e.g., pressure or whatever else whose application conserves the symmetry prop-
erties of the system energy landscape2 which are the reason of any symmetrical
structure (The reader might find this expression vague and we refer the reader to the
example below). That a symmetrical form of the energy landscape exists does not mean
the system will also remain symmetrical. The loss of symmetry elements occurs because
despite the symmetrical energy, the symmetrical structure becomes unstable. This hap-
pens because a minimum in the energy landscape which defined the symmetrical con-
figuration can become a maximum or a saddle point without violating the symmetry of
the energy landscape. The value of the control parameter when this happens is called its

2We mean energy landscape in the space of Nþ 1 dimensions where N is the number of degrees of freedom of
the system.
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critical value. In the context of classical mechanical models what changes after crossing
this point is the form of potential energy of the system (S1,2, Figs. 3,4,7). According to
statics, referring to the balls & spring models considered in the Supplementary Material,
the potential energy is minimum when the balls are in their equilibrium positions, i.e.,
any set of displacements of the balls from these equilibrium positions lead to increase
of the potential energy. But after crossing the critical point the symmetrical configur-
ation corresponds not to minimum but to a saddle point (S2). This occurs without vio-
lating the symmetry of the potential energy (symmetry conserving control parameter)
but the system obtains at least two equivalent directions for the most effective manner
of diminishing of the potential energy and, of course, it does not miss the opportunity
to go along in one of these directions. As a result, the system turns into one of two or
more ‘less symmetrical’ equilibrium configurations which are equivalent with respect to
the lost symmetry element(s) of the former equilibrium configuration.

2.2. Order parameter

The initial directions of the most effective diminishing of the potential energy or the
directions of the fastest decent from the saddle point are straight lines in the N- dimen-
sional (N is the number of the degrees of freedom) space of displacements of the balls
from their positions in the symmetrical configuration of the system. For N¼ 2 this is
illustrated in S2. These directions present patterns of the ball displacements with respect
to which the stability of the symmetrical structure is lost at the critical point (S2, S3).
Note that all the directions appear simultaneously, i.e., they are all equivalent and trans-
form one into another at symmetry operations of the symmetrical phase. The simplest
case is when there are two patterns which differ whereby the same ball displaces in
opposite directions. The amplitude of the pattern shows how far the breaking of the
symmetry has gone. Reinterpreting the Landau theory, we are forced to call it order
parameter. This is unfortunate and paradoxical: at spontaneous breaking of symmetry
in classical systems at zero temperature, i.e., in the only dominion where the Landau
theory is uncontested, there is no ordering but just displacements. It would be much
better to call it in another way, e.g., as ‘symmetry breaking parameter’. But we will use
the usual terminology believing that the reader’s confusion will still be less than with a
consistent but unfamiliar terminology.
In the simplest case which we will discuss in the paper we have one-component order

parameter (g). The two patterns correspond to different signs of g: All the symmetry
operations of the symmetrical phase either do not change g or transform it to �g:
Mathematically, this means that the order parameter transforms according to one-
dimensional irreducible representation of symmetry group of the symmetrical structure.
We emphasize that an exact knowledge of the pattern is not needed for the Landau the-
ory. Its results are independent of the physical meaning of the order parameter.
Nevertheless, this meaning is well defined for any specific case. Keep in mind that it
treats about the amplitude of pattern of displacements (and its symmetrical equivalents)
with respect to which the symmetrical structure loses its stability at the critical point.
The Landau theory needs not to know this pattern to obtain its results. It needs only its
transformational properties with respect to symmetry elements of the symmetrical
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structure. But it is well understood that this pattern is unique for every system (model).
The matter is that the loss of stability occurs always with respect to a single degree of
freedom. Indeed, it treats about loss of stability with respect to any, even arbitrary small
perturbations, so that this loss occurs immediately when such possibility arises for a set
of symmetrically equivalent degrees of freedom without waiting for arising of instability
conditions for another set at a further change of the control parameter. Importantly, by
defining the order parameter through the pattern of displacements with respect to
which the symmetrical phase loses its stability we must acknowledge that the order par-
ameter has a well-defined meaning close to the critical point only. Indeed, the pattern of
structural changes resulting from the stability loss is, naturally, close to the pattern with
respect to which the stability loss occurs if the control parameter is close to its critical
value and the two patterns coincide when the control parameter is at its critical value,
i.e., just before disappearing. This is what is called the soft stability loss. But if we move
away from the critical point further into the nonsymmetrical state, the structural pattern
changes, there is no reason for it to remain rigid (See S3 in Suppl. Mat.).

