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A B S T R A C T   

Assembling of multi-setup measurements emerges as a challenging problem in the structural health monitoring 
applications and may cause some important issues in the estimation of global modal parameters such as fre
quency, damping ratio and modal shape vector. To overcome this problem, a novel frequency domain pre- 
identification data merging method is proposed in this study. In the proposed methodology, to obtain a single 
measurement set, a least squares approach is employed resulting in a global response that is scaled from the 
multi-setup data. For the verification of the proposed merging procedure, one numerical, two experimental 
studies and one real data application have been conducted. The results obtained from the numerical, experi
mental and real data analysis indicate that the presented methodology provides rather high-quality estimations 
for multi-setup measurement problems.   

1. Introduction 

Estimation of dynamic properties such as frequency, damping ratio 
and mode shape vectors has a crucial importance in the vibration based 
Structural Health Monitoring (SHM) of engineering structures. In this 
context, various Operational Modal Analysis (OMA) techniques, which 
do not require any input data, have been presented to the literature. 
Natural Excitation Technique and Eigensystem Realization Algorithm 
(NExT-ERA) [1], Stochastic Subspace Identification (SSI) [2], Frequency 
Domain Decomposition (FDD) [3] and Bayesian Operational Modal 
Analysis (BAYOMA) [4] come forward as best-known and widely 
implemented techniques in the literature. Although the effectiveness of 
the OMA methods has been validated by numerous studies, there are still 
some limitations in the application of these methods. Among these 
limitations, the multi-setup problem, which specifically may become a 
necessity in the SHM of large-scale structures, arises as an important 
challenge. In such a case, since each setup corresponds to an individual 
cluster, assembling those clusters may produce significant errors. 
Consequently, those errors can adversely affect the identification quality 
of modal parameters. 

For modal frequencies and damping ratios, it is also possible to 
obtain a global value as the ensemble average of the local values eval
uated at each setup. Estimation of a global mode shape vector, however, 
might be a much more challenging issue since the identified local mode 
shapes are confined to different locations of the measured structure. In 

general sense, two fundamental approaches emerge in the literature for 
the global mode shape vector estimation: (i) Post-identification mode 
shape assembly [5–10], and (ii) pre-identification data merging tech
niques [11–14]. The first one implements an assembly procedure to the 
local mode shape vectors identified at individual (or local) setups. The 
latter one is based on the merging of data acquired from the individual 
setups before the identification procedure. 

One of the generic versions of the post-identification mode shape 
assembly techniques can be found in [13], which proposes a simple 
scaling procedure for local mode shapes. This procedure, however, re
quires a reference setup selection as a first step. Then, the local mode 
shapes obtained from the remaining setups are scaled with respect to the 
selected reference setup. This approach gives rather reasonable solu
tions when all measurement setups share constant reference points. In 
case of the roving reference sensor(s), however, significant issues can 
arise due to the error accumulation in the scaling sequences [15]. To 
overcome this problem, a global least squares approach which does not 
require any reference setup selection has been developed by Au [16]. 
The theory of global least squares approach is based on the minimization 
of equally weighted discrepancies between the local mode shapes and its 
counterparts of the global mode shape vector. The resulting algorithm 
leads to a high quality of estimation with considerably small error 
accumulation compared to the local least squares approach [15]. 

The least squares approaches do not consider the identification 
quality (or uncertainty) of the local mode shapes. Therefore, the 
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accuracy of the global least squares approach may significantly decrease 
in case the quality of the identified local mode shapes shows large 
fluctuations among different setups. From this perspective, Bayesian 
methods, which assemble the mode shapes by considering identification 
uncertainties, provides more precise and reasonable solutions for the 
multi-setup problems [5,6,8]. On the other hand, Bayesian methods are 
capable of quantifying a posterior uncertainty for the estimated global 
modal parameters [9,17]. Recent developments in this regard indicate 
that Bayesian techniques [5,6] also give more accurate results with 
respect to pre-identification methods in case of large variability in 
operational conditions (e.g. weakly excited modes in one or more 
setups). The reason for this difference lies in the fact that those methods 
are capable of estimating high quality mode shapes by incorporating the 
local modal parameters proportional to their second order statistical 
values (e.g. variance, coefficient of variation). However, despite this 
effectiveness, the post-identification techniques have an important 
disadvantage due to the remarkable increase in computational time and 
effort in case of the large number of measurement setups [18]. From this 
aspect, pre-identification methods might be more useful since they 
provide a fast modal identification process with a single measurement 
set. 

