Show simple item record

dc.contributor.authorTanoğlu, Gamze
dc.contributor.authorBraun, Richard J.
dc.contributor.authorCahn, John W.
dc.contributor.authorMcFadden, Geoffrey B.
dc.date.accessioned2019-03-12T11:27:32Z
dc.date.available2019-03-12T11:27:32Z
dc.date.issued2003
dc.identifier.citationTanoğlu, G., Braun, R. J., Cahn, J. W., and McFadden, G. B. (2003). A1-L10 phase boundaries and anisotropy via multiple-order-parameter theory for an fcc alloy. Interfaces and Free Boundaries, 5(3), 275-299. doi:10.4171/IFB/80en_US
dc.identifier.issn1463-9963
dc.identifier.urihttp://doi.org/10.4171/IFB/80
dc.identifier.urihttp://hdl.handle.net/11147/7139
dc.description.abstractThe dependence of thermodynamic properties of planar interphase boundaries (IPBs) and antiphase boundaries (APBs) in a binary alloy on an fcc lattice is studied as a function of their orientation. Using a recently developed diffuse interface model based on three non-conserved order parameters and the concentration, and a free energy density that gives a realistic phase diagram with one disordered phase (A1) and two ordered phases (L12 and L10) such as occur in the Cu-Au system, we are able to find IPBs and APBs between any pair of phases and domains, and for all orientations. The model includes bulk and gradient terms in a free energy functional, and assumes that there is no mismatch in the lattice parameters for the disordered and ordered phases.We catalog the appropriate boundary conditions for all IPBs and APBs. We then focus on the IPB between the disordered A1 phase and the L10 ordered phase. For this IPB we compute the numerical solution of the boundary value problem to find its interfacial energy, γ as a function of orientation, temperature, and chemical potential (or composition). We determine the equilibrium shape for a precipitate of one phase within the other using the Cahn-Hoffman "-vector" formalism. We find that the profile of the interface is determined only by one conserved and one non-conserved order parameter, which leads to a surface energy which, as a function of orientation, is "transversely isotropic" with respect to the tetragonal axis of the L10 phase. We verify the model's consistency with the Gibbs adsorption equation.en_US
dc.description.sponsorshipNASA; National Science Foundation (DMS-9722854-DMS-9631287)en_US
dc.language.isoengen_US
dc.publisherEuropean Mathematical Society Publishing Houseen_US
dc.relation.isversionof10.4171/IFB/80en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnisotropyen_US
dc.subjectInterphase boundariesen_US
dc.subjectAntiphase boundariesen_US
dc.subjectFCC alloyen_US
dc.titleA1-L10 phase boundaries and anisotropy via multiple-order-parameter theory for an fcc alloyen_US
dc.typearticleen_US
dc.contributor.authorIDTR103234en_US
dc.contributor.iztechauthorTanoğlu, Gamze
dc.relation.journalInterfaces and Free Boundariesen_US
dc.contributor.departmentIzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.startpage275en_US
dc.identifier.endpage299en_US
dc.identifier.wosWOS:000185315400002
dc.identifier.scopusSCOPUS:2-s2.0-33244478190
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record