2.3. Universality

In the above arguments we did not mention any specific model so that these arguments
were model-independent, universal. Appearance of a saddle point instead of minimum
of the potential energy with respect to any set of displacements of the classical bodies
(balls in our story) from their positions in the symmetrical phase is what the spontan-
eous symmetry breaking consist of for the considered class of systems. In the simplest
case this means existence of a degree of freedom (gÞ such that the potential energy as a
function of g is minimum at g ¼ 0 for the symmetrical structure but becomes max-
imum when the changing control parameter ðpÞ crosses the critical point ðpcÞ: The sym-
metrical structure becomes unstable but there appears the possibility of two
nonsymmetrical equilibrium structures whose difference with the disappeared symmet-
rical one smoothly increases as the control parameter continues to change after crossing
the critical point. The law governing this increase should become universal as p ! pc:
Landau had obtained this law: ge / 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� pcj jp

, the subscript ‘e’ means ‘equilibrium’.
The law was found by minimizing the universal form of the potential energy which was
derived expanding the potential energy Uðg, pÞ into Taylor series centered at g ¼ 0 and
keeping the minimum number of the terms. The potential energies of specific systems
with soft spontaneous symmetry breaking are the closer to this form the closer is p to pc:
This form is:

U g, pð Þ ¼ U0 pð Þ þ a p� pcð Þg2 þ bg4, (1)

where U0 pð Þ is unknown function and a, b are unknown constants. For the spontan-
eous breaking of symmetry to be soft the constant b should be positive.
Other universal laws can be obtained if we introduce the force h conjugated to g:

This means that the term �hg should be added to the right-hand side of Eq. (1). It is
evident, both physically and formally, that when h 6¼ 0 then ge 6¼ 0 at any value of p,
i.e., the spontaneous symmetry breaking no more exists.
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The function geðhÞ is universal at p ¼ pc and when h ! 0: The latter restriction is
because the universal form of the potential energy at p ¼ pc becomes exact for g ! 0
only (the Taylor expansion!). This law is g ej j / hj j13: One sees that gej j

hj j / hj j�2
3 ! 1, as

h ! 0, i.e., in the universality region

gej j � jhj, (2)

when expressed in the same dimensions. One more universal result is:

dge 0ð Þ
dh

/ p� pcj j�1 as p ! pc: (3)

We see that the Landau theory is predictive. Remarkably, its predictions are relevant
for a broad class of systems. This is because of the universality: all the patterns of the
same symmetry properties exhibit the same behavior. Consider, for example, ferroelec-
tric transition in BaTiO3 and suppose, for simplicity, that only displacements of rigid
Ti- and O-ions occur at the spontaneous symmetry breaking. The ‘pattern of displace-
ments’, which lead to the change of symmetry at the spontaneous symmetry breaking, is
the ratio of the displacements of the two ions, or the ratio of the polarizations due to
these displacements, PTi and PO: When studying the asymptotic behavior at p ! pc we
can fix this ratio and concentrate on the behavior of the amplitude of the pattern.
Changes in the form of the pattern, i.e., changes in the ratio are irrelevant to the
asymptotic, they provide next order corrections. As we know from what is discussed
above, the amplitude of the pattern, i.e., the order parameter is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� pcj jp
: Since the pattern can be considered as rigid, both PTi and PO are propor-

tional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� pcj jp

: The same is valid for the full polarization P ¼ PTi þ PO and any
other combination. That is why, referring to the universality region, one can identify
the order parameter with the full polarization ignoring the real pattern with respect to
which the symmetrical phase loses its stability at the spontaneous symmetry breaking.
Once again, it is possible in the universality region only, not beyond it.
We have seen that the Landau theory provides several important universal results.