Available pre-identification data merging techniques, generally im
plements a data-based assembly strategy using a specific OMA tech
nique, such as [12,13]. Although reasonable results can be achieved for 
natural frequencies and damping ratios by those strategies, large 
amounts of errors can arise in the estimated mode shapes. To solve this 
problem, a refined procedure can be employed, which combines the 
deterministic SSI and Kalman filter applications, and provides more 
accurate results for mode shapes [19]. To manage uncertainty propa
gation in multi-setup applications, an extended version of SSI based 
data-merging technique has been proposed by [20]. A similar subspace- 
based data merging method is presented by Mevel et al. [11] considering 
the non-stationarity of input signals. In addition, a Power Spectral 
Density (PSD) based scaling procedure has been proposed by [21] to 
obtain a single data set from multi setup measurements. In this scaling 
procedure, the Fast Fourier Transform (FFT) of the measured data are 
synchronized by using a scaling factor that is calculated as a ratio of 
cross-spectral densities. 

The most important disadvantage of pre-identification methods is 
that they are either being limited with a specific modal identification 
technique or require a scaling procedure based on a single [14] and/or 
constant reference Degree of Freedom (DoF) [21]. To obtain a more 
general and practical solution procedure for such kinds of multi-setup 
problems, a novel pre-identification methodology is introduced in this 
study. Motivated from the global least squares approach, an FFT based 
scaling procedure is employed to generate a global response data that 
reasonably matches with local measurements in the frequency-domain. 
The presented technique is not restricted to single reference DoF and 
works well for all possible reference sensor placement configurations 
(permanent or roving). To validate the proposed methodology, numer
ical, experimental and real data investigations are undertaken. Ac
cording to the results obtained from the numerical and experimental 
studies, one can be concluded that the presented method provides rather 
reasonable solutions for multi-setup problems in case of large variations 
in the excitation levels. 

2. Theory of the proposed data merging methodology 

In SHM applications, it is generally not possible (and practical) to 
measure all DoFs of a structure due to the lack of instruments (e.g. ac
celeration sensors, data transmission cable and/or data acquisition de
vice). Dynamic properties of the measured structure, however, can be 
estimated more accurately by increasing the number of measurement 
setups. In this context, the number of overall measured DoFs can be 
calculated as below: 

N =
∑ns

i
(ni − ri) (1) 

where ns is the number of measurement setups, ni is the number of DoFs 
measured at ith setup, and ri represents the number of reference mea
surement channels between the ith and (i-1)th setups (when i = 1, ri = 0). 
Using the scaled discrete FFT, the acceleration response vector acquired at 
the ith setup can be written in the frequency domain as below, [15]. 

Ÿi(ωk) =

̅̅̅̅̅
Δt
nt

√
∑nt − 1

j=0
ÿi
(
tj
)
e - i2πjk/nt ; k = 1, 2, ... ,Nq (2) 

where ÿi
(
tj
)
= ÿi(t = jΔt) and Ÿi(ωk) = Ÿi(ω = kΔω) represent ni × 1 

sized time and frequency domain acceleration responses and Nq is the 
ordinate of the Nyquist frequency [15]. Here, Δt, Δω and nt indicate the 
sampling time and frequency, and the number of samples, respectively. 
In addition, t and ω represent the continuous time and frequency vari
ables while tj and ωk are that of the discrete time and excitation fre
quency ordinates. In case of all vibration modes are well separated, in 
the vicinity of nth modal frequency, the expected value of Ÿi(ωk) can be 
separated into two components as below [15]: 

E
[
Ÿi(ωk)

]

ωk→ωn

= φnisni(ωk)hn(ωk)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

modal response

+ εi(ωk)
⏟̅̅̅⏞⏞̅̅̅⏟

noise

(3)  

where φni is the ni × 1 sized local mode shape vector that confines the 
measured DoFs at ith setup, sni(ωk) is the discrete FFT of the modal 
excitation (scalar) for the ith setup, and εi(ωk) is the ni × 1 sized mea
surement noise vector. In addition, hn(ωk) represents the nth modal 
transfer function which is defined by [15]: 

hn(ωk) =

[(
ωn

ωk

)2

− 1 + i2ξn

(
ωn

ωk

)]− 1

(4) 

If the prediction errors due to the implemented modal identification 
technique are neglected, the modal parameters, including mode shape 
vector, modal frequency and damping ratio can be assumed invariant 
among the individual measurement setups. The modal forcing levels, 
however, may show significant variance among different setups. Here, a 
global response vector is defined as below so as to cover the local data 
measured at individual setups with a reasonable convergence: 

E
[
Ẍ(ωk)

]

