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ABSTRACT

In this thesis we study how to extend the notion of cofinitely supplemented module
to lattice theory. A submodule N of a module M is called cofinite if the factor module M /N
is finitely generated and we say that M is a cofinitely supplemented module if every cofinite
submodule of M has a supplement. We analogously define the notions of cofinite element
and cofinitely supplemented lattice for lattices. Inspired by the similarities between the
properties of modules and modular lattices, we obtain results for cofinitely supplemented

modular lattices, analogous to results for cofinitely supplemented modules.
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OZET

Bu tezde dual sonlu tiimleyen modil kavraminin kafes teorisinde tanimlanmasi
ve genellegtirilmesi aragtirilmaktadir. Bir M modiili ve N altmodiilii igin M/N béliim
modulii sonlu tiretilmis ise N altmodiiliine dual sonlu ve eger M modiiliintin her dual sonlu
altmodiiliiniin tiimleyeni varsa M modiiliine dual sonlu tiimleyen modil denir. Benzer
sekilde dual sonlu eleman ve dual sonlu tiimleyen kafes kavramlarini tanimladik. Modiiller
ve modiiler kafesler arasindaki benzerliklerden esinlenerek, dual sonlu tiimleyen modiiller

i¢in gecerli olan baz1 sonuglar1t modiiler kafeslere genellestirdik.
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CHAPTER 1

INTRODUCTION

R will be an associative ring with identity and we will consider left unital R-
modules. Let M be an R-module. A module M is supplemented, if every submodule K
of M has a supplement, i.e., a submodule L minimal with respect to K + L = M. It is
well known that a submodule L of M is a supplement of a submodule K if K + L = M
and K N L < L. If every cofinite submodule K of M (that is K < M with M/ i finitely
generated) has a supplement in M is called a cofinitely supplemented module.

A lattice L is called supplemented if every element b of L has a supplement in L,
i.e., an element ¢ which is minimal with respect to bV ¢ = 1. It is well known that if L is
a bounded modular lattice, then c is a supplement of b in L if and only if bV ¢ = 1 and
bAc < 9. An element a of a lattice L is called cofinite in L if the quotient sublattice 1/a is
compact (that is, the element 1 is compact). A lattice L is called cofinitely supplemented
if every cofinite element of L has a supplement in L.

There are many similarities between the properties of cofinitely supplemented mod-
ules and cofinitely supplemented lattices. The properties of the former are extensively
studied in (Alizade, Bilhan, Smith, 2001). We study generalizations of these properties
to lattice theory.



CHAPTER 2

MODULES

2.1 Modules and Submodules

Definition 2.1.1. Let R be a ring with identity 1 and M be an abelian group. Suppose
there is a function f : R x M — M (we will denote f(r,m) by rm) where r € R and
m € M. Then M is called a left R-module (or briefly a module) if the followings are
satisfied. (1) For every r € R and m,n € M,

r(m+n)=rm+rn.
(2) For every r,s € R and m € M,
(r+s)m =rm+ sm.
(3) For every r,s € R and m € M,
(rs)m = r(sm).

(4) For every m € M,

Definition 2.1.2. A subset N of an R-module M is called a submodule if N itself is a

module with respect to the same operations. Notation: N < M.

Definition 2.1.3. Let M be module and let N be a submodule of M. The set of cosets
My ={z+N|zeM}
is a module with respect to the addition and scalar multiplication defined by
(x+N)+wy+N)=(x+y)+ N, r(x+N)=rz+N.

This module M/N is called a factor module of M by .



Lemma 2.1.4. (Modular Law) Let N, K, L be submodules of a module M and K < N,
then
NN(K+L) =K+ (NNL).
Proof. Any x from N N (K + L) can be represented as
r=n=k+1
forsomen € N, k€ K,and [ € L. Since K < N, k € N. Therefore
l=n—-—keNnNL.

Thus
r=k+le K+ (NNL).

Converse is obvious. O

2.2 Isomorphism Theorems

Definition 2.2.1. If M and N are two modules then a function f : M — N is a

homomorphism in case for all ,s € R and m,a € M,

f(rm+ sa) =rf(m)+ sf(a).