Another matter is that, as we understand now, specific form of the universal dependen-
cies (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� pcj jp

, p� pcj j�1, hj j13) are valid for spontaneous symmetry breaking in clas-
sical systems at zero temperature only. But the revolutionary ideas of spontaneous
symmetry breaking, order parameter and universality form an important part of mod-
ern theory of second order phase transitions.
The difficulties that the Landau theory experiences for non-zero temperatures, which

were later overcome by the modern theory, are shortly mentioned in the Supplementary
Material. We have limited ourselves by outlining how they appear when one moves
from spontaneous symmetry breaking in classical mechanical systems with a few degrees
of freedom and without thermal motion (zero temperature) to more realistic systems
with arbitrary large number of degrees of freedom exhibiting thermal motion (non-zero
temperature). First, the same models which were discussed for zero temperature are
considered for non-zero temperature. For systems with finite number degrees of free-
dom the idea of equilibrium loses its strict meaning and what has been called the spon-
taneous symmetry breaking at zero temperature converts into another phenomenon:
splitting of peak in probability density of the order parameter. Instead of the potential
energy for zero temperature this phenomenon can be described by what can be called
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the Landau effective potential energy whose behavior is like that of the potential energy
at zero temperature but with temperature entering the model as an additional control
parameter. Transition to infinite systems converts the probability densities into a single
or a pair of delta-functions, which, in the case of one degree of freedom, occurs at the
limit of zero temperature only. For systems with infinite number of degrees of freedom
this recovery is possible also for non-zero temperature though not for any infinite sys-
tem but for those of 2D or 3D. The Landau effective potential energy acquires the
meaning of the Landau free energy but, according to the modern theory, it proves to be
a singular function of all its variables at the point of spontaneous symmetry breaking,
making the Taylor expansion impossible and rendering the Landau theory inapplicable.
It was already mentioned that finding of the new asymptotic behavior was a feat with
participation of many scientists and a Nobel Prize for one of them [9]. But this new
asymptotic behavior proved to be almost of no interest for the studies of ferroelectricity.
This is a separate question which we will discuss in Sec. 5.
Originally Landau did not start with zero-temperature classical system or non-diffu-

sional transitions. Just the opposite: he begins with describing a crystalline structure in
a way which considers the thermal motion. His main example of the control parameter
was temperature. His first example was the atomic ordering in binary alloys, i.e., a diffu-
sional transition. Also, he mentioned an ordering of NH4 radicals in NH4Cl where a
huge k-type anomaly of specific heat has been observed and then explained by Landau
two years before compiling his famous paper [2]. Unfortunately, he paid no attention to
the a-b transition in quartz which was interpreted as displacive (in modern termin-
ology) about 10 years before [10]. He could not preview, of course, that his theory
would have problems just with ordering which occurs due to change in temperature
and will be ideally applicable to displacive transitions in classical models at zero tem-
perature, which he did not even mention. The only term which can be found in his
paper for what we call (unfortunately) the order parameter is ‘degree of ordering’. Not
an impressive difference.
It is probable that the first displacive phase transition which Landau became aware of

was ferroelectric transition in BaTiO3 (see the next Section). It was the BaTiO3 structure
which was used as an illustration of a second order transition in Sec.142 of Ref. [3].
However, this did not substantially influence the definition of the order parameter.
Here is a quotation from the second and last Landau intravital edition of the
Statistical Physics.
To give a mathematical description of a phase transition of the second kind, we

define a quantity g which represents the extent to which the configuration of atoms in
the less symmetrical phase differs from that in the more symmetrical phase, in the latter
phase g ¼ 0 and in the less symmetrical phase g has positive and negative values. For
example, in a transition where there is a movement of atoms (as in BaTiO3) g may be
taken as the amount of displacement [11].
Well, the displacement of what? Of Ti or of O? Or, instead, maybe some deformation