ωk→ωn

= Φnsn(ωk)hn(ωk)+ ε(ωk) (5)  

where Ẍ(ωk) and Φn represent the N × 1 sized global acceleration 
response and mode shape vectors, respectively. In addition, sn(ωk) and 
ε(ωk) indicate the discrete FFT of the modal excitation (scalar) and N × 1 
sized noise vector for the expected global response, respectively. In 
general sense, when the measured structure is strongly excited by the 
modal forcing, it can be expected that Eqs. (3) and (5) are dominated by 
the modal response due to the negligibly small measurement noise [15]. 
Then, the resulting local and global accelerations can be approximately 
defined by: 

E
[
Ÿi(ωk)

]

ωk→ωn

≈ φnisni(ωk)hn(ωk) (6)  

E
[
Ẍ(ωk)

]

ωk→ωn

≈ Φnsn(ωk)hn(ωk) (7) 

Thus, a relation can be defined between the local and global accel
erations as follows: 

αi(ωk)E
[
Ÿi(ωk)

]

ωk→ωn

= LiE
[
Ẍ(ωk)

]

ωk→ωn

+ ei(ωk) (8) 

which equivalent of: 
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φniαi(ωk)sni(ωk)hn(ωk) = LiΦnsn(ωk)hn(ωk)+ ei(ωk) (9)  

where Li represents an ni × N sized observation matrix which extracts 
the measured part of the global response, and αi(ωk) indicates a scaling 
factor (scalar) to equalize the spectral density levels of sn(ωk) and sni(ωk). 
In addition, ei(ωk) represents an N × 1 sized error vector. 

As the excitation frequency ωkmoves away from ωn, the modal 
response can be assumed negligibly small in comparison to the noise 
term. Thus, in such a case, the expected values of Ÿi(ωk) and Ẍ(ωk) can 
be defined as: 

E
[
Ÿi(ωk)

]
≈ εi(ωk) (10)  

E
[
Ẍ(ωk)

]
≈ ε(ωk) (11) 

Considering this assumption, Eq. (8) turns into the following form: 

αi(ωk)εi(ωk) = Liε(ωk)+ ei(ωk) (12) 

Sensor noise sensitivity has an important role on the effectiveness 
and validity of the presented theory. For example, servo accelerometers 
produce considerably less channel noise (say about 1 μg/Hz1/2) in 
comparison to piezo-electric accelerometers and Micro-Electro- 
Mechanical Sensors (MEMS) [15]. It can be deduced from the here 
that servo accelerometers give much smoother PSD spectrum with a 
larger signal-to-noise ratio (snr) and gives more accurate results for the 
presented methodology. On the other hand, such kind of channel noise 
not only may be induced by the installed accelerometers but also may 
stem from the data acquisition system (e.g. data acquisition device and/ 
or data transmission cable). In this context, the resulting channel noise 
(or measurement noise) can be modeled as a stationary stochastic pro
cess [15]. From this perspective, it can be concluded that estimating the 
channel noise density is more possible compared to the modelling errors 
induced by unconsidered model parameters (e.g. closely spaced modes, 
heavy or non-classical damping, and non-stationary input excitation). A 
more comprehensive discussion in this regard can be found in [22]. 
Consequently, it can be stated that although a less channel noise density 
positively contributes to the effectiveness of the proposed methodology, 
the presented scaling process can still work with reasonably high 
channel noise. However, a large variability in the channel noise levels 
among different setups may cause significant errors in the presented 
scaling procedure. 

In case of the measurement sensors have similar noise sensitivities 
without any additional biased errors due to the measurement system, 
and modelling errors are negligibly small, it can be expected that the 
channel noise densities are in the same levels at all setups. Consequently, 
the estimated global response can preserve the data quality of the local 
measurements not only within narrow bands but also at out of the 
resonant frequencies. Otherwise, noisy responses may be generated 
during the scaling procedure due to the modelling errors. Therefore, the 
following conditions should be satisfied in order to minimize those 
modelling errors.  

• The measured response should contain well separated and strongly 
excited modes.  

• The measured structure should be lightly damped and should be 
subjected to stationary input excitation.  

• Channel noise spectral density levels should not show large variances 
among measurement setups. 

• There should be at least one reference sensor, which does not coin
cide with a nodal point, at each setup. 