Definition 2.2.2. A homomorphism f : M — N is called an epimorphism in case it

is onto. It is called a monomorphism in case it is one to one.

Definition 2.2.3. Kernel of f: ker f = {m € M | f(m)=0} < M.
Image of f: Im f = {f(m)| m e M} < N.

So f is an epimorphism if and only if Im f = N, and it can be easily verified that

f is a monomorphism if and only if ker f = 0.

Definition 2.2.4. A homomorphism f is called an isomorphism if it is both an epi-

morphism and a monomorphism (i.e. it is a bijection).



Theorem 2.2.5. (Fundamental Homomorphism Theorem) Let M and N be left

modules and f : M — N be a homomorphism, then

M/kerf =Imf .

In particular if f is an epimorphism then

M/kerng'

Proof. Define f : M/K — N where K = ker f by

f(m + K) = f(m).

m+ K =n+ K implies m —n € K, so f(m —n) = 0, then f(m) = f(n). Thus f is
well-defined. Also

f(m+K)+(n+K)) = f((m+n)+K) = f(m+n) = f(m)+f(n) = f(m+K)+f(n+K).

Hence

frm+K)) = flrm+ K) = f(rm) = rf(m) = rf(m + K).

So f is a homomorphism. If

fim+K)=f(n+K)

then
f(m)=f(n)=f(m—n)=0=m-neK=m+K=n+K

which gives us f is one-to-one.

At last, since for every n € N we have
n = f(m)= f(m+ K),

f is onto. So f is an isomorphism. O

Theorem 2.2.6. (Second Isomorphism Theorem) If N, K are submodules of M,

then

(N+K)/

K%Nk

NOK) -



Proof. Define f: N — (N"‘K)/K by
f(n)=n+K.

Since

(n+k)+ K=n+ K= f(n),

f is an epimorphism.

kerf={neN|neK}=NNK.
So by Fundamental Homomorphism Theorem

(N+K)/

KgN/(

NAK) -

Theorem 2.2.7. (Third Isomorphism Theorem) If K < N < M, then

<M/K)/(N/K> =My

Proof. Define f : M/K — M/N by
f(m+K)=m+ N .

Suppose that m; + K = mq + K. Then

m—my € K< N=mi—myg€N=my+N=mqg+ N.
Hence f is well-defined. Also
fr(mi+K)+s(me+K)) = f((rmi+smo)+K) = (rmi+smy)+N = r(mi+N)+s(ma+N)
which gives us

flr(my+ K) + s(my + K)) = 7 f(mi + K) + sf(m2 + K),

i.e. f is a homomorphism. Since for all m + N € M/N we have f(m+ K)=m+ N, f
is an epimorphism.

ker f = {m+K|me N} =N/

So by Fundamental Homomorphism Theorem

(M/K>/(N/K> ~ M/n



2.3 Direct Sum

Definition 2.3.1. Let {N;};cs be a family of submodules of a module M. M is the inter-
nal direct sum of submodules N; if every element m € M can be uniquely represented

as

where n; € N; and n; = 0 for almost all 7 € 1.

Proposition 2.3.2. M = @ N; if and only if

el
M=) N; and N;n (> N;)=0
iel j#i

for every i € I.

Proof. (=) 1) For every m € M we have

iel iel iel
which gives us

M=) N

el

ZL':TLZ‘:ZHJ‘ ENimZNj
i#] J#i
then by uniqueness of representation x = n; = 0.

(<)Vme M => N,

icl

2) Let

. / .
To prove uniqueness let m = > n; = > n,. For every i € I we have
i€l iel

ni_n;:Z(n]’_n;)GNiﬂ(ZNj)ZO

i#] i#]

Therefore n; = n,. O

Definition 2.3.3. If M = N & K then N, K are called direct summands of M.
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CHAPTER 3

COFINITELY SUPPLEMENTED MODULES

Superfluous (Small) Submodules

The most important notion in the study of supplements is the small submodule.

Definition 3.1.1. A submodule N of a module M is called superfluous or small if

there is no proper submodule K of M such that N + K = M.