of the electronic clouds? In view of the above discussion the answer is: does not matter
asymptotically or while we are in the universality region where the deviations from the
asymptotical behavior are acceptable within our precision. Unfortunately, such a clarifi-
cation is absent in this, otherwise magnificent, book. It sounds paradoxical but to our
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knowledge there is no textbook with a consistent definition of the order parameter.
This inevitably led to another difficulty. Instead of the potential energy used in the
above zero-T version Landau introduced what was later called ‘constrained’ [12] or
‘incomplete’ [13, 14] thermodynamic potential. It treats about thermodynamic potential
of a conditionally equilibrium system. According to Landau’s and Lifshitz’s Statistical
Physics ([3], Sec.143) they mean thermodynamic potential ‘at fixed deviations from the
symmetrical state, i.e., at fixed values of the order parameter’. This ‘i.e.’ is dubious.
Given the universality, i.e., the irrelevance of the physical meaning of the order param-
eter to the asymptotic behaviors which results in infinite number of variants of physical
meaning of the order parameter it remains unclear what to fix. It becomes meaningful
if the order parameter is defined as the pattern of displacements with respect to which
the more symmetrical structure loses its stability. This pattern of displacements is
unique for every specific system and there is no doubt about what to fix though, within
the universality region, one need to know nothing more than its symmetry properties.
Beyond this region (whose boundary, recall, depends on our accepted precision) the
structural changes brought to life by the stability loss cannot be characterized by a sin-
gle variable except qualitatively within a model which does not claim to be exact, unlike
Landau theory for zero-T classical models, which claim to be asymptotically exact.

3. Ginzburg

Ginzburg wrote in his memories [15] that he was impressed by the Landau theory since
the pre-war times, in the very beginning of his scientific carrier. He dreamed to apply it
to superfluidity and superconductivity. The obstacle was to guess what the order param-
eter was. It was several years after the end of the war that his idea about some wave
function as the order parameter was assumed and justified by Landau. It resulted in
Ginzburg’s Nobel Prize more than 50 years after the idea. It is hard to imagine a person
who could estimate the importance of correct choice of the order parameter better than
Ginzburg. But we go now to the time well before the idea and even before the end of
the war when Ginzburg became aware of ferroelectric properties of BaTiO3 discovered
in a neighboring laboratory. Expectably, he applied the Landau theory to understand
what ferroelectrics are and to explain the observations. He believed that the phase tran-
sition in BaTiO3 was of the second order. The data were for polycrystalline samples and
did not allow to establish the real order of the transition.
In 1970s, when commenting at his seminar on a talk about improper ferroelectrics

where the order parameter is not polarization even in the symmetry aspect, Ginzburg
remembered how in 1944 he discussed with Landau what the order parameter was for
BaTiO3. It was something like: ‘Displacements of some ions? And then we agreed that
the polarization was also valid’. We do not know why they agreed and if they consid-
ered the universality. We have already argued that within a simple model, where the
total polarization of BaTiO3 has two additive contributions, PTi and PO, due to the
shifts of the corresponding ions, Ginzburg’s choice of the order parameter as P ¼
PTi þ PO is valid. He could also say that, since the order parameter had the same trans-
formational properties as polarization, why not to use the polarization itself. Moreover,
it should be introduced anyways to calculate observable quantities. So, Ginzburg’s
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choice was natural but valid for the vicinity of phase transition only. He did not make a
reservation which was natural: neither Landau made it.
Ginzburg justified the choice of polarization for the role of the order parameter in

the manner frequently used until now: it is something which is absent in the non-
ferroelectric phase but is present in the ferroelectric one. Excessive freedom given by
this criterium was not mentioned. But the next step was consistent with the Landau the-
ory. He wrote the ‘constrained’ free energy as

U ¼ U0 þ aP2 þ b
2
P4 � EP, (4)

where E is the electric field, U0, a and b are functions of temperature and pressure.
The Landau spirit is in use of a thermodynamic potential as a function of P and E sim-
ultaneously. In conventional equilibrium or ‘unconstrained’ thermodynamics one uses
thermodynamic functions of external parameters whose fixation defines the equilibrium
state and they are either E or P (another pair preferred by other authors is E and D, we
will not discuss this question that is irrelevant to this paper). Let us discuss the meaning
of Eq. (4) following the previous Section, i.e., starting with zero temperature ferroelec-
tric transition in a system governed by classical mechanics. We have a slab of the ferro-
electric material with ideal electrodes connected to an exceptionally large capacitance
which fixes the voltage, i.e., the electric field in the slab. Then U is the potential energy
of this two-part system. The first three terms constitute the potential energy when the
electrodes are short-circuited, so that there is no electric field and we have a transition
in a mechanical system with pressure as the control parameter, i.e., what we considered
in the previous Section. The entirety of Eq. (4) is the potential energy of the system
when the electrodes are connected to the capacitor (for more detail see Ref. [16]). Its
minimum provides the equilibrium, i.e., the observable, value of P Peð Þ :

