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ARTICLE INFO ABSTRACT

Optical fiber based sensor systems often utilize thin dielectric films coated on non-planar surfaces are needed to
be inspected for quality assurance. However, non-destructive optical characterization of these films is not a
simple method especially on curved large surfaces. In this study, we propose a real time procedure to estimate
the optical properties of sub-wavelength transparent dielectric films coated on optical fibers. The paper includes
developing a mathematical model and its experimental verification. The near field phase diffraction method is
combined with the structured light illumination that is spatial modes of optical fibers to estimate the thickness of
the phase object beyond the classical diffraction limits. Numerical simulations and experimental results show
that the film thickness can safely be characterized up to one tenth of wavelength of interest via selective spatial
field distribution determined according to the morphology of the thin film. The outcomes have good agreements
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with destructive Scanning Electron Microscope (SEM) measurements.

1. Introduction

Optical characterization of transparent dielectric optical thin films
is a critical issue due to their importance in optical fiber sensor tech-
nologies [1,2]. In general, typical fiber optic sensors are based on
periodic refractive index modulation inscribed in optical fiber known as
Fiber Bragg Grating (FBG) [3-5]. They have wide range applications
such as sensing element (temperature, pressure, strain etc.), inter-
rogator, and transducer [6-11]. To get further response from ambient
accordingly increase the precision, FBGs are conjuncted with thin films
[12-15]. Therefore, well defined optical parameters of thin films be-
comes an essential task to assure sensing capabilities. However, the
thickness of such films are usually fraction of the wavelength. The
methods in the literature and commercially available systems generally
depend on interferometric techniques [16,17] and ellipsometric tech-
niques [18,19]. Since they are generally scanning and pointwise
methods, the characterization becomes tedious and time consuming
process especially on curved surfaces. In addition to their complexity,
they are mostly expensive.

Optical resolution is a key parameter to resolve spatial features of an
object. The resolution of an optical system is limited by the diffraction
of light and can be characterized by total point spread function (PSF) of
the overall system [20]. In classical diffraction theory, the diffraction
limits can be circumvented by reducing the wavelength or increasing
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numerical aperture, thereby making PSF narrower. However, it can also
be improved by a technique PSF engineering rather than conventional
methods [21]. The technique uses an idea that the total PSF is product
of the excitation and detection PSFs which offer an insight into that the
resolution can be increased through selective excitation. This is also
fundamental concept of the confocal microscopy and it can be adap-
table to the optical thin film characterization methods. Since the PSF of
a system is a function of spatial field distribution and coordinates of
light source, the film thickness can be estimated better than half of
source wavelength via choosing proper illumination according to the
morphology of thin film. It is a promising efficient method for curved
surfaces having an uneasy geometric shape.

Phase of the diffracted field from a phase object is more sensitive to
refractive index variation than amplitude and carries supplementary
informations about the system [22]. Since the incident wavefront is
modified by the curved geometry through the optical path length of the
thin film, it makes a phase contribution to the resultant diffraction
pattern. This idea has been exploited in a previous work for the
thickness estimation of the transparent dielectric optical thin film about
half of the wavelength on the curved substrate by using plane wave
illumination [23]. However, the whole information about an optical
system can be obtained via increasing the bandwidth of spatial fre-
quencies. Therefore, the near field phase diffraction method becomes
fundamental requirement for sub-wavelength optical characterizations
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Fig. 1. (a) Far field radiation geometry of structured light from optical fiber end. (b) Paraxial complex ray tracing. (c) Near field Huygens Fresnel diffraction geometry.

otherwise the exponential decaying field components (evanescent
waves) are lost and some of spatial frequencies filtered out from the
near field to the far field [24].

In this study, we aimed to propose a practical procedure for the
estimation of the sub-wavelength thickness transparent dielectric films
coated on the optical fiber around one tenth of source wavelength. It is
demonstrated that the phase diffraction method becomes more effective
via proper selection of the structured illumination. In the mathematical
model, the scalar near field Fresnel diffraction theory is exploited by
using the spatial mode of the optical fiber as an illumination. The
paraxial complex ray tracing method is used to describe wave propa-
gation through the coated optical fiber by decomposing the structured
illumination wavefront into a superposition of plane waves [25]. Since
the particular regions of wavefront is exposed specific phase delays due
to the fact that the light wave traverses to the phase object, it causes
distinct deviations on the resultant diffraction pattern which is recorded
at near field region by a sensor array. In this way, the thickness in-
formation about the nanoscale thin film is obtained by matching ex-
perimental and mathematical model results.