Equivalently N + K = M implies that K = M. It is denoted by N < M.

Proposition 3.1.2. Let M be a module

1.

If K <N <M and K is small in N then K 1is small in M.

Let N be a small submodule of a module M, then any submodule of N is also small

m M.

If K is a small submodule of a module M and K is contained in a direct summand

N of M then K is small in N.
K< M and N < M if and only if K + N < M.
If K < N <M, then N < M if and only if

K <M and N/ < My

Finite sum of small submodules N; of M is a small submodule of M.

Let f: M — N be a homomorphism of modules M and N, let K be a submodule
of M. If K is a small submodule of M, then f(K) is a small submodule of N.

Proof. 1. Let K + L = M for a submodule L of M.

N=NNM=NnN(K+L)=K+(NnL).

Since K is smallin N, N=NNLso N <L K< Nand N < Lso K < L.
Therefore M = K + L = L. Thus K < M.



2. Let K be a submodule of N and K+ L = M for a submodule L of M. Since K < N,
N+ L =M and also since N < M, L =M. So K < M.

3. K< N<MK<KMand M = N & L for a submodule L of M. Let K + U = N
for a submodule U of N.

M=N+L=K+U+L
since K <M, M =U+Land UNL<NNL=0impliesUNL=0soM =U®L.
N=NNM=NnUeL)=Uas(NNL)=U.
So K < N.
4. (=) Let (K + N)+ L =M for some L < M. Since
K+(N+L)=(K+N)+L=M and K < M,

we have N+ L = M. Since N < M, L = M.
(<) K<K+N<Mby?2) K< M. Similarly N < K+ N < M by 2) N < M.

5. (=) Since N <« M by (2) K < M. Suppose that

N+ =Mk
where X/K is a submodule of M/K , then N + X = M. By assumption X = M i.e.

e =Mk -
(<) Let N + X = M then

(N + X)/K — M/K
le.

Niprd X+ K)pr =My or N4 X+ K =M.

Since N < M we have X + K = M. Now K < M implies X = M.

6. Let

N=> Ny and Ny+ -+ N, +X =M
i=1
for some X < M. Since N; < M,

Ni+(No+---+ N, +X)=M

then
Ny+---+N,+X =M.

Continuing this way, we obtain N, + X = M and hence N, < M, X = M.



7. Suppose that
JK) + L= f(M)
for some L < f(M). Then

FRAE)+ L) = fHFE) + (L) = fH(f(M) =M

and therefore

M=K+kerf+ f'(L)=K+ f(L).

Since K < M, f~Y(L) = M, hence

implies that

So L = f(M).

3.2 Complements and Supplements of a Submodule

Definition 3.2.1. Let M be a module. A submodule N of module M is said to be a
complement of a submodule L of M if NN L =0 and N is maximal with respect to

this property.

Definition 3.2.2. Let M be a module. A submodule N of module M is called a sup-
plement of a submodule L of M if N+ L = M and N is minimal with respect to this

property.

Proposition 3.2.3. N is a supplement of L in M if and only if

N+ L=M and NNL <« N.

Proof. (=) Let N be a supplement of L in M. Then we know that M = N + L and N
is minimal with respect to this property. For K < N let N = K + (N N L). By modular

law

N=K+(NNnL)=Nn(K+1L)



thatis N < L + K.
M=N+L=L+K.

By minimality of N we have K = N.
(<) Let M = L + K for some submodule K of N.

N=NNM=NnN(K+L)=K+(NnL).

Since NN L < N, K= N. So N is minimal with respect to N + L = M. Il
Unlike complements, supplements need not exist always.

Definition 3.2.4. A module M is called supplemented if every submodule of M has a

supplement.

3.3 Cofinitely Supplemented Modules

Definition 3.3.1. Let M be an R-module. For K < M if M/K is finitely generated then

K is called a cofinite submodule of M.

Definition 3.3.2. If every cofinite submodule of M has a supplement in M then M is

called a cofinitely supplemented module.