2aPe þ 2bP3
e ¼ E (5)

Thus, Ginzburg derived the electrical equation of state with the use of which he
explained the main properties of ferroelectrics. Of course, he did not consider zero tem-
perature transitions. Like Landau did, he considered temperature as one more control
parameter which is rightful to the same extent as pressure. Anyway, Ginzburg works
was a breakthrough. Using a simple mathematics, he explained the main properties of
ferroelectrics. It was the beginning of what an immense number of papers was later
devoted to. Now, 75 years after his first work it might be easy, as well as useful and
instructive, to criticize him (together with Landau) but he was a pioneer and it is unfor-
tunate that his name is sometimes excluded from the ‘troika’ by those who naively
believe that his contribution is only the account for gradients of the order parameter
(in the latter, by the way, he was far from being the first).

4. Devonshire

Devonshire studied BaTiO3 to far more detail than Ginzburg. He had more experimen-
tal data to explain: monocrystals of BaTiO3 were already available in the West. In par-
ticular, he considered not one- but three-component polarization vector. But we are
interested in his differences with Ginzburg of other nature and will imagine that
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Devonshire considered one-component polarization and second order transition as well.
He mentioned neither Landau theory nor Ginzburg’s paper. It is unclear if he was
aware of them. In principle, he could. The first Ginzburg’s paper was published in
English before development of the cold war with all its disastrous consequences for the
exchange of scientific information between the Soviet Union and the West. But
Devonshire’s omission is not surprising anyway given that the Landau theory was basic-
ally neither accepted nor understood in the West until a decade later when the famous
Ginzburg-Landau paper on superconductivity became known. It surprised the western
scientific community by the abundance of results ‘obtained from nothing’, i.e., from the
Landau theory applied to superconductors.
Devonshire followed the line which was begun by Mueller and Cady for Rochelle salt

(see a good review by Kanzig [17]). They remained within the framework of usual ther-
modynamics and used conventional, not ‘constrained’, thermodynamic functions among
whose variables were either P or E, not both at the same time. The Mueller-Cady the-
ory was based on an important assumption that the same expressions for the thermo-
dynamic potentials are valid for both paraelectric and ferroelectric phases. This was a
deviation from the Gibbs theory of phase equilibrium. In his theory the two phases, A
and B, coexist in equilibrium if their thermodynamic potentials, GA p,Tð Þ and GB p,Tð Þ,
are equal and, importantly, GA p,Tð Þ and GB p,Tð Þ are considered as independent func-
tions. The possibility to describe the properties of the both phases by a single Gðp,T,P)
or by a more complicated, e.g., with components of the strain tensor rik instead of p,
but still a single function is not evident though may seem natural. The argument [17] is
that unlike Gibbs who referred to so different phases as liquid water and ice, we deal
with the case where one phase is, in effect, a distortion of the other. The electric equa-
tion of state was obtained from a thermodynamic relation

E ¼ @G
@P

(6)