2. Mathematical model of a transparent dielectric film on the
optical fiber

The proposed mathematical model mainly based on generation of
structured light, paraxial complex ray tracing method and near field
Huygens-Fresnel diffraction formula. Overview of the mathematical
model is given in Fig. 1.

Spatial modes of the optical fiber are used as an incident wave as
shown in Fig. 1(a). The spatial distribution of the field mode from the
end facet of excitation fiber is calculated via Fraunhofer far field ap-
proximation [26]:

n_ ieikr m oo ikpsinBcos (o' —a) ’
7P, 00 === [0S, 9o e pdpda &)

where 2 is the wavelength, ¢ is the propagating field mode in the op-
tical fiber and k is the wavenumber.

Once the incident field is obtained at the front plane of the film
coated optical fiber as an illumination, it is divided into m sections such
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that each one is represented by a ray traversing the thin film (Fig. 1(b)).
Then, the phase variations of rays through the phase object can be
found by paraxial complex ray tracing. The field at an arbitrary point P
on the x’ plane for different regions can be expressed as:

U(P) = ¢;(x)exp(ikz)exp(—i¢,), x| >c
U(P) = ¢;(x)exp(ikz)exp(—i[d, + d4]), b <Xl <c
U(P) = ¢;(x)exp(ikz)exp(—i[d, + ¢4 + ¢4]), a<Ix1<b

U(P) = ¢;(x)exp(ikz)exp(—i[d, + ¢4 + ¢y + dol), 0<IxI<a (2)

where a, b and c are the core, the cladding and the coated optical fiber
radii, respectively. Furthermore, ¢, ¢4, ¢, and ¢, are represented as:

¢, = 2kngc,

&, = 2k(ng — n)c? — x2,

¢y = 2k(ng — ng)Vb* — x2,

e = 2k(ngo — ng) Va2 — x 3

where ng, ng, ng and ng, are refractive indices of the surrounding
medium, the dielectric film, the cladding and the core, respectively.

After the wavefront is obtained at the end of film coated optical
fiber, the total diffracted field on the sensor array (Fig. 1(c)) at an ar-
bitrary point P can be found by Modified Huygens Fresnel formula
(MHF) [27]:

U'(P) = —i >

x'=—0c0

’
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where the obliquity factor cos® = X=X

The MHF formula includes evanescent waves and high order spatial
variations via the contribution of C‘:—SG term in the above equation which
is called as near field term. It can be seen that the near field term starts
to dominate at small distances (r' — 0) and small angles (68 — 0). The
intensity pattern for three layer geometry is obtained by:

I = (U'P)U'P)) (5)

The normalized intensity is obtained by equalizing the total power
on the sensor array to unity.
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Fig. 2. Simulation results of diffraction pattern deviation between non-coated and 60 nm coated fibers at 200 um distance with sensor array for (a) Plane wave

illumination (b) LP;; illumination.
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Fig. 3. Experimental LP;; (a) beam profile and (b) intensity distribution.

3. Experiment

In this study, we used the film coated optical fiber to represent the
three layer geometry since optical fibers have perfect geometry with
known optical parameters such as refractive indices and radii. The
Layer by Layer Assembly (LbL) technique was chosen to build multi-
layer sub-wavelength thin films because of simplicity and robustness. In
this way, the thickness and roughness of the film becomes controllable
on nanoscales [28]. The combination of Poly arcylic acid (PAA) and
Polyethylenimine (PEI) was used to obtain transparent coating at the
wavelength of interest [29]. The polymer chains penetrate to the fiber
surface and show exponentially increasing film thickness.

The coating process starts with the cleaning of optical fiber with
Isopropyl Alcohol. Then, the fiber was first dipped into the cationic
solution (PEI) for 5 min, followed by rinsing distilled water for 30 s and
drying. This process creates the first positively charged layer on the
fiber. The same cycle was applied for first negatively charged layer by
using PAA. The creation of first bilayer, positively and negatively
charged layers, is called one deposition. Starting from the second de-
position cycle, the dipping times reduced to 3 min. This process is re-
peated to obtain desired film thickness.

The first step of the experimental testing procedure is the generation
of linearly polarized mode 11 (LPy;) since using modal illumination
source having narrower PSF has reshaped the diffraction pattern.
According to the numerical simulations, although the diffraction pat-
tern is recorded at near field region to include the effect of near field
terms, the discrepancy between non-coated and coated fibers is not
distinguishable in the plane wave illumination for sub-wavelength thin
film thickness (Fig. 2(a)). However, when the illumination source is
replaced by the structured light, the diffracted wave peak shifts and
amplitude diversions between patterns become apparent (Fig. 2(b)).