10



CHAPTER 4

LATTICES

Definition 4.0.3. A partially ordered set (or poset) is a set taken together with a partial

order (reflexive, antisymmetric and transitive relation) on it.

Definition 4.0.4. The infimum is the greatest lower bound of a set S, defined as a
quantity m such that no member of the set is less than m. When it exists (which is not
required by this definition, e.g., inf R does not exist), the infimum is denoted inf S or

inf,cqx.

Definition 4.0.5. The supremum is the least upper bound of a set S, defined as a
quantity M such that no member of the set exceeds M. When it exists (which is not

required by this definition, e.g., sup R does not exist), the supremum is denoted sup S or

SUpP,cg .

Definition 4.0.6. A lattice is any non-empty poset L in which any two elements x and
y have a supremum z V y and an infimum z A y.

Another equivalent definition is that a triple (L; A, V) is called a lattice if L is
a nonempty set, A (meet) and V (join) are binary operations on L, both A and V are

idempotent, commutative and associative and they satisfy the absorption law

aN(aVb)=aV(aNb)=a.

The partial order relation can be recovered from meet and join by defining

r<y & xAy=2x and xVy=y.

The study of lattices is called lattice theory.

11



Definition 4.0.7. A lattice is said to be bounded if it has a greatest element often
denoted by 1 and a least element often denoted by 0.

Definition 4.0.8. A lattice is said to be complete if every nonempty subset of it has a

supremum and infimum.

4.1 Swublattices

Definition 4.1.1. A subset B of a lattice L is called a sublattice if for each b,b’ € B,
irj%f {b,b'} € B and sup{b,b'} € B.
L
Clearly in this case, B is also a lattice and

inf {b,0'} = inf {b,b'} and sup{b,b'} =sup{b,b'}.
B L B L

Definition 4.1.2. In a complete lattice L, a subset B is called a complete sublattice
if for each subset X C B,
irifX € B and supX € B.
L

Definition 4.1.3. A quotient sublattice b/a for a < b represents the sublattice

{rel | a<xz<b}.

4.2 Modular Lattices

Definition 4.2.1. A lattice L which satisfies the identity
zV(yNz)=(xVy Az

for all z,y, z € L such that x < z is said to be modular.

12



4.3 Lattice of Submodules

The set of submodules of a module ordered by inclusion forms a lattice. The
supremum is given by the sum of submodules and the infimum by the intersection of

them.
Proposition 4.3.1. The lattice of submodules is modular. Namely, if K, H, L are sub-
modules of M and K C H then

HN(K+L)=K+(HNL).

Proof. First observe
K+(HNL)=HNK)+(HNL)CHN(K+1L).

If
h=k+le HN(K + L)

with h € H,k € K,l € L , then
ke KCH and l=h—ke HNL.

Therefore

HN(K+L)CK+(HNL).

So the lattice of submodules of a module is a modular lattice. O

13



CHAPTER 5

COFINITELY SUPPLEMENTED LATTICES

5.1 Superfluous (Small) Elements

Definition 5.1.1. In a lattice with 1, an element a is called superfluous if a Vb # 1

holds for every b # 1.

Lemma 5.1.2. Let L be a lattice and let a < b and b; € L (1 <i <n) for some positive

mnteger n,
1. b L if and only if a < L and b < 1/a'

2. (byVbyV...Vb,) < L if and only if b; < L.

Proof. 1. (=) If b < L, it is clear that « < L and b < 1/a'
(<) IfbVe=1,then bV (aVc) = 1. Since b < 1/a, aVe=1and since a < L,
¢ = 1. Therefore b < L.

2. It is enough to show the property for n = 2.
(=) By previous alternative, by < by V by < L implies by < L. Similarly by < L.
(<) Let (by V by) Vb =1. Since b < L,

1= (b V) Vb=0bV(byVD)

implies by V b = 1. Similarly, since by < L, by Vb = 1 requires b = 1. Therefore
by Vby < L.

5.2 Complements and Supplements

Definition 5.2.1. Let L be a lattice with 0 and 1 and a € L. An element o’ € L is called
a complement of a if

aNa =0 and aVd =1.
14



Definition 5.2.2. If ¢’ € L is a complement of a € L, we use the notation
a®ad =1

and we call this a direct sum and a and &’ direct summands.