Considering all of these aspects, a least squares equation can be 
defined to estimate a global acceleration response, as follows: 

J
(

Ẍ,αi

)
=
∑ns

i=1

⃦
⃦
⃦αi(ωk)Ÿi(ωk) − LiẌ(ωk)

⃦
⃦
⃦

2
(13) 

which can be extended as: 

J
(

Ẍ,αi

)
=
∑ns

i=1

{
α*

i (ωk)αi(ωk)Ÿ
*
i (ωk)Ÿi(ωk) − α*

i (ωk)Ÿ
*
i (ωk)LiẌ(ωk)

− Ẍ*
(ω)LT

i αi(ωk)Ÿi(ωk) + Ẍ*
(ωk)LT

i LiẌ(ωk)
}

(14) 

Here, “*” denotes the complex conjugate and transpose. Thus, an 
optimal solution for αi(ωk) and Ẍ(ωk) can be obtained by the gradient 
based minimization of Eq. (14). To this end, taking the first order 
gradient of Eq. (14) with respect to αi*(ωk) leads to: 

∂J
∂α*

i (ωk)
=
∑ns

i=1

{
αi(ωk)Ÿ

*
i (ωk)Ÿi(ωk) − Ÿ*

i (ωk)LiẌ(ωk)
}
= 0 (15) 

Solving Eq. (15) for αi(ωk) yields: 

α̂i(ωk) =
Ÿ*

i (ωk)LiẌ(ωk)

Ÿ*
i (ωk)Ÿi(ωk)

(16) 

Similarly, minimizing Eq. (14) with respect to Ẍ(ωk) gives: 

∂J
∂Ẍ(ωk)

=
∑ns

i=1

{
− 2α*

i (ωk)Ÿ
*
i (ωk)Li + 2Ẍ*

(ωk)LT
i Li

}
= 0 (17) 

Finally, the optimal value of the global response vector can be ob
tained as: 

̂̈X(ωk) =

∑ns
i=1αi(ωk)LT

i Ÿi(ωk)
∑ns

i=1LT
i Li

(18) 

Fig. 1. Flowchart for the proposed data merging methodology.  
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A flowchart is presented in Fig. 1 to summarize the overall procedure 
for the proposed methodology. Here, an iterative solution procedure is 
required to solve Eq. (13) since αi(ωk) and Ẍ(ωk) are mutually dependent 
parameters. Therefore, the selection of an initial guess becomes neces
sary to initialize the iteration process. This initial guess can be evaluated 
by scaling the all local measurements with respect to a selected reference 
setup. However, such kind of a process enforces the global response and 
reference measurement setup to have the same spectral density, which 
may result biased errors. Therefore, a proper reference setup selection 
arises as an important issue in such a case. Instead, an initial guess can 
be determined by: 

Ẍ(ωk)
(0)

=

∑ns
i=1LT

i Ÿi(ωk)
∑ns

i=1LT
i Li

(19) 

Subsequently, Eq. (13) can be solved iteratively until a prescribed 
convergence criterion is satisfied. Here, this convergence criterion is 
defined by: 

ρ =

⃒
⃒
⃒
⃒
⃒
Re

(
Ẍ*

(ωk)
(j+1)Ẍ(ωk)

(j)

Ẍ*
(ωk)

(j+1)Ẍ(ωk)
(j+1)

)

− 1

⃒
⃒
⃒
⃒
⃒
× 100 (%) (20) 

In this study, the upper limit of the convergence criterion is selected 
as 0.1%. 

After obtaining the optimal Ẍ(ωk), a time domain global response 
can also be calculated by taking the inverse discrete Fast Fourier 
Transform (iFFT), as below [15]. 

ẍ
(
tj
)
=

1
nt

∑nt − 1

k=0
Ẍ(ωk)ei2πjk/nt (21)  

3. Numerical and experimental analysis 

The performance of the presented frequency-based data merging 
methodology is investigated with one numerical, two experimental, and 
one real data examples. First, a numerical twelve story shear frame 
model, which has been previously analyzed by [5], is investigated. 

Second, a ten-story laboratory model is experimentally analyzed in 
order to see the effects of constant and roving reference sensor place
ment configurations on the effectiveness of the proposed methodology. 
Finally, the presented method is implemented to a benchmark bridge 
which has been widely investigated in the literature. 

3.1. Numerical analysis 

In this section, a twelve-story shear frame structure is numerically 
modeled for analytical verification of the proposed data merging tech
nique. In the numerical model, the considered structure has a uniform 
inter-story stiffness of k = 4000 kN/mm and a uniform mass of m = 1000 
tons. This numerical model was previously investigated by [5] for the 
validation of their Bayesian mode shape assembly technique. In the 
constructed model, each floor of the structure is subjected to indepen
dent and identically distributed (i.i.d.) Gaussian forces with a one-sided 
root spectral density of 19.6N/

̅̅̅̅̅̅
Hz

√
. Acceleration responses at the floor 

levels are acquired in five measurement setups with 100 Hz sampling 
frequency. The sensor placement configurations for the employed 
measurement setups are presented in Table 1. In the generation of 
simulated data, each acquired acceleration response is contaminated by 
an i.i.d. Gaussian white noise with a one-sided root spectral density of 
5μg/

̅̅̅̅̅̅̅
Hz.