where GðT,PÞ is a thermodynamic potential whose Taylor expansion can be written
down using symmetry arguments. In the simplest case G T,Pð Þ is given by the first
three terms of Eq. (4). Then using the thermodynamic formula, one obtains Eq. (5).
The subscript ‘e’ is not needed now because only equilibrium quantities are considered
to be physical so that the thermodynamic potential for the values of P other than the
equilibrium ones, i.e., obtained from Eq. (6) is virtually considered as a mathematical
tool whose physical meaning is not specified in contrast to the Landau theory and the
line followed in the Supplementary Material. The temperature dependences of coeffi-
cients a and b which were taken from the Landau theory by Ginzburg, in the Mueller-
Cady-Devonshire case had to be taken from the experimental data for the two phases.
The form of G T,Pð Þ as a function of P at different temperatures was similar to that of
Figs. 3,4 or to the form of Ginzburg’s free energy for E ¼ 0: But unlike the latter it was
for any value of E: When referred to the paraelectric phase (Fig. 3) all the points of the
curve correspond to equilibrium states for different values of E: But when it treats about
the ferroelectric phase (Fig. 4) Eq. (6) provides equilibrium (stable), metastable and
unstable solutions for P corresponding to a hysteresis loop for homogeneous polar-
ization unrealizable in experiment but conceptually important.
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The Mueller-Cady-Devonshire approach has left many questions unanswered. One
can agree that a ferroelectric phase is a distortion of the paraelectric one. But why one
uses the thermodynamic variables only to describe the distortion? The changes in struc-
ture can be tricky. Does the value of ratio of displacements of O and Ti ions in BaTiO3

influence the energy? Evidently, yes. Then why only the thermodynamic, total polariza-
tion was enough for Devonshire? Yes, he was successful to fit experimental data avail-
able to him for all three ferroelectric phases of BaTiO3. But what about new data?
Given that he used data for small electric field, e0E � P, can we expect that his
thermodynamic potential would be valid for studies such as, e.g., electrocaloric effect in
very thin films or effects of homogeneous depolarizing fields mentioned in the
Introduction? Since in both mentioned cases the electric field is strong, e0E � P,
the expectations lack a foundation. Attempts to answer, within microscopic theory, the
question why Devonshire was successful [18, 19, 20] has revealed that the success was
not guaranteed.

5. Is it the Landau theory which is popular in ferroelectric community?

Recall once more that the Landau theory does not claim more than an asymptotic
exactness. If we add that for many-body systems it can rightfully claim this for spontan-
eous symmetry breaking with soft stability loss in zero-temperature classical models
only one may wonder why it is so popular in the ferroelectric community. Indeed, all
the ferroelectric phase transitions in perovskites are due to change in temperature and
they are of the first order, i.e., they are with a hard stability loss. Nevertheless, people
fit experimental data within what they call LGD theory without any care for the univer-
sality region and become surprised when the fitting is not good. Often, there will be
good agreement with experiment, what is not trivial and is worth discussing.
We will discuss this question after but now consider zero-temperature first order

phase transition in a classical system. Let the system be driven to the stability loss from
the symmetrical phase. What happens next is a jump wise change in the system struc-
ture unlike that we considered in Sec. 2 where we put the coefficient b in Eq. (1) posi-
tive. Now we should put it negative but Eq. (1) becomes physically meaningless with no
finite minima, i.e., with no finite equilibrium value of g: To go back to physics, we
must add the next term in the g expansion, that of the sixth order to have:

U g, pð Þ ¼ U0 pð Þ þ a p� pcð Þg2 þ bg4 þ cg6 (7)

with c > 0: Have we generalized the Landau theory to first order transitions (something
he never did)? No, this is not the Landau theory anymore. As it was emphasized earlier,
the Landau theory is asymptotically exact when p tends to pc: It was so because geðpÞ
went to zero at p ! pc so that the first terms of the Taylor series become sufficient to
represent the whole function (for the g values of interest, i.e., for g close to ge) more
and more exactly. But this is impossible for the first order transitions because geðpcÞ 6¼
0: What Eq. (6) represents is not the Landau theory. This is something superficially
similar but lacking the main achievement of the Landau theory, i.e., its exactness
although at the asymptotic limit and in special conditions only. Eq. (6) is useful but not
as Landau theory but as a phenomenological model which provides important
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qualitative and reasonable quantitative results with an appropriate choice of the coeffi-
cients but it cannot claim asymptotic exactness anywhere, unlike the Landau theory. So,
what is used in the ferroelectric community should be properly called as, say, Landau-
like phenomenological models meaning that they use idea of order parameter (not
strictly defined unlike the Landau theory), respect the symmetry in the same way as
Landau did, consider temperature as a control parameter and pay no attention to
inapplicability of the Landau theory to a soft spontaneous symmetry breaking in many-
body systems at finite temperatures (S6).
But why are these models so successful? Why did Devonshire manage to describe so well