Definition 5.2.3. In a lattice with 1, an element c is called a supplement of b in L if

it is minimal relative to the property bV c = 1.

Lemma 5.2.4. If L is a bounded modular lattice, then c is a supplement of b in L if and

only if
bVe=1 and bAc< Y.

Proof. (=) Let ¢ be a supplement of b in L. Then by definition, ¢ is minimal relative to
the property bV ¢ = 1. Now we have to show that b A ¢ < . Suppose that b A ¢ & Y.
This means that there is an element d in 9y such that (b A c) V d = c. In that case

l=bVe=bV(bAc)Vd=bVd

contradicts the fact that ¢ is minimal with the property bV ¢ = 1. Hence b A ¢ < 9.
(<) Let
bVe=1and bAc KLY .

Now we have to show that ¢ is a supplement of b. Suppose bV ¢ = 1 for some ¢ < ¢. In

that case, by modular law
c=cNhNbV)=(bNc)V

Since b A ¢ < ¢ we have ¢ = ¢. Therefore ¢ is a supplement of b in L. Il

5.3 Cofinitely Supplemented Lattices

Definition 5.3.1. A lattice L is called supplemented if each element of L has a sup-

plement in L.

15



Definition 5.3.2. An element ¢ of a complete lattice L is called compact if for every

subset X of L and ¢ < VX there is a finite subset F' C X such that ¢ < VF.

Definition 5.3.3. A lattice with greatest element 1 is called compact if the element 1

is compact.

Definition 5.3.4. A complete lattice L is called compactly generated if each element

of L is a join of compact elements.

Definition 5.3.5. An element a of a lattice L is called cofinite in L if the quotient

sublattice 1/a is compact.

Definition 5.3.6. A lattice L is called cofinitely supplemented if every cofinite element

of L has a supplement in L.

Lemma 5.3.7. Let L be a cofinitely supplemented lattice. Then 1/a 1s cofinitely supple-

mented for any a € L.

Proof. Suppose that L is cofinitely supplemented and let a € L. Since L is cofinitely

supplemented, any cofinite element b of 1/(1 has a supplement ¢ € L. By Lemma 5.2.4,
1=0bVe and bAc<K Y.
Hence
(bVe)Va=1Va=1=bV(cVa).

By Modular law,
bA(cVa)=(bAc)Va<(EVa)y

by Lemma 5.1.2(2). By Lemma 5.2.4, ¢ V a is a supplement of b in 1/a- It follows that 1/a

is cofinitely supplemented. O

Lemma 5.3.8. Let a < b be elements in a modular lattice L. If a is superfluous in b/o

then a is also superfluous in L. If b is a direct summand in L, the converse also holds.

16



Proof. Suppose a V u = 1. Then by modularity
b=bA1l=bA(aVu)=aV(bAu)
and since a is superfluous in b/O,
bAu=0b or b<u.

Hence

a<b<wu and u=aVu=1.

Therefore a is small in L.

Conversely, let v € b/O be such that
aVv=>5band bc=1.
Then aVvVe=1and sovVc=1,a being superfluous in L. Hence
v=ovV0=vV((bAc)=bA(vVec)=D

by modularity. ]

Definition 5.3.9. A subset I of a lattice L is called an ideal in L if
(i) x Vy € [ for every x,y € I.

(ii) x Ay € I for every z € I and y € L.

Lemma 5.3.10. The superfluous elements of a lattice form an ideal.

Proof. Let us denote the set of superfluous elements by 1.
(i) z,y € I means z < L and y < L. By Lemma 5.1.2(2),  Vy < L.
(ii) Since x Ay < x and x < L, by Lemma 5.1.2(1) x Ay < L and hence xt Ay € I. [

Lemma 5.3.11. In a modular lattice L, let ¢ be superfluous in Gy and d' be superfluous
in d/o. Then
dvd < eV

Proof. By taking L = (cV d)/() in Lemma 5.3.8, we get ¢ and d’' are superfluous and by
Lemma 5.3.10, ¢’ V d' is superfluous in (% d)/o. O
17



Lemma 5.3.12. In any modular lattice
(eVd)ANb<[cA(bVA)]VI[dA(DVc)]
holds for every b,c,d € L.