√

The singular value spectra for the original (multi-setup) and the 
merged data are presented in Fig. 2. In the considered numerical model, 
all vibration modes are well separated. Therefore, only the maximum 
singular value spectra are shown for the original and the merged data. At 
first view, it is seen that the merged data shows a smooth spectrum as 
being compatible with that of the original data set. Since similar channel 
noises are assigned for each setup, any noise amplification and/or 
spurious mode effect triggered by the applied methodology are not 
visible on the presented spectrum for the merged data. 

Three different identification techniques: Bayesian Fast Fourier 
Transform Approach (BFFTA), Covariance Driven Stochastic Subspace 
Identification (SSI-Cov), and Enhanced Frequency Domain 

Table 1 
Sensor placement configurations in measurement setups.  

Setup Number Measured floors 

1 1, 2, 3, 4 
2 3, 4, 5, 6 
3 5, 6, 7, 8 
4 7, 8, 9, 10 
5 9. 10, 11, 12  

Fig. 2. Maximum singular value spectra: a-) original, and b-) merged data.  

Table 2 
Identified natural frequencies (Hz.) for the first five modes.  

Mode 
Number 

Present study Au and Zhang  
[5] 

Analytical 

BFFTA SSI-Cov EFDD 

1 1.2648 1.2660 1.2686 1.2645 1.2635 
2 3.7629 3.7659 3.7570 3.7652 3.7705 
3 6.2209 6.2194 6.2211 6.2295 6.2185 
4 8.5843 8.5794 8.5875 8.5717 8.5686 
5 10.7908 10.7968 10.8320 10.7795 10.7827  
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Decomposition (EFDD) are employed for the simulated data. All these 
implementations are undertaken by using an in-house computer pro
gram coded by the author. Natural frequencies, damping ratios and 
modal shape vectors identified for the first five modes are presented in 
Table 2, Table 3 and Fig. 3, respectively. Here, the results reported by Au 
and Zhang [5] are also presented for comparison purposes. At first view, 
it is seen that the identification results are compatible with those pre
sented by Au and Zhang [5]. Moreover, it is also observed that the ob
tained results perfectly match with the analytical values. Here, the major 
difference is observed in the damping ratios identified by EFDD. As it is 
known from the literature, EFDD provides less sensitive damping esti
mation when compared to BFFTA and SSI-Cov [23]. Therefore, this 
difference can be considered as reasonable for this numerical example. 

3.2. Experimental analysis 

For experimental verification, a comparative analysis which was 
undertaken using a ten-story laboratory shear frame model is presented 
in this section. In the conducted laboratory experiments, three piezo- 
electric accelerometers have been used which are defined with 1000 
mV/g sensitivity and 11.4 μg/

̅̅̅̅̅̅
Hz

√
spectral noise density. The mea

surement system consists of a laptop computer and a 16 channel 
USBDUX-Sigma data acquisition box with 24 bit analog to digital 

conversion and a constant current supply for the accelerometers [6]. The 
view of the laboratory structure and measurement system is presented in 
Fig. 4. Here, two different sensor placement scenarios namely Case-I and 
Case-II are considered in order to see the effects of roving and fixed 
reference sensor configurations on the accuracy of the proposed meth
odology. The sensor placements configurations for the considered sce
narios are presented in Table 4. For each scenario, acceleration 
responses have been recorded in the weak direction of the structure with 
100 Hz sampling frequency and 5 min duration. 

The maximum singular value spectra of the original and the merged 
data obtained for Case I and II have been presented in Fig. 5 and Fig. 6, 
respectively. In the experimental procedure, acceleration responses of 
the structure have been measured under similar operational conditions 
for Case I and Case II. Therefore, the resulting singular value spectrums 
seem rather similar. The possible modes of the structure are detected 
near the frequencies of 2.6, 7.3, 11.7, 17.00 and 20.6 Hz. Some addi
tional peaks also appear as structural modes around the frequencies of 
15.5 and 23 Hz. However, these peaks do not correspond to any trans
lational modes in the weak direction of the model structure. Therefore, 
these peaks can be considered as the possible modes of the laboratory 
structure in which the experimental study was conducted. In addition, a 
smooth singular value spectra are observed in the presented figures for 
the merged data, which follows a similar trend with the original data 
sets. 

