Show simple item record

dc.contributor.authorAslan, İsmail
dc.date.accessioned2017-01-19T07:47:13Z
dc.date.available2017-01-19T07:47:13Z
dc.date.issued2011-02-15
dc.identifier.citationAslan, İ. (2011). Analytic investigation of the (2 + 1)-dimensional Schwarzian Korteweg–de Vries equation for traveling wave solutions. Applied Mathematics and Computation, 217 (12),6013-6017. doi:10.1016/j.amc.2010.12.115en_US
dc.identifier.issn0096-3003
dc.identifier.urihttp://doi.org/10.1016/j.amc.2010.12.115
dc.identifier.urihttp://hdl.handle.net/11147/2818
dc.description.abstractBy means of the two distinct methods, the Exp-function method and the extended (G0/G)-expansion method, we successfully performed an analytic study on the (2 + 1)-dimensional Schwarzian Korteweg–de Vries equation. We exhibited its further closed form traveling wave solutions which reduce to solitary and periodic waves. New rational solutions are also revealed.en_US
dc.language.isoengen_US
dc.publisherElsevier BV.en_US
dc.relation.isversionof10.1016/j.amc.2010.12.115en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExp-function methoden_US
dc.subjectExtended (G0/G)-expansion methoden_US
dc.subjectSchwarzian Korteweg–de Vries equationen_US
dc.subjectTraveling wave solutionsen_US
dc.subjectSolitary wavesen_US
dc.titleAnalytic investigation of the (2 + 1)-dimensional Schwarzian Korteweg–de Vries equation for traveling wave solutionsen_US
dc.typearticleen_US
dc.contributor.authorIDTR59752en_US
dc.contributor.iztechauthorAslan, İsmail
dc.relation.journalApplied Mathematics and Computationen_US
dc.contributor.departmentİYTE, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume217en_US
dc.identifier.issue12en_US
dc.identifier.startpage6013en_US
dc.identifier.endpage6017en_US
dc.identifier.wosWOS:000286969000092
dc.identifier.scopusSCOPUS:2-s2.0-79551643703
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record