Proof. Since

cAN(bVvd) <bVe
by modularity
leA BV AIVIAA BV =[cABVAVAADYC)
and again by modularity, since d < bV d,
leA(bVd)]Vd=(dVe)A(bVd).
These equalities gives us
eABVAIVIAADBVA] =[cABVAVAADBVE)=[dVe)ADBVDIADBVEC.

It is clear that
b<(bVd)A(bVec).

And hence
(cVA)ANb<[cAN(DVA)]|VI]dA (V).

Theorem 5.3.13. If a and b are elements in a modular lattice L then the quotient sub-

lattices
(aV b)/b and a/(a A D)

are 1somorphic.

Proof. 1t is easily verified that the maps

fraVbp s p f@)=xha

for all z € @V b/b and

9:Yunp— V0, gly)=yVb

for all y € ¥, A are (in a modular lattice L) mutually inverse lattice morphisms. [

18



Proposition 5.3.14. Let ¢ be a supplement of b in a lattice L. If a < b and aV c =1,

then c is a supplement of a in L.

Proof. Let ¢ < cwithaVc =1.a <bimplies bV ¢ = 1. Since ¢ is a supplement of b,

cd =c. O

Lemma 5.3.15. Let a and b be elements of a lattice L such that b is cofinite, %y is

cofinitely supplemented and a V' b has a supplement in L. Then b has a supplement in L.

Proof. Let ¢ be a supplement of a Vb in L and d a supplement of (¢ V b) Aa in ). These
mean that

cV(avb) =1, cA(aVb) <Y
and

AV (Vb)) Aal=a, dA[(cVb)Aa) <
First observe that d is a supplement of ¢V b in L. Indeed
l=cV(aVvb)=cVbVI[l(cvVb) ANa|Vvd = (cVb)Vd

and

(cVO)Ad=(cVb)AdAa=][cVb) AaAd<
Using Proposition 5.3.14(1), as bV d < a V b,
(avb)Ve=(bVvd)vVe=1
and c is a supplement of a V b, we obtain that ¢ is also a supplement of bV d. Hence
(bvd)Nne<g Y.
Finally, we prove that ¢V d is a supplement of b in L. We already know that
bV(cvd) =1
so that we only need to show that
bA (cvd) < (V).

By Lemma 5.3.11,
[eA VA VA DY) < (V)

and using Lemma 5.3.12,

(cvd)Ab< (cVd)
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Lemma 5.3.16. Let %y (i € I) be any collection of cofinitely supplemented sublattices

of a lattice L. Then
i\e/l CLZ'/O

s a cofinitely supplemented sublattice of L.

Proof. Let

and b be a cofinite element of A. Because Z.\E/I @i / p is compact, there exists a finite set

F C I such that

Va =V a;.
i€l ieF
Since
(\/ Ojl)\/b: V a;
icF icF
we have
_bVv | V g
A (iEF al)/o :
Hence

\/CLZ:\/CLZ:b\/(\/(J,Z):[b\/< vV CLZ'):|\/CLJ'1.
icl el el 1€EF—j1

It is clear that V a; has 0 as its supplement and we know that %) is cofinitely

el
i€F—j1

supplemented. By Lemma 5.3.15,
has a supplement in A. By repeated use of Lemma 5.3.15, we deduce that b has a

i\e/l CLi/()

is cofinitely supplemented. O

supplement in A. It follows that

Corollary 5.3.17. Any direct sum of cofinitely supplemented sublattices of a lattice L is
cofinitely supplemented.

Proof. This immediately follows from Lemma 5.3.16. O
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Definition 5.3.18. An element m € L is called maximal in L if there is no element

greater than m.

Definition 5.3.19. In a complete lattice L the meet of all the maximal elements different

from 1 in L is called the radical of L, denoted by r (L) .