Similar to the numerical example presented in the previous section, 
three different operational modal analysis techniques, BFFTA, SSI-Cov 
and EFDD, have been implemented in this section. Additionally, a 
Bayesian Mode Assembly (BMSA) technique has been employed on the 
collected data for comparison purposes. The effectiveness of the 
implemented BMSA algorithm has been previously validated by [6]. 
Therefore, the results obtained by BMSA technique can be considered as 
reference values for this analysis. In this context, the identified natural 
frequencies and damping ratios obtained for Case I and II are presented 
in Tables 5 and 6, respectively. The identified modal shape vectors are 

Table 3 
Identified damping ratios (%) for the first five modes.  

Mode Number Present study Au and Zhang [5] Analytical 

BFFTA SSI-Cov EFDD 

1 0.94 1.10 1.51 0.91 1.00 
2 0.94 1.03 0.76 1.05 1.00 
3 1.00 0.94 0.78 1.02 1.00 
4 0.97 0.94 0.93 1.07 1.00 
5 0.96 0.91 0.69 1.06 1.00  
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Fig. 3. Identified and analytical mode shapes.  
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shown in Fig. 7 and Fig. 8 as well. According to the presented results, it is 
observed that the presented merging procedure provides quite reason
able solutions for the implemented modal analysis methods. In addition, 
it can be deduced from here that the applied merging procedure also 
gives similar results for roving and permanent reference sensor 

configurations. 

3.3. Benchmark study 

A benchmark bridge which has been widely analyzed in the litera
ture is investigated in this section. The investigated structure was 
formerly known as Z24 highway bridge, which connects the two towns 
of Utzenstorf and Koppigen in Switzerland. The schematic view of the 
Z24 bridge is presented in Fig. 9. 

The Z24 Bridge was previously measured by KU LEUVEN Structural 
Mechanics division under ambient and forced vibration effects to 
perform various SHM applications for different damage scenarios, which 
are represented by totally eighteen measurement sets. At each set, 
totally nine measurement setups with constant reference sensors have 
been employed [25]. The schematic representation of the measurement 
setups is also shown in Fig. 9. Previously, numerous researches have 

Fig. 4. a-) Schematic representation of the model structure, b-) experimental setup (reproduced from [6,24]).  

Table 4 
Sensor placement configurations in measurement setups.  

Setup Number Measured floors 

Case I Case II 

1 1, 2, 3 1, 2, 10 
2 3, 4, 5 3, 4, 10 
3 5, 6, 7 5, 6, 10 
4 7, 8, 9 7, 8, 10 
5 9. 10 9. 10  

Fig. 5. Maximum singular value spectra for Case I: a-) original, and b-) merged data.  
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been undertaken regarding the modal identification, finite element 
model updating and damage detection applications for the Z24 bridge 
[6,19,22,25–27]. 

The singular value spectra obtained for the original and the merged 
data are presented in Fig. 10. It is observed from here that the modal 
response in original data shows large variances among the local setups. 
In the presented figure, smooth modal response spectra and large snr 
levels are apparently visible for the lower modes. However, noisy plots 
appear starting from the fifth mode (around 12 Hz). In addition, one 
should be denoted that the channel noise levels show large variation 
among the measurement setups. Despite such a large variation, it is 
observed that the merged data provides a smooth spectrum in which the 
possible structural modes can be clearly detected. According to the 
presented spectrum for the merged data, the possible structural modes 
are visible around the frequencies of 3.80, 4.90, 9.70, 10.30, 12.50 and 
13.00 Hz. 

In the context of this application, BFFTA technique has been 
employed for modal parameter estimation. Here, the implemented 
modal identification technique, BFFTA, is capable of estimating PSD 
level of the modal excitation as well as the measurement noise. From this 
aspect, it might be more informative to show the variations in the PSD 
levels of the modal excitation and the measurement noise to understand 

how much the signal quality is influenced by the applied data merging 
strategy. For this purpose, the estimated PSD levels of the modal exci
tations and measurement noise are presented in Fig. 11. Here, it is 
observed that both PSD of modal excitation and measurement noise 
have a similar amount of decrease. It can be concluded from here that 
the applied methodology does not produce noisy data or spurious modes 
for the considered example. To the contrary, an amplification is 
observed in the snr levels up to the fourth mode. (see Fig. 10b). 

Estimated modal parameters, including natural frequencies and 
damping ratios are presented in Table 7. For comparison purposes, the 
identification results reported by the previous researches undertaken for 
the Z24 bridge are provided as well. According to the presented results, a 
reasonable convergence is observed between the identified and the 
reference values, in which the relative difference remains less than 0.1% 
for the identified natural frequency values. Here, the largest relative 
difference (about 100%) appears in the fourth modal damping ratios. 