He-Ne Laser

LP,; Mode

Excitation fiber

We obtained the LP;; mode by focusing of 632.8 nm He-Ne laser
beam to tip of the optical fiber such that slightly off centered. The
distance between optical fibers are critical to obtain narrower PSF at
regions that rays have longest optical path length in the dielectric film
since they carry further information about the thickness of film. In our
experiment, the distance between excitation fiber end and coated fiber
is 1.3 mm. The generated mode is given in Fig. 3. It is not completely
pure LPj; but contains a fraction of the fundamental mode (LP,;) as well.
The full width half maximum (FWHM) of one lobe is approximately
73 um and peak locations are at around 60 pum. To discuss the nar-
rowness of structured illumination, we also calculated the FWHM of
Gaussian beam of He-Ne laser at 1.3 mm. The result shows that it has
900 um FWHM which is approximately twelve times greater than
structured illumination FWHM.

The generated LP;; mode were sent to the polymer coated optical
fiber. The near field diffraction pattern of the phase object was obtained
via processing the image recorded by the sensor array. The sensor array
has 1.12 pum pixel size and the distance between coated fiber and sensor
array is 200 um. The radius of core and cladding are a = 4. 15 um and
b=62.5 um and the refractive indices are n., = 1.4623 and
ng = 1. 4570, respectively. The top view of experimental setup is given
in Fig. 4.

4. Results and discussion

Here we focus mainly on the film thickness close to one tenth of
source wavelength. Four different samples were chosen among the tens
of films for testing the procedure considering uniformity and roughness
of the films. The thickness of films were estimated by matching the
experimental diffraction patterns with the mathematical model results.
The phase contribution due to the nanoscale thin film modify the higher
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Fig. 4. Experimental setup and recorded diffraction pattern.
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Fig. 5. Diffraction patterns of experimental (blue) and simulation (orange) results for: (a) non-coated fiber (b) 60 nm polymer coated fiber (c) 149 nm polymer coated
fiber (d) 188 nm polymer coated fiber. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

order diffraction pattern both in amplitude and width, as expected.
Diffraction patterns corresponding to samples are depicted in Fig. 5.
We employ RMSLE (Root Mean Square Logarithmic Error) and

differential shifts for zeroth, first and second order peaks on the dif-
fraction pattern as metrics to assess the accurate thickness values which
are given in Fig. 6. The RMSLE is the measure of relative deviations
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Fig. 6. (a) Zero, first and second order differential peak shifts with respect to thickness of coating (b) RMSLE for different coating thickness values.
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Fig. 7. SEM images: (a) Non-coated optical fiber (b) 65 nm polymer coated optical fiber.

Table 1
SEM and NPD method film thickness values.
Method Fiber-1 Fiber-2 Fiber-3 Fiber-4
SEM (nm) U =0 M, =65 u3 =130 uy =185
0 =0 0, =28 03=156 a3 =317
NPD (nm) u;=0 K, =60 uz =149 u; =188

between mathematical model and experimental results. The RMSLE is
calculated as:

RMSLE

TN (og(P® + 1) — log(1™! + 1))
B \/ N (6)

where I and I"*% are intensity values for experiment and mathe-
matical model, respectively.

SEM images were used for the verification of the procedure.
Aforementioned optical fibers were broken and examine manually to
obtain surface topography of films at various cross sections as given in
Fig. 7.

SEM and proposed near field phase diffraction (NPD) method results
are summarized in Table 1. The table includes mean (1) and variance
(o) values of film thickness. Since SEM uses pointwise scanning method,
the average film thickness was calculated by taking measurements from
different points of samples.

5. Conclusion

In this work, we have demonstrated that the near field phase dif-
fraction method using spatially structured illumination is a powerful
technique to estimate the thickness of nanoscale transparent dielectric
films coated on optical fibers. It has been verified that the classical
diffraction limit can be circumvented by modulating the whole PSF of
system via proper selection of illumination and using the near field
diffraction technique. The experimental results show that the deviation
between resultant diffraction patterns for different coating thickness
becomes distinguishable and measurable up to 60 nm (~1,/10) that is
critical threshold for many sensor applications. In contrast to conven-
tional techniques, the proposed method offers an opportunity to im-
plement a real time automated system for quality control in optical
sensor technologies. For the future works, higher order modes having
narrower PSF or quantum dots can be used as an excitation source or
NA of system can be further increased to obtain better resolution.
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