Proposition 5.3.20. FEach finite join of compact elements is a compact element.

Proof. By induction, it suffices to verify the assertion for only two compact elements, say

a,b € L. Since a and b are compact, for
a= V aq; and b= V b;
1€lq 1€l

we can find finite sets F; C I; and F5 C I, such that

a= V a; and b= V b,

i€k i€Fy
Clearly
aVb= <l€\{w1 ai) V <l€\{m2 bi)
is a finite join. Therefore a V b is compact. ]

Lemma 5.3.21. In a compactly generated lattice L, an element k € b/a 18 compact in a

quotient sublattice b/a if and only if there is a compact element ¢ in L such that

k=aVecand aVe<b.

Proof. (=) Let k be a compact element in b/a. The lattice being compactly generated,

there is a family of compact elements {c;},.; such that k = v i Clearly
ic

il

k=aVk=aV <,vlcl-) =V (aVg)
1€
with a V ¢; € b/a (because ¢; < k < b). Thus there exists a finite subset F' C [ such that

k= v (a\/ci):a\/<v ci) =aVe<b
ieF i€F

where ¢ = ’VF ¢; is compact in L as finite join of compact elements by Proposition 5.3.20.
1€

(<) Suppose ¢ is compact in L, X C b/a and a V¢ < VX. Then ¢ < VX and so there is a

finite subset F' C X such that ¢ < VF. But F C b/a implies a V ¢ < VF and hence a V ¢

is compact in b/a. O
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Proposition 5.3.22. Let a be a superfluous element in a compactly generated lattice L.

L is compact if and only if 1/a 1s a compact sublattice.

Proof. (=) If L is compact and 1 = ‘\/1 ¢; is a join of compact elements, then
1€

l=1Va=V (¢ Va)
i€l

is a join of compact elements in 1/a'

(<) If 1/a is a compact sublattice, then

l=Vk=V (a\/ci):a\/(\/ ci>

iel iel iel

by Lemma 5.3.21. Then since a is superfluous in L,

1:\/01'.
i€l

Lemma 5.3.23. If a is superfluous in L, then a < r(L).

Proof. If m # 1 is a maximal element in L, then since a is superfluous a V m # 1. Hence

aV-m = m, namely a < m. Il

Lemma 5.3.24. If a is compact in L and a < r (L), then a is superfluous in L.

Proof. Suppose that a is not superfluous. Then there is an element b # 1 such that
aV b=1. Clearly a £ b and if we consider the set

D={zel|afz,x#1l,ave=1}

D is nonempty. If C' is a chain in D, a being compact, a £ VC and VC' € D. Denote
again by b a maximal element in D. The element b is also maximal in L (indeed, if b < c,

by the maximality of b in D, a < ¢ and hence, 1 = a Vb < ¢, namely ¢ = 1) and so
a<r(L)<b,

the required contradiction. O
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Theorem 5.3.25. If L is compactly generated, then r (L) is the join of all the superfluous

elements from L.

Proof. Let w is the join of all the superfluous elements from L. Since the superfluous
elements of a lattice forms an ideal, u is also superfluous. Hence by Lemma 5.3.23,
u<r(L).

Conversely, if u < r (L), the lattice being compactly generated, there is a compact element
a such that a < r (L), a £ u. But Lemma 5.3.24 implies a superfluous and we contradict

a £ u. Therefore u = r (L). O

Lemma 5.3.26. Let L be a cofinitely supplemented lattice. Then every cofinite element

of the quotient sublattice 1/7“ (L) is a direct summand.
Proof. Any cofinite element a of 1/r (L) is also a cofinite element of L. Since L is cofinitely
supplemented, by Lemma 5.2.4 there exists an element b of L such that
=aVb and a/\b<<b/0.
Now a A b < L by Lemma 5.3.8 and hence by Lemma 5.3.23, a A b < r (L) . Therefore
aN(bVvr(L)<r(L).

Thus

bV (Dl g

as required. 0

Yeiry=%r)y®!

Definition 5.3.27. An element a in a lattice L is called an atom if there is no element

b € L such that 0 < b < a.