temperature-driven transitions in BaTiO3 in a wide temperature range? This question is
asked since long ago [18, 20] and an exhaustive answer is lacking. Some general ideas can
be formulated, however. We should ask ourselves what ‘a wide temperature range’ means?
Wide comparing with what? An answer clearly formulated in Ref. [19] but going down to
several previous authors is that this ‘what’ is the so-called, ‘atomic temperature’, i.e., 104 �
105 K. This is a natural scale of temperature dependence of crystal where there are no semi-
independent, i.e., weekly coupled with the rest, ions or radicals which are ordered at zero
temperature and become disordered at relatively low temperatures about the energy of this
weak coupling. So how the phase transitions occur at much lower temperatures as it hap-
pens in perovskites? The answer is by chance or due to mutual canceling of two large
(atomic!) contributions specific to the perovskite structure. This idea was virtually put for-
ward by Slater in 1950 [21] and was supported repeatedly including recent observations [22]
of BaTiO3 films on substrate providing misfit strain about 1% and leading to an increase in
the temperature of the ferroelectric phase transition by about 500K. This is naturally
explainable by the strain-modified cancelation of the above mentioned ‘atomic’ contribu-
tions. So that the temperatures of order of 102 � 103 K are relatively low and not far from
0K where the Landau theory is uncontested though not for a hard but for a soft spontan-
eous symmetry breaking. However, if the ‘hard’ is not too hard but is not extremely far
from being soft then reality might be also not too far from what Landau predicted. This
argument has been voiced by Ginzburg in 1949 [23] and is valid now also.
From another side, Devonshire’s success should not be overestimated. It was impres-

sive, of course, that all three ferroelectric phases came out from temperature depend-
ence of a single coefficient. But trying to achieve not only qualitative but also
quantitative agreement, he was forced to suppose a temperature dependence of another
coefficient with the scale of this temperature dependence being much smaller than the
atomic temperature. This has incited suspicion of Vaks [20] who tried to explain this
temperature dependence by the failure of Landau theory close to the point of spontan-
eous symmetry breaking at non-zero temperature. However, in Ref. [24] it was pro-
posed to conserve terms up to eighth order in polarization instead of sixth order as in
the original Devonshire expansion. It was found that the temperature dependence of the
coefficient which Vaks was worried about was unnecessary to assume. Then additional
experimental data were analyzed in Ref. [25] to conclude that both eighth power terms
and the temperature dependence of the famous coefficient should be considered. This
process seems unlimited. The Devonshire thermodynamic potential will change unlike
the Landau theory which can be rethought and taught in different ways but will explain
and predict the same basic things which it did in 1937.
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6. Conclusion

One of the widespread ways to answer the question what the Landau theory consists in
is saying that it is the mean field approximation for the Ising model. This paper is a
protest against this saying. It is correct that the mean field approximation for the Ising
model results in the Landau theory but it is not correct that this theory consists in this
approximation. The Ising model whose role in the development of theory of phase tran-
sitions cannot be overestimated is a model of order-disorder phase transitions, i.e., the
transitions which are driven by changes in temperature only. We argued that the most
appropriate way to present the Landau theory is not from the order-disorder but from
the displacive perspective. Unlike the order-disorder transitions the displacive ones are
possible at zero temperature when they are driven by change in pressure of another
non-thermal control parameter. When they are of the second order and are considered
for classical models the Landau theory is correct without any reservation. Thus, discus-
sion of such transitions is the most natural starting point for teaching the Landau the-
ory. They are also natural starting point to understand the essence of the Landau-like
modeling of the ferroelectric properties. Indeed, nowadays almost all the ferroelectric
studies are concentrated on perovskites or similar materials. These transitions are
mainly displacive (no transition is purely displacive if occurs at non-zero temperature)
and their temperatures are low comparing with the natural scale of temperature
dependences in this type of materials which is the so-called ‘atomic temperature’
(104�105 K). Thus, the displacive perspective is much closer to the reality for the per-
ovskite modeling than the order-disorder one.
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