The first sixth mode shapes of the Z24 bridge identified from the 
merged data are presented in Fig. 12. When they are compared to the 
results reported by previous researches, such as [6,22], it is seen that the 
estimated mode shapes are compatible with them. Here, the Modal 
Assurance Criterion (MAC) values between the identified mode shapes 
and the results reported by Hızal et al. [6] are calculated as 0.998, 0.995, 

Fig. 6. Maximum singular value spectra for Case II: a-) original, and b-) merged data.  

Table 5 
Identified natural frequencies (Hz) obtained with roving and fixed reference sensor configurations.  

Mode Number BFFTA SSI-Cov EFDD BMSA 

Case I Case II Case I Case II Case I Case II Case I Case II 

1 2.608 2.609 2.607 2.608 2.606 2.612 2.610 2.610 
2 7.318 7.320 7.318 7.321 7.335 7.331 7.323 7.323 
3 11.648 11.649 11.642 11.648 11.658 11.658 11.649 11.649 
4 16.994 16.993 16.992 16.991 16.992 16.975 16.996 16.996 
5 20.627 20.630 20.629 20.629 20.643 20.641 20.627 20.626  

Table 6 
Identified damping ratios (%) obtained with roving and fixed reference sensor configurations.  

Mode Number BFFTA SSI-Cov EFDD BMSA 

Case I Case II Case I Case II Case I Case II Case I Case II 

1 0.23 0.22 0.23 0.22 0.30 0.25 0.20 0.20 
2 0.21 0.22 0.23 0.24 0.33 0.34 0.19 0.19 
3 0.17 0.16 0.16 0.16 0.17 0.18 0.19 0.19 
4 0.23 0.23 0.20 0.22 0.22 0.23 0.22 0.22 
5 0.17 0.19 0.16 0.18 0.18 0.16 0.14 0.14  
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Fig. 7. Identified mode shapes for Case I.  
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Fig. 8. Identified mode shapes for Case II.  
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0.998, 0.999, 0.992, and 0.997, respectively. 

4. Conclusions 

In this study, a frequency-based data merging methodology is pre
sented for multiple measurement sets. The underlying theory of the 
proposed methodology lies in a least-squares based scaling procedure 
based on the FFT data. The presented method is verified by one nu
merical and two experimental analysis, and one real data example. In 
this context, fundamental conclusions are summarized below. 

• According to the obtained results, one can conclude that the pre
sented merging methodology provides a large quality of data even 
for excitation levels that show significant variation among different 
setups. Based on the presented benchmark study, it is observed that 

the merged data provides a rather smooth spectrum, although the 
PSD of modal excitations shows up to approximately 100-fold vari
ation among local measurement setups.  

• When the modal snr values show a dramatic decrease (say snr < 10) 
in one or more measurement setups, the presented merging method 
may provide noisy data due to the loss of information of local data in 
the merging procedure. In such a case, most pre-identification data 
merging strategies may give unreasonable results. Post identification 
techniques such as BMSA, however, might be more effective for such 
kind of problems due to the fact that the uncertainty of local modal 
parameters is included in the assembly procedure.  

• In the current SHM applications, it is also possible to minimize the 
channel noise in reasonable levels (say 1 – 10 μg/

̅̅̅̅̅̅
Hz

√
) by means of 

the technological developments in measurement systems. In such a 
case the presented method becomes quite practical provided that the 

Fig. 9. Schematic view of the Z24 bridge and sensor placement configurations (Reproduced from [6]).  

Fig. 10. Singular value spectrum obtained for a-) original, b-) merged data.  
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Fig. 11. Variation of identified PSD of modal excitation and noise for the multi setup (blue square) and the merged data (red star). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 7 
Identified modal frequencies and damping ratios.  

Mode 
Number 

f (Hz.) ξ (%) 

Present 
Study 

Peeters and Ventura  
[25] 

Reynders et al.  
[26] 

Hızal et al.  
[6] 

Present 
Study 

Peeters and Ventura  
[25] 

Reynders et al.  
[26] 

Hızal et al.  
[6] 

1 3.86 3.86 3.86 3.85 0.87 0.90 0.80 0.92 
2 4.90 4.90 4.90 4.89 1.43 1.40 1.40 1.36 
3 9.74 9.77 9.76 9.77 1.01 1.30 1.40 1.19 
4 10.30 10.30 10.30 10.32 0.95 1.40 1.30 1.94 
5 12.59 12.50 12.42 12.53 2.51 2.50 2.80 3.18 
6 13.29 13.20 13.22 13.22 2.29 3.30 3.40 3.05  

Fig. 12. Identified mode shapes for the Z24 bridge.  
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modelling assumptions are satisfied. Here, any modal identification 
technique (time or frequency domain) can be implemented for the 
merged data. 