Definition 5.3.28. The join of all atoms of L, denoted by s (L), is called the socle of
the lattice L.

Lemma 5.3.29. The following statements are equivalent for a lattice L:

1. FEvery cofinite element of L is a direct summand of 1.
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2. Every mazimal element of L is a direct summand of 1.

3. 1/3 (L) does not contain a mazimal element.

Proof. (1)=-(2) It is clear that a maximal element, say m, is cofinite. Really 1/m is
compact. Because if we represent 1 as a join of some indexed elements, these elements
can only be either m or 1. Therefore 1 can be represented as a finite join.

(2)=-(3) Let 1/5 (L) contains a maximal m. Then for any atom m’ < s(L), mVm' =m
since m V s (L) = m. Therefore m \VV m’ # 1 for every m’ € L. Hence no maximal elements
can be a direct summand of 1.

(3)=-(1) Let a be any cofinite element of L. Then aVs (L) is cofinite and hence 1 = aVs (L)
by (3). It follows that 1 = a V o’ for any element @’ such that

s(Ly=[aNns(L)]®d

This proves (1). O

Definition 5.3.30. Let a and b be elements of a lattice L such that b > a. If there is no

element a € L such that a < ¢ < b we say that the quotient sublattice

b/a = {av b}

is simple.
Definition 5.3.31. A lattice L is called local if it has a largest element # 1.
Proposition 5.3.32. A lattice L is local if and only if (L) is superfluous and maximal.

Theorem 5.3.33. Let Loc (L) is defined as
Loc(L) = ié/l {a;| %y islocal Vie I}
and Cof (L) is defined as
Cof (L) = Z'\E/I {a; | %y is cofinitely supplemented Vi € I} .

Then the following statements are equivalent for a lattice L:
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1. L is cofinitely supplemented.
2. Every maximal element of L has a supplement in L.
3. The quotient sublattice 1/Loc (L) doesn’t contain a mazimal element.

4. The quotient sublattice 1/C’of (L) doesn’t contain a maximal element.

Proof. (1)=-(2) Clear because maximal elements are cofinite.

(2)=(3) Let m be a maximal element of L. There exists an element [ of L such that
I=mVI and mAl <1

by Lemma 5.2.4. Note that

Yo w1y = Y "y =Y

and since 1/m is simple m A [ is a maximal element of Z/O. Therefore [ is a local element
of L. It follows that Loc (L) is not an element of Y. Hence L Loc (L) does not contain a
maximal element.
(3)=(4) Local lattices are cofinitely supplemented. Because it has a largest element which
is not equal to 1. Therefore since any element is superfluous, 1 is the supplement of each
proper element. Hence Loc (L) < Cof (L) . This gives (4).
(4)=(1) Let ¢ be a cofinite element of L. Then ¢V Cof (L) is a cofinite element of L and
hence (4) gives that

l=cVvCof(L).

Since 1/0 is compact it follows that
1:C\/k1\/k2\/...\/kn

for some ¢ and cofinitely supplemented sublattices ki/o (1 <i<n). By repeated use of

Lemma 5.3.15, ¢ has a supplement in L. It follows that L is cofinitely supplemented. [

25



REFERENCES

Alizade, R., Bilhan, G., Smith, P.F. 2001. "Modules whose maximal submodules have
supplements”, Communications in Algebra. Vol.29, No:6, pp.2389-2405.

Anderson, F.W. and Fuller, K.R., 1992. Rings and Categories of Modules, (Springer-
Verlag, New York).

Calugareanu, G. 2000. Lattice Concepts of Module Theory, (Kluwer Academic Pub-
lishers, Dordrecht/Boston/London).

Fuchs, L. and Salce L., 2001, ” Modules over Non — Noetherian Domains”, (American

Mathematics Society: Mathematical Surveys and Monographs) Vol.84.

Leonard, W.W., 1966. ” Small Modules”, (Procedings of Amer. Math. Soc.) Vol.17,
No:1, pp.527-531.

Wisbauer, R., 1991. Foundations of Module and Ring Theory, (Gordon and Breach,
Philadelphia).

26