• In the presented methodology, the identification of local modal pa
rameters at individual setups are not necessary since a single step 
identification procedure is performed using the merged data. Thus, 
in case of the large number of measurement setups, a significant 
decrease can also be obtained in the computational time and effort in 
comparison to the post-identification techniques. 
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[20] M. Döhler, X. Lam, L. Mevel, Uncertainty quantification for modal parameters from 
stochastic subspace identification on, Mech. Syst. Signal Process. 36 (2013) 
562–581, https://doi.org/10.1016/j.ymssp.2012.11.011. 

[21] J.M.W. Brownjohn, Ambient vibration studies for system identification of tall 
buildings, Earthq. Eng. Struct. Dyn. 32 (2003) 71–95, https://doi.org/10.1002/ 
eqe.215. 

[22] Ç. Hızal, Modified frequency and spatial domain decomposition method based on 
maximum likelihood estimation, Eng. Struct. 224 (2020), 111007, https://doi.org/ 
10.1016/j.engstruct.2020.111007. 

[23] L. Zhang, T. Wang, Y. Tamura, A frequency-spatial domain decomposition (FSDD) 
method for operational modal analysis, Mech. Syst. Signal Process. 24 (2010) 
1227–1239, https://doi.org/10.1016/j.ymssp.2009.10.024. 

[24] Ç. Hızal, G. Turan, A two-stage Bayesian algorithm for finite element model 
updating by using ambient response data from multiple measurement setups, 
J. Sound Vib. 469 (2020), 115139, https://doi.org/10.1016/j.jsv.2019.115139. 

[25] B. Peeters, C.E. Ventura, Comparative study of modal analysis techniques for 
bridge dynamic characteristics, Mech. Syst. Signal Process. 17 (2003) 965–988, 
https://doi.org/10.1006/mssp.2002.1568. 

[26] E. Reynders, J. Houbrechts, G. De Roeck, Fully automated (operational) modal 
analysis, Mech. Syst. Signal Process. 29 (2012) 228–250, https://doi.org/10.1016/ 
j.ymssp.2012.01.007. 

[27] A. Teughels, G. De Roeck, Structural damage identification of the highway bridge 
Z24 by FE model updating, J. Sound Vib. 278 (2004) 589–610, https://doi.org/ 
10.1016/j.jsv.2003.10.041. 

Ç. Hızal                                                                                                                                                                                                                                           

https://doi.org/10.1111/j.1747-1567.2010.00643.x
https://doi.org/10.1111/j.1747-1567.2010.00643.x
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0010
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0010
https://doi.org/10.1088/0964-1726/10/3/303
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0020
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0020
https://doi.org/10.1061/(asce)em.1943-7889.0000385
https://doi.org/10.1061/(asce)em.1943-7889.0000385
https://doi.org/10.1016/j.ymssp.2019.106328
https://doi.org/10.1016/j.ymssp.2013.09.012
https://doi.org/10.1016/j.ymssp.2014.08.016
https://doi.org/10.1016/j.ymssp.2019.106376
https://doi.org/10.1016/j.ymssp.2019.106376
https://doi.org/10.1109/tie.2020.2979563
https://doi.org/10.1006/jsvi.2001.3880
https://doi.org/10.1007/s40799-020-00365-w
https://doi.org/10.1007/s40799-020-00365-w
https://doi.org/10.1007/978-981-10-4118-1
https://doi.org/10.1016/j.ymssp.2010.08.002
https://doi.org/10.1002/stc.1679
https://doi.org/10.1002/stc.1679
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0090
http://refhub.elsevier.com/S0263-2241(20)31245-8/h0090
https://doi.org/10.1016/j.ymssp.2007.09.004
https://doi.org/10.1016/j.ymssp.2007.09.004
https://doi.org/10.1016/j.ymssp.2012.11.011
https://doi.org/10.1002/eqe.215
https://doi.org/10.1002/eqe.215
https://doi.org/10.1016/j.engstruct.2020.111007
https://doi.org/10.1016/j.engstruct.2020.111007
https://doi.org/10.1016/j.ymssp.2009.10.024
https://doi.org/10.1016/j.jsv.2019.115139
https://doi.org/10.1006/mssp.2002.1568
https://doi.org/10.1016/j.ymssp.2012.01.007
https://doi.org/10.1016/j.ymssp.2012.01.007
https://doi.org/10.1016/j.jsv.2003.10.041
https://doi.org/10.1016/j.jsv.2003.10.041

	Frequency domain data merging in operational modal analysis based on least squares approach
	1 Introduction
	2 Theory of the proposed data merging methodology
	3 Numerical and experimental analysis
	3.1 Numerical analysis
	3.2 Experimental analysis
	3.3 Benchmark